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Chapter 1

Introduction

Let us consider the insurance companies A, B and C which all o�er �nancial
protection to property owners against �ood damage in Switzerland (see Fig-
ure 1.1). All three companies wish to model their losses in order to charge
adequate premiums. As �oods belong to the category of Natural Catastro-
phes, insurers typically work with so called NatCat models, which need very
precise exposure data such as building location and characteristics as in-
put in order to model the losses. Modern NatCat models have in common
that they produce so called Year Loss Tables (YLT's) as outputs, which can
be used to compute Occurrence Exceedance Probability Curves (OEP's) and
Aggregate Exceedance Probability Curves (AEP's).

To be on the safe side, companies A, B and C contact the reinsurer Master
Re in order to protect their portfolio against devastating �oods (such as the
ones in 2005 or 2021). In a classical case, Master Re can simply take the
exposure data of all three companies and use it as input for a NatCat model
in order to model the total loss. However, this procedure is only applicable
if insurers A, B and C can provide su�ciently granular exposure data. Let
us assume that companies B and C possess such information, while company
A only knows the total insured value of its portfolio, but missed to collect
precise exposure data. Thus, it is not possible to run a NatCat model for
insurer A.

Nevertheless, Master Re wants to consider the NatCat risks of company A
in a YLT setting, since it would be very convenient to use the well-established
infrastructure and systems for NatCat models as well for company A. As
an example, the computation of all-peril-region statistics (such as an all-
peril OEP) is only possible if all NatCat risks of the reinsured companies
are modelled with YLT's. Moreover, solvency considerations and portfolio
management require a consistent modelling environment, see Figure 1.2.

All these arguments indicate that Master Re should integrate company
A in its NatCat environment, i.e. Master Re needs to build an alternative

modelling approach which generates a YLT out of past loss data of insurer A.
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Figure 1.1: Portfolios of Insurers A, B and C

This procedure is only applied if there is no or not precise enough exposure
data, since relying on past loss data is generally not a good idea in NatCat
modelling (as we will explain later). Master Re decides to apply the following
four transformations steps in order to model a synthetic YLT for insurer A
(we use the term synthetic to distinguish the YLT's from the classical and
alternative modelling approach):

1. Fit a frequency-severity model to past loss data of company A.

2. Transform the frequency-severity model into a frequency-severity model
with Poisson(2) frequency.

3. Model losses for n(= 100′000) years (i.e. generate a YLT).

4. Inject the YLT into a pre-generated Year Event Rank Table (YERT)

to obtain a synthetic YLT.

Looking at this four steps critically, there might arise three questions:
Why does Master Re not calibrate directly a Poisson(2) frequency-severity
model to loss data and why do we impose this speci�c frequency choice at
all? Moreover, why do we inject the YLT obtained in step 3 in a YERT and
not use it directly?
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Chapter 1. Introduction

First of all, the reinsurer wants to include the alternative modelling
approach seamlessly into its modelling framework. Allowing for general
frequency-severity models, the respective actuary enjoys full modelling free-
dom in the �rst step, i.e. standard model calibration tools can be applied and
it is not necessery to treat the calibration process in the �rst step separately.

Addressing the second question, one should point out that most NatCat
vendor models work with Poisson frequencies. In order to obtain a better
comparability, it is advisable to use the same distribution type as well in the
alternative approach. Moreover, most natural catastrophes occur (locally)
with a frequency of two or smaller, so a Poisson(2) frequency is able to
"capture all losses". In summary, step 2 ensures that we obtain a coherent
modelling framework which is in line with the process in vendor models.

For a detailed answer of the third question, we refer to Chapter 5. The
injection into a YERT is basically performed in order to realize a certain
level of compatibility.

The alternative modelling approach can not be executed without any
transformation error. There are essentially three error types which arise
in this context. First of all, we transform the calibrated frequency into a
Poisson(2) frequency, which results in a Frequency Transformation Error.
Moreover, we will also be forced (in general) to transform the severity in
step 2 in order keep the expected loss unchanged, i.e. we obtain a Severity

Transformation Error. Finally, some losses are always discarded in step 4
with positive probability, which gives rise to the so called Loss Cutting Error.

In this thesis, we analyze the alternative modelling approach for com-
pany A mathematically. In particular, we describe and investigate the three
error types and try to limit them if possible by suitable tools such as rein-
surance layers. We start with a brief description of classical NatCat mod-
els in Chapter 2. Afterwards, we discuss in Chapter 3 frequency-severity
models and their most relevant properties. Chapter 4 investigates how the
frequency-severity model that was calibrated to loss data of insurer A can
be approximated with a frequency-severity model with Poisson(2) frequency.
Finally, Chapter 5 discusses the transformation of frequency-severity models
into synthetic NatCat loss tables via a pre-generated YERT.

Figure 1.3 visualizes the classical modelling process (green: exposure
data available) as well as the alternative approach (orange: no exposure
data available).
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Chapter 2

Classical Modelling of Natural

Catastrophes

Let us begin this Thesis with a brief description of classical NatCat models.
In this Chapter, we follow Arbenz [6], pages 83-109.

2.1 Structure of NatCat models

One might be tempted to calibrate frequency-severity models to loss data
for the modelling of natural catastrophes, as it is usually done in a Non-Life
Insurance context. Unfortunately, this does not turn out to be a good idea;
Since the occurrence probabilities of events, the number of insured objects,
the damage incurred to insured objects and the policy conditions are not

constant over time, the calibration of a frequency-severity model to loss data
will not lead to satisfying results. Moreover, certain catastrophes such as
earthquakes occur (locally) with a very low frequency, such that there are
not enough data points to calibrate a frequency-severity model, or the time
di�erence between two data points is so big that the losses of the events
can not be compared. Therefore, NatCat models generally follow a di�erent
approch; they are built out of 4 modules:

� The Hazard module models the local intensity and frequency of the
physical e�ects of the underlying peril (e.g. earthquake: peak acceler-
ation and velocity by location).

� In the Exposure module, exposure data such as (insured) value,
building characteristics, location and policy conditions of the insured
objects is collected.

� The Vulnerability module combines the results from the �rst two
modules and models the groundup loss to the insured objects caused
by the simulated hazards. This is done via the so called vulnerability

7
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curves, which map the intensity of an event (e.g. earthquake magni-
tude) to the mean damage ratio of the object. The choice of the curve
is based on the exposure of the respective object.

� In the Financial module, policy conditions and preceeding (re-) in-
surance contracts (such as Quota shares and Excess of Loss contracts
(XL's), but no Catastrophe Excess of Loss contracts (Cat XL's)) are
applied to the groundup loss to compute the Net Pre-Cat loss. Ap-
plication of Cat XL's then gives the reinsured Cat loss, which is the
quantity of interest in this context.

Figure 2.1 shows some vulnerability curves for di�erent buildings for a
wind storm. Depending on the building characteristics, the mean damage
ratio (= average loss percentage of the sum insured) can vary signi�cantly,
i.e. recording precise information about the insured objects plays a crucial
role.
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Figure 2.1: Vulnerability curves for di�erent building types and wind speeds

In summary, NatCat models aim to model the reinsured Cat loss using
physical models of the reinsured perils and are generally not based on past
loss experiece.
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Hazard module
� −→ÿ+ `

Exposure Module
� + ½ + © →^

Vulnerability module
� + ^ → f

Financial module
q + � + f → �

Figure 2.2: The four modules of a modern NatCat model

2.2 ELT's, YLT's and YERT's

2.2.1 Event Loss Tables (ELT's)

After having built a NatCat model (e.g. for Japanese Earthquake), the
next step is usually the construction of an Event Loss Table (ELT). For this
purpose, a list of potential events (in our example: earthquakes of di�erent
magnitude and location) is created. Each event is equipped with an event ID,
the annual occurrence frequency or rate (typically a very small value), the
expected loss per occurrence, the loss standard deviation per occurrence and
the total exposure. These values are obtained from the NatCat model: The
Hazard module provides information about frequency and local severity of
each event in the ELT. For each insured object, the appropriate vulnerability
curve is selected to compute the expected loss and the standard deviation.
Together with the �nancial module, this enables an estimation of the total
loss and standard deviation caused by each event in the ELT. The following
Table 2.1 gives a concrete example of an ELT for Japanese Earthquake,
where the numbers are just made up and do not stem from a Cat model
(numbers are in millions).

Table 2.1: ELT example for Japanese Earthquake

Event
ID

Description Rate
Expected

loss
Standard
deviation

Exposure

1 T	ohoku EQ 9 0.0015 1'500 400 4'500
2 Osaka EQ 6 0.02 30 20 60
3 Hokkaid	o EQ 7.7 0.0075 800 300 2'200
4 Kumamoto EQ 7 0.01 250 100 650
5 Kuril Island EQ 8.3 0.0065 20 15 80

2.2.2 Year Loss Tables (YLT's)

The events from the ELT can now be used to simulate losses of di�erent
years. To do so, one chooses the number n of simulated years (typically

Simon Müller 9
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n = 100′000) and for each year, events from the ELT are simulated. The
number of occurrences of an event is drawn from a Poisson distribution with
the rate in the ELT as parameter. The expected loss and the standard
deviation are used to simulate the loss via a scaled beta distribution.

The output of such a simulation is a table with simulated years where we
have for each year simulated events plus the losses. We call such a table a
Year Loss Table (YLT). Table 2.2 shows an example of a YLT constructed out
of the ELT in Table 2.1. Note that since frequencies of events are typically
very low, we expect to see only very few events in a YLT. For illustratory
purposes, the following YLT contains many events.

Table 2.2: YLT example for Japanese Earthquake
with 10 simulated years

Simulated
Year

Event
ID

Loss
(in mio)

1 2 45
1 4 180
3 1 1'700
6 5 25
6 2 28
6 3 650
10 4 375

2.2.3 Year Event Rank Tables (YERT's)

In the next Chapters, we will also encounter Year Event Rank Tables, which
are obtained as follows: We start again with an ELT and simulate events for
each year, but this time, we do not assign losses to the events. Instead, each
event obtains a randomly assigned rank. The ranks represent an ordering of
the events, i.e. lower ranks indicate that the corresponding losses are higher.
YERT's will be used to produce synthetic YLT's in the alternative modelling
process for company A. For more details, we refer to Chapter 5. Table 2.3
shows a YERT which was obtained from Table 2.1.

2.3 OEP and AEP curves

Other outputs of classical NatCat models are Exceedance Probability Curves.
These curves represent the probability that a (single or accumulated) loss
exceeds a certain threshold. More precisely, we have

De�nition 2.1. Let X1, X2, . . . XN denote the NatCat loss amounts of one
year. Then the OEP (Occurrence Exceedance Probability) represents the

10 Simon Müller



2.3. OEP and AEP curves

Table 2.3: YERT example for Japanese Earthquake
with 10 simulated years

Simulated
Year

Number of
Events

Ranks of
Events

1 2
5
4

3 1 1

6 3
7
6
2

10 1 3

probability of getting any single event within (typically) one year with a
particular loss size or greater. Formally,

OEP(y) = P[max(X1, X2, . . . XN ) ≥ y].

Analogously, the AEP (Aggregate Exceedance Probability) represents the
probability of getting total annual NatCat losses of a particular level or
greater. Formally,

AEP(y) = P

[
N∑
i=1

Xi ≥ y

]
.

In practice, these curves are obtained out of Year Loss Tables. Suppose
we have a YLT modelling n years and denote by Xi the biggest modelled
loss of year i, for 1 ≤ i ≤ n. Then the empirical distribution function of the
maximal loss is

F̂n(y) =
1

n

n∑
i=1

1{Xi≤y}.

Moreover, we can approximate

OEP(y) ≈ 1− F̂n(y)

and an analogous procedure approximates the AEP. If we possess YLT's
for all peril regions and reinsured companies, an all-peril OEP can be com-
puted in a similar way. In that case, we just take for each year the maximal
loss of all involved YLT's.

Simon Müller 11
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Chapter 3

Frequency-Severity Models

We want to continue with an introduction to frequency-severity models.
These models including their calibration to loss data can be discussed very
detailedly. As we consider them here only as a tool in a bigger modelling
process, we content ourselves with a brief introduction and a discussion of
the most important properties, where we omit some of the proofs. The cal-
ibration to loss data will not be covered in this Chapter, since we want to
focus on the theoretical aspects. We follow Wüthrich [5], pages 25− 75 and
Arbenz [6], pages 38− 39, which also provide more details for the interested
reader.

A frequency-severity model writes the total claim amount S of an insur-
ance portfolio as

S =

N∑
i=1

Xi,

where N is a random variable modelling the number of claims occurred, i.e.
the frequency and the random variables Xi model the sizes of the losses, i.e.
the severities. First of all, we discuss some often used frequency and severity
distributions and then introduce the frequency-severity model formally.

3.1 Important probability distributions in (re-) in-
surance

3.1.1 Frequency distributions

To model the frequency of (re-)insurance losses, one usually uses one of the
following three discrete probability distributions:

De�nition 3.1. A random variable N ∈ N0 has a Binomial distribution

with volume v ∈ N and success parameter p ∈ (0, 1), if

P[N = k] =

(
v

k

)
pk(1− p)v−k for all k ∈ {0, 1, 2, . . . , v}.

13



Chapter 3. Frequency-Severity Models

The binomial model can be useful when we have v independent policies
and each policy can either have one claim with probability p or zero claims
(with probability (1− p)), which is a reasonable model for a death cover for
v individuals of the same age. Much more important for our purposes is the
following distribution

De�nition 3.2. A random variable N ∈ N0 has a Poisson distribution with
parameter c > 0, if

P[N = k] = e−c · c
k

k!
for all k ∈ N0.

Proposition 3.3. Let X and Y be independent Poisson random variables

with parameters λx and λy respectively. Then X + Y is a Poisson random

variable with parameter λx + λy.

Proof. See Föllmer et al [2], page 31.

Remark 3.4. This property of the Poisson distribution induces the Aggre-
gation Property (Theorem 3.22) of the Compound Poisson model presented
below.

Proposition 3.5 (Expectation and Variance of Poisson random variables).
Let X ∼ Poisson(λ). Then

E[X] = Var(X) = λ.

Proof. We have

E[X] =

∞∑
k=0

k · e−λλ
k

k!
=

∞∑
k=1

e−λ
λk

(k − 1)!

= e−λλ

∞∑
k=0

λk

k!
= λ · e−λ · eλ = λ

and

Var(X) = E[X2]− E[X]2 =

∞∑
k=0

k2e−λ
λk

k!
− λ2

= e−λ
∞∑
k=1

k
λk

(k − 1)!
− λ2 = e−λλ

∞∑
k=0

(k + 1)
λk

k!
− λ2

= e−λλ


∞∑
k=0

k
λk

k!︸ ︷︷ ︸
λeλ

+

∞∑
k=0

λk

k!︸ ︷︷ ︸
eλ

− λ2 = λ2 + λ− λ2 = λ.
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3.1. Important probability distributions in (re-) insurance

Remark 3.6. Sometimes, one writes c = λ · v, with λ > 0, and v > 0, where
v represents the volume (e.g. the number of policies) and λ measures the
frequency.

Remark 3.7. Note that if N has a Binomial distribution, then E[N ] = vp
and Var(N) = vp(1− p), i.e. Var(N) < E[N ]. On the other hand, if N has
a Poisson distribution with parameter λ, then Var(N) = E[N ] = λ.

De�nition 3.8. A random variable N ∈ N0 has a Negative Binomial distri-

bution with parameters r > 0, and β > 0, if

P[N = k] =

(
k + r − 1

k

)(
1

1 + β

)r ( β

1 + β

)k
for all k ∈ N0.

Proposition 3.9. Let X and Y be independent random variables with X ∼
NegBin(r1, β) and Y ∼ NegBin(r2, β). Then X + Y ∼ NegBin(r1 + r2, β).

Proof. The moment generating function of a NegBin(r, β) random variable
can be computed as

M(t) =

(
1

1 + β(1− et)

)r
,

see Wüthrich [5], Proposition 2.21, where the di�erent parametrizations are
linked via

γ = r, p =
β

1 + β
.

Therefore (due to independence of X and Y ),

MX+Y (t) = MX(t) ·MY (t) = M(t) =

(
1

1 + β(1− et)

)r1+r2

,

i.e. X + Y ∼ NegBin(r1 + r2, β).

Proposition 3.10. Suppose X ∼NegBin(r, β). Then E[X] = rβ and Var(X) =
rβ(1 + β).

Proof. By equation (1.3) of Wüthrich [5], page 17, we can compute

dM

dt
(t) =

dM

dt
(1 + β(1− et))−r = rβ(1 + β(1− et))−r−1et,

Hence,

E[X] =
dM

dt

∣∣∣∣
t=0

= rβ.

An analogous computation can be performed for the second moment to es-
tablish the result for the variance.

Simon Müller 15



Chapter 3. Frequency-Severity Models

At a �rst glance, there is no connection between the Poisson and the
Negative Binomial distribution. However, the Negative Binomial distribu-
tion can be seen as a generalization of the Poissen distribution, which is a
very useful property from an actuarial point of view.

De�nition 3.11. Suppose Λ ∼ H, s.t. H(0) = 0 (i.e. Λ > 0 P- a.s.), with
E[Λ] = λ and Var(Λ) > 0 (i.e. Λ is non- deterministic). Assume moreover
that conditionally, given Λ,

N ∼ Poisson(Λv)

for some �xed volume v > 0. Then N has a Mixed Poisson distribution.

Mixed Poisson models are very suitable if we want to model frequencies
in di�erent accounting years when there is an underlying risk driver that
changes over time: We can model the number of claims in every year with a
Poisson distribution, where the parameter changes from year to year, which
re�ects the changes in the risk pro�le. Because of this property, such distri-
butions are for example used when the number of Hurricanes is modelled.
Since Mixed Poisson models introduce uncertainity in the parameter, one
might expect that they generate higher variances. Indeed:

Proposition 3.12. Suppose N has a Mixed Poisson distribution, then

Var(N) > E[N ].

Proof. By the tower property (Wüthrich [5], page 20), we get

E[N ] = E[E[N |Λ]] = E[Λv] = λv.

Moreover, we get for the variance (again by the tower property)

Var(N) = E[Var(N |Λ)] + Var(E[N |Λ]) = vE[Λ]︸ ︷︷ ︸
=λv

+ v2Var(Λ)︸ ︷︷ ︸
>0

> λv.

Remark 3.13. Together with Remark 3.7, we �nd for all three cases Var(N) <
E[N ], Var(N) = E[N ] and Var(N) > E[N ] a corresponding frequency dis-
tribution. In practice, one can for instance compare the �rst two empirical
moments to choose one of the three presented frequencies. A question that
arises in this context is how Λ should be chosen. We answer this question to-
gether with the above mentioned connection between Poisson and Negative
Binomial models.

De�nition 3.14. A positive, absolutely continuous (with respect to the
Lebesgue measure) random variable X is said to have a Gamma distribution

with shape parameter γ > 0 and scale parameter c > 0, if it has a density of
the form

fX(x) =
cγ

Γ(γ)
xγ−1e−cx, for all x > 0.

16 Simon Müller



3.2. The frequency-severity model

Theorem 3.15. Let Θ ∼ Gamma(γ, γ) for γ > 0. Assume moreover that

conditionally given Θ,

N
∣∣
Θ
∼ Poisson(Θλv)

for a frequency λ and a volume v. Then N has a Negative Binomial distri-

bution with parameters

r = γ, β =
λv

γ
.

Proof. By the tower property, we get

P[N = k] = E[P[N = k|Θ]] = E
[
e−Θλv (Θλv)k

k!

]
=

∫ ∞
0

e−xλv
(xλv)k

k!

γγ

Γ(γ)
xγ−1e−γx dx

=
(λv)kγγ

Γ(γ)k!

Γ(γ + k)

(γ + λv)γ+k

∫ ∞
0

(γ + λv)γ+k

Γ(λ+ k)
xγ+k−1e−(γ+λv)x dx︸ ︷︷ ︸
=1

=
Γ(γ + k)

Γ(γ)k!

(
γ

γ + λv

)γ ( λv

γ + λv

)k
=

(
k + r − 1

k

)(
1

1 + β

)r ( β

1 + β

)k
.

3.1.2 Severity distributions

Beside the number of claims, the size or severity of a speci�c claim is also of
interest. There are various possible choices for severity distributions. How-
ever, we will focus our attention on the Pareto distribution, since this is the
most relevant model for severities in a reinsurcance context.

De�nition 3.16. A random variable X is said to have a Pareto distribution

with threshold x0 > 0 and tail parameter α > 0, if X has a density of the
form

fX(x) =
α

x

(x0

x

)α
for all x ≥ x0.

Remark 3.17. The k−th moment of the Pareto distribution exists if and only
if k < α. Since the Pareto distribution has a relatively slowly decaying tail,
it is called heavy-tailed.

3.2 The frequency-severity model

After we have introduced frequencies and severities of (re-)insurance losses,
we can combine them to model the total claim amount S of a (re-)insurance
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Chapter 3. Frequency-Severity Models

company. We focus our attention on the following model, which imposes
additional independence conditions. In practice, these conditions are often
(approximately) satis�ed and they equip our model with good properties in
terms of computability.

De�nition 3.18. Let N be a random variable taking values in N0 and let

Y1, Y2, . . .
iid∼ G with G(0) = 0 (i.e. Yi > 0 P- a.s. ∀i). Assume moreover that

N and (Y1, Y2, Y3, . . .) are independent. Then we call

S =
N∑
i=1

Yi (3.1)

a frequency-severity model for the total claim amount S.

Remark 3.19. If we consider for instance a frequency-severity model S with

N ∼ Poisson(λ) and Yi
iid∼ Pareto(x0, α), then we call S a Poisson-Pareto

model. Alternatively, one calls the distribution of S coming from a frequency-
severity model a Compound distribution and we write in this example S ∼
CompPoi(λ,G), where G is the cdf of Yi.

Remark 3.20. The assumption G(0) = 0 in De�nition 3.18 is crucial since it
guarantees that all claims are positive with probability 1.

Let us have a look at Figure 3.1 which visualizes cumulative distribution
functions of Poisson(λ)-Pareto(α, x0) models with di�erent parameters λ and
α, where we set x0 = 1. In the plot on the left-hand side, we see for integer
values on the x-axis a bulge in the graph. This is due to the relatively
high tail parameter of the Pareto distribution, which means that most of the
severities are close to 1 and the probability for much higher claims decays
substantially. A total claim amount of e.g. 1.9 can only be achieved if there
is exactly one claim (as x0 = 1) and since this claim is likely to be close
to one, the cdf is �at for values which are slightly below 2. A total claim
amount of 2 or larger can be achieved by one or two claims, which results in a
big incline of the cdf for values slightly bigger than 2. If we compare the two
graphs, we see that the tail parameter α has a bigger e�ect on the cdf than
the Poisson parameter λ (in terms of increase rate) and the bulges become
less prominent for smaller tail parameters, since in this case the severities
are more likely to attain large values. In total, we see that the shape of
compound distributions heavily depends on the choice of the parameters.

The next result investigates expectation and variance of frequency-severity
models.
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Figure 3.1: Poisson-Pareto models with di�erent parameters

Theorem 3.21 (Wald). Let S be a frequency-severity model such that Var(N) <
∞ and Var(Y1) <∞. Then we have

1. E[S] = E[N ] · E[Y1].

2. Var(S) = Var(Y1) · E[N ]+Var(N) · E[Y1]2.

Proof. For the �rst part, note that

E[S] = E

[
N∑
i=1

Yi

]
= E

[
E

[
N∑
i=1

Yi

∣∣∣∣∣N
]]

= E

[
N∑
i=1

E[Yi|N ]

]
= E[N · E[Y1]] = E[N ] · E[Y1].

In order to prove the second statement, we apply the tower property for
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variances:

Var(S) = Var

(
N∑
i=1

Yi

)
= Var

(
E

[
N∑
i=1

Yi

∣∣∣∣∣N
])

+ E

[
Var

(
N∑
i=1

Yi

∣∣∣∣∣N
)]

= Var

(
N∑
i=1

E[Yi|N ]

)
+ E

[
N∑
i=1

Var(Yi|N)

]

= Var

(
N∑
i=1

E[Yi]

)
+ E

[
N∑
i=1

Var(Yi)

]
= Var(N) · E[Y1]2 + E[N ] ·Var(Y1).

As we have already seen in Proposition 3.3, the sum of Poisson random
variables is again a Poisson random variable. In the next step we show that
this useful property translates to Compound Poisson distributions, which is
essentially the reason why Compound Poisson models play an important role
in loss modelling and in this thesis.

Theorem 3.22 (Aggregation property of CompPoi distributions). Assume

S1, . . . , Sn are independent with Sj ∼ CompPoi(λj , Gj) for all 1 ≤ j ≤ n.
The aggregated claim has a Compound Poisson distribution

S =

n∑
j=1

Sj ∼ CompPoi(λ,G),

where

λ =
n∑
j=1

λj , G(x) =
n∑
j=1

λj
λ
Gj(x).

Proof. For a detailed proof using moment generating functions, see Wüthrich
[5], Theorem 2.12.

Corollary 3.23. Let S1 and S2 be two independent Compound Poisson mod-

els as in Theorem 3.22. Let

U ∼ Bernoulli

(
λ1

λ1 + λ2

)
be independent of Xi and Yj for all i, j. Then

S
(d)
=

N∑
i=1

Xs
i ,

with

N ∼ Poisson(λ1 + λ2), Xs
i

iid∼ U ·X1 + (1− U) · Y1.
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3.2. The frequency-severity model

Proof. It su�ces to show that Xs
i has cdf G (as in Theorem 3.22). Indeed,

using independence of U,Xi and Yj yields

P[Xs
1 ≤ x] = P[U ·X1 + (1− U) · Y1 ≤ x]

= P[U = 1] · P[Xs
1 ≤ x|U = 1] + P[U = 0] · P[Xs

1 ≤ x|U = 0]

=
λ1

λ1 + λ2
·GX(x) +

λ2

λ1 + λ2
·GY (x)

= G(x),

where GX and GY denote the cdf's of X and Y respectively.

This last result is very useful when we want to use the aggregation prop-
erty for simulations, as in the next example:
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Aggregated cdf
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Pareto
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Figure 3.2: Visualization of the Aggregation property

In Figure 3.2, the graph on the left-hand side shows the cdf of a Poisson(λ =
2)-Pareto(α = 4, x0 = 1) model S1 and the cdf of a Poisson(λ = 1)-
Gamma(γ = 2, c = 1/4) model S2. The red graph shows the cdf of the
aggregated model S according to Theorem 3.22. Note that the cdf of the ag-
gregated model is always smaller than the cdf's of the individual models. It is
also interesting to have a look at the intercept of the y-axis. Note that S = 0
if and only if S1 = 0 and S2 = 0. Therefore, P[S = 0] = P[S1 = 0] ·P[S2 = 0]
due to independence. This equality can be seen in the graph: The y-axis
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intercept of the red graph is the product of the y-axis intercepts of the green
and blue graphs.

The graph on the right-hand side shows the severity cdf's of the three
models. Note that according to Theorem 3.22, the severity cdf of the aggre-
gated model is a convex combination of the individual severity cdf's.

3.3 Reinsurance layers and their properties

In a reinsurance context, frequency-severity models are usually not used as
presented in the previous section; It is a common feature of contracts that
losses are only absorbed above a deductible D up to a cover C. These two
parameters must be taken into account when the total loss amount S of a
reinsurance company is modelled. A very useful tool to implement D and C
are the so called Layer functions.

De�nition 3.24. A Layer function is a map

LD,C : R→ R, t 7→ min(C,max(0, t−D)),

with deductible D ≥ 0 and cover C > 0. In a Per Risk Excess-of-Loss (Per

Risk XL) reinsurance contract, the layer function is applied to each and every
risk, i.e. the total claim amount S is given by

S =

N∑
i=1

LD,C(Xi).

Remark 3.25. If the Xi's model losses of events and not the losses of single
risks, then a contract where a layer is applied to each of the Xi's is called a
Per Event Excess-of-Loss reinsurance contract.

Let us investigate the behaviour of such Per Risk XL models. First of
all, we discuss a useful result about the computation of moments:

Theorem 3.26 (Darth Vader Rule). Let X be a real valued random variable

which is non-negative almost surely. Assume that the n-th moment of X
exists, then

E[Xn] = n

∫ ∞
0

xn−1(1− FX(x)) dx,

where FX denotes the cumulative distribution function of X.

Proof. A proof using Lebesgue integration theory can be found in Mul-
downey et al [8].

Lemma 3.27. Let X be a non-negative real valued random variable and let

D ≥ 0. Then

E[max(0, X −D)] = E[(X −D)+] = E[X · 1{X>D}]−D · P[X > D].
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Proof. We have by the Darth Vader rule

E[(X −D)+] =

∫ ∞
D

(x−D) dFX(x) = E[X · 1{X>D}]−D · P[X > D],

as desired.

Proposition 3.28. Let LD,C be a layer function and let X be a non-negative

real valued random variable such that the n-th moment of LD,C(X) exists.

Then we have

E[LD,C(X)n] = n

∫ D+C

D
(x−D)n−1(1− FX(x)) dx.

Proof. The integral in the statement reminds us of the Darth Vader rule,
which we want to apply here. In order to do so, we �rst of all �nd the cdf of
LD,C(X). We have

� FLD,C(X)(t) = 0 for all t < 0,

� FLD,C(X)(0) = FX(D),

� FLD,C(X)(t) = FX(t+D), for 0 < t < C,

� FLD,C(X)(C) = 1.

Now, the Darth Vader rule gives us

E[LD,C(X)n] = n

∫ ∞
0

xn−1(1− FLD,C(X)) dx

= n

∫ C

0
xn−1(1− FX(x+D)) dx

= n

∫ D+C

D
(x−D)n−1(1− FX(x)) dx.

Example 3.29. Figure 3.3 visualizes the impacts of a Layer function on a
cdf. The upper graph shows the cdf of a Pareto(α = 1.5, x0 = 1) random
variable X (green graph). Moreover, the deductible D = 1.25 and the cover
C = 1.75 are also marked. When we apply the layer LD,C to X, the cdf
is �rst of all shifted to the left by D, since the layer reduces each loss by
D. Moreover, all losses above D+C are trimmed, since loss amounts above
the cover are not paid by the reinsurer. To emphasize the relation between
the two cdf's further, we have a look at the red dotted lines in both graphs
which are a segment of the respective cdf's. They are essentially the same
curve, but the segment in the lower graph is shifted to the left by D.
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Figure 3.3: Visualization of the e�ects of a Layer function

The length of the blue segment in the lower graph is equal to the prob-
ability that a loss falls below the deductible. Similarly, the length of the
orange segment is equal to the probability that the loss exceeds D + C,
which means that the claim is only partially covered by the reinsurer, so the
red segment in the lower graph visualizes the range which is covered by the
reinsurer.

We �nally want to visualize the impact of a Per Risk Excess of Loss layer
on a frequency severity model.

Example 3.30. Figure 3.4 visualizes the e�ect of a Per Risk XL layer applied
to a Poisson(2)-Pareto(α = 1.5, x0 = 2) model. The di�erent graphs show
the cdf's of the total claim amount where we apply a layer LD,C to each and
every loss for di�erent values D and C. Let us discuss a few extreme cases:
A layer with D = 0 and C =∞ (red graph) has no impact on the losses and
shows the total claim amount as if no layer is applied. In the case D = 0,
C = 1, we have D + C = 1 < x0 = 2, i.e. every loss is cut and therefore,
the resulting cdf is a step function. If we �nally look at the case D = 5,
C = 7, we immediately notice the big y-axis intercept. This comes from the
relatively high deductible D, i.e. many losses fall below it and are therefore
counted as zero losses in the layer model.
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Figure 3.4: Di�erent Layers applied to a frequency-severity model.
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Chapter 4

Approximation of

frequency-severity models with

Poisson(2)-models

4.1 Outline

Let us have a quick look back at the alternative modelling process described
in the introduction and the topics discussed so far. We have seen how
classical NatCat models work and we also introduced the main concepts
of frequency-severity models. The next step in the alternative modelling
process as described in the introduction is the approximation of frequency-
severity models by those with a Poisson(2) frequency. Let us recall why we
do this step in the alternative modelling process:

As we have seen in Chapter 2, classical NatCat models produce Year Loss
Tables where the number of events is drawn from a Poisson distribution.
This is a justi�cation why we also rely on this frequency in the alternative
modelling approach. Moreover, Natural Catastrophes usually occur with a
rather small frequency, i.e. if we choose a Poisson parameter of 2 (or lower),
we can ensure that the frequency is able to model all losses (i.e. we do not
"lose" events). It is very useful if we always work with the same parameter,
as it makes the results more comparable and provides a general modelling
framework which is applicable for di�erent perils. In case there is a peril
that occurs with a higher rate, it is also possible to select higher Poisson
parameters, but for most relevant cases, a choice of λ = 2 is suitable.

In this Chapter, we focues on the Frequency Transformation Error and
the Severity Transformation Error. However, we will not analyze them sep-
arately, but measure the quality of our approximations with expectation and
variance.

The goal of this Chapter is to establish and justify the following
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Transformation 4.1. Let S =
∑N

i=1Xi be a frequency-severity model.

Then we approximate S with the frequency-severity model T =
∑M

j=1 Yj ,
with

M ∼ Poisson(2), Yj
iid∼ HX ,

for

HX : R→ [0, 1], t 7→ max

(
0,

2− E[N ]

2
· 1{t≥0} +

E[N ]

2
· FX(t)

)
. (4.1)

We start with restrictive assumptions on N and �nd a �rst transforma-
tion. Afterwards, we will gradually generalize our model until we can �nally
justify the choice of HX as cdf for our transformed severity.

4.2 The case E[N ] = 2

Let us begin our discussion with the simplest case where E[N ] = 2, i.e. our
model S has already the desired expected frequency. If we choose Yj := Xi,

M ∼ Poisson(2) and T :=
∑M

j=1 Yj , then we get by Theorem 3.21

E[S] = E[N ]︸ ︷︷ ︸
=2

·E[X1] = E[M ]︸ ︷︷ ︸
=2

· E[Y1]︸ ︷︷ ︸
=E[X1]

= E[T ]. (4.2)

Since S and T have the same expectation, we can use this as motivation
to approximate S with T :

Transformation 4.2. Let S =
∑N

i=1Xi be a frequency-severity model such
that E[N ] = 2. Then we approximate S with the frequency-severity model
T =

∑M
j=1 Yj , where

M ∼ Poisson(2), FY = FX .

Remark 4.3. We will see later (Remark 4.15) that we can justify Transfor-
mation 4.2 more rigorously. As a summary, note that we just exchanged the
frequency distribution and left the severities untouched. Moreover, the cdf
of Yj is equal to HX for this special case.

Proposition 4.4. Let S and T be as in Transformation 4.2. Then

1. E[S] = E[T ],

2. Var(T ) = Var(S) + E[X1]2 · (E[N ]− Var(N)).
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Proof. The �rst part was already established in equation (4.2). For the
second part, we get with Theorem 3.21

Var(T ) = Var(Y1) · E[M ]︸ ︷︷ ︸
=2=E[N ]

+Var(M)︸ ︷︷ ︸
=2=E[N ]

·E[Y1]2

X1
(d)
= Y1= Var(X1) · E[N ] + E[N ] · E[X1]2 (4.3)

and
Var(S) = Var(X1) · E[N ] + Var(N) · E[X1]2. (4.4)

Putting equations (4.3) and (4.4) together, we receive

Var(T ) = Var(S) + E[X1]2 · (E[N ]−Var(N)),

as desired.

Corollary 4.5. Let S and T be as in Transformation 4.2. Then:

� If N has a Binomial distribution, then Var(S) < Var(T ).

� If N has a Poisson distribution, then Var(S) = Var(T ).

� If N has a Negative Binomial distribution, then Var(S) > Var(T ).

Proof. The result follows immediately from Proposition 4.4 and Remark 3.13

Remark 4.6. In caseN ∼ Poisson(2), S and T have the same expectation and
variance. In fact, they both have the same distribution as Transformation
4.2 does not change S in that case.

Example 4.7 (Transformation of Negative Binomial models). In order to
illustrate the above transformation, let

Nβ ∼ NegBin(r, β), Xi
iid∼ Pareto(α = 3, x0 = 2), Sβ =

Nβ∑
i=1

Xi

for r > 0, β > 0 such that E[Nβ] = rβ = 2 (i.e. we choose β > 0 freely
and set r = 2/β). By Propositon 3.10, we get

E[N ] = rβ = 2, Var(N) = rβ(1 + β) = 2(1 + β) = E[N ] · (1 + β)

and therefore

Var(N)− E[N ] = 2β. (4.5)

Moreover, Proposition 4.4 tells us
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Var(S)−Var(T ) = E[X1]2 · (Var(N)− E[N ])

= 12 · (rβ(1 + β)− rβ) = 12 · rβ2

= 24 · β.
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Figure 4.1: Cumulative distribution functions of the models Sβ for some
selected parameters β and their approximation T .

Since we kept the expectation constant for all our modelsNβ , the variance
of Nβ and therefore also the quality of our approximation (in terms of the
variance) basically depends on the choice of β, as we have seen in the last
computation. If β increases, then Var(S)−Var(T ) and the di�erence of the
�rst two moments of Nβ increase as well (see equation (4.5)). Since the �rst
two moments of a Poisson random variable agree, one can argue (informally)
that an increasing β brings Nβ further away from a Poisson distribution and
therefore we expect our approximation to be worse, which is re�ected in the
second part of Proposition 4.4.

Figure 4.1 visualizes the cdfs of Sβ for some selected parameters as well
as their transformation T . Note that all Sβ are transformed to the same
Poisson model, since they all have the same expected frequency and the same
severity distribution. This is one of the crucial weaknesses of Transformation
4.2: Only the expected frequency ofN and the severity distribution are taken
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into account in T . Unfortunately, we will not be able to correct this mistake
in the remainder of this Chapter, since we explicitly want T to have a Poisson
frequency. This can be regarded as the price for enforcing our approximation
to have a Poisson(2) frequency .The �gure suggests that bigger β lead to a
worse approximation, which is in line with the result

Var(S)−Var(T ) = 24 · β.

4.3 The case E[N ] ≤ 2 for Poisson models

After we have discussed a �rst approach to approximate compound models
with expected frequency equal to 2, we will generalize Transformation 4.2 to
the case E[N ] ≤ 2. However, an extension of our approach is not straight
forward. We �rst of all construct a transformation for Poisson models, since
there is a natural way to extend our thoughts in that case. Afterwards, we
will study the properties of the new approximation for arbitrary frequency
distributions.

Let N have a Poisson distribution with E[N ] ≤ 2. Note that the model
S does not produce as many events (in expectation) as a Compound model
with expected frequency 2. We can compensate this mismatch if we simply
add to S some claims of size zero. Together with Theorem 3.22 we show that
S can be written as a Compound model with Poisson(2) frequency:

Theorem 4.8. Let S =
∑N

i=1Xi be a frequency-severity model with N ∼
Poisson such that E[N ] ≤ 2. Then

S
(d)
= T,

where T is a frequency-severity model with Poisson(2) frequency and severity
cdf

GX : R→ [0, 1], t 7→ 2− E[N ]

2
· 1{t≥0} +

E[N ]

2
· FX(t), (4.6)

where FX denotes the cdf of Xi.

Proof. If E[N ] = 2, then N and M have the same distribution. Moreover

GX(t) = FX(t) for all t ∈ R. Altogether we get S (d)
= T , as desired. Other-

wise, let

S̃ =
Ñ∑
i=1

X̃i,

with Ñ ∼ Poisson(2−E[N ]) and X̃i = 0 for all i such that Ñ and all X̃i

are independent. By construction, S̃ = 0 P-a.s. and therefore S
(d)
= S + S̃.

Next, we apply Theorem 3.22 to see that T := S + S̃ has a Compound
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Poisson distribution with frequency parameter E[N ] + (2 − E[N ]) = 2 and
severity cdf

GX(t) =
2− E[N ]

2
· 1{t≥0} +

E[N ]

2
· FX(t),

where FX denotes the cdf of Xi. Altogether, choosing M ∼ Poisson(2)

and Yi
iid∼ GX yields S

(d)
= S + S̃ = T , i.e. we can represent S exactly as a

Compound Poisson model with frequency 2.

Corollary 4.9. Let S be as in Theorem 4.8. Let

U ∼ Bernoulli

(
E[N ]

2

)
be independent of N and Xi for all i. Then

S
(d)
=

M∑
j=1

Yj ,

for M ∼ Poisson(2) and Yj
iid∼ U ·X1 for all j.

Proof. The result follows from the construction in the proof of Theorem 4.8
and Corollary 3.23.

Motivated by Theorem 4.8, we formulate the following

Transformation 4.10. Let S =
∑N

i=1Xi be a frequency-severity model
where N has a Poisson distribution such that E[N ] ≤ 2. Then we transform
S to T =

∑M
j=1 Yj , with

M ∼ Poisson(2), Yj
iid∼ GX ,

for GX is as in equation (4.6).

Clearly, S
(d)
= T by 4.8, so the word "transformation" is perhaps not

optimal. The situation becomes however more interesting in the next section
where we extend Transformation 4.10 to arbitrary frequency distributions,
and the above transformation will then lead to an approximation rather than
an exact representation.

In Figure 4.2, we see the visualization of GX(·) for di�erent parameter
values λ = E[N ] and X having a Pareto(α = 1.5, x0 = 2) distribution.
For λ = 2 we get the original cdf of X. Note that the y-axis intercept
increases if λ decreases. A lower λ implies that we add more zero claims in
the transformation process and therefore, the severity cdf of T must as well
allow for more zero claims.
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Figure 4.2: Visualization of GX(·) for di�erent parameters

Remark 4.11. As we have already pointed out, S and T are both frequency-

severity models with S
(d)
= T , i.e. E[S] = E[T ]. Therefore

E[N ] · E[X1] = E[M ]︸ ︷︷ ︸
=2

·E[Y1].

Hence, if Y ∼ GX , then

E[Y ] =
E[N ]

2
· E[X].

We can generalize this connection to arbitrary moments (if they exist):

Lemma 4.12. Let Y ∼ GX and assume that the n-th moment of Y exists,

then

E[Y n] =
E[N ]

2
· E[Xn].
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Proof. We apply Theorem 3.26 twice:

E[Y n] = n ·
∫ ∞

0
tn−1(1−GX(t)) dt

= n ·
∫ ∞

0
tn−1

(
1− 2− E[N ]

2
− E[N ]

2
· FX(t)

)
dt

= n ·
∫ ∞

0
tn−1

(
E[N ]

2
− E[N ]

2
· FX(t)

)
dt

=
E[N ]

2
· n ·

∫ ∞
0

tn−1(1− FX(t)) dt

=
E[N ]

2
· E[Xn].

4.4 The case E[N ] ≤ 2 for arbitrary frequencies

We now want to �nd similar results for other frequency distributions. For
this purpose we simply apply Transformation 4.10 de�ned in the previous
section to arbitrary frequency distributions and investigate the behaviour.

Transformation 4.13. Let S =
∑N

i=1Xi be a frequency-severity model

such that E[N ] ≤ 2. Then we approximate S with T =
∑M

j=1 Yj , for

M ∼ Poisson(2), Yj
iid∼ GX ,

where GX is as in equation (4.6).

Theorem 4.14. Let S and T be as in Transformation 4.13. Then

1. E[S] = E[T ].

2. Var(T ) =Var(S) + E[X]2 · (E[N ]−Var(N)).

Proof. By Lemma 4.12,

E[T ] = E[M ]︸ ︷︷ ︸
=2

·E[Y ] = 2 · E[N ]

2
· E[X] = E[N ] · E[X] = E[S],

which proves the �rst part. By the Wald identities (Theorem 3.21), we get

Var(T ) = Var(Y1)︸ ︷︷ ︸
=E[Y 2

1 ]−E[Y1]2

·E[M ]︸ ︷︷ ︸
=2

+Var(M)︸ ︷︷ ︸
=2

·E[Y1]2

= 2 · E[Y 2
1 ] = E[N ] · E[X2

1 ], (4.7)
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where we used again Lemma 4.12 in the last step. Again by Wald, we
compute for S

Var(S) = Var(X1) · E[N ] + Var(N) · E[X1]2

= (E[X2
1 ]− E[X1]2) · E[N ] + Var(N) · E[X1]2

= E[N ] · E[X2
1 ]︸ ︷︷ ︸

Var(T )

+E[X1]2 · (Var(N)− E[N ]). (4.8)

All in all, equations (4.7) and (4.8) yield

Var(T ) = Var(S) + E[X1]2 · (E[N ]−Var(N)), (4.9)

as desired.

Remark 4.15. First of all, note that Theorem 4.14 gives us exactly the same
statements for E[T ] and Var(T ) as Propositon 4.4, which tells us that Trans-
formation 4.13 is a sensible generalization of Transformation 4.2. This is due
to the fact that 4.2 is a special case of 4.13, which gives us the mathematical
justi�cation of the approach in the �rst section of this Chapter. Moreover,
note that for a Poisson random variable N , we have E[N ] = Var(N), so
equation (4.9) reads Var(T ) = Var(S) in that case, which is in line with the

previously derived result S
(d)
= T (in other words, 4.10 is a special case of

4.13).

There is also a beautiful formula for the probability of a total claim
amount of zero in the transformed model:

Proposition 4.16. Let T be as in Transformation 4.13. Then

P[T = 0] = e−E[N ].

Proof. We have

P[T = 0] =

∞∑
k=0

P[M = k] ·GX(0)k =

∞∑
k=0

e−22k

k!
·
(

2− E[N ]

2

)k
= e−2

∞∑
k=0

(2− E[N ])k

k!
= e−2 · e2−E[N ]

= e−E[N ],

where we used FX(0) = 0.

We see in particular that P[T = 0] is independent of the underlying
severity.

The following table summarizes the impacts of Theorem 4.14 on di�erent
commonly used frequency dsitributions.
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Table 4.1: Transformation of di�erent frequencies

Frquency N E[N ] Var(N) Var(T )

Binomial(n, p) np np(1− p) > Var(S)
Poisson(λ) λ λ = Var(S)
NegBin(r, β) rβ rβ(1 + β) < Var(S)

Intuitively speaking, Theorem 4.14 tells us that the approximation be-
comes worse (in terms of the variance) if the di�erence between the expecta-
tion and the variance of the frequency is big. Note that this observation is in
line with Corollary 4.5. Let us illustrate Theorem 4.14 with a few examples.

Example 4.17. In this example, we want to illustrate the impact of the
chosen frequency distribution in Theorem 4.14. Let

S1 =

N1∑
i=1

Xi, S2 =

N2∑
j=1

Yj , S3 =

N3∑
k=1

Zk,

with Xi, Yj , Zk
iid∼ Pareto(α = 3, x0 = 1) and

� N1 ∼ NegBin(r = 1, β = 1, 5),

� N2 ∼ Binomial(n = 2, p = 0.75),

� N3 ∼ Poisson(λ = 1.5).

In particular, we have E[N1] = E[N2] = E[N3] = 1.5 and all three models
share the same severity distribution. Therefore, if we apply Transformation
4.13, S1, S2 and S3 are all transformed to S3. This can also be seen by
looking at equation (4.6): the transformed severiy depends on the expected
frequency and the severity distribution, which both coincide for all models
in our example.

Let us have a look at Figure 4.3. The blue, orange and red graphs are
the cdf's of S1, S2, S3 respectively. By Theorem 4.14, all models have the
same expectation and by equation (4.9), the variance is only driven by the
original frequencies, since all models share the same severity. We see that
the cdf of the Compound Binomial model is the fastest growing curve. This
is due to the variance of the Binomial distribution, wich is smaller than
the variances of the Negative Binomial and Poisson model (at least when all
three distributions share the same expectation, as in our case). Similarly, the
cdf of the Negative Binomial model is the slowest increasing curve, since the
variance of the underlying frequency is the biggest of all three. As equation
(4.9) suggests, the mismatch of the approximated model compared to the
original one increases if the mismatch of variance and expectation of the
original frequency increase.
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Figure 4.3: Transformation of compound cdf's with same severity and ex-
pected frequency

Example 4.18. We now focus on the behaviour of di�erent severities under
our transformation. Let

S1 =

N1∑
i=1

Xi, S2 =

N2∑
j=1

Yj ,

where N1, N2
iid∼ NegBin(r = 1, β = 1.5) and

Xi
iid∼ Pareto(α = 3, x0 = 2), Yj

iid∼ Gamma(γ = 3, c = 1).

Note that N1 and N2 have the same distribution. We made this choice to lay
our focus solely on the behaviour of the severities under our transformation.
Moreover, we have

E[Xi] =
αx0

α− 1
= 3, E[Yj ] =

γ

c
= 3

and thus
E[S1] = 4.5 = E[S2].

One can compute

E[X2
i ] =

x2
0α

α− 1
= 6, E[Y 2

j ] =
γ + γ2

c2
= 12.
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By Theorem 4.14, we have

Var(S1)−Var(T1) = 6 · 2.25 = 13.5,

Var(S2)−Var(T2) = 12 · 2.25 = 27.

The last observation is very interesting. Even though the fundamental struc-
ture of the severity is preserved by Transformation 4.13 (up to scaling and
translation), the shape of the original severity has a big impact on the qual-
ity of the approximation (in terms of the variance). Note moreover that
S1 and S2 are not transformed into the same Poisson model (in contrast
to the previous example). Figure 4.4 illustrates S1 and S2 as well as their
transformations T1 and T2.
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0.2

0.4

0.6

0.8

1.0

F
X

(·)

S1

T1

S2

T2

Figure 4.4: Transformation of compound cdf's with same frequency and
di�erent severities

We see that the cdf's related to the Pareto distribution have more bumps
than the cdf's related to the Gamma distribution. This is due to the rela-
tively high tail parameter α, which results in a concentration of the losses
coming from the Pareto distribution around 2, see Figure 4.4. Note that

P[S1 = 0] = P[S2 = 0] = P[N1 = 0] =

(
1

1 + β

)r
here
= 0.4

and
P[T1 = 0] = P[T2 = 0] = e−rβ = e−1.5 ≈ 0.223
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by Proposition 4.16, so the cdf's of the original models S1 and S2 have
a higher y-axis intercept, but then increase slower than T1 and T2 (since
E[Si] = E[Ti]). Let us elaborate our example a bit further and suppose that
we wish to minimize the di�erence P[Si = 0]− P[Ti = 0]: This value can be
seen as a measure for the quality of our approximation. According to the
above computations, we have

P[Si = 0]− P[Ti = 0] =

(
1

1 + β

)r
− e−rβ =: f(β).

For β → 0, this expression converges to zero (and also for β → ∞, but this
case is not relevant in practice). Figure 4.5 visualizes f (for r = 1).
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Figure 4.5: f(β)

However, let us recall that

Var(Ni) = rβ · (1 + β) = E[Ni] · (1 + β),

and if we let β go to zero, then not only the y-axis intercepts of the cdf's of
Si and Ti converge (i.e. f goes to zero), but also

Var(Si)→ Var(Ti), Var(Ni)→ E[Ni].

In conclusion, we can say that minimizing the di�erence of the y-axis inter-
cepts and minimizing the di�erence of the �rst two moments of N go hand
in hand, so they describe (qualitatively) the same "goodness-of-�t" measure.
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4.5 Generalization to arbitrary frequencies (includ-
ing the case E[N ] > 2)

So far, we could always solve the problem that N underestimates (in expec-
tation) the number of claims by adding some zero losses. However, this trick
will no longer be applicable if we move on to the case where E[N ] > 2. We
now face the problem that our initial frequency produces (in expectation) too
many losses. Therefore, we must think about cutting certain events instead
of adding zero claims. It will turn out that the problems which arise in this
context can be solved smartly if we apply suitable Per Risk XL layers (the
deductible will play the crucial role). As our models are mainly intended for
a reinsurance context where layers are always applied, the problems which
arise in this section can be circumvented in practice for most of the relevant
cases if the deductible of the layer meets certain requirements.

4.5.1 Loss cutting

As we have already pointed out, we now must cut certain losses in order to
attain an expected claims frequency of two. It lies at hand that the impact
on the total loss amount S can be minimized if we cut the smallest losses.
More concretely, if we have a frequency N such that E[N ] > 2, then we want

to cut (in expectation) the E[N ] − 2 lowest losses, i.e. the lowest E[N ]−2
E[N ]

proportion of all losses modelled by N . Starting with the severity X of S,
we wish to transform FX such that it re�ects this cutting. We suggest the
following severity transformation:

De�nition 4.19. For a severity cdf

FX : R −→ [0, 1],

we de�ne

HX : R −→ [0, 1]

t 7−→ max

(
0,

2− E[N ]

2
· 1{t≥0} +

E[N ]

2
· FX(t)

)
(4.10)

= max(0, GX(t)),

where N denotes the frequency of the underlying compound model.

Remark 4.20. De�nition 4.19 can be seen as a generalization of GX to any
expected frequency, since HX = GX if E[N ] ≤ 2.

Before we discuss a new transformation for compound models, let us
brie�y check that HX does indeed re�ect the desired severity transformation.
Note that taking the maximum in the de�nition of HX is inevitable, since we
now assume E[N ] > 2 and therefore GX(0) < 0. It is straightforward that
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for any severity cdf FX , the transformation HX is normalized, increasing
and continuous, i.e. HX is a cdf.

We want that HX re�ects the cutting of the (in average) lowest E[N ]−2

losses, i.e. the lowest E[N ]−2
E[N ] proportion of all losses should be cut. We can

achieve that if we �rst look at FX and its E[N ]−2
E[N ] quantile t∗. If t∗ is exactly

the point where HX stops to be zero and starts to increase, then HX does
indeed represent the desired cutting, since the lowest E[N ]−2

E[N ] proportion of
losses coming from FX is no longer considered. More precisely, we have

Lemma 4.21. Let S be a frequency-severity model with underlying contin-

uous severity cdf FX and expected claims frequency E[N ] > 2. Moreover,

de�ne

t∗ := qF

(
E[N ]− 2

E[N ]

)
≥ 0, (4.11)

where qF denotes the right-quantile of FX . Then we have

HX(t) = 0 ∀t ≤ t∗, HX(t) > 0 ∀t > t∗.

Proof.

GX(t∗) =
2− E[N ]

2
+

E[N ]

2
· FX

(
qF

(
E[N ]− 2

E[N ]

))
︸ ︷︷ ︸

=
E[N ]−2
E[N ]

=
2− E[N ]

2
+

E[N ]− 2

2
= 0,

so t∗ is indeed the point where HX starts to increase, since qF denotes the
right-quantile function.

Corollary 4.22. Let t ≥ t∗, then HX(t) = GX(t).

Proof. By the Proof of Lemma 4.21, we have

GX(t∗) = 0.

Since GX is an increasing function, we get

HX(t) = max(0, GX(t)) = GX(t) for all t ≥ t∗.

Example 4.23. Lemma 4.21 is visualized in Figure 4.6, where we look at
the cdf of a Pareto(α = 1.5, x0 = 2) distribution and its transformation for
di�erent expected frequencies E[N ]. Note that depending on E[N ], we get
either a transform GX or HX . The dotted horizontal lines are on the levels

E[N3]− 2

E[N3]
=

3− 2

3
=

1

3
,

E[N4]− 2

E[N4]
=

4− 2

4
=

1

2
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respectively. We see that their FX -quantiles agree with the points where
the transformed severities start to increase, which justi�es our approach
graphically.

The black solid line is drawn at the modelling threshold x0 = 2 of the
Pareto severity. In the case where E[N ] ≤ 2, FX is scaled and translated
and for x ≥ x0 = 2 losses have positive probability. This discussion leads us
to the following

-1 0 1 2 3 4 5 6
x
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0.4
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cd
f

FX(·); original cdf
GX(·); E[N1] = 0.75

GX(·); E[N2] = 1.5

HX(·); E[N3] = 3.0

HX(·); E[N4] = 4.0

Figure 4.6: Transformation of a Pareto severity for di�erent expected fre-
quencies

Transformation 4.24. Let S =
∑N

i=1Xi be a frequency-severity model

such that E[N ] > 2. Then we approximate S with T =
∑M

j=1 Yj , where

M ∼ Poisson(2), Yj
iid∼ HX ,

and HX is as in equation (4.10).

As Figure 4.6 already suggests, the shape of HX is quite di�erent than
the shape of GX and thus it is not clear which properties we can expect
from Transformation 4.24. This will be elaborated in the remainder of this
section. Since T is a model where some losses have been cut, we expect that
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T underestimates S, which can be shown mathematically in the next result:

Theorem 4.25. Let S and T be as in Transformation 4.24. Then

E[T ] ≤ E[S].

Proof. Let as before

t∗ := qF

(
E[N ]− 2

E[N ]

)
for the right quantile function qF of FX . Then we have by the Darth Vader
rule

E[T ] = E[M ] · E[Y ] = 2 ·
∫ ∞

0
(1−HX(t)) dt

= 2 ·

(∫ t∗

0
1 dt+

∫ ∞
t∗

(1−GX(t)) dt

)

= E[N ] ·

(∫ t∗

0

2

E[N ]
dt+

∫ ∞
t∗

(1− FX(t)) dt

)
. (4.12)

Note that

1− FX(t∗) =
E[N ]

E[N ]
− E[N ]− 2

E[N ]
=

2

E[N ]

and since FX is increasing, 1−FX is decreasing. Therefore, we can estimate∫ t∗

0

2

E[N ]
dt ≤

∫ t∗

0
(1− FX(t)) dt (4.13)

and thus putting equations (4.12) and (4.13) together:

E[T ] ≤ E[N ] ·
∫ ∞

0
(1− FX(t)) dt = E[N ] · E[X] = E[S]

Remark 4.26. We get an equality in Theorem 4.25 if and only if FX is con-
stant in [0, t∗]. For the Pareto distribution, this can only happen when
t∗ ≤ x0, which implies that no losses are cut (or in other words, we would

need E[N ]−2
E[N ] = 0, which contradicts our assumption in this section). Let us

reformulate this �nding in a

Corollary 4.27. Let S and T be frequency-severity models as in Transfor-

mation 4.24, where we assume that S has a Pareto severity. Then

E[T ] < E[S].

Since Pareto distributions are very important in applications, we are not
satis�ed with this result; Our transformation is not even able to correctly
estimate the expectation of the total claim amount S. This is the reason
why we start to work with layers in the next section.
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4.5.2 Application of Per Risk XL layers

Note that we usually construct frequency-severity models for the ground up
losses Xi (or more precisely, we model e.g. in the Pareto case the losses
above a modelling threshold x0 < D), the layer is applied afterwards. If the
deductible D is chosen such that in average all cut losses are below D, then
the cutting process should have no impact on the transformation of the total
loss amount in a Per Risk XL contract. Let us �rst of all show that Lemma
4.12 can be generalized for layers.

Lemma 4.28. Let Y ∼ HX and assume that the n-th moment of Y exists.

Moreover, suppose that D ≥ t∗, for t∗ as in equation (4.11). Then

E[LD,C(Y )n] =
E[N ]

2
· E[LD,C(X)n].

Proof. By Proposition 3.28, we have

E[LD,C(X)n] = n

∫ D+C

D
(x−D)n−1(1− FX(x)) dx

and

E[LD,C(Y )n] = n

∫ D+C

D
(x−D)n−1(1−HX(x)) dx

D≥t∗
= n

∫ D+C

D
(x−D)n−1(1−GX(x)) dx

= n

∫ D+C

D

E[N ]

2
· (x−D)n−1(1− FX(x)) dx

=
E[N ]

2
· E[LD,C(X)n],

where we used Corollary 4.22 in the second line.

Interestingly, Theorem 4.14 does also have an equivalent result if we work
with layers:

Theorem 4.29. Let S and T be as in Transformation 4.24. Moreover, let

LD,C be a layer function applied to each and every loss such that D ≥ t∗,
where t∗ is as in (4.11). Then we have

� E[T ] = E[S].

� Var(T ) = Var(S) + E[LD,C(X)]2 · (E[N ]− Var(N)).

Proof. The proof works in the exact same way as the proof of Theorem 4.14,
where we just use Lemma 4.28 instead of Lemma 4.12.
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Theorem 4.29 shows us, that our previously derived results can be gen-
eralized to the case where E[N ] > 2, under application of a suitable layer to
each and every loss. In summary, we formulate

Transformation 4.30. Let S =
∑N

i=1 LD,C(Xi) be a frequency-severity
model such that E[N ] > 2 and D ≥ t∗, where t∗ is de�ned as in equation
(4.11). Then we approximate S with T =

∑M
j=1 LD,C(Yj), where

M ∼ Poisson(2), Yj
iid∼ HX ,

and HX is as in equation (4.10).

and Theorem 4.29 ensures that E[S] = E[T ].

Example 4.31. Let us apply Transformation 4.30 to a concrete compound
distribution. Suppose

S =
N∑
i=1

LD,C(Xi),

where Xi
iid∼ LogNormal(µ = 0, σ = 3), N ∼ NegBin(r = 0.5, β = 7) and

D = 1, C = 3. Then we have E[N ] = 3.5 > 2, and

t∗ = qF

(
E[N ]− 2

E[N ]

)
≈ 0.58 < D,

so all conditions of Transformation 4.30 are satis�ed. Figure 4.7 shows
on the left-hand side the frequency and severity of S, where the subpicture
on the bottom left shows the cdf of X and LD,C(X) as well as t∗ on the

x-axis and E[N ]−2
E[N ] on the y-axis.

The right-hand side shows the transformed frequency and severity. Fi-
nally, Figure 4.8 shows the cdf's of S and T with and without the layer
applied to each and every loss. It stands out immediately that our models
S and T have substantially di�erent probabilities to produce a total claim
amount of zero. The main reason for this phenomenon lies in the frequen-
cies of the two models. As the upper subgraphs of Figure 4.7 suggest, the
Negative Binomial frequency has a much higher probability to produce zero
events than the Poisson frequency, which is in line with the bigger y-axis
intercept of the cdf of S in Figure 4.8. Additionally, a look at Figure 4.7
clari�es that X lies below D with probability ≈ 0.5, while the layer has a
smaller impact on the transformed severity. This is also a reason why S and
T have di�erent probabilities to produce a total loss amount of zero. More-
over, Figure 4.8 hints as well that the probability to produce a total claim
amount of zero is bigger when we apply the layer. This is very reasonable as
the total claim amount can be zero if there are eiter no losses, or if all losses
are below the deductible in the model with the layer.
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Figure 4.7: Behaviour of a Negative Binomial frequency and a LogNormal
severity under Transformation 4.30

Let us check that our example veri�es the statements of Theorem 4.25
and 4.29. In a simulation, empirical distribution functions of S and T had
been generated based on 1′000′000 samples with and without the application
of layers. When no layers had been applied, the simulation yielded

Ê[S] ≈ 313.45, Ê[T ] ≈ 309.95,

so there is still a relative gap of ≈ 1.1% and the expectation of T is
smaller than the expectation of S, which reproduces Theorem 4.25. On the
other hand, we get the following simulated values when we apply layers:

Ê[S] ≈ 4.092, Ê[T ] ≈ 4.090,

which results in a relative gap of only ≈ 0.049%. These �ndings are in
line with Theorem 4.29, as the two expectations converge in the case when
we apply a suitable layer (where "suitable" means D ≥ t∗). Additionally,
it is also worth mentioning that the layer in�uences the rate of growth of S
and T signi�cantly: On the one hand, this shows that the application of Per
Risk XL layers leads to a relatively low coverage by the reinsurer and on the
other hand, it points out that our severity has quite heavy tails, i.e. there
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Figure 4.8: Cumulative Distribution Functions of S andT .

are many (and large) losses above D + C which are only partially covered
by the reinsurance contract.
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Chapter 5

Transformation of Actuarial

Loss Models into Synthetic

NatCat Loss Tables

5.1 Explanation of the Transformation

In this section, we follow SCOR [9], pages 3-6.

So far, we are able to calibrate a frequency-severity model to past loss
data of company A and we have seen how this model is transformed into a
Poisson(2)-model. However, it is still unclear how we can procede in order to
obtain a synthetic NatCat loss table compatible with the results of classical
NatCat models. Let us brie�y explain the procedure:

First of all, a YERT is generated for the considered peril region (e.g.
Swiss �oods as in the introduction). For each of the n modelled years (typ-
ically, one chooses n = 100′000), the number of events is drawn from a
Poisson(2) distribution. As most NatCat vendor models work with Poisson
frequencies, it lies at hand that we also work with this distribution type for a
better compatibility. A parameter value of 2 is reasonable as most observed
expected frequencies of natural catastrophes are below 2 (i.e. the YERT is
able to capture all losses with high probability). The event ID's of the YERT
are chosen in such a way that there is no overlap with the event ID's from
used NatCat models.

Next, we model a YLT for n years with the respective Poisson(2) model
for company A. The modelled losses are then ordered by rank (this sorting is
independent of the year in which the di�erent loss severities are drawn) and
injected into the YERT in order to obtain a synthetic YLT, i.e. the highest
modelled loss is assigned to the loss event with rank 1 in the YERT and so
on. There may be two cases where we have a mismatch of modelled losses:

� The number of modelled losses in the YERT is bigger than the number
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of modelled losses in the YLT: In that case, the YLT is complemented
with zero-loss events (see right-hand side of Figure 5.1).

� The number of modelled losses in the YERT is lower than the number
of modelled losses in the YLT: In that case, we just take the highest
losses of the YLT into account and discard the redundant losses (see
left-hand side of Figure 5.1).
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Figure 5.1: Mismatch of modelled years

It is also possible to apply this transformation to the YLT coming from
the NatCat model for the losses of companies B and C in order to receive a
synthetic YLT. This is only done if one wishes to obtain an aggregated YLT
for all three companies, but often the YLT's from classical NatCat models
are not transformed with this procedure. It is important to point out that we
use exactly the same YERT for all YLT's that we want to transform. This is
the reason why we call it pre-generated : we �rst simulate the YERT and then
use it for all YLT's we want to transform. The reason for this approach lies
in the compatibility: If we use the same pre-generated YERT for all YLT's,
we are able to add the losses of the synthetic YLT's belonging to the same
modelled loss event. This is not possible if we use di�erent YERT's. This
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procedure ensures moreover correlation of big loss events from the di�erent
actuarial models. It is a very reasonable assumption that if one insurer
observes big claims, then the other insurers are confronted with big losses as
well, since a NatCat event usually a�ects the portfolios of several insurers.
Hence, it is very sensible that we correlate big loss events by using the same
YERT for all models which we transform.

Example 5.1. We illustrate the above explained procedure with a concrete
example. Consider two loss models that we want to transform into synthetic
YLT's for n = 10 modelled years. Figure 5.2 shows again the concept of the
transformation. The "Loss Model" is in this context usually a Poisson(2)
frequency-severity model as for company A.

Loss ModelYLT

Poisson(2)
frequency

YERT

synthetic YLT

simulate

n(= 10) years

inject

pre-generate

n = 10 years

output

Figure 5.2: Transformation overview

Figure 5.3 shows the transformation process for loss model 1, where the
pre-generated YERT models one loss more that the YLT, i.e. we need to
add one zero loss (green).

Similarly, Figure 5.4 shows the transformation for loss model 2, where
the YLT models one loss more than the pre-generated YERT, so we need
to cut the lowest loss (red). It is important to mention that we used the
same YERT in both examples, which ensures compatibility and correlation.
Finally, Figure 5.5 shows how the two synthetic YLT's can be aggregated,
if a wholistic model is desired. To do so, we just sum the losses of the two
synthetic YLT's that correspond to the same rank.
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Loss model 1

YLT 1

Year
Event
ID

Loss Rank

1 5 185 3
2 1 90 5
2 9 630 1
5 1 110 4
8 3 540 2

Pre-generated YERT for n = 10 years

Simulated
Year

Common
Event ID

Simulated
Rank

2 16 5
3 14 1
5 21 4
5 14 6
7 19 3
9 16 2

Poisson(2)
frequency

simulate

n = 10 years

pre-generate

n = 10 years

inject

synthetic YLT 1

Simulated
Year

Common
Event ID

Simulated
Rank

Loss

2 16 5 90
3 14 1 630
5 21 4 110

5 14 6 0

7 19 3 185
9 16 2 540

output

Figure 5.3: YLT transformation with one added zero loss (green)
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Loss model 2

YLT 2

Simulated
Year

Event
ID

Loss
(in mio)

Rank

3 2 230 4
4 1 105 6
8 3 360 2
8 4 720 1
8 5 245 3

8 2 60 7

10 1 150 5

Pre-generated YERT for n = 10 years

Simulated
Year

Common
Event ID

Simulated
Rank

2 16 5
3 14 1
5 21 4
5 14 6
7 19 3
9 16 2

Poisson(2)
frequency

synthetic YLT 2

Simulated
Year

Common
Event ID

Simulated
Rank

Loss

2 16 5 150
3 14 1 720
5 21 4 230
5 14 6 105
7 19 3 245
9 16 2 360

simulate

n = 10 years

pre-generate

n = 10 years

inject

output

Figure 5.4: YLT transformation with one cut loss (red)
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synthetic YLT 1

Simulated
Year

Common
Event ID

Simulated
Rank

Loss

2 16 5 90
3 14 1 630
5 21 4 110
5 14 6 0
7 19 3 185
9 16 2 540

synthetic YLT 2

Simulated
Year

Common
Event ID

Simulated
Rank

Loss

2 16 5 150
3 14 1 720
5 21 4 230
5 14 6 105
7 19 3 245
9 16 2 360

aggregated synthetic YLT

Simulated
Year

Common
Event ID

Simulated
Rank

Loss

2 16 5 90+150=240
3 14 1 630+720=1350
5 21 4 110+230=340
5 14 6 0+105= 105
7 19 3 185+245= 430
9 16 2 540+360=900

A
gg
re
ga
te

Figure 5.5: Aggregation of synthetic YLT's
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5.2 The Loss Cutting Error

Let us discuss a very important issue that arises in our discussion of YLT
transformations. If we procede as in Section 5.1 (assume we are working
with only one YLT), then the case where the YERT models fewer losses
than the YLT has always positive probability. Depending on the underlying
frequencies, this probability can converge to zero if n increases, but there
are also con�gurations where it is independent of n; If e.g. the YLT and the
YERT work with exactly the same frequency distribution, then we always
cut losses in the transformation process with probability 0.5. Why is this
problematic? According to our algorithm, we essentially just copy the losses
from the YLT to the YERT and there is no possibility to add other losses.
If we always discard some of these losses with positive probability, then the
total loss amount (for one year or the whole modelling period) will always
be underestimated by the synthetic YLT.
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Figure 5.6: Loss cutting

The left-hand picture in Figure 5.6 shows severities generated by a loss
model, ordered by ranks. The right-hand picture illustrates which losses
are copied or discarded in the YLT transformation process, where the cut-
ting threshold (black solid line) results from the di�erence of the modelled
frequencies in the YLT and YERT.

We will investigate this error and try to limit it (or even let it converge
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to zero) for speci�c frequency distributions. It is however important to keep
in mind that we cannot eliminate the error completely.

In order to formally de�ne and investigate the transformation of Section
5.1, we introduce a new notation and use the following

Assumption 5.2. In the remainder of this Thesis, we assume that the losses
for each year of all encountered YLT's are simulated from a known frequency-
severity model. Moreover, we investigate the mathematical properties of the
transformation from Section 5.1 for a single YLT. Furthermore, YERT's are
assumed to have the number of losses for each year drawn from a Poisson(2)
distribution.

In other words, we only look at the transformation process of loss models
such as the Poisson(2) model of company A.

5.3 Terminology and Notation

Keeping Assumption 5.2 in mind, we now want to develop a mathematical
framework in order to express the transformation of Section 5.1 in a mathe-
matical language and to investigate how it behaves in terms of expectation
and variance. We denote the number of modelled years by n(= 100′000). By
our assumption, the loss amount for year one in the YLT is simulated from
a frequency-severity model. Therefore, we can write it as

S1 =

N1∑
i=1

Xi.

Analogously, we write the loss amount for year one in the transformed
model as

T1 =

M1∑
j=1

Yj

with M1 ∼ Poisson(2). The total claim amounts in the two models for
the second year are then given by

S2 =

N1+N2∑
i=N1+1

Xi, T2 =

M1+M2∑
j=M1+1

Yj ,

and so on for the other years. Although this notation for the di�erent
years is very heavy, this will not be an obstacle as we rarely look at single
years other than the �rst. Furthermore, we de�ne

Nn :=

n∑
k=1

Nk, Mn :=

n∑
k=1

Mk.
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The total claim amount over all n simulated years can then be written
as

Sn :=
Nn∑
i=1

Xi =
n∑
k=1

Sk, Tn :=
Mn∑
j=i

Yj =
n∑
k=1

Tk.

By the transformation described in Section 5.1, the Yj are actually ob-
tained after a random permutation is applied to the Xi, so we need to extend
our notation a bit further to capture this connection.

De�nition 5.3. For a collection of random variables X1, X2, . . ., we de�ne

X1 := max({X1, X2, . . .}), X2 := max({X1, X2, . . .} \X1) (5.1)

and so on. Then we de�ne

Yj := XΣ(j), (5.2)

where Σ is a random permutation of {1, 2, . . . ,Mn} such that

P[Σ = σ] =
1

Mn!

for all σ ∈ SMn , i.e. every element of SMn has the same probability to
be picked by Σ. By abuse of notation, we will just write Σ ∈ SMn for such
a random permutation.

In order to make our notation consistent, we need

Convention 5.4. For i > Nn, we de�ne Xi := 0.

So if we sum over the severities Xi and the upper bound of the sum-
mation is bigger than Nn, then the additional severities are just zero. A
priori, we could have also worked in equation (5.1) with minima instead of
maxima. However, the notation with the maxima automatically implements
the cutting of the lowest losses in the case where Mn < Nn, which is very
convenient for our purposes. All these notations clearly indicate that the to-
tal claim amounts Si and Tj have the same distribution by symmetry, more
precisely

Sl
(d)
= Sk, Tl

(d)
= Tk, for 1 ≤ l, k ≤ n.

Therefore, we will in some situations omit the subscript and just write S
(or T ) instead of Si (or Tj). Let us brie�y summarize the involved random
variables and their de�nitions:
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� n (= 100′000) is the number of modelled years.

� Nk are the iid frequencies of the actuarial loss model for the 1 ≤ k ≤ n
modelled years.

� Mk
iid∼ Poisson(2) model the YERT frequencies, independently of all

Nl.

� Xi are the severities, which are positive and iid for 1 ≤ i ≤ Nn and
Xi := 0 for all i > Nn.

� Yj = XΣ(j) for all 1 ≤ j ≤Mn for a random permutation Σ ∈ SMn .

X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4 Y5 Y6 Y7

σ =
(13427)(56) ∈ S7

Figure 5.7: Loss permutation with Mn > Nn

Figure 5.7 shows the loss permutation for a speci�c realization Σ =
(13427)(56) ∈ SMn of the permutation random variable in the case 7 =
Mn > Nn = 5, i.e. two zero losses X6 = X7 = 0 are added (we use Conven-
tion 5.4). On the other hand, Figure 5.8 shows the loss permutation for a
speci�c realization Σ = (134)(2) ∈ SMn of the permutation random variable
in the case 4 = Mn < Nn = 6, i.e. the lowest two losses X5 and X6 are
discarded. It is important to mention that we always consider a permutation
in SMn , and not in SNn . We see moreover in Figure 5.8 that the cutting
of the redundant losses is implemented automatically as the four severities
Y1, Y2, Y3 and Y4 of the transformed model are obtained after a permutation
is applied to the four biggest losses X1, X2, X3 and X4 of the initial model.

All these notations allow us to rewrite the transformation of Section 5.1
in mathematical terms:
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X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4

σ = (134)(2) ∈ S4

Figure 5.8: Loss permutation with Mn < Nn

Transformation 5.5. Let

Sn =

Nn∑
i=1

Xi =

n∑
k=1

Sk

be a frequency-severity model for the total loss amount of n simulated years.
Then we approximate Sn with

Tn =

Mn∑
j=1

Yj =

Mn∑
j=1

XΣ(j) =

n∑
k=1

Tk

and Sk with Tk for all 1 ≤ k ≤ n, for a random permutation Σ ∈ SMn .

Remark 5.6. Let us quickly set Transformation 5.5 in context of the pro-
cedure explained at the beginning of this Chapter. Sn represents the loss
modelled by the frequency-severity model of insurer A for n modelled years.
A YLT can be obtained by a realization of the random variable Sn. On
the other hand, our notation ensures that Tn corresponds exactly to the
synthetic YLT after the transformation is applied. Here, it is a random
variable; the parts which are random are Mn (the number of entries in the
pre-generated YERT), Σ (the random rank assignment in the YERT) and
the Xi (the losses of our original model). Consequently, if we pre-generate a
YERT (i.e. consider realizations of Mn and Σ) only the losses of company
A will we random. This allows us to formally de�ne:

De�nition 5.7. A pre-generated YERT is a realization of the random vector
(Mn,Σ).
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5.4 General mathematical properties

Before we look at speci�c transformations, let us have a look at some general
mathematical properties. Let us start with the mathematical version of the
loss cutting error (for an intuitive explanation, see Section 5.2):

Theorem 5.8 (Loss cutting error). We have

E[Tn] < E[Sn].

Proof. We can write

E[Tn] = E[Tn · 1{Mn≥Nn}] + E[Tn · 1{Mn<Nn}]

= P[Mn ≥ Nn] · E[Tn|Mn ≥ Nn]︸ ︷︷ ︸
=E[Sn]

+ P[Mn < Nn] · E[Tn|Mn < Nn]︸ ︷︷ ︸
<E[Sn]

< (P[Mn ≥ Nn] + P[Mn < Nn])︸ ︷︷ ︸
=1

·E[Sn]

= E[Sn],

as desired.

It turns out that T1 and S1 have di�erent distributions. We can show
that by looking at the probability to produce a loss size of zero. To simplify
the argument, we look at a speci�c choice of the Nk.

Proposition 5.9. Let Nk
iid∼ Poisson(2), then P[T1 = 0] > P[S1 = 0].

Proof. We have

P[S1 = 0] = P

[
N1∑
i=1

Xi = 0

]
= P[N1 = 0] = e−2,

since Xi > 0 P-a.s. On the other hand, we have

P[T1 = 0] = P

M1∑
j=1

Yj = 0


> P[M1 = 0]︸ ︷︷ ︸

=e−2

+P[Mn = Nn + 1,M1 = 1, Y1 = XMn
]︸ ︷︷ ︸

>0

> e−2.
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Example 5.10. Let us have a look at Table 5.1, which visualizes the argu-
ment in the last proof. We model n = 3 years. In the original model, we have
in total Nn = 3 losses (zero in year 1, two in year 2 and one in year 3) and
in the synthetic model, we have Mn = 4 losses, i.e. one of these losses must
then be an additional zero loss. Column 3 indicates the ranks of the three
claims from the actuarial loss model and column 5 contains the randomly
assigned ranks of the four losses in the synthetic model. We see that the
loss in the synthetic model in year one has rank 4, i.e. it is the additional
zero loss (marked red), so we have a total claim amount of zero for year one
in the synthetic model, even though we have modelled a positive number of
claims and all losses in the actuarial model are positive. Exactly this case
corresponds to the second underbrace in the last proof (Mn = 4 = Nn + 1,
M1 = 1, Y1 = X4 = XMn

= 0).

Table 5.1: Model transformation for n = 3 simulated years

Simulated
Year

Simulated Loss
original model

Rank
Simulated Loss
synthetic model

random
Rank

1 - - 0 4

2
127 3

831 1
831 1

3 649 2
127 3
649 2

Next, let us discuss some results about (in)dependence.

Proposition 5.11 (Dependence of Xi and Yj). The random vectors

(X1, X2, . . . , XNn) and (Y1, Y2, . . . , YMn)

are not stochastically independent.

Proof. Let x > 0 be such that P[Y1 > x] > 0 and P[X1 ≤ x] > 0. Such an x
exists if X1 is a positive and non-deterministic random variable (which is a
natural assumption for insurance claim severities). Then we have

P[X1 ≤ x,X2 ≤ x, . . . ,XNn ≤ x] > 0

and
P[Y1 > x] > 0,

but
P[X1 ≤ x,X2 ≤ x, . . . ,XNn ≤ x, Y1 > x] = 0,

so the two random vectors cannot be independent.
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Remark 5.12. The last proof essentially used the property that the losses Yj
are just copies of the Xi or zero losses. So if all Xi stay below a level x, then
the same must hold for all Y ′j s.

Remark 5.13. Recall that by the properties of frequency-severity models,
the random variables X1, X2, . . . XNn are jointly (and thus also pairwise)
independent.

Proposition 5.14 (Dependence of Yj on N
n and Mn). The random vari-

ables Yj for 1 ≤ j ≤Mn are not independent of Nn. Moreover, the random

variables Yj for 1 ≤ j ≤Mn are as well not independent of Mn. In particu-

lar, T and Tn from Transformation 5.5 are never frequency-severity models.

Proof. We have for 1 ≤ j ≤Mn

P[Yj > 0] > 0,

but
P[Yj > 0|Nn = 0] = 0,

so the random variables Yj and Nn are not independent. For the second
statement, note that since Xi > 0 P-a.s.

P[Yj = 0] > 0 ⇐⇒ Mn > Nn,

so the loss sizes Yj depend as well on Mn. In a frequency-severity model,
the severities must be independent of the frequency. The argument shows
that this is never the case for the transformed models T1 (and also Tn),
which implies that Transformation 5.5 produces loss models which are never
frequency-severity models.

5.5 Transformation of Poisson(2)-models

As we have modelled the losses of insurer A with a Poisson(2) frequency-
severity model, we now want to �nd out how this model behaves under
Transformation 5.5 in terms of the expectation. Note that both the original
and the transformed model work with the same frequency distribution for
every modelled year. Hence, some losses are discarded with probability 0.5
for every n. In case we have a concrete realization Nn −Mn > 0, then the
loss amount which is cut equals

Nn∑
i=Mn+1

Xi.

It turns out to be very hard to estimate the expectations of these error
terms for general severities. We will therefore content ourselves with a sim-
ulation for this special case. Afterwards, we slightly change the setting in
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order to circumvent the above mentioned problem. This can be done via
two di�erent ways. Firstly, we can apply as in Chapter 4 layers to each and
every loss. The deductible D must be chosen su�ciently high such that the
cut losses are (in average) below D and play therefore not a relevant role.
Secondly, we can work with a Poisson frequency strictly smaller than 2 in
our initial model. The probability to cut some losses in the transformation
will then converge to zero, which means that estimating the size of the cut
losses will no longer be necessary.

Example 5.15. Let us simulate the trasformation with a concrete example.
We choose Nk ∼ Poisson(2) and Xi ∼ Pareto(x0 = 2, α = 1.5).

1160000 1180000 1200000 1220000 1240000
0.0

0.2

0.4

0.6

0.8

1.0

cdf of Sn

cdf of T n

Figure 5.9: Cumulative distribution functions of Sn and Tn

Figure 5.9 shows the simulated cdf's of Sn and Tn with n = 100′000
modelled years. We see from the picture that the cdf of Sn is at every point
smaller than the cdf of Tn. This suggests again E[Tn] < E[Sn]. We see
that the values on the x-axis have a size around 1′200′000 = 200′000 · 6 =
E[Nn] · E[X1] = E[Sn], which is reasonable. We can also have a look at the
expectations of Tn and Sn. As already pointed out, E[Sn] = 1′200′000 and
the simulation used to generate Figure 5.9 yields 1′198′571 as (simulated)
expectation of Tn. In conclusion, we could reproduce the mismatch of the
expectations as suggested in Theorem 5.8, but we see at the same time that
the di�erence is very small (around 0.12%). Thus, the simulation hints that
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even in the limiting case where both the original and the transfomed model
work with exactly the same frequency distribution, Transformation 5.5 gives
very reasonable results (in terms of the expectation) and therefore an analysis
of the error terms

∑Nn

i=Mn+1X
i does not lead to considerable improvements

(at least in this example).

5.6 Application of Per Risk XL Layers

Let us now discuss the application of Per Risk Excess of Loss Layers. Our
goal is to show that if we apply suitable layers to our losses, we can control
the loss cutting error and let it converge to zero if n goes to in�nity.

Lemma 5.16. Let X ∼ Pareto(x0, α) with α > 1 and let LD,C be a Layer

function with D ≥ x0. Then

E[LD,C(X)] =
xα0
α− 1

[
D1−α − (D + C)1−α

]
.

Proof. By Proposition 3.28 we get

E[LD,C(X)] =

∫ D+C

D
(1− FX(x)) dx =

∫ D+C

D

(x0

x

)α
dx

= xα0

[
1

1− α
x1−α

]D+C

D

=
xα0
α− 1

[
D1−α − (D + C)1−α] .

Theorem 5.17. Let Nk
iid∼ Poisson(2), Xi

iid∼ Pareto(x0, α) with α > 1 and

let LD,C be a layer applied to each and every loss with D > x0. Then

E[T1] −→ E[S1], for n −→∞.

Before we start with the proof, let us brie�y sketch the underlying idea:
By the law of large numbers, we have 1

2n(Nn−Mn)→ 0 for n→∞. If it is
positive, this random variable is approximately equal to the portion of cut
losses (since E[Nn] = E[Mn] = 2n). On the other hand, the number of losses
below D is roughly equal to 2n · FX(D), if FX denotes the severity cdf, i.e.
it grows linearly in n, so the portion of of losses below D is approximately
equal to FX(D), i.e. it stays around the same value with increasing n.
Since 1

2n(Nn −Mn) is a random variable converging almost surely to zero,
the probability to cut losses above D converges to zero as well. Figure
5.10 visualizes this thought: The red solid line is the deductible threshold
and marks the portion of losses below D (the number of losses below D
will be called Wn

D in the proof and is a random variable, however, 1
nW

n
D

converges a.s. to FX(D) as we will see). The green lines show realizations
of 1

2n(Nn −Mn), which get closer to zero for increasing n (attention: we
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consider here only realizations where Nn > Mn, since no losses are cut in
the other case). By the argument above, the probability that the green lines
lie above the red line (which means that non-zero losses are cut) becomes
vanishingly small for increasing n, which is exactly what we utilize in the
proof. We will also use the following result

Theorem 5.18 (Glivenko-Cantelli). Let (Xi)
n
i=1 be an iid sequence of real

valued random variables de�ned on a probability space (Ω,F ,P) with cumu-

lative distribution function F . Denote by F̂n(·) the empirical distribution
function

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}.

Then

‖F̂n − F‖∞= sup
x∈R
|F̂n(x)− F (x)| −→ 0 P-a.s. for n −→∞.

This result including a proof can be found in Billingsley [7], Theorem
20.6.
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Figure 5.10: Visualization of the idea in the proof

Proof of Theorem 5.17. By the �rst Wald identity, we have

E[S1] = E[N1] · E[LD,C(X1)] = 2 · E[LD,C(X1)]. (5.3)
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To simplify the notation, let us denote by B the event that some non-zero
losses are discarded in the transformation. Then

E[T1] = E

M1∑
j=1

LD,C(Yj)

 = E

M1∑
j=1

LD,C(Yj)

1{B}


+ E

M1∑
j=1

LD,C(Yj)

1{Bc}


= P[B] · E

M1∑
j=1

LD,C(Yj)

∣∣∣∣∣∣B
+ P[Bc] · E

M1∑
j=1

LD,C(Yj)

∣∣∣∣∣∣Bc

 .(5.4)
If we de�ne

Wn
D :=

Nn∑
i=1

1{Xi≤D},

then

P[B] = P[Nn −Mn > Wn
D] = P

[
1

n
(Nn −Mn) >

1

n
Wn
D

]
. (5.5)

By the Theorem of Glivenko-Cantelli, we have

1

n
Wn
D

n→∞−−−→ FX(D) P-a.s.,

if FX denotes the cumulative distribution function of the severity. Since we
assumed a Pareto severity with D > x0, we have FX(D) > 0. On the other
hand, the strong law of large numbers implies

1

n
(Nn −Mn)

n→∞−−−→
SLLN

0 P-a.s.

Altogether, we get with equation (5.5): P[B]
n→∞−−−→ 0. Moreover, we have

0 ≤ E

M1∑
j=1

LD,C(Yj)

∣∣∣∣∣∣B
 ≤ E[M1] · C = 2 · C <∞,

so

P[B] · E

M1∑
j=1

LD,C(Yj)

∣∣∣∣∣∣B
 n→∞−−−→ 0.

Note that

E

Mn∑
j=1

LD,C(Yj)

∣∣∣∣∣∣Bc

 = E

[
Nn∑
i=1

LD,C(Xi)

]
= 2n · E[LD,C(X1)]. (5.6)
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Since all the Tj have the same distribution, we have

n · E[T1|Bc] = n · E

M1∑
j=1

LD,C(Yj)

∣∣∣∣∣∣Bc

 = E

Mn∑
j=1

LD,C(Yj)

∣∣∣∣∣∣Bc

 . (5.7)

Combining equations (5.6), (5.7) and (5.3) we get

n · E[T1|Bc] = 2n · E[LD,C(X1)] =⇒ E[T1|Bc] = 2 · E[LD,C(X1)] = E[S1].

In total, we receive with equation (5.4)

E[T1] = P[B]︸︷︷︸
→0

·E[T1|B]︸ ︷︷ ︸
≤2·C

+P[Bc]︸ ︷︷ ︸
→1

·E[T1|Bc]︸ ︷︷ ︸
=E[S1]

n→∞−−−→ E[S1],

as desired.

Remark 5.19. In the proof of the last Theorem, we did not really need that
the severities follow a Pareto distribution. All we used was FX(D) > 0 and
the proof works for any severity that satis�es this condition.

Example 5.20. Let us visualize the convergence proved in Theorem 5.17 in
a concrete example. We consider a frequency-severity model with Poisson(2)
frequency and Pareto(x0 = 1, α = 1.5) severity. Moreover, we apply a layer
LD,C(X) with D = 1.5 and C = 3 to each and every loss. Figure 5.11 shows
the cdf of S1 and T1 for a varying number of modelled years n (note that the
cdf of S1 does not depend on n). We see that the corresponding distribution
functions of T1 get closer and closer to S1 for increasing n. We can also see
that the model T1 gives us a higher probability for a total claim amount of
zero than the model S1, which is in line with Proposition 5.9. Note that a
value of n = 100 modelled years already gives a very good approximation, so
the default value n = 100′000 in a concrete application is su�ciently high.

Figure 5.12 shows the expectations of E[T1] for n = 1 up to n = 100
modelled years. Note that these expected values stem from a simulation and
are not computed analytically (more precisely, T1 was realized N = 1'000'000
times in each of the 100 scenarios and the average of these iid realizations
gives the empirical expected value). We see that already a small number of
simulated years leads to a very good approximation of E[S1] by E[T1]. We
use Lemma 5.16 to compute E[S1] analytically (blue line):

E[S1] = E[N1] · E[LD,C(X)] = 2 · xα0
α− 1

[D1−α − (D + C)1−α]

= 4 · [1.5−0.5 − 4.5−0.5] ≈ 1.38.
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Figure 5.11: Cumulative distribution functions of S1 and T1 for di�erent n
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Figure 5.12: E[S1] and E[T1] for di�erent n
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5.7 Transformation of Poisson(2-ε) models

In a next step, we apply Transformation 5.5 to Poisson frequency-severity
models with parameter value 2− ε for 0 < ε < 2. There are two reasons for
this course of action. First of all, most natural catastrophes occur with ex-
pected frequencies smaller than 2, so reducing the Poisson parameter brings
us - informally speaking - closer to the reality. On the other hand, we also
get some mathematical advantages: Since we leave the expected frequency
for the YERT at 2, the probability to cut losses converges to zero if n goes to
in�nity. In other words, the loss cutting error will converge to zero (as we will
see). Instead of reducing the frequency parameter of the frequency-severity
model, one could also increase the frequency parameter of the YERT, as it
is only relevant that the two Poisson parameters are distinct. Formally, we
write for a (small) positive value ε > 0

µn :=
1

n
Nn − (2− ε), τn :=

1

n
Mn − 2, ρn := µn − τn.

Since

Nn =

n∑
i=1

Ni, Mn =

n∑
i=1

Mi,

we get by the strong law of large numbers

1

n
Nn n→∞−−−→ (2− ε) P-a.s.,

1

n
Mn n→∞−−−→ 2 P-a.s.,

i.e.

µn, τn, ρn
n→∞−−−→ 0, P-a.s.

Therefore,

P[Mn < Nn] = P[Nn −Mn > 0] = P[−nε+ nµn − nτn > 0]

= P[ρn > ε]
n→∞−−−→ 0 for all ε > 0,

i.e. the probability to cut losses converges to zero for n → ∞. This
convergence result is not su�cient, as we need more precise information how
fast P[Mn < Nn] = P[Nn −Mn > 0] converges to zero. The apposite tool
for this question is the so called Skellam distribution, which we introduce in
the next section.

5.8 The Skellam distribution and its properties

De�nition 5.21. Let N1 and N2 be two independent Poisson random vari-
ables with parameters λ1 and λ2. De�ne K = N1 −N2. The distribution of
K is called the Skellam distribution related to N1 and N2.
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Theorem 5.22 (Skellam). Let N1 and N2 be two independent Poisson ran-

dom variables with parameters λ1 and λ2. Then the Skellam distribution

related to N1 and N2 has the following properties for any k ∈ Z

1. P[K = k] = e−(λ1+λ2)
(
λ1
λ2

)k/2
I|k|(2

√
λ1λ2).

2. If λ1 < λ2, then P[K ≥ 0] ≤ e−(
√
λ1−
√
λ2)2,

where Ik denotes the modi�ed Bessel function of the �rst kind.

Proof. For the �rst point, see Skellam [3]. For the second part, note that

P[K ≥ 0] = P[N1 −N2 ≥ 0] = P[et(N1−N2) ≥ 1] for all t > 0.

Using Markov's inequality, we get

P[K ≥ 0] ≤ E[et(N1−N2)]

1
= MK(t) for all t > 0.

Note that

MK(t) = MN1(t) ·MN2(−t) = e−(λ1+λ2)+λ1et+λ2e−t

due to independence of N1 and N2. The moment generating function of a
Poisson random variable can be found in Wüthrich [5], page 31. Choosing

t = log

(√
λ2

λ1

)
> 0

yields

MK(t) = e−(λ1+λ2)+2
√
λ1λ2 = e−(

√
λ1−
√
λ2)2 ,

i.e.

P[K ≥ 0] ≤ e−(
√
λ1−
√
λ2)2 ,

as desired.

Figure 5.13 shows the probability mass functions of two Poisson random
variables N1 and N2 with parameters 5 and 2 respectively. The red curve
shows the probability mass function of N1−N2 (i.e. the Skellam distribution
of N1 and N2). Note that the Poisson random variables can only attain non-
negative values, while the Skellam random variable can attain every integer
with positive probability. We also see from the picture that the Skellam tails
decay quite fast.
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Figure 5.13: Skellam and Poisson probability mass functions

5.9 Convergence for Poisson(2− ε) models

We are now able to investigate if and how E[Tn] approaches E[Sn] for n
going to in�nity if we work with Poisson(2 − ε) frequencies in the initial
model. We must take into consideration that E[Sn] itself goes to in�nity for
n→∞, since E[Nn] is growing linearly in n. Therefore, we cannot expect a
result of the form E[Tn]→ E[Sn], for n→∞, since this does not make sense
mathematically. However, we can still answer the question of convergence by
looking at the di�erence E[Sn]− E[Tn] and we will see that this expression
converges to zero for n→∞.

Theorem 5.23. Let Nk
iid∼ Poisson(2− ε) for 0 < ε < 2 and let Sn and Tn

be as in Transformation 5.5, then we have

|E[Sn]− E[Tn]| −→ 0 for n −→∞.

More precisely, we obtain the following rate of convergence:

|E[Sn]− E[Tn]| ≤ 2(2− ε)n · E[X1] · e−nk,

for

k =
(√

2−
√

2− ε
)2
.
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Proof. Note that by Theorem 3.21

E[Sn] = E[Nn] · E[X1] = (2− ε)n · E[X1].

Next, we can write

E[Tn] = E

Mn∑
j=1

Yi


= E

Mn∑
j=1

Yj

1{Mn≤Nn}


︸ ︷︷ ︸

I

+E

Mn∑
j=1

Yj

1{Mn>Nn}


︸ ︷︷ ︸

II

.

For I, we have with k =
(√

2−
√

2− ε
)2
, Σ ∈ SMn and part 2 of Theorem

5.22

E

Mn∑
j=1

Yj

1{Mn≤Nn}

 = P[Mn ≤ Nn]︸ ︷︷ ︸
≤e−nk

·E

Mn∑
j=1

Yj

∣∣∣∣∣∣Mn ≤ Nn


≤ e−nk · E

Mn∑
j=1

XΣ(j)

∣∣∣∣∣∣Mn ≤ Nn


≤ e−nk · E

[
Nn∑
i=1

Xi

]
= e−nk · (2− ε)n · E[X1].

On the other hand, we get for II:

E

Mn∑
j=1

Yj

1{Mn>Nn}

 = P[Mn > Nn] · E

Mn∑
j=1

Yj

∣∣∣∣∣∣Mn > Nn


= P[Mn > Nn] · E[Nn] · E[X1]

= P[Mn > Nn] · (2− ε)n · E[X1].

If we write informally E[Tn] = I + II, we get with the triangle inequality

|E[Sn]− E[Tn]| = |E[Sn]− (I+II)| ≤ I + |E[Sn]− II|

≤ (2− ε)n · E[X1] ·

e−nk + 1− P[Mn > Nn]︸ ︷︷ ︸
=P[Mn≤Nn]≤e−nk


≤ 2(2− ε)n · E[X1] · e−nk n→∞−−−→ 0,

as desired.
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Corollary 5.24. With the same setting as in Theorem 5.23, we have

E[T ]→ E[S], for n→∞.

Proof. By de�nition and the property that all Tj have the same distribution,
we have

Tn =

n∑
j=1

Tk, and E[Tn] = n · E[T ].

Note that the same holds for Sn and S. Using the previous result, we get

|E[T ]− E[S]| = 1

n
|E[Tn]− E[Sn]| n→∞−−−→ 0.

Since E[S] and E[T ] are �nite, this implies that E[T ] converges to E[S] for
n→∞.

Corollary 5.25. With the same setting as in Theorem 5.23, we have

E[T ]→ E[S], for n→∞

if we apply a layer LD,C(·) to each and every loss.

Proof. In the proof of Theorem 5.23, we did not assume a speci�c severity
distribution. Therefore, we can replace Xi by LD,C(Xi) and the arguments
of the last two results still work.

Remark 5.26. Corollary 5.25 is essentially a generalization of Theorem 5.17
to the case where the expected frequencies are below 2. However, we do not
need additional assumptions on D in this case.

Example 5.27. Let us have a look at a concrete example to visualize The-
orem 5.23. We choose

� ε = 0.1,

� Xi
iid∼ Pareto(α = 2, x0 = 1),

� Nk are iid and have a Negative Binomial distribution with expectation
2− ε (thus, Nn has a Negative Binomial distribution with expectation
n(2− ε) by Propositon 3.9).

Then, we have

E[Sn] = E[Nn] · E[X1] = n(2− ε) · αx0

α− 1
= 2n(2− ε) = 3.8n. (5.8)

Moreover, we have

k = (
√

2−
√

2− ε)2 ≈ 0.0013,
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Figure 5.14: Convergence of |E[Sn]− E[Tn]|

i.e. the convergence of |E[Sn] − E[Tn]| is not very fast, as the exponential
decay factor is quite small.

Figure 5.14 shows E[Sn] depending on n, which grows linearly in n as
already computed in equation (5.8) (blue line). The red lines show the
boundary term 2(2 − ε)n · E[X1] · e−nk added and subtracted to E[Sn], i.e.
E[Tn] must lie between the dotted and solid red line. Finally, the green curve
plots 2(2− ε)n · E[X1] · e−nk. We see that a few thousand modelled years n
are necessary such that this term can be neglected. As the image suggests,
the default number of n = 100′000 is su�cient. In fact, one can compute
explicitly for n = 100′000

2(2− ε)n · E[X1] · e−nk ≈ 1.56 · 10−50,

which is more than enough precision for any application.

Theorem 5.23 gives us a very strong convergence result for the transfor-
mation of Poisson frequency-severity models with expected frequency smaller
than 2. The Poisson assumption was crucial as it enabled us to use the prop-
erties of the Skellam distribution (especially the second part of Theorem
5.22).

The whole modelling process for company A always relied on Poisson
frequencies and we have seen good reasons why this assumption is reasonable.
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However, there might still be cases where this approach is not suitable: If
the past loss data of company A shows e.g. signi�cant overdispersion, the
calibration of Poisson models leads to mediocre results. Hence, it can be
useful in certain situations to transform models with other frequencies as
well. Moreover, it would be also interesting to generalize Theorem 5.23 form
a purely theoretical point of view, and this is exactly what we are going
to do in the next sections. To do so, we need another tool called Large

Deviations Theory, as the Skellam distribution is only de�ned for Poisson
random variables.

5.10 Large Deviations Theory

We follow Dembo and Zeitouni [1], pages 4-5 and 26-27.

5.10.1 Notation and De�nitions

In the following, let {µε} for ε > 0 be a family of probability measures on
the measurable space (X ,B), where we assume that X is a topological space
and B the corresponding Borel-σ-Algebra.

De�nition 5.28. A rate function I is a lower semicontinuous mapping
I : X → [0,∞] (such that for all α ∈ [0,∞), the level set ΨI(α) = {x :
I(x) ≤ α} is a closed subset of X ). A good rate function is a rate function
for which all level sets ΨI(α) are compact sets. The e�ective domain of I,
denoted DI , is the set of points in X of �nite rate (i.e. DI = {x : I(x) <∞}).
When no confusion occurs, we refer to DI as the domain of I.

De�nition 5.29. We say that {µε} satis�es the Large Deviations Principle
with rate function I, if for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε logµε(Γ) ≤ lim sup
ε→0

ε logµε(Γ) ≤ − inf
x∈Γ

I(x)

For iid real valued random variablesX1, X2, . . ., we write Sn = 1
n

∑n
i=1Xi

and we denote the moment generating function (ofXi) byM(t). Let µ denote
the law of X1 and let µn denote the law of Sn.

De�nition 5.30. The logarithmic moment generating function associated
with the law µ is de�ned as

Λ(λ) = logM(λ) = logE
[
eλX1

]
.

De�nition 5.31. The Fenchel-Legendre transform of Λ(λ) is

Λ∗(x) = sup
λ∈R
{λx− Λ(λ)}.
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5.10.2 Cramér's Theorem

Theorem 5.32 (Cramér). When Xi ∈ R, the sequence of measures {µn}
satis�es the Large Deviations Principle with the convex rate function Λ∗(·),
namely

1. For any closed set F ⊂ R,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
Λ∗(x). (5.9)

2. For any open set G ⊂ R,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G
Λ∗(x).

Proof. See Dembo and Zeitouni [1], Theorem 2.2.3.

Remark 5.33. One can show that (5.9) can be strengthened to the statement,
that for all n

µn(F ) ≤ 2e−n infx∈F Λ∗(x). (5.10)

Equation (5.10) will be the crucial result that we use later to estimate
exceedance probabilities of frequency distributions. Concretely, we get ex-
ponential bounds if infx∈F Λ∗(x) > 0. We will therefore further investigate
the properties of this expression:

Proposition 5.34. The rate function Λ∗(·) is a convex, non-negative func-

tion satisfying Λ∗(E[X1]) = 0. Furthermore, it is an increasing function on

[E[X1],∞), and a decreasing function on (−∞,E[X1]].

Proof. This result including a proof can be found in MIT [4], Proposition 1
a), notation slightly adapted.

5.11 Convergence for arbitrary frequencies with ex-
pectation 2− ε

The crucial part in the proof of Theorem 5.23 was the estimation of the
probability P[Mn ≤ Nn] by the exponential term e−nk. We achieved this by
using the properties of the Skellam distribution. It would be very convenient
if we could show exponential bounds as well for other distributions. It turns
out that Cramér's Theorem is the required tool to achieve our goal: Suppose
Ni has a frequency distribution with expectation 2 − ε and �nite moment
generating function in a non-empty interval (this condition is always satis�ed
for Poisson, Binomial and Negative Binomial frequencies). Then we can write
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P[Mn ≤ Nn] = P

[
1

n

n∑
i=1

(Mi −Ni) ≤ 0

]
.

If we de�ne Xi := Mi −Ni, F = R− and µn the law of 1
n

∑n
i=1Xi as in

Theorem 5.32, we have E[Xi] = 2−(2−ε) = ε > 0 and P[Mn ≤ Nn] = µn(F ).
In particular, note that E[Xi] = ε /∈ F . By Proposition 5.34, we have
Λ∗(ε) = 0 and Λ∗ is convex, so it is enough to show that Λ∗ is not zero on
an interval containing ε and 0, i.e. we need to check that the in�mum of Λ∗

on F = R− is positive. To do so, one can compute Λ∗ explicitly, which is
in most cases a very cumbersome task, why numerical methods are a good
option.

Finally, we get by Theorem 5.32 and Remark 5.33 an exponential bound

P[Mn ≤ Nn] ≤ 2e−nk, (5.11)

for k = infx∈R− Λ∗(x) > 0, and therefore the proof of Theorem 5.23
works for all frequency distributions which have �nite moment generating
function on a non-empty open interval. We can summarize these �ndings in
a

Theorem 5.35. Let Nk be iid frequencies with E[Nk] = 2− ε for 0 < ε < 2
and �nite moment generating function on a non-empty interval. Then

|E[Sn]− E[Tn]| → 0 for n→∞.

More precisely, we obtain the following rate of convergence:

|E[Sn]− E[Tn]| ≤ 4(2− ε)n · E[X1] · e−nk,

for

k = inf
x∈R−

Λ∗(x),

with Λ∗ as de�ned above.

Proof. The inequality P[Mn ≤ Nn] ≤ 2e−nk was established in equation
(5.11). The remainder of the proof is completely analogous to the proof of
Theorem 5.23. Note that we get a slightly di�erent rate of convergence, since
we estimate P[Mn ≤ Nn] with 2e−nk.

As before, convergence of Tn implies convergence of T :

Corollary 5.36. With the same setting as in Theorem 5.35, we have

E[T ]→ E[S], for n→∞.

Proof. The argument is exactly the same as in Corollary 5.24.
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Example 5.37. Let Ni ∼ NegBin(β = 2, r = 0.8), i.e. E[Ni] = 1.6 and
ε = 0.4 with our notation. Moreover, we set as above Xi := Mi − Ni with

Mi
iid∼ Poisson(2) independent of all Ni. Then

MX(λ) = MM−N (λ) = MM (λ) ·MN (−λ)

= e2(eλ−1) ·
(

1

1 + β(1− e−λ)

)r
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Figure 5.15: MX and Λ

In Figure 5.15, we see plots of MX and Λ. In order to compute Λ∗(x) =
supλ∈R{λx − Λ(λ)}, we need to solve an optimization problem for every x
of interest. We used the Nelder-Mead algorithm and obtained the curve in
Figure 5.16 for 0 ≤ x ≤ 0.8.

First of all, the picture suggests that Λ∗ is indeed convex and attains its

minimum in E[Ni] = ε
here
= 0.4 as Proposition 5.34 showed. In particular,

Nelder-Mead yields
Λ∗(0) ≈ 0.011

and thus again by Proposition 5.34:

k = inf
x∈F

Λ∗(x) = inf
x∈R−

Λ∗(x) > 0.
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Figure 5.16: Λ∗

5.12 Variance analysis of (2− ε) models

So far, we investigated expectations under Transformation 5.5 with di�erent
assumptions on the initial frequencies Nk. In Chapter 4, we measured the
quality of transformations with the variance and that is what we want to do
here as well. We stay in the setting of expected frequencies smaller than 2.

Theorem 5.38. Let Sn and Tn be as in Transformation 5.5 and assume

that E[N1] = 2− ε for 0 < ε < 2. Then

1. Var(S1) = E[N1] · Var(X1) + Var(N1) · E[X1]2.

2. Var(T1) −→ E[N1] · (Var(X1) + E[X1]2) for n→∞.

In particular, we have

Var(T1) −→ Var(S1) + E[X1]2 · (E[N1]− Var(N1)) for n→∞.

Remark 5.39. This statement is very similar to the results which we en-
tountered in Chapter 4 (see e.g. Theorem 4.14). Here, we do not have an
equality in the second point, but a convergence. This �nding suggests that
Transfomation 4.13 can be seen as limiting case of Transformation 5.5.
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Proof. The �rst point is just the second part of Wald's Theorem 3.21. For
the second point, we write (assuming the variance exists)

Var(T1) = E[T 2
1 ]− E[T1]2. (5.12)

We already know the limiting behaviour of E[T1]2 from Corollary 5.24, so
we can focus on the other term. In the next step, we change to conditional
expectations via the tower property. We use again Cramér's Theorem and
equation (5.11).

E[T 2
1 ] = P[Mn ≤ Nn]︸ ︷︷ ︸

≤2e−nk

·E[T 2
1 |Mn ≤ Nn]︸ ︷︷ ︸

=O(n2)

+ P[Mn > Nn]︸ ︷︷ ︸
→1

·E[T 2
1 |Mn > Nn], (5.13)

so we are left to investigate the expression E[T 2
1 |Mn > Nn]. Recall our

convention Xi = 0 for i > Nn and de�ne Bj to be the event that Σ(j) ≤
Nn, i.e. Bj means that Yj is not an added zero loss. Analogously, let
Bjk = Bj ∩Bk for j 6= k. Note that

P[Bj |Nn,Mn > 0] =
Nn

Mn
=

1
nN

n

1
nM

n

a.s.−−→ 2− ε
2

= 1− ε/2 for n→∞.

Conditioning by Mn > 0 is not a big issue, as P[Mn = 0]
n→∞−−−→ 0. One

can also show that P[Bjk]
a.s.−−→ (1 − ε/2)2 for n → ∞. This is however a

bit more involved, since Σ(j) and Σ(k) are not independent. We leave the
details to the interested reader. For a better readability, we will occasionally
omit conditioning in the formulas which follow.

Conditionally, given Mn > Nn and M1, we have

E[T 2
1 ] = E

M1∑
j=1

Yj

2 = E

M1∑
j=1

M1∑
k=1

YjYk

 = E

M1∑
j=1

M1∑
k=1

XΣ(j)XΣ(k)


= E

M1∑
j=1

(
XΣ(j)

)2

+ E

∑
j 6=k

XΣ(j)XΣ(k)


= E

M1∑
j=1

(
XΣ(j)

)2
1{Bj}

+ E

∑
j 6=k

XΣ(j)XΣ(k)1{Bjk}

 (5.14)

a.s.→
M1∑
j=1

P[Bj ]︸ ︷︷ ︸
=(1−ε/2)

E
[(
XΣ(j)

)2
∣∣∣∣Bj]︸ ︷︷ ︸

=Var(X1)+E[X1]2

+
∑
j 6=k

P[Bjk]︸ ︷︷ ︸
(1−ε/2)2

E
[
XΣ(j)XΣ(k)

∣∣∣Bjk] .
Moreover, we compute

E
[
XΣ(j)XΣ(k)

∣∣∣Bjk] = Cov
(
XΣ(j)XΣ(k)

∣∣∣Bjk)︸ ︷︷ ︸
=0

+E[X1]2;
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Since we consider two di�erent indices j and k, such that both Σ(j) and
Σ(k) are ≤ Nn, the two random variables are independent and thus their
covariance is zero. Note that the �rst sum in equation (5.14) has M1 sum-
mands, while the second one has M2

1 −M1 summands. So we have in total,
since M1 ∼ Poisson(2), conditionally given Mn > Nn

E[T 2
1 |Mn > Nn]

a.s.→ E[M1]︸ ︷︷ ︸
=2

(1− ε/2)
(
Var(X1) + E[X1]2

)
+ E[M2

1 −M1]︸ ︷︷ ︸
=4

(1− ε/2)2 · E[X1]2

= (2− ε) · [Var(X1) + (3− ε) · E[X1]2]. (5.15)

As we have seen earlier in Corollary 5.24, E[T1] converges to E[S1] and there-
fore

E[T1]2 → E[S1]2 = (2− ε)2 · E[X1]2, for n→∞. (5.16)

If we put equations (5.12), (5.13), (5.15) and (5.16) together, we receive

Var(T1)→ (2− ε) · (Var(X1) + E[X1]2) = E[N1] · (Var(X1) + E[X1]2)

and

Var(T1)→ Var(S1) + E[X1]2 · (E[N1]−Var(N1)) for n→∞,

as desired.

5.13 Connection between Chapter 4 and 5

As already pointed out in Remark 5.39 the results of Theorem 5.38 and
Theorem 4.14 are very similar. This is actually no coincidence, so let us
elaborate why there is a connection. We stay in the setting where E[N1] ≤
E[M1] = 2.

First of all, we have a look at the cdf of Yj . Let t ∈ R. Since XΣ(j) has
the same distribution as X1 conditionally given Σ(j) ≤ Nn and XΣ(j) = 0
conditionally given Σ(j) > Nn (Convention 5.4), we receive

P[Yj ≤ t] = P[XΣ(j) ≤ t]
= P[Σ(j) ≤ Nn] · P[X1 ≤ t] + P[Σ(j) > Nn] · P[0 ≤ t]

=
Nn

Mn
· FX(t) +

Mn −Nn

Mn
· 1{t≥0}, (5.17)

since the probability Σ(j) ≤ Nn is equal to the proportion of non-zero
losses Nn

Mn .
This is however not a very clean notation, as the expression for the prob-

ability P[Yj ≤ t] includes other random variables. One can interpret it as
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follows: Once Mn and Nn are known, i.e. when we consider concrete real-
izations of these two random variables, then P[Yj ≤ t] can be expressed with
the (known) values of these two random variables. Alternatively, one can
also write

P[Yj ≤ t|Mn, Nn] =
Nn

Mn
· FX(t) +

Mn −Nn

Mn
· 1{t≥0} (5.18)

to obtain more mathematical clarity. Another issue is a possible division
by zero, as Mn can be zero. However, we will study equation (5.18) only
for big values n and therefore, this special case is not relevant for us (since
P[Mn = 0]

n→∞−−−→ 0). Although equation (5.18) is the mathematically cor-
rect version, we work with equation (5.17) as it is more convenient for our
purposes.

If we write again E[N1] = 2 − ε for 0 < ε < 2, then the expression of
(5.17) has the following limiting behaviour

P[Yj ≤ t] =
Nn

Mn
· FX(t) +

Mn −Nn

Mn
· 1{t≥0}

=
1
nN

n

1
nM

n
· FX(t) +

1
n(Mn −Nn)

1
nM

n
· 1{t≥0}

a.s.→ 2− ε
2
· FX(t) +

ε

2
1{t≥0} (5.19)

=
E[N1]

2
· FX(t) +

2− E[N1]

2
1{t≥0}

= GX(t) for n→∞.

In summary, we see that the cdf of Yj depends on M
n, which reproduces

Proposition 5.14. However, as n increases, this dependence gradually van-
ishes due to the convergence of the involved random variables to constant
values. Hence, the limit of the cdf of Yj is completely independent of Mn,
which means that the loss amount (for one year) in the synthetic model

T1 =

M1∑
j=1

Yj

is not a frequency severity model, but it converges to a frequency severity
model for n→∞ as the dependence of Mn and the severities dissolves.

Additionally, the cdf of Yj converges (pointwise) to GX . As M1 ∼
Poisson(2),

∑M1
j=1 Yj corresponds exactly to the transformed frequency-severity

model of Transformation 4.13, so if n goes to in�tity, Transformation 4.13
can be seen as the "limiting transformation" of Transformation 5.5. These
arguments can be summarized in the following
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Theorem 5.40. Let

S =

N∑
i=1

Xi

be a frequency-severity model with E[N ] < 2. Then its approximation

T1 =

M1∑
j=1

Yj

as de�ned in Transformation 5.5 converges to the following frequency-severity

model (as de�ned in Transformation 4.13)

R =

K∑
j=1

Zj

for K ∼ Poisson(2), Zj
iid∼ GX and n→∞ in the sense that

� M1, K
iid∼ Poisson(2).

� The severities Yj converge in distribution to Zj.

Moreover, we obtain

1. E[R] = E[S],

2. Var(R) = Var(S) + E[X1]2 · (E[N ]− Var(N),

3. E[T1]→ E[S] for n→∞,

4. Var(T1)→ Var(S) + E[X1]2 · (E[N ]− Var(N) for n→∞.

Proof. The convergence was established in equation (5.19). The �rst two
points were shown in Theorem 4.14. The third point was proved in Corollary
5.36 and the last point stems from Theorem 5.38.
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