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The lecture will have three parts:

Part 1: Heinz Hopf and Riemannian geometry

Part 2: The Riemann curvature tensor

Part 3: Curvature pinching and the sphere theorem

Tomorrow’s lecture will be centered around geometric problems in
general relativity.

Credit: Some of the information about Hopf’s role in Riemannian
geometry comes from the book “A Panoramic View of Riemannian
Geometry” by Marcel Berger.
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Part 1: Heinz Hopf and Riemannian geometry

1932 quote from Heinz Hopf:
“The problem of determining the global structure of a space form
from its local metric properties and the connected one of
metrizing–in the sense of differential geometry–a given topological
space, may be worthy of interest for physical reasons.”

It suggest two questions:
1. What does the local geometry tell us about the global structure
of a space?

2. Given a topological space (smooth manifold), find the best
metric (geometry) it can support.
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Hopf conjecture: curvature and Euler characteristic

For compact surfaces the Gauss-Bonnet formula shows that
positive curvature implies positive Euler characteristic∫

M
K da = 2πχ(M).

Hopf Question: Does an even dimensional compact manifold of
positive curvature have positive Euler characteristic?

True for dimensions 2 and 4. For dimension 6 it is the inequality
b3 < 2(b2 + 1). There has been no progress to my knowledge.
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Hopf conjecture: S2 × S2

The two sphere S2 has its constant curvature metric, and this
induces the product metric on S2 × S2 which then has
non-negative curvature, but the curvature is not positive since a
two plane spanned by unit vectors v1 from the first factor and v2
from the second has zero curvature.

Hopf Question: Does S2 × S2 have a Riemannian metric with
positive curvature?

Despite being one of the best known problems in Riemannian
geometry this question is still open. I believe that no such metric
should exist, but the resolution will require a new idea. Under
somewhat stronger positivity conditions such metrics can be shown
not to exist.



Hopf conjecture: S2 × S2

The two sphere S2 has its constant curvature metric, and this
induces the product metric on S2 × S2 which then has
non-negative curvature, but the curvature is not positive since a
two plane spanned by unit vectors v1 from the first factor and v2
from the second has zero curvature.

Hopf Question: Does S2 × S2 have a Riemannian metric with
positive curvature?

Despite being one of the best known problems in Riemannian
geometry this question is still open. I believe that no such metric
should exist, but the resolution will require a new idea. Under
somewhat stronger positivity conditions such metrics can be shown
not to exist.



Hopf conjecture: S2 × S2

The two sphere S2 has its constant curvature metric, and this
induces the product metric on S2 × S2 which then has
non-negative curvature, but the curvature is not positive since a
two plane spanned by unit vectors v1 from the first factor and v2
from the second has zero curvature.

Hopf Question: Does S2 × S2 have a Riemannian metric with
positive curvature?

Despite being one of the best known problems in Riemannian
geometry this question is still open. I believe that no such metric
should exist, but the resolution will require a new idea. Under
somewhat stronger positivity conditions such metrics can be shown
not to exist.



Hopf conjecture: curvature and symmetric spaces

There is a more general question posed by Hopf concerning
compact symmetric spaces. These are compact manifolds which
have canonical metrics with large symmetry groups. These metrics
always have non-negative curvature. There is a positive integer
called the rank which is the largest dimension of a flat torus which
can be embedded totally geodesically. For example S2 × S2 has
rank 2 since the product of equators from the factors is a 2-torus.
The rank 1 symmetric spaces have strictly positive curvature.

Hopf Question: Does a compact symmetric space of rank greater
than 1 have a metric of positive curvature?
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Rank one symmetric spaces

The compact rank 1 symmetric spaces are the sphere, and the
projective spaces over the reals, complex numbers, and
quaternions. There is also a projective plane over the octonians.

The rank 1 symmetric spaces have positive curvature, but only the
sphere and the real projective space have constant curvature. The
others have curvatures which lie between 1 and 4. This can be
explained in terms of the Hopf fibrations.



Curvatures of projective spaces

In the complex case the Hopf fibration maps the unit sphere S2n+1

in Cn+1 to CPn, the projective space of complex lines through the
origin in Cn+1. The fiber of a point p ∈ CPn is the unit circle in
the complex line p. The metric on CPn is that induced from the
orthogonal complement of the fiber in S2n+1.

A geodesic orthogonal to the fiber remains orthogonal to the fibers
and meets each fiber at antipodal points, so it covers a geodesic of
CPn two times and so the closed geodesics of CPn have length π.
A two plane at a point of CPn which is complex is tangent to a
CP1 or S2 which has diameter π/2 and hence curvature 4 (a
sphere of radius 1/2).

A two plane which is real is tangent to RP2 of diameter π/2. This
is double covered by an S2 of diameter π (radius 1) and so has
curvature 1.
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Curvature pinching

Pinching Problem: Does a rank 1 symmetric space have a metric
with curvature strictly between 1 and 4? More generally is a
manifold with curvatures between 1 and 4 diffeomorphic to a
quotient of a rank 1 symmetric space?

After a long development this problem has been completely
resolved in the affirmative and the solution will be outlined in part
3 of this lecture.

Berger refers to the problem has Hopf’s pinching problem, and says
that H. Rauch, who was the first to prove a partial result around
1950, spent the year 1948-49 at ETH and learned the problem
from Hopf. It was a central problem that led to the development
of techniques in global Riemannian geometry after 1950.
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Part 2: The Riemann curvature tensor

Let Mn be a smooth n-manifold (space which is locally
diffeomorphic to Rn)

A Riemannian metric g on M is an assignment of inner product
to each tangent space which varies smoothly from point to point.

If X ,Y are smooth vector fields then g(X ,Y ) is a smooth function
which is bilinear, symmetric, and positive definite at each point.

Surfaces in R3:

g(X ,Y ) = X · Y for tangent vector fields X and Y .
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Sign of curvature

The metric g enables us to measure lengths, angles, and volumes.
Under reasonable assumptions (Hopf-Rinow Theorem) we can find
shortest curves or geodesics and we can consider geodesic
triangles.

The sign of the curvature is determined by the sum of interior
angles of geodesic triangles.

We say that M has positive curvature if the sum of interior
angles of nondegenerate geodesic triangles in M is greater than π.
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Riemann curvature tensor

Riemann generalized Gauss’ work on surfaces and found the
pointwise quantity which measures curvature of g . This is the
curvature tensor R which depends on g and its first two
derivatives.

R is a 4-linear function on tangent vectors which satisfies the
symmetries

R(X ,Y ,Z ,W ) = −R(Y ,X ,Z ,W ) = R(Z ,W ,X ,Y )

R(X ,Y ,Z ,W ) + R(Y ,Z ,X ,W ) + R(Z ,X ,Y ,W ) = 0

for all tangent vectors X ,Y ,Z ,W ∈ TpM.
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If Π is a 2-plane in TpM and X ,Y an orthonormal basis for Π,
then K (Π) = R(X ,Y ,X ,Y ) is basis independent, and is called the
sectional curvature of Π.

The notion of positive curvature described above is equivalent to
the condition that all sectional curvatures are positive.

The sectional curvature K (Π) is equal to the Gauss curvature at
the point p of the surface swept out by geodesics in M which are
tangent to Π. Because of the symmetries of R, the sectional
curvatures determine all components of the curvature tensor.
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Ricci and scalar curvature

The curvature tensor has two distinct traces called the Ricci and
scalar curvature. They are given by

Ric(X ,Y ) =
n∑

k=1

R(X , ek ,Y , ek)

and

scal =
n∑

k=1

Ric(ek , ek)

where X ,Y are arbitrary tangent vectors and the ek form an
orthonormal basis at p.

The Ricci and scalar curvature play a central role in the theory of
general relativity.



Manifolds of constant positive curvature

Spherical space forms: These are the compact Riemannian
manifolds with all sectional curvatures equal to 1. They have
universal covers which are isometric to Sn, and so may be viewed
as the quotient of Sn by a finite subgroup Γ of O(n + 1) which
acts freely on Sn (an early theorem of Hopf).

For even n these are just Sn and RPn, but for each odd n ≥ 3
there are infinitely many such manifolds which have been
completely classified by group theoretic methods.
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CROSS: compact rank one symmetric spaces

The CROSS manifolds which are not of constant curvature are the
following:

CPn, HPn, OP2

where n ≥ 2 and C, H, and O denote respectively the complex
numbers, the quaternions, and the octonians. The manifolds
indicated have real dimension 2n, 4n, and 16 respectively.

The CROSS manifolds have natural Riemannian metrics with
sectional curvatures in the interval [1, 4].



CROSS: compact rank one symmetric spaces

The CROSS manifolds which are not of constant curvature are the
following:

CPn, HPn, OP2

where n ≥ 2 and C, H, and O denote respectively the complex
numbers, the quaternions, and the octonians. The manifolds
indicated have real dimension 2n, 4n, and 16 respectively.

The CROSS manifolds have natural Riemannian metrics with
sectional curvatures in the interval [1, 4].



Part 3: Curvature pinching and the sphere theorem

For δ ∈ (0, 1], a manifold of positive curvature is said to be
δ-pinched if the sectional curvature of (M, g) satisfies δ ≤ K2/K1

for any two sectional curvatures K1 and K2. If the strict inequality
holds, we say that (M, g) is strictly δ-pinched.

We say that (M, g) is pointwise δ-pinched if δ ≤ K2/K1 for all
points p ∈ M and sectional curvatures K1 and K2 at the point p.
If the strict inequality holds, we say that (M, g) is strictly
pointwise δ-pinched.
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Curvature pinching (II)

To clarify the pinching conditions we have defined, note that a
spherical space form is 1-pinched while a non-constant curvature
CROSS is 1/4-pinched, but not strictly 1/4-pinched.

For n = 2 there is only one sectional curvature at each point, so
any positively curved surface is pointwise 1-pinched, even though
its global pinching constant may be arbitrarily small.
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Sphere theorems

Theorems in Riemannian geometry which characterize the sphere
or spherical space forms are called sphere theorems. In 1951, H.
Rauch showed that a compact, simply connected Riemannian
manifold which is δ-pinched is homeomorphic to Sn (δ ≈ 0.75). He
also posed the problem of determining the optimal δ.

This question was settled around 1960 by the celebrated theorem
of M. Berger and W. Klingenberg.

Topological sphere theorem: Let (M, g) be a compact, simply
connected Riemannian manifold which is strictly 1/4-pinched.
Then M is homeomorphic to Sn.

Proof involves refined use of comparison and variational techniques
for geodesics.
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Two unresolved issues

1) Diffeomorphism: For simply connected manifolds, the
topological sphere theorem left open the question of whether a
strictly 1/4-pinched manifold is diffeomorphic rather than just
homeomorphic to a sphere; in other words, the question of whether
an exotic sphere might admit such a metric.

2) Fundamental groups: For non-simply connected manifolds, the
sphere theorem says only that the universal cover is homeomorphic
to a sphere. There are known examples of exotic free actions of
finite groups on spheres (even Z2 actions on S4). The curvature
properties of such exotic space forms are unknown.

One can also formulate the sphere theorem equivariantly and ask if
a strictly 1/4-pinched metric with a given symmetry group is
equivariantly diffeomorphic to a sphere.
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Some answers

1) 1960’s, D. Gromoll and E. Calabi, δ(n)-pinching

1970’s, M. Sugimoto, K. Shiohama, and H. Karcher, δ = 0.87

K. Grove, H. Karcher, and E. Ruh, δ = 0.76

2) 1970’s, K. Grove, H. Karcher, and E. Ruh, δ = 0.97 and for a
decreasing sequence δ(n) converging to .68 as n→∞.

1980’s, E. Ruh, pointwise δ(n)-pinched manifolds, new analytic
method

M. Micallef and D. Moore, topological sphere theorem with
pointwise 1/4-pinching, variational theory for minimal two spheres
in M
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More answers

1980’s, G. Huisken, C. Margerin, S. Nishikawa, pointwise
δ(n)-pinching, used Ricci flow

In 1986, R. Hamilton extended the Ricci flow method and proved
that 4-manifolds with positive curvature operator (a different
positivity condition) are spherical space forms. This work was
improved to 1/4-pinching in dimension four by H. Chen.

In higher dimensions, C. Böhm and B. Wilking developed new
convergence methods for the Ricci flow and were able to show that
a manifold with two-positive curvature operator is a spherical
space form.
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Optimal sphere theorems

The following results from 2007, which are joint with Simon
Brendle, give an optimal differentiable sphere theorem under
pointwise pinching assumptions for non-simply connected
manifolds.

The method also preserves any symmetry which exists for the
pinched metric and therefore provides a sharp equivariant sphere
theorem.

Theorem A. (Brendle, Schoen) Let (M, g) be a compact
Riemannian manifold which is strictly pointwise 1/4-pinched. Then
M is diffeomorphic to a spherical space form. In particular, no
exotic sphere admits a metric with strictly pointwise 1/4-pinched
sectional curvature.



For 1/4-pinched manifolds we have the following result.

Theorem B. (Brendle, Schoen) Let (M, g) be a compact
Riemannian manifold which is pointwise 1/4-pinched. Then either
M is diffeomorphic to a spherical space form or M is isometric to a
locally CROSS manifold.



Ricci flow

The fundamental idea is to start with a given Riemannian manifold
(M, g0), and evolve the metric by the evolution equation

∂

∂t
g(t) = −2Ricg(t), g(0) = g0.

Here, Ricg(t) denotes the Ricci tensor of the time-dependent
metric g(t). The Ricci flow, in suitable coordinates, is a nonlinear
heat equation for the Riemannian metric, and therefore, there is a
short time existence theorem for any smooth initial metric.



An important example:

This solution is defined for all t ∈ [0, 1
2(n−1)), and collapses to a

point as t → 1
2(n−1) .



Ricci flow and curvature (I)

Preservation of curvature condition: One must study the
evolution of the curvature tensor R which is determined by the
equation

∂

∂t
R = ∆R + Q(R),

where Q(R) is a quadratic polynomial in the components of R.
There is a corresponding ODE on the vector space of
curvature-type tensors on Rn which has the form dR/dt = Q(R).

A closed set C is said to be an invariant set if it is convex, O(n)
invariant, and ODE invariant.

Theorem. (Hamilton) If the curvatures of g0 lie in an invariant set
C, and the flow is smooth up to time t, then the curvatures of g(t)
also lie in C.

Proof uses the maximum principle.
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Ricci flow and curvature (II)
Convergence criterion: A closed set C is called a pinching set if
C is an invariant set, and if for all ε > 0, there exists Λ such that
for all R ∈ C with ‖R‖ > Λ we have ‖ R

‖R‖ − I‖ < ε. (Here I

denotes the curvature tensor of Sn.)

Theorem. (Hamilton) If the curvatures of g0 lie in a pinching set
C, then the flow exists up to a finite time T and the volume of the
metric g(t) converges to 0 as t → T . Moreover, the renormalized
unit volume metrics ĝ(t) = ε(t)−2g(t) converge to a constant
curvature metric as t → T . In particular, M is diffeomorphic to a
spherical space form.
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General strategy

The problem is that 1/4-pinching does not seem to be preserved
by the flow, so we looked for other conditions more flexible than
1/4-pinched and which are preserved.

In 1988, M. Micallef and J. D. Moore introduced a new curvature
condition, called PIC, which was motivated from the variational
study of two dimensional minimal surfaces in M; in particular, from
the second variation of area.

In 1997 Hamilton showed that PIC is preserved by Ricci flow in
four dimensions. The first step in the proof of Theorem A is the
extension of this to higher dimensions. This was done by Brendle
and the speaker, and independently by H. Nguyen.

Theorem. If g0 is (strictly) PIC and the flow is smooth up to time
t, then g(t) is also (strictly) PIC.
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t, then g(t) is also (strictly) PIC.
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Conditions related to PIC

We define a set of curvature tensors C̃ by the requirement that the
trivial extension of R ∈ C̃ to Rn+1 be PIC. This corresponds to the
condition that M × R be PIC.

Similarly, let Ĉ be the set of curvature tensors such that the trivial
extension to Rn+2 is PIC. This corresponds to the condition that
M × R2 be PIC.

Micallef and Moore showed that pointwise 1/4-pinched metrics are
PIC. We showed that they also satisfy the stronger condition Ĉ.
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Convergence in Ĉ

Theorem. Given any compact set K contained in the interior of Ĉ,
there exists a pinching set PK such that K ⊂ PK ⊂ Ĉ.

Convergence Result: If g0 has curvature interior to Ĉ, then the
Ricci flow has a finite time singularity and the renormalized metrics
converge to a constant curvature metric. In particular, M is
diffeomorphic to a spherical space form.

The construction of the pinching set PK is a direct adaptation of
the work of Böhm and Wilking, which involves deforming invariant
sets to construct pinching families and to fashion pinching sets
from these families.
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Ricci flow has a finite time singularity and the renormalized metrics
converge to a constant curvature metric. In particular, M is
diffeomorphic to a spherical space form.

The construction of the pinching set PK is a direct adaptation of
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Comparison of the conditions

To summarize the inclusions of our curvature conditions we have

In three dimensions we have CRic≥0 = C̃. In that case we recover
Hamilton’s original condition of positive Ricci curvature.



Proof of Theorems A and B

The discussion on the previous slides finishes the proof of Theorem
A, for if M is strictly 1/4-pinched, it follows that its curvatures lie
interior to Ĉ. From the convergence theorem we find that M is
diffeomorphic to a spherical space form.

The proof of Theorem B relies on a variant of the strong maximum
principle for degenerate elliptic equations developed by J. M. Bony
to show the holonomy is reduced. The proof then uses M. Berger’s
classification of holonomy groups.
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Below a quarter

Where does it leave the classification of positively curved
manifolds? Any metric g of positive curvature has a pinching
constant δ(g) ∈ (0, 1]. We have a complete classification of those
manifolds having metrics with δ(g) ∈ [1/4, 1]. It turns out that
1/4 is a hard barrier though.

In 1996, U. Abresch and W. Meyer showed that there exists
δ0 < 1/4 (δ0 = 1

4(1+10−6)2
) such that any odd dimensional, simply

connected, δ0-pinched manifold is homeomorphic to a sphere.
(Note that δ0 does not depend on n.)

P. Petersen and T. Tao used a compactness argument, together
with our work, to show that there exists a δ(n) ∈ (0, 1/4) with the
property: if (M, g) is a compact, simply connected Riemannian
manifold of dimension n which is δ(n)-pinched, then M is
diffeomorphic to a sphere or a CROSS. (Note that the constant
δ(n) is likely to tend to 1/4 as n tends to infinity.)
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Further results

S. Brendle obtained an extension of the convergence result from Ĉ
to C̃. He showed that a manifold whose curvatures lie interior to C̃
is diffeomorphic to a spherical space form.

B. Andrews and H. Nguyen formulated the notion of 1/4-pinched
flag curvature which requires comparison of sectional curvatures
only for planes with a nontrivial intersection. In dimension 4, they
were able to prove the sphere theorem under this weaker pinching
condition. L. Ni and B. Wilking elucidated this condition and
extended their work to all dimensions.
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