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Plan of Lecture

The lecture will have four parts:

Part 1: Review of the Einstein equations

Part 2: Local structure of the constraint manifold

Part 3: Localization of solutions

Part 4: An optimal extension problem and quasi-local mass



Part 1: Review of the Einstein equations

On a spacetime Sn+1, the Einstein equations couple the
gravitational field g (a Lorentz metric on S) with the matter fields
via their stress-energy tensor T

Ric(g)− 1

2
R g = T

where Ric denotes the Ricci curvature and R = Trg (Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equations.
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Initial Data

The solution is determined by initial data given on a spacelike
hypersurface Mn in S.

The fields at p are determined by initial data in the part of M
which lies in the past of p.

The initial data for g are the induced (Riemannian) metric, also
denoted g , and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g , p).
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The constraint equations

It turns out that n + 1 of the (n + 1)(n + 2)/2 Einstein equations
can be expressed entirely in terms of the initial data and so are not
dynamical. These come from the Gauss and Codazzi equations of
differential geometry.

In case there is no matter present, the vacuum constraint
equations become

RM + Trg (p)2 − ‖p‖2 = 0
n∑

j=1

∇jπij = 0

for i = 1, 2, . . . , n where RM is the scalar curvature of M and
πij = pij − Trg (p)gij .



The initial value problem

Given an initial data set (M, g , p) satisfying the vacuum constraint
equations, there is a unique maximal globally hyperbolic spacetime
which evolves from that data. This result involves the local
solvability of a system of nonlinear wave equations.



Boundary conditions: Compact Cauchy surface

One case of interest for the Einstein equations is when the
spacetime contains a compact Cauchy surface. This is often called
the cosmological case. In this case the initial value problem can be
formulated on a compact n-manifold and no boundary or
asymptotic conditions are required.

The compactness often makes the analysis easier, so this is a
positive feature. On the other hand it is harder to interpret
quantities such as gravitational energy and momentum in this
setting.
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Asymptotically flat manifolds

An important case for us is the asymptotically flat case. The
requirement is that the initial manifold M outside a compact set
be diffeomorphic to the exterior of a ball in Rn and that there be
coordinates x in which g and p have appropriate falloff.
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Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is Rn+1 with the flat metric
g = −dx2

0 +
∑n

i=1 dx
2
i . It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with
p = 0 and

gij = (1 +
E

2|x |n−2
)

4
n−2 δij

for |x | > 0. It is a vacuum solution describing a static black hole
with mass E . It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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The Schwarzschild spacetime

Here is a picture of the extended Schwarzschild initial manifold. Its
features lead to important notions for general asymptotically flat
solutions such as the ADM energy-momentum and the notions of
black holes and trapped surfaces.



Part 2: Local structure of the constraint manifold

Notice that the initial value problem allows us to parametrize
solutions of the Einstein equations by solutions of the constraint
equations. On the other hand we may think of the constraint
‘manifold’ as the set Φ(g , p) = 0 where (g , p) consist of a metric
and a symmetric (0, 2) tensor on a given manifold M. Notice that
the domain of Φ is an open subset of a vector space. The map Φ
is the constraint map

Φ(g , p) = (R(g) + Trg (p)2 − ‖p‖2,

n∑
j=1

∇jπij)

where π = p − Trg (p)g .

A solution of the Einstein equations is said to be linearization
stable if every infinitesimal deformation is tangent to a family of
deformations.
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A simple example

Let Φ(x , y) = x2 − y2 defined on R2 and consider the set
Σ = {Φ = 0}. At a point (x , y) ∈ Σ the space of infinitesimal
deformations consists of the kernel of dΦ at the point (x , y). For
points (x , y) 6= (0, 0) this defines the tangent line to Σ and each
such vector is tangent to a curve in Σ.

At (0, 0) we have dΦ ≡ 0, and every vector at this point is an
infinitesimal deformation. The only vectors which are tangent to
curves in Σ are those which make a 450 angle with the coordinate
axes.
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Linearization stability

As in the example, one expects the constraint manifold to be
smooth at a solution (g , p) if (g , p) is linearization stable. In fact
linearization stability is the necessary and sufficient condition for
smoothness of the constraint manifold near a given point. In order
to formulate this it is necessary to be precise about topologies on
the space of tensors (g , p).

The question of integrating infinitesimal deformations comes up in
any problem involving a moduli space of solutions. Linearization
stability is the condition that this can be done for all infinitesimal
deformations.



Linearization stability

As in the example, one expects the constraint manifold to be
smooth at a solution (g , p) if (g , p) is linearization stable. In fact
linearization stability is the necessary and sufficient condition for
smoothness of the constraint manifold near a given point. In order
to formulate this it is necessary to be precise about topologies on
the space of tensors (g , p).

The question of integrating infinitesimal deformations comes up in
any problem involving a moduli space of solutions. Linearization
stability is the condition that this can be done for all infinitesimal
deformations.



Linearization stability and symmetry

J. Marsden and collaborators showed that for compact manifolds
linearization stability fails at (g , p) if and only if the spacetime
generated has a Killing vector field.

They also gave a condition which characterizes those infinitesimal
deformations which are integrable. It is the vanishing of a certain
second order conserved quantity found by A. Taub. Thus they
showed that the singularities of the constraint manifold are
quadratic in nature (like the simple example).

It was shown by Corvino and S. that linearization stability does
hold in suitable decay spaces for the asymptotically flat case.
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Extensions of the idea; localization of supports

A natural question to ask is whether it is possible to integrate
infinitesimal deformations at a point (g , p) which are supported in
some open set Ω of M in such a way that the resulting path of
solutions is equal to (g , p) outside Ω.

It turns out that if (g , p) is locally linearization stable in the sense
that there are no spacetime Killing vector fields in Ω, there are
methods to achieve this.
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Enlarging the class of deformations

Since it is not so easy to construct infinitesimal deformations (they
satisfy a linear system of PDEs), it is natural to remove the
condition that the deformation be tangent to the constraint
manifold.

For example if we have a submanifold Σ given by Φ = 0 in Rn and
a point p ∈ Σ, we could determine a path in Σ by taking a path
p + tv in Rn, and projecting it to Σ using a local retraction from a
neighborhood of Σ to Σ.
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Enlarging the class of deformations

Combining these ideas, we can consider taking a point (g , p) in the
constraint manifold and perturbing it in the space of tensors to a
nearby (g̃ , p̃) which may not be in the constraint manifold. We can
then attempt to project into the constraint manifold to obtain
(ĝ , p̂) which is near (g , p) and satisfies the constraints.

Assuming that the initial perturbation (g̃ , p̃) agrees with (g , p)
outside some open set Ω we can ask that (ĝ , p̂) also remains
unperturbed outside Ω.

A natural application of this idea would be to simplify the geometry
of (g , p) inside an open set Ω without changing it outside Ω. We
will see some applications of this in the next part of the talk.
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Understanding the obstructions

The fact that it is not generally possible to do this is illustrated by
the following example. Let (g , p) be the euclidean metric on R3

and p = 0, so that it is initial data for Minkowski space. Now take
symmetric (0, 2) tensors h and k to have compact support. Let
g̃ = g + εh and p̃ = εk for ε small.

It is not possible to perturb to (ĝ , p̂) satisfying the constraint
equations and having compact support because this would lead to
a compactly supported solution of the constraint equations
violating the positive energy theorem.

It turns out that one can account for the obstruction by allowing
flexibility in the exterior solution one uses, so that by allowing an
exterior Schwarzschild or Kerr solution the construction can be
made.
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Part 3: Localization of solutions

As far as we know, the first instance of this general technique was
used by the speaker and Yau in the early 1980s to simplify the
asymptotics of general asymptotically flat metrics with p = 0. The
idea is, given g a general asymptotically flat metric with R = 0, we
let

g̃ = χg + (1− χ)δ

where χ is a cutoff function which is 1 in a large ball and 0 outside
a ball of twice the radius.

We then use conformal deformation to construct a metric ĝ = u4g̃
to impose the constraint equations R̂ = 0. In this way we can
approximate g by a solution which is conformally flat outside a
compact set. This can be done for virtually any metric g for which
the ADM energy exists.
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The spacetime case
There is a spacetime (p 6= 0) analogue of this result. Notice that
the metric u4δ has zero scalar curvature if and only if u is
harmonic. Since harmonic functions have nice asymptotic behavior,
it is natural to look for solutions of the general constraint
equations which are given by harmonic functions near infinity.

If we require the conditions

g = u4δ, and π = u2[LXg − divg (X )g ],

then to leading order the constraint equations imply that u and the
components of the vector field X are harmonic.

It was shown by Corvino and the speaker that solutions with this
asymptotic form are dense in the constraint manifold of
asymptotically flat solutions. With this asymptotic behavior the
ADM conserved quantities appear as terms in the asymptotic
expansion.
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Specifying precise asymptotic behavior

Since it is possible to achieve any chosen pair E ,P by a suitably
boosted slice in the Schwarzschild spacetime, people have assumed
that this would be a natural asymptotic form for an asymptotically
flat solution of the vacuum constraint equations.

It was shown by J. Corvino (p = 0) and by Corvino and S. (also
Chruściel and Delay) that the set of initial data which are identical
to a boosted slice of the Kerr (generalization of Schwarzschild)
spacetime are dense in a natural topology in the space of all data
with reasonable decay.
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Localization of initial data

The Einstein equations lie somewhere between the wave equation
and Newtonian gravity (or the stationary Einstein equations). For
the wave equation one can localize initial data and reduce many
questions to the study of compactly supported solutions.

A good linear analogue is data (E ,B) for the Maxwell equations
on R3 with B = 0 and E satisfying the constraint equation
divE = 4πq where q is a compactly supported charge density.
There is then a total charge and so the solution cannot be
approximated by solutions of compact support. There is
considerable flexibility in the asymptotic form of E which can be
achieved.
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Asymptotic behavior

The energy and linear momentum can be shown to exist under
very weak asymptotic decay

gij = δij + O2(|x |−q), pij = O1(|x |−q−1)

for any q > (n − 2)/2.

In order to understand the global properties of the Einstein
evolution it is important to understand what asymptotic form is
reasonable to assume. The positive energy theorem implies that
there are no solutions of the constraint equations with compact
support.
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A further consequence of positive energy

If we let U denote the open subset of M consisting of those points
at which the Ricci curvature of g is nonzero, then we have the
following. It shows that under reasonable decay conditions the set
U must include a positive ‘angle’ at infinity.

Proposition Assume that (M, g , p) satisfies the decay conditions

gij = δij + O2(|x |2−n), pij = O1(|x |1−n).

Unless the initial data is trivial, we have

lim inf
σ→∞

σ1−nVol(U ∩ ∂Bσ) > 0.



Proof of proposition

The energy can be written in terms of the Ricci curvature

E = −cn lim
σ→∞

σ

∫
Sσ

Ric(ν, ν) da

for a positive constant cn. If our initial data is nontrivial, then we
have E > 0, and so for any σ sufficiently large we have

E/2 < cnσ

∫
Sσ

|Ric(ν, ν)| da ≤ cσ1−nVol(U ∩ ∂Bσ)

where the second inequality follows from the decay assumption.



Localizing solutions in a cone

Let us consider an asymptotically flat manifold (M, g) with Rg = 0
and with decay

gij = δij + O(|x |−q)

where (n − 2)/2 < q ≤ n − 2.

In joint work with A. Carlotto we have shown that there is a metric
ĝ which satisfies Rĝ = 0 with ĝ = g inside a cone based at a point
far out in the asymptotic region while ĝ = δ outside a cone with
slightly larger angle. Moreover ĝ is close to g in a topology in
which the energy is continuous, so Ê is arbitrarily close to E . The
metric ĝ satisfies

ĝij = δij + O(|x |−q)

provided q < n − 2.
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Where is the energy?

Since there is very little contribution to the energy inside the
region where ḡ = g and none in the euclidean region, most of the
energy resides on the transition region. This shows that one
cannot impose too much decay on this region and makes the
weakened decay plausible.



Part 4: An optimal extension problem and quasi-local mass

Given a compact region (Ω, g , p) one can look for extensions to
asymptotically flat data (M, ĝ , p̂) which contain Ω as a subdomain.
If Σ = ∂Ω, then it turns out that the extension problem depends on
the metric g restricted to Σ and the mean curvature H of Σ in Ω.

The infimum of the ADM mass among all extensions in which Σ
satisfies an outer minimizing condition is called the Bartnik
quasi-local mass of the region Ω. denoted mB(Ω). It is very
difficult to compute and the question of existence of an optimal
extension is open.
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A lower bound

The inverse mean curvature flow which was proposed by R. Geroch
and developed by G. Huisken and T. Ilmanen implies the lower
bound

mH(Ω) ≤ mB(Ω)

where mH(Ω) is the Hawking mass given by

mH(Ω) =

√
A

16π

(
1− 1

16π

∫
Σ
H2 da

)
.



The black hole case

In the case when H = 0 the surface Σ is an apparent horizon it
was shown by C. Mantoulidis and S. that one can construct
extensions in which Σ is outer minimizing and where the ADM
mass is arbitrarily close to the Hawking mass. This shows that in
this case we have the equality

mH(Σ) = mB(Σ).

The method produces a minimizing sequence for the Bartnik mass
which converges to a singular configuration, and also shows that
the infimum may not be achieved.

The method was extended recently by Cabrera, Cederbaum,
McCormick, and Miao to give an effective upper bound in the case
of small constant H.
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Geometry of black holes

The work with Mantoulidis also characterizes the metrics on S2

which can arise on apparent horizons (stable minimal surfaces).
They are the metrics g such that the operator −∆ + K has
positive first eigenvalue. In particular any metric of positive Gauss
curvature can be achieved.

On the other hand we also show that there are metrics on apparent
horizons with

∫
Σ K− arbitrarily large.
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Brown-York quasi-local mass

We consider the special case p = 0 so that M3 is an asymptotically
flat manifold with R ≥ 0. Consider a compact region Ω ⊂ M with
Σ = ∂Ω.

Under the assumptions that Σ has positive Gauss curvature K and
positive mean curvature H, Brown and York defined a quasi-local
mass quantity by using the Weyl Embedding Theorem to embed Σ
isometrically into R3. If H0 denotes the mean curvature of the
embedded surface in R3, the mass is defined by

mBY (Σ) =
1

8π

∫
Σ

(H0 − H) da.
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Two dimensional motivation

If Ω is simply connected surface with boundary curve Γ with
K ≥ 0, the Gauss-Bonnet theorem says∫

Ω
K da = 2π −

∫
Γ
k ds

where k is the geodesic curvature of Γ. Notice that we could write

2π =

∫
Γ
k0 ds

where k0 = 2π/L is the geodesic curvature of Γ isometrically
embedded as a circle in R2.

Thus if K ≥ 0 we have
∫

Γ(k0 − k) ds ≥ 0 with equality only if
K ≡ 0.
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Positivity of the Brown-York mass

In 2002 Y. Shi and L. F. Tam proved the following positivity
theorem for the Brown-York mass.

Theorem: Assuming that Ω has non-negative scalar curvature and
both K and H are positive, then mBY (Σ) ≥ 0 with equality only if
(Ω, g) is flat.

The proof involves the construction of an extension of Ω to an
asymptotically flat manifold whose ADM mass is less than or equal
to mBY (Σ) and applying the positive mass theorem.
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Comparison of three quasi-local masses

Assuming we take asymptotically flat extensions in which Σ is
outer minimizing, we have the inequalities

mH(Σ) ≤ mB(Σ) ≤ mBY (Σ).

The first inequality follows from the work of Huisken and Ilmanen
using the inverse mean curvature flow. The second inequality
follows from the Shi-Tam proof which involved the construction of
an extension whose ADM mass was at most mBY (Σ), while mB(Σ)
is defined to be the infimum of the ADM masses over all such
extensions.
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Examples with strict inequalities

If we let Σ be the long thin ellipsoid below with its mean curvature
H0 being that from R3, we see that both mB(Σ) and mBY (Σ) are
zero. On the other hand we recall that

mH(Ω) =

√
A

16π

(
1− 1

16π

∫
Σ
H2

0 da
)
,

so mH(Σ) is very negative.



Making mB much smaller than mBY

If we take the same ellipsoid, but now take H = 0, then this is
allowable by the work described above, and we have
mH(Σ) = mB(Σ) while

mBY (Σ) =
1

8π

∫
Σ
H0 da

which can be made arbitrarily large.


