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Abstract

XVAs are add-ons that a bank dealing bilateral derivatives charges to its clients to
account for counterparty risk and its capital and funding implications. In this thesis
we reformulate the continuous-time analysis of XVAs of [AC18] adding important
theoretical results from the theory of invariance times of [CS17] that help us set
rigorous assumptions for the well-posedness of the XVA equations and improved
definition of the capital value adjustment (KVA) problem. We also generalise two
important assumptions: we separate the margin value adjustment (MVA) from the
funding value adjustment (FVA), and we allow the liquidation period of a trade due
to default of the client to be positive. These generalisations permits us to obtain a
more realistic XVA model, in which we distinguish the variation and initial margin.
We also obtain a generalised counterparty exposure cash-flow, which is used in the
formula for the credit value adjustment (CVA) and debt value adjustment (DVA).
At the end of the thesis present a simple case study portfolio of interest rate swaps
that could be used in an implementation of the XVA problem.
As in [AC18], we take a balance sheet perspective on the pricing and risk man-
agement of the bilateral derivatives portfolio of the bank; not only studying the
pricing, but also the relative collateralisation, accounting, and dividend policy of
the bank. Since the bank cannot hedge against default exposure cash-flows (of
clients and of the bank itself), the bank’s shareholders have to set aside a capital
at risk and a wealth transfer from shareholders to bondholders occurs at the default
of the bank. By consequence, the bank charges to the clients on top of the fair
valuation of counterparty risk the so-called contra-liabilities and a cost-of-capital
at inception of each new trade. This results in an all-inclusive XVA formula given
by CVA + FVA + MVA + KVA.
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Acronyms

BSDE Backward stochastic differential equation

CA Contra-assets valuation

CDS Credit default Swap

CET1 Core equity tier I capital

CL Contra-liabilities valuation

CM Clean margin

CVA Credit value adjustment

CR Capital at risk

CSA Credit support annex

DVA Debt value adjustment

EC Economic capital

ES Expected shortfall

FDA Funding debt adjustment

FTP Funds transfer price

FV Fair valuation of counterparty risk

FVA Funding value adjustment

IM Initial margin

IRS Interest rate swap

KVA Capital value adjustment

MDA Margin debt adjustment

MtM Mark-to-market

MVA Margin value adjustment

PIM Posted initial margin

RC Reserve capital

RIM Received initial margin

RM Risk margin

SCR Shareholders’ capital at risk

SHC Shareholders’ wealth

UC Uninvested capital
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VaR Value at risk

VM Variation margin

XVA Generic “X” value adjustment
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1 Introduction

1.1 Context

As illustrated in the historical introduction in [Gre15, Chapter 2], after the great financial crisis of
2008-09, the banking industry realised that counterparty credit risk was not negligible anymore,
even when dealing with highly creditworthy counterparties (such as triple-A entities and global
investment banks). Thus, the so-called credit value adjustment (CVA) on the price of OTC (over
the counter; see [Gre15, Chapter 3] for an introduction on the topic) derivatives became more
and more diffuse, also due to the fast developments in the regulatory requirements during the
years after the crisis. Besides the pricing, also the management of counterparty risk became
of great importance, with increasing capital requirements and collateralisation rules on OTC
derivatives trading. This combined with the significant increment of the banks’ spread (at which
they could borrow unsecured funding), led to higher funding costs and the birth of funding value
adjustment (FVA) and margin value adjustment (MVA); simultaneously, given the increasing
capital requirements the capital value adjustment (KVA) was also introduced. We generally
denote all these value adjustments by XVAs.

Another important member of the family of XVAs is the debt value adjustment (DVA),
which accounts for the bank’s own credit risk, and for this it was subject of great debates. In
fact, subtracting the DVA from the CVA, yields a symmetrical formula for the fair valuation
of bilateral counterparty risk (CVA − DVA), in line with the “law of one price” (see also our
discussion in Section 4.2). However, this permits to banks to gain from a deterioration of their
own creditworthiness, which goes against the Basel III capital rules (see [AA14, Section 3.1]).
Moreover, the DVA (in a similar way as the funding and margin debt adjustments FDA and
MDA) values the windfall benefit to the bank at its own default, due to the unused reserve
capital; but, the shareholders cannot actually benefit from it, since they cannot perfectly hedge
against the bank’s own jump-to-default exposure. See [AC18, Section 1.1] for a more detailed
discussion on the development of XVAs in the recent years.

1.2 Main reference

In this thesis we follow the XVA analysis developed in [AC18] regarding a dealer bank trading
bilateral derivatives with its clients. The key assumptions in the latter paper are that the bank
cannot hedge against its own jump-to-default exposure, and it also cannot perfectly hedge the
counteprarty default losses. Under this market incompleteness assumption, the paper specifies
what needs to be priced and what does not in the context of XVAs, and it also establishes “the
corresponding collateralisation, accounting, and dividend policy of the bank.” Specifically, under
their continuous-time “cost-of-capital” XVA approach, at inception of each contract the clients
pay to the bank the add-on (note that, in [AC18], MVA is considered part of the FVA)

CVA + FVA + KVA = CA + KVA = FV + CL + KVA, (1.1)

where CA = CVA + FVA denotes the contra-assets, which are the sum of the fair valuation of
counterparty risk FV = CVA − DVA and the contra-liabilities CL = DVA + FDA (again, note
that MDA is considered part of FDA here). In a certain sense, these add-ons are computed
unilaterally (as we discuss also in Section 6.2), even though the default of the bank is included in
the model, which ensures that the capital of the shareholders does not increase as an effect of the
sole deterioration of the bank’s own creditworthiness, as mentioned above. The KVA in [AC18]
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is a risk premium for the capital at risk of shareholders, remunerating them at a hurdle rate h,
making the shareholders’ equity a submartingale with drift corresponding to h. All together,
these add-ons (together with the collateralisation, accounting, and dividend strategy illustrated
in the paper) guarantee to the shareholders the so-called “soft-landing option”, for which the
bank could go into run-off (that is, stop making new trades) at any time in the future, always
ensuring the hurdle rate payments to shareholders. In other words, one obtains a “sustainable
strategy of profits retention” (as it is called in [AC18]).

Another important contribution given by [AC18] is the “balance sheet optimisation” perspec-
tive they take in the pricing and risk management of bilateral derivatives, as opposed to the
“hedging paradigm” used in the past. As detailed also in this thesis, the resulting XVA problem
in the model of [AC18] is “self-contained” and “self-consistent”, as CVA (and also MVA, in this
thesis) is the input of the FVA problem, and both CVA and FVA (as well as MVA in this thesis)
are inputs for the KVA problem.

As shown in [Alb+19] and [ACC17], an important achievement of the XVA model of [AC18]
is that it is actually implementable at the scale of real bilateral derivatives portfolio of a dealer
bank.

1.3 Contributions of this thesis

In this thesis, we provide an analysis of the XVA metrics under the cost-of-capital XVA setup
of [AC18]. We only focus on the continuous time model, without considering the discrete case.
We also refer to other papers of the same authors using a similar approach to XVAs, that are
[AC20], [CSS20], [ACC17], and [Alb+19].

A fundamental tool for all these papers in the proof of the well-posedness of the XVA equations
is the theory of invariance times of [CS17] and [CS18], which permits us to deal with a model
with two pricing frameworks: one (larger) taking into account the risk of default of the bank
itself, and the other (smaller) free of the credit risk of the bank, which we sometimes refer to as
“clean”. Another important tool to solve the FVA and KVA problems is the theory of BSDEs
(backward stochastic differential equations), which we took from [KP15] to set the sufficient
assumptions for the well-posedness and comparison principle for our BSDEs.

In this thesis, we carefully summarise all the necessary basics of semimartingales theory (our
main references are [HWY92] and [JS03]), including stopping times, optional and predictable
projections of processes, semimartingales, stochastic integrals with respect to local martingales
and compensated random measures, and a martingale representation theory useful in the study
of BSDEs. This help us (and hopefully the reader) clearly understand what are the important
assumptions of the model. For instance, in comparison to [AC18] we additionally assume the
quasi-left-continuity of the filtrations; this is necessary to apply the BSDEs theory of [KP15],
but it is also useful to ensure the existence of predictable projection of progressive measurable
processes and justify the assumptions of [AC18] for their incremental XVA approach (which
describes the XVA prices and accounting strategy at each new trade).

With the same goal in mind (to understand clearly what needs to be assumed in the model
and what are the consequences), we also give a summary of the invariance time theory from
[CS17] and [CS18] adapting the results to our particular setup, also adding proofs, where we
deemed it useful or in case they are omitted in the original papers.

Using the theoretical knowledge of semimartingales, BSDEs, and invariance times, we are
able to clearly state what are the sufficient assumptions (in particular, L2 and measurability
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assumptions) on the various cash-flows processes in the model of [AC18]. Specifically, we give
a more rigorous definition of the KVA problem, and we enhance the discussion on the spaces
of semimartingales important for the statement of the XVA problems, showing in details the
relations between them. A fundamental result we obtain in this discussion is the Corollary 2.2,
which justifies the invariance valuation principle in [AC18, Assumption 4.2] in the continuous
time setup.

Two generalisations of the setup in [AC18] are the fact that in this thesis we separate MVA
from FVA, resulting in an additional cash-flow process describing the costs due to unsecured
funding of the posted initial margin, and that we allow the liquidation (or close-out) period
of a trade (due to default of a client) to be “non-instantaneous”. However, the liquidation
period due to default of the bank is assumed instantaneous; since for the computation of the
XVAs we only observe the cash-flows up to just before the default of the bank, maintaining
an instantaneous liquidation assumption for the bank is not a limitation. These generalisations
result in an improvement of the credit exposure cash-flows (see (3.12)), a different DVA formula,
and an enhancement of the final example in [AC18, Section 7.4]. In particular, in the formula
for the credit exposure cash-flow we allow the default of the bank to occur during the liquidation
period of a trade (due to default of the client) and we separate variation and initial margin
when dealing with the collateral (which is a generalisation of the approach in [AC20]). When
the default of the bank happens during the liquidation of a trade, the bank does not only have a
windfall at its default due to the unpaid promised cash-flows (this is the assumption in [AC18]),
but it may also have a shortfall due to counterparty default expenses. By consequence, the DVA
is changed as well and it is not necessarily non-negative. By these generalisation and our clear
statement of the cash-flows assumptions, we also get slightly generalised well-posedness results
for the CVA, FVA, and MVA problem; see Remark 5.17. We apply these generalisations to the
final concrete example (see Section 6.1), also allowing contractual promised cash-flows to occur
during the liquidation period of a trade. This result in a Theorem 6.10 that is a generalisation
of [AC18, Proposition 7.2] (which is equivalent to [AC20, Proposition 5.1]).

Finally, inspired by [Alb+19], we also give a case study portfolio of interest rate swaps that
could be used in future research to implement a solution of the XVA problem. The portfolio we
designed is a very basic example of how this theory could be applied to a real bilateral derivatives
portfolio of a bank. For future research, it would be also interesting to improve the complexity
of this example to the level of a real banking portfolio.

1.4 Outline

The thesis is organised as follows. In Chapter 2, we present the notation and basic setup,
and we introduce and study the spaces of semimartingales in which the XVA problems will be
defined. Chapter 3 introduces the financial setup of the model bank, subdivided in different
interconnected trading desks and different stakeholders. We also introduce the various cash-
flow processes relative to each trading desk, and give a picture of the balance sheet of the
bank in which we model the XVAs. In Chapter 4, we state the XVA problems defining the
XVA processes; first we precisely state all the needed assumptions for the well-posedness of the
problems in the invariance valuation setup, and then we state the equations (under the well-
posedness assumption). Note that, during the whole thesis we assume the run-off assumption;
in Section 4.4 we deal with the incremental XVA approach and show that stating the XVA
equations under the run-off assumption is not a loss of generality. The well-posedness of all the
XVA equations it then proved in Chapter 5 after a few minor simplifications of the assumptions.
In Chapter 6, we first give a more concrete example of the cash-flow processes, which permits us
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to obtain more concrete formulas for the XVA problem (seen as a unique problem as a whole).
By looking at this example, we also add a brief discussion on the unilateral form of the obtained
XVA formulas, as opposed to bilateral XVAs, even though we do include the default of the bank
in the modelling. Lastly, we apply the XVA problem to a simple case study portfolio of interest
rate swaps.

The important basic notions and important results on semimartingales theory and BSDEs
are the material of Appendix A, while Appendix B focuses on the relevant theory of invariance
times from [CS17] and [CS18]. Appendix C summarises the notions of value at risk and expected
shortfall.

1.5 Acknowledgements

I would like to thank my supervisor Prof. Dr. Patrick Cheritido for the support and the important
feedbacks on my work. I would also like to thank Dr. Sebastian Becker for the discussions on
the possible implementation of the results of my thesis.
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2 Preliminaries

In this chapter we give the notation and basic setup of the thesis in Section 2.1, we introduce
some important spaces of semimartingales, in which the XVAs are defined, in Section 2.2, and
we define the notion of valuation with respect to our two pricing frameworks in Section 2.3.
The basic knowledge of semimartingale theory that is necessary for the understanding of this
thesis and the useful theory of invariance times of [CS17] are summarised in Appendix A and
Appendix B, respectively.

Unlike [AC18], this thesis directly focuses on a continuous time setup, without considering
the discrete one.

2.1 Probabilistic setup

We assume that (Ω,A,Q) is a sufficiently rich probability space, so that all the introduced
random objects are well defined. We let G = ( Gt)t≥0 be a filtration of sub-σ-fields of A.

In general, when we introduce a stochastic process X, we only assume that it is measurable,
in the sense that X : Ω× [0,∞[→ R is A ⊗B([0,∞[)-measurable, where B([0,∞[) denotes the
Borel σ-field on the positive real line. See Appendix A.1.1 for the basics on stochastic processes.
In particular, note that all equalities and order relationships between stochastic processes are
intended in the indistinguishable sense, and when we speak of uniqueness of a process, we mean
up to indistinguishability. Also, when we speak of the continuity (right-, left-continuity or being
càdlàg) of a process, we mean up to a Q-nullset. Analogously, the equalities between random
variables are intended Q-a.s..

When we introduce a function without specifying the codomain, we mean real-valued function.
For a function f : Ω × E → F, (ω, x) 7→ f(ω, x), for some spaces E and F , we usually omit the
dependence on ω and simply write f(x), or fx (when E is a time interval, and f is a stochastic
process).

See Appendix A.1.1 for the basic notation and definitions on stopping times and stochastic
intervals, which are denoted with the double square brackets J·, ·K. For two stopping times θ ≤ η,
we use the notation [θ, η] to indicate a random subinterval of [0,∞] (so, not the stochastic interval
Jθ, ηK ⊆ Ω×[0,∞[). This can be used when referring to a property of the trajectories of a process:
saying that a process X is right-continuous on [0, θ] means that, for all ω in a measurable set of
probability one, X·(ω) is right-continuous on the interval [0, θ(ω)].

See Appendix A.1.2 and Appendix A.1.3 for the definition and useful properties of optional
and predictable projections of stochastic processes (as well as dual predictable projections, also
called compensators) and for a summary on the notation and conventions around local martin-
gales, semimartingales, and stochastic integrals.

We fix a finite time T > 0 as upper bound on the maturity of all derivative contracts in the
portfolio of the bank, including any additional liquidation period, which can last two weeks or
more (see Remark 3.25). Even if we are only interested in the time interval [0, T ], we sometimes
need to define processes on the whole positive real line [0,∞[; in general, we assume that all the
cumulative cash-flows processes are stopped at T and all the XVAs and price processes vanish
on ]T,∞[. Additionally, we assume that no payment is due at time 0, that is, all the cumulative
cash-flow processes start at 0 at time t = 0.
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The time of default of the bank—in Section 3.3 we explain in more details what we mean by
default—is represented by a totally inaccessible G-stopping time τ with an intensity γ, which is a
non-negative G-predictable process vanishing on ]τ,∞[ (see Definition A.5 and Definition A.20).

In the invariance time setup introduced in Appendix B, we also have a second filtration
F = (Ft)t≥0 on (Ω,A), which is a subfiltration of G, that is, Ft ⊆ Gt for all t ≥ 0, and such
that τ is not an F-stopping time. We assume that both G and F satisfy the usual condition
and are quasi-left-continuous, so that all the results of Appendix A and Appendix B apply to
both filtrations. In particular, the quasi-left-continuity is necessary in Chapter 5 for the well-
posedness of the BSDEs (see also Appendix A.2), and it is useful to simplify the requirements
on a stochastic process X so that a predictable projection pX exists (see Remark A.13). We also
assume that the σ-filed G0 is trivial, in the sense that all the elements of G0 have Q-measure
either 0 or 1;1 this is no loss of generality, since we assume that all the (cumulative) cash-flows
start at 0 at time 0. By this assumption it follows that the conditional expectation of a random
variable with respect to G0 is (Q-a.s.) equal to its expected value.

In this setup with two filtrations and a stopping time τ , we assume that the Condition(C)
of Appendix B.3 holds. This means that the Condition(B) holds (that is, all G-predictable
processes have an F-predictable reduction; see Appendix B.1), ST > 0, where S denotes the
Azéma supermartingale of Definition B.3, and eΓτ∧T is Q-integrable, where Γ := γ � λ and λ is
the Lebesgue measure on [0,∞[. Recall that we assume that the intensity γ of τ is F-predictable
and vanishing after T ; so, Γ is also F-predictable and stopped at T . Thank to the Condition(C)
we can benefit from all the important results form the theory of invariance times summarised in
Appendix B. In particular, we have the existence of an invariance measure P as in Condition(A)
in Appendix B.2, for which any (F,P)-local martingale on [0, T ] stopped before τ defines a unique
(up to indistinguishability) (G,Q)-local martingale on [0, τ ∧ T ] with no jump at τ , and the F-
optional reduction of any (G,Q)-local martingale on [0, τ ∧T ] with no jump at τ defines a unique
(F,P)-local martingale on [0, T ].2

Given our setup with multiple filtrations and probability measures, it becomes important to
always distinguish to which stochastic basis we are applying a particular result: (Ω,A,G,Q),
(Ω,A,F,Q), or (Ω,A,F,P). The expectations with respect to Q and P are respectively denoted
by E and E′, while the conditional expectation with respect to ( Gt,Q) and (Ft,P), for t > 0, are
denoted by Et E′t, respectively. When dealing with the predictable projection of some process,
we need to have in mind which filtration and which probability is used. This is why, from now
on, we alway specify it by adding a reference to the filtration and probability used, when needed;
for example, we may say that pX denotes the (G,Q)-predictable projection of the process X.
We also assume, without loss of generality, that any optional or predictable reductions vanish on
]T,∞[, since we are only interested in the cash-flows on the interval [0, T ].

We denote the predictable (respectively optional) filtration with respect to G and F by P(G)
and P(F) (respectively O(G) and O(F)). The spaces of local martingales with respect to (G,Q)
is denoted byMloc(G,Q); the spaces of (F,Q) and (F,P) local martingales are denoted similarly.
See Appendix A.1 for more details.

2.2 Spaces of Semimartingales

From now on, we denote τ̄ := τ∧T . Since the stopping before τ will be used very often in the rest
of the thesis, we simplify the notation in the following way (as in [AC18]): for a semimartingale

1We can see G0 as the smallest σ-field containing all the Q-nullsets.
2This is exactly the result of Theorem B.18.
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Y on [0,∞[ we write

Y ◦ := Y τ− = Y 1J0,τJ + Yτ−1Jτ,∞J, and Y • := Y ◦ − Y.

Since we only focus on the interval [0, τ̄ ], we can generally assume that any process Y vanishes
on ]T,∞[,3 so Y • can be seen as a “bullet cash-flow”—when Y represents a cash-flow—at time
τ given by

Y • = −(Yτ − Yτ−)1JτK1{τ<T} = −∆Yτ1JτK1{τ<T}.

Note that Q[τ = T ] = 0 since τ is totally inaccessible; so it does not make any difference if
we multiply times 1{τ≤T} instead of 1{τ<T} above. We say that Y is without jump at τ if
∆Yτ = Yτ − Yτ− = 0, that is, if Y = Y ◦.

We can now define the following spaces of semimartingales, which are useful in the study of
the well-posedness of the XVA equations in Chapter 5.

First, we define

S2 :=
{
Y G-optional process on [0, τ̄ ] : E

[
Y 2

0 +
∫ T

0
eΓs1{s<τ}d (Y ∗s )2

]
<∞

}
, (2.1)

where (Y ∗t )2 := sups≤t|Ys|
2.

Note that eΓ ≥ 1, since γ ≥ 0; hence, for any Y ∈ S2:

E

 sup
0≤t≤T
t<τ

|Yt|2
 <∞. (2.2)

This means that Y ◦ is bounded in L2 with respect to Q, and thus it is of class(D). We denote
the set of all G-optional processes on [0, τ̄ ] bounded in L2 with respect to Q by

S2(G) :=
{
X G-optional process on [0, τ̄ ] : E

[
sup

0≤t≤τ̄
|Xt|2

]
<∞

}
.

Remark 2.1. Any Y ∈ S2 is G-optional, so it has an F-optional reduction Y ′, for which (as we
show below) it holds

E′
[

sup
t∈[0,T ]

|Y ′t |
2

]
= E

[
Y 2

0 +
∫ T

0
eΓs1{s<τ}d (Y ∗s )2

]
<∞. (2.3)

In fact, in the right-hand-side we can replace Y with Y ′, since they coincide on J0, τJ and the
integral stops before τ . So we can assume without loss of generality that Y is F-optional. Then,
setting A := eΓ�(Y ∗)2, we see that A is F-optional, non-decreasing and starting from 0. Thus,
by (B.5),

E

[∫ T

0
eΓs1{s<τ}d (Y ∗s )2

]
= E

[
Aτ−T

]
= E′

[∫ T

0
e−ΓsdAs

]

= E′
[∫ T

0
d (Y ∗s )2

]
= E′

[
(Y ∗T )2 − Y 2

0

]
.

3Or we may simply say that Y is a process on [0, τ̄ ] or on [0, T ].
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Last, note that E
[
Y 2

0
]

= E′
[
Y 2

0
]
, because by Theorem B.13

dP
dQ

= E
(

1
S−

�Q

)
0

= 1, on F0,

and, as τ > 0, G0 ⊆ F0 = F0.

We also define the following spaces

S◦2 := {Y ∈ S2 : Y ◦ = Y and YT = 0 on {T < τ}} , (2.4)

S2(F) :=
{
Y ′ F-optional process on [0, T ] : E′

[
sup
t∈[0,T ]

|Y ′t |
2

]
<∞

}
, (2.5)

and
S′2 :=

{
Y ′ ∈ S2(F) : Y ′T = 0

}
. (2.6)

By (2.3), if Y ∈ S2, then its F-optional reduction Y ′ is in S2(F), and if X ∈ S2(F), then
X◦ ∈ S2. This gives us a one-to-one correspondence between S2(F) and the space of all Y ∈ S2
stopped before τ . Moreover, if X ∈ S′2, then X◦T = 0 on {T < τ} and X◦ ∈ S◦2. Conversely,
if Y ∈ S◦2, then its F-optional reduction Y ′ is in S′2, because, taking the (Q,FT )-conditional
expectation, we have

0 = E
[
YT1{T<τ}

∣∣FT ] = E
[
Y ′T1{T<τ}

∣∣FT ] = Y ′T ST︸︷︷︸
>0

.

So, there is also a one-to-one correspondence between S◦2 and S′2. Combining this one-to-one
relations with Theorem B.18, we obtain the following important result.

Corollary 2.2. The F-optional reduction Y ′ of a (G,Q)-martingale Y ∈ S2 with no jump at τ
is an (F,P)-martingale in S2(F), and, for any (F,P)-martingale X ∈ S2(F), the stopped process
X◦ is a (G,Q)-martingale in S2 with no jump at τ . In other words, the map

MT
loc(F,P) ∩ S2(F) 3 X 7−→ X◦ ∈Mτ−∧T

loc (G,Q) ∩S2

is a bijection with inverse the F-optional reduction. Additionally, the exact same relation holds
between the spacesMT

loc(F,P) ∩S′2 andMτ−∧T
loc (G,Q) ∩S◦2.

Note that, by Proposition A.21, a local martingale is a uniformly integrable true martingale
if and only if it is of class(D), which is guaranteed by the intersection with the spaces S2(F) and
S2, respectively.

Remark 2.3. This corollary is a very important result that justifies the invariance valuation
principle assumed in [AC18, Assumption 4.2].

Consider now the set

L2 :=
{
X G-progressive process on [0, τ̄ ] : E

[∫ T

0
eΓs1{s<τ}X

2
sds

]
<∞

}
. (2.7)

If X ∈ L2 is F-adapted, we can see as above that

E′
[∫ T

0
X2
t dt

]
= E

[∫ T

0
eΓs1{s<τ}X

2
sds

]
<∞,
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this time by setting A = (eΓX2)�λ. In case X ∈ L2 is G-predictable (resp. optional),

E

[∫ T

0
eΓs1{s<τ}X

2
sds

]
= E′

[∫ T

0
(X ′t)2dt

]
,

where X ′ is the F-predictable (resp. optional) reduction of X. Now, we would like to find a
similar result for X ∈ L2 general. First, consider the G-predictable projection pX of X, which
exists because G is quasi-left-continuous (see Remark A.13). Then, we have∫ T

0
eΓt1{t<τ}X

2
t dt =

∫ T

0
eΓt1{t≤τ}X

2
t dt =

((
eΓX2) � λ)

τ̄

=
((
eΓ p(X2)) � λ)

τ̄
=
∫ T

0
eΓt1{t<τ}

p(X2
t )dt

(2.8)

where the first and the last equalities hold because we integrate with respect to dt = dAt for
the (deterministic) continuous function At = t, t ≥ 0; the third equality follows by Remark A.17
and the smoothing property of the predictable projection(see Proposition A.14). By the Jensen’s
inequality, for all t ≥ 0, (pXt)2 = (E[Xt|Ft])2 ≤ E

[
X2
t |Ft

]
= p(X2

t ). Therefore, we can conclude,
that if X ′ denotes the F-predictable reduction of pX, then

E′
[∫ T

0
(X ′t)2dt

]
= E

[∫ T

0
eΓt1{t<τ} (pXt)2

dt

]

≤ E

[∫ T

0
eΓt1{t<τ}

p
(
X2
t

)
dt

]
(2.8)= E

[∫ T

0
eΓt1{t<τ}X

2
t dt

]
<∞.

(2.9)

From now on, we call the F-predictable reduction of pX the F-progressive reduction of X (if
it exists).

Last, we define

L′2 :=
{
X ′ F-progressive process on [0, T ] : E′

[∫ T

0
(X ′t)

2
dt

]
<∞

}
.

In a similar way as before, if X ′ ∈ L′2, then (X ′)◦ ∈ L2, and, vice versa, if X ∈ L2, X ′ ∈ L′2,
where X ′ can denotes the F-optional, predictable, or progressive reduction of X, as applicable.

2.3 Discounting and valuation

From now on, all the introduced processes are assumed to be G-adapted càdlàg semimartingales.
We also assume that all the cash-flow processes are already discounted at the risk-free rate; that
is, we use the risk-free asset, which is assumed to exist, as a numéraire.

Remark 2.4. As observed in [AC18], the problem here is “the existence of a publicly observable,
reference rate for the remuneration of collateral.” In practice, the best approximation for such a
rate is provided by the overnight index swap (OIS) rate; see [HW13] and [CBB14, Chapter 2].
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In the sequel, when we refer to an amount paid (for example by the client to the bank), we
mean that it is actually paid, if this amount is positive, and that it is received (by the client
from the bank) if this is negative. The same convention applies to all cash-flows.

Since we have two filtrations and two measures, we now introduce our two pricing models,
one with respect to (G,Q) and the other with respect to (F,P). More details about the interpre-
tation of these two different valuations is given in the following chapters. Note that, in [AC18],
“valuation is not price,” in the sense that the valuation of some cash-flows given by a contract
does not correspond to the price of the contract, as the latter also includes an additional risk
premium, given by the XVAs.

Definition 2.5. Let X be a Q-integrable G-adapted process representing a cumulative cash-flow.
The (G,Q) value process X of X is a G-adapted process on [0, τ̄ ] defined by

Xt := Et [Xτ̄ −Xt] , t ∈ [0, τ̄ ].

Similarly, if X is P-integrable and F-adapted, the (F,P) value process X of X is an F-adapted
process on [0, T ] defined by

Xt := E′t [XT −Xt] , t ∈ [0, T ].

In other words, the (G,Q) value process of X is a G-adapted process X on [0, τ̄ ] such that
Xτ̄ = 0 and X+X is a (G,Q)-martingale on [0, τ̄ ]; a similar characterisation holds for the (F,P)
valuation on [0, T ]. Therefore, by Proposition A.1, we can assume that the valuation process is
always (a.s.) càdlàg.

Remark 2.6. Note that Q and P are risk-neutral pricing measures, calibrated to derivative mar-
ket prices of fully collateralised transactions (so that no counterparty risk premium is included).4
Since the market model in our setup is incomplete, there may be more than one risk-neutral mea-
sure. In [AC20] it is suggested to choose the so-called “truly risk-neutral measure”, for which the
priced risk factors have risk-neutral return rate and the non-prices ones maintain their physical
return rate. See also [Bjö09, Chapter 15].

Furthermore, we estimate the historical probability measures Q̂ and P̂ by the pricing measures
Q and P, as in [AC18], since it is not possible to estimate them precisely over a long time horizon.5
This approach is deemed conservative in [AC18], since “implied CDS spreads are typically larger
than statistical estimates of default probabilities.” This approximation generates model risk,
which constitutes the so-called additional value adjustment AVA, which was introduced in the
regulators [EBA15].6 An approach to the model risk issue is given in [AC20, Section 7.6].

4See [AC20, Section 2.1].
5In the XVA context, the time horizon can be even fifty years.
6See also [Gre15, Section 8.8.5] for a short qualitative introduction to AVA.
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3 Financial Setup and Cash Flows

In this chapter we introduce the financial setup and define the cash-flows of our model bank.
We follow [AC18] for the choices of the model, and we base on [Gre15] for the definitions of the
“banking terminology”. In Section 3.1, we describe what is counterparty credit risk, and what
are the main ways to protect against it: hedging, collateralisation, and netting; in Section 3.2,
we describe the model structure of the bank subdivided in different trading desks and various
stakeholders, and we give a representation of the balance sheet of the bank; in Section 3.3, we
illustrate what happens in case of default of the bank itself or of one of its clients; finally, in
Section 3.4, we define the trading loss processes of the bank as a preparation for the next chapter
in which we state the XVA equations.

We consider a dealer bank, which is a market maker, trading bilateral OTC derivatives with
clients. The function of a market maker is to keep the financial market liquid by accepting trades
proposed by the client. On the other hand, the bank clients are assumed to be price takers, the
price being decided by the market maker. By clients we mean counterparties interested in trading
derivatives with “our” bank; these can be, for instance, other banks, sovereigns, hedge funds,
asset managers, pension funds, insurance companies, or corporates.

In this thesis we only focus on bilateral derivatives (i.e., traded between two parties: the bank
and a client), as opposed to centrally clear. For more details on OTC derivatives, we refer the
reader to [Gre15, Chapter 3]. A study of XVAs for centrally cleared derivatives can be found in
[AAC20].

While exposing the model of the bank we progressively introduce the stochastic processes
representing the relative cash-flows. Note that, for now, we work under the following simplifying
assumption:

Assumption 3.1. The derivative portfolio of the bank is held on a run-off basis.

That is, the portfolio is fixed at time 0 and no new “unplanned trades” will enter the portfolio
in the future. This assumption does not affect the financial setup we work on. Clearly, the
portfolio of a bank is generally incremental. In Section 4.4 it is explained how to pass from a
run-off setup to an incremental model.

3.1 Counterparty credit risk and its mitigation

Counterparty credit risk (or shortly, counterparty risk) is the risk that one of the two parties in
the trade, the client or the bank itself, will fail to fulfil their contractual obligation towards the
other party—for example, in case of default. For simplicity, to refer to such a credit event, we
may simply say that the party (a client or the bank) defaulted.

As explained in more details in [Gre15, Chapter 4], it is important to note that counterparty
risk is different than lending risk, which is the risk that one party (the borrower) does not pay
back a borrowed amount to the other party (the lender). This can apply, for example, to loans
and bonds. In such a case, the amount at risk is known approximatively well, and the risk is
only taken by the lender. On the other hand, by bilateral derivative trading the value of the
contract in the future is highly uncertain and can be both positive or negative—in this sense,
counterparty risk is bilateral, because it is carried by both parties. As the uncertainty in the
future value of a contract can be classified as market risk, we can see counterparty risk as a
combination of market and credit risk.
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Remark 3.2. In [Gre15, Section 4.1.2] counterparty risk is split into pre-settlement risk and
settlement risk. The first one is what it is usually meant by counterparty risk, which is the
risk that one of the two parties in the transaction defaults before the settlement of the trade.
The second one results from the “timing differences” between the payments of the two parties
at settlement of the transaction. The exposure to this risk could be substantial, for example, in
a forward FX contract (as illustrated by the example-box in [Gre15, Section 4.1.2]). However,
the likelihood of default before settlement is clearly higher. As we see in Section 3.1.2, netting
is a good way to reduce the exposure to both types of risk. For simplicity, in this thesis we
neglect settlement risk by assuming that the default of a counterparty (a client or the bank
itself) is immediately known by the other party; in case of default at settlement of the contract,7
we assume that no payments occur until the end of the liquidation period (as illustrated in
Assumption 3.26).

The main measures a dealer bank can undertake to mitigate counterparty risk are hedging,
netting, and collateralisation. Below we illustrate them in details. Note that these measures do
not actually remove counterparty risk, but convert it in other forms of risk, such as operational
or liquidity risk. Moreover, the counterparty risk mitigation is never perfect; the residual risk
has to be covered by reserve capital, as expressed by the regulators [BCB15] and [EU12]. In
this thesis we do not consider other contractual clauses, such as resets or additional termination
events as in [Gre15, Chapter 5].

3.1.1 Hedging

A simple way for a bank to protect itself against the potential loss given by the default of a
counterparty is to buy a credit default swap (CDS). A CDS works like an insurance: in case
of default of the counterparty, any potential amount owed to the bank is covered by the CDS
seller, so that the bank does not face any loss. Although CDS were widely used before the great
financial crisis of 2007–2008, people now realise that they are “highly toxic.”8 Therefore, CDS
are illiquid nowadays; this makes them a bad instrument to mitigate counterparty risk.

As mentioned above, counterparty risk is bilateral. So, it is important to also consider the
default of the bank itself; however, this is even more problematic to hedge. In fact, to achieve this,
the bank would need to trade its own debt, that is, going long its own bonds. The impossibility
for the bank to do this is illustrated in details in [CF13, Section 10.7], by use of a simplified
example. Furthermore, there is also an argument of scale: in [AC18] it is stated that “if all
European banks were to be required to have capital equal to a third of their liabilities, then the
total capitalisation of banks would be greater than the total capitalisation of the entire equity
market as we know it today.” Last, by the rules protecting the bondholders of the bank, it is
also illegal for the bank to hedge its own jump to default (see also Section 4.2).

The rationale above justifies the following assumption.

Assumption 3.3. The bank cannot hedge its own jump-to-default exposure.

So, for now, to keep things more general, we admit the possibility for the bank to partially
hedge against the counterparty’s default; let H be the cumulative cash-flows process of the loss

7Actually, given our assumption that the default of the bank τ is totally inaccessible, the probability of the
bank to default exactly at the settlement of the contract is 0 (note that a constant time is a predictable time);
conversely, the clients of the bank may default at the settlement of the contract in our model (see Assumption 4.1).

8As expressed in [Gre15, Section 3.1.5].
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(positive when payed by the bank)of this hedge. Recall that we assume that all cash-flows
processes start from 0 at time 0, and are a G-adapted stochastic processes.

Since hedging is not an effective measure against counterparty risk, netting and collaterali-
sation (which are discussed below) should be used.

3.1.2 Netting

A bilateral derivative portfolio between two parties may contain a large number of transactions,
which may partially offset one another. Netting consists in simplifying all (or some of) these
transactions into one single (net) payment. So, the bank considers the default exposure relative
to a so-called netted set (relative to one counterparty) instead of looking at each transaction
separately.

Example 3.4. The benefit of netting can be easily illustrated by a simple example. Consider
a bank B trading with a counterparty C. Assume, for simplicity, a one period model with de-
terministic cash flows and zero recovery at default. Say that B owes 1m CHF to C, and C owes
1.2m CHF to B. If at maturity B does not default and C does, then B pays 1m CHF and faces
a loss (due to the counterparty’s default) of 1.2m CHF. If the transactions is netted, that is, C
owes 0.2m CHF to B and B nothing to C, then the credit exposure of B in case of default of C
is (dramatically) reduced.

Clearly, the reality can be much more complicated than the given example, with large num-
bers of transactions in different currencies and at different maturities.9 This makes netting an
important way to reduce (counterparty) risk, as long as it is clearly defined what happens in case
of default of one counterparty. If this is not the case, one may incur increasing legal risk. For
more on this topic and on netting legislation, see [Gre15, Section 5.2]. This is beyond the scope
of this thesis.

Remark 3.5. In [Gre15, Section 5.2] netting is split in “payment netting” and “close-out net-
ting”, which are related to settlement and pre-settlement risk, respectively, which are mentioned
in Remark 3.2.

So, from now on, we split the portfolio of the bank in netted sets indexed by c (c like
“contract”, as, from the point of view of XVA, one can see a netted set like a single contract;
see [AC18]). For any c, we let Pc denote a stochastic process describing the net contractually
promised cumulative cash-flow (counted positively when received by the bank) related to the
netting set c, and we denote by τc the time of default of the client of the netting set c, which is
assumed to be a G-stopping time.

Remark 3.6. It may seem confusing at first sight to treat the hedge cash-flow H as a loss
and the promised cash-flows Pc as a gain, but we decided to maintain the same sign convention
for the various cash-flows as in [AC18]. The reason for this, is that it is convenient to see the
hedges as a loss (positive when payed by the bank) just as the loss processes C, F , and G we
introduce below, so that their valuation can be seen as (positive) liabilities on the balance sheet
of the bank; on the other hand, it is also convenient to see the promised cash-flows Pc as gains
(positive when received by the bank), so that their valuation can be seen as (positive) assets on
the balance sheet of the bank.

9Note that, in general, trades in different currencies lie in different netting sets; see [Gre15, Section 5.2.3].
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3.1.3 Collateralisation

After having reduced its counterparty risk exposure by netting, a bank can protect itself further
by requiring from the client a collateral, which is an amount of cash or liquid assets posted as a
guarantee against default. The collateral received by the bank stays the property of the client
(the poster) up to default of the latter; after that it can be used by the bank (the receiver) to
cover (part of) the losses due to liquidation of the netted set—clearly, the same holds from the
point of view of the client with the bank posting the collateral. For simplicity, as in the setup of
[AC18], we assume cash only collateral.

There are many possible collateral agreements, from no collateral posting to full or partial
collateralisation; see the description of the Credit Support Annex (CSA) in [Gre15, Section
6.2.1]. As mentioned, the collateral agreements are in general bilateral: during the duration of
the contract (which ends at maturity or at default of any of the two parties), in case the market
valuation of the promised cash-flows Pc (the so-called mark-to-market, or clean valuation, see
Definition 3.15) is positive, the bank may require the posting of a collateral by the client, and
vice versa. We provisionally denote this collateral by a process Cc (positive if posted by the
client), and we assume that it is continuously (instantaneously) updated to reflect the current
mark-to-market and the collateral agreements between the two parties.10 So, it may happen
that the collateral receiver asks the other party for more collateral due to a fluctuation in the
mark-to-market, or that some of the collateral is returned back to the poster.

One can distinguish between two different types of collateral: variation margin (VM) and
initial margin (IM). The former is the one directly reflecting the fluctuations in mark-to-market
of a netted set, as mentioned above. It can be rehypothecated by the receiving party; this means
that the bank can use the VM received by clients for funding purposes (for example, to post
collateral to a third party or to hedges). Even though the VM is (periodically) updated to reflect
the mark-to-market of the netted set, during the liquidation period of a defaulted party there
may be some gap between the two values (this is the so-called gap risk). Thus, an additional
margin, the IM, may be required. As by the VM, the IM is periodically updated (in our model it
is continuously updated), depending on the agreement between the two parties; but, in contrast,
the IM is typically segregated, in the sense that it cannot be used by the receiving party. The
advantage of segregating the IM is that, in case the receiving party defaults, the (non-defaulting)
posting party can have back the IM. This significantly reduces counterparty risk. In practice, this
is sometimes achieved by a “tri-party arrangement”, where a third party holds the segregated
collateral, to make sure the IM is in fact not used by the receiver (see [Gre15, Section 6.4.4]). The
advantage of rehypothecated collateral (i.e., the VM) is that it generates less funding costs, since
the received cash collateral can be used as funding for collateral posting in other transactions.

Remark 3.7. In the opposite direction of IM, the two parties in the transaction may agree to
a threshold on the collateral agreement, which is a fixed amount below which no collateral is
required (see [Gre15, Section 6.2.3]). Clearly, a threshold offers less counterparty risk mitiga-
tion than a full collateralisation (possibly with additional initial margin), but it helps reduce
operational and liquidity costs.

Remark 3.8. In [AC18], there is no distinction between the valuation adjustments due to the
cost of funding VM and IM—typically dubbed FVA and MVA, respectively. Here we generalise
this approach, by separating the two value adjustments. Thus, for each netting set c, the process
VMc denotes the variation margin exchanged between the client and the bank (counted positive
if posted by the client), the process RIMc denotes the initial margin received by the bank from

10In practice this update is not done continuously due to operational costs; see [Gre15, Section 6.1].
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the client (assumed non-negative), and the process PIMc denotes the initial margin posted by
bank to the client (assumed non-negative).11 The total collateral posted by the client to the
bank is, therefore, given by

Cc,+ := VMc,+ + RIMc, (3.1)

and the collateral posted by the bank is

Cc,− := VMc,− + PIMc, (3.2)

where VMc,+ and VMc,− denote the positive and negative parts of VMc, respectively.

Remark 3.9. Usually, depending on the assets used as collateral, any coupon payments or
dividends are passed to the collateral poster (being the actual owner of the collateral, before its
default). Because we assumed cash only collateral, the poster is remunerated at the risk-free
rate. This generates a loss for the collateral poster, as the interest rate payed for funding is,
in general, significantly higher than the risk-free rate (depending on the credit spread). This is
what generates FVA and MVA.

Note that, as by netting, collateralisation reduces counterparty risk, but may give rise to
other risks, such as market, operational or liquidity risk. The study of these risks is beyond the
scope of this thesis; see [Gre15, Section 6] for more on this topic.

3.2 The structure of the bank

This section illustrates the structure of our model bank and defines the cash-flows before default.

3.2.1 Different stakeholders

In our model, the bank is split in two classes of stakeholders: shareholders and creditors. The
shareholders are the one in control of the bank management before the bank defaults. Creditors
are further split into senior and junior creditors. The words senior and junior mean that the
two classes of creditors have different seniority: at the default of the bank the senior creditors
are payed back first, i.e., they have priority over the junior creditors. In our model, the senior
creditors are represented by an external funder that lend unsecured to the bank at some (exoge-
nously given) risky funding spread over the risk-free rate. The junior creditors are represented
by the bondholders; since they have no decision power before the bank’s default, they need to
be protected by pari-passu laws “forbidding certain trades that would trigger wealth away from
them to shareholders” during the liquidation process of the bank.12For simplicity, we can assume
that the senior and junior creditors are default-free. Before default, the trading cash-flows re-
ceived by the bank go to the shareholders, while after that the shareholders are “wiped out” and
any received cash-flows go to the bondholders. The latter are also responsible for bankruptcy
costs, which are beyond the scope of this thesis.

To simplify our model, we assume a self-financed setup, that makes it a “closed-system”:

Assumption 3.10. We assume that shareholders and bondholders hold nothing outside the
bank.

11This is the same notation used in [ACC17].
12See [AC18, Section 2.2].
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3.2.2 CA and clean desks

In our model, the management of the trading cash-flows of the bank is split in essentially three
parts: the CA desk, the clean desks, and the KVA desk. The last one is the subject of the next
section.

The CA desk could be further subdivided in CVA, FVA and MVA desks. The CVA desk is
responsible for the cash-flow related to counterparty default, whereas the FVA and MVA desks
are in charge of the funding expenditures for the variation margin and initial margin, respectively.

More precisely, let C be a stochastic process representing the total cash-flow triggered by
credit events (of the clients or of the bank itself), called the counterparty exposure cash-flow. It
depends on the agreements regarding the settlement of the contracts at default; see Section 3.3.

Remark 3.11. Note that, C◦ is non-negative non-decreasing, and it represents the total cumula-
tive losses of the bank before τ due to the defaults of the clients; C• = C◦−C is a bullet cash-flow
occurring at time τ made of two parts: a positive windfall to the bank that corresponds to the
total losses of the clients due to default of the bank, and a negative part (a shortfall for the
bank) for the counterparty default losses due to clients’ default occurring simultaneously with
the bank’s default—since we generally assume that the default of the bank may happen during
the liquidation period of a netting set (see Section 3.3 for more details). We can see that, by
consequence, C is a process of finite variation on [0, τ̄ ].

Similarly, let F and G denote the cumulative risky funding cash-flows of the bank, to fund
the variation and initial margin, respectively. These include the cumulative payments F◦ and
G◦ to the external funder for the unsecured borrowing of funds before τ (so F◦ and G◦ are non-
decreasing) and the (non-negative) windfalls to the bank F• and G•, due to the non-remunerated
unsecured funding at bank’s default. Thus, F and G are of finite variation on [0, τ̄ ] too. The
actual form of F and G depends on the funding policy and collateralisation of the bank; see
Section 6.1 for a concrete example.

Thus, the CVA , FVA, and MVA desks have to cover the cash-flows C◦, F◦, and G◦. To
do that, they (together as a unique desk: the CA desk) source from the clients an amount
CA := CVA + FVA + MVA (which is specified in more details in Chapter 4) at inception of the
contract, and deposit this in an account called the reserve capital (RC) account, which they use
to pay C◦, F◦, and G◦ as they occur.

Remark 3.12. By our choice of the risk-free asset as numéraire, it is already clear, but it is
important to stress that by risky-funding cash-flow, we exclude the risk-free accrual of the reserve
capital account RC of the CA desk.

Thanks to the activity of the CA desk, the other trading desks of the bank, the clean desks,13

can focus on the management of the market risk of the contracts, ignoring counterparty risk.
In some sense, the CA desk acts as a filter, filtering out the counterparty exposure and risky
funding cash-flows and leaving to the clean desks the “clean” contractually promised cash-flows
Pc. Then, the management of the market risk consists of a fully collateralised hedge of each Pc.
Specifically, for each netting set c, the following cash-flows occur before default of one of the two
parties (that is, 0 < t < τ̄ ∧ τc):

13In the setup of [AC18] there can be several clean desks; one for each business line of the bank’s portfolio.
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• The client and the CA desk exchange14 the promised cash-flow Pc plus any required addi-
tional variation margin VMc and initial margin RIMc and PIMc, depending on the fluctu-
ations of the market value of the promised cash-flows and the collateral agreements. The
initial margin PIMc posted by the bank is provided by the MVA desk using unsecured
fundings—this is what generates G. The received initial margin RIMc is not used by the
CA desk (it is segregated in a separate account). Recall that all our cash-flows processes are
cumulative, whereas the variation and initial margin processes denote the actual evolution
of posted collateral.

• The CA desk passes to the clean desks the received cash-flows Pc; additionally, the CA
desk15 posts a rehypothecable collateral to the clean desks that amounts to the current
market value of the whole portfolio of the bank (the so-called mark-to-market MtM; see
Definition 3.15 below).16 Any positive difference between the needed collateral and the
VMc posted by the clients is covered by the CA desk using unsecured fundings—this is
what generates F . The above collateral is stored in a so-called clean margin (CM) account
and remunerated at the risk-free rate by the receiver. We dub CMc the collateral posted
by the CA desk relative to the netting set c; so CM =

∑
cCM

c, where the sum (here and
for the rest of the thesis) runs over all netting sets.

• Using the CM, the clean desks can finance a fully collateralised market hedge. For now
we assume that this hedge may be imperfect, resulting in a hedging loss process Hc only
partially offsetting Pc.

Remark 3.13. Note that, in the last bullet point above, if the valuation of the contract is
negative, the clean desks actually receive a full rehypothecable collateral from the hedges that
they pass to the CA desk, which, in turn, can post it to the clients as variation margin. For this
reason, the bank has no funding costs for the posting of variation margin to clients. Observe also
that the variation margin received form the hedges counts negatively for the CM. On the other
hand, when the valuation of a contract is positive, the CA desks has to fund the rehypothecable
collateral that goes in the CM account and that the clean desks than use to post collateral
to the hedges. In this sense, we can see FVA as the cost of funding the collateral for the
hedges.17 Additionally, note that with the “fully collateralised hedges” assumption we neglect
the counterparty risk of the hedges.18

Thus, there are two portfolios in our setup: the client portfolio between the client and the CA
desk, and the clean portfolio between the CA desk and the clean desks. Note that the promised
cash-flows is the same for the two portfolios, but only the client portfolio has counterparty risk.

Remark 3.14. As in [AC18], we assume for simplicity that the hedges H of the CA desk and
Hc of the clean desks are either swapped or trades through the repo market, without upfront
payment. See [CBB14, Section 4.2.1] for more details.

Now one can better understand the difference between the two valuations in Definition 2.5:
the CA desk uses the (G,Q)-valuation, and the clean desks use the (F,P)-valuation. From the

14With the usual convention: the client pays the amount to the bank if it is positive, and the bank pays if it is
negative.

15In particular the FVA desk, sometimes also called the Tresury of the bank
16If the value is negative, the clean desks post the collateral to the CA desk.
17As explained in [AA14, Section 2].
18In practice, even if a position is fully collateralised, it is always subject to gap risk. So, in our model we may

assume that the hedges have instantaneous liquidation period (or they post initial margin) so that we can ignore
their counterparty risk.
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next chapter (see Assumption 4.1), we will assume that the processes related to activities of
the CA desk (C, F , G, and H) are G-adapted and defined on [0, τ̄ ] (taking into account the
default of the bank τ , which is a G-stopping time) and the ones related to activities of the clean
desks (Pc and Hc) are F-adapted and defined on [0, T ]. For simplicity, we also assume that they
are Q-integrable—by consequence, also P-integrable if F-adapted. So, we can define the (F,P)-
value process Pc of Pc; we call this the clean valuation of the contractually promised cash-flows
related to the netting set c. Clean valuation is additive over netting sets c, and, since it only
considers promised cash-flows, it is independent of the creditworthiness of the involved parties,
their funding, collateralisation and hedging policies.

Definition 3.15. The total clean valuation of the derivative portfolio of the bank is called
mark-to-market MtM and it is given by

MtM =
∑
c

Pc1J0,τcδK, (3.3)

where τcδ ≥ τc denotes the end of the liquidation (or close-out) period of the netting set c.

Thus, MtM vanishes on [T,∞[, as each Pc does. Note that, we assume that the upper bound
T includes the liquidation period of any netting set, that is, if τc ≤ T , then τcδ < T (and otherwise
we can consider τc =∞, i.e., no default before maturity).

By (3.3), we see that a liquidated netting set does not contribute anymore to the MtM; in
fact, at each time t, MtMt corresponds to the clean valuation of the future (after t) promised
cash-flows.

Remark 3.16. As in [AC18], we only consider European derivatives for simplicity. The valuation
of other types of derivatives, such as American derivatives, would be more complex, but including
them in the model would not change the resulting XVA equations.

3.2.3 KVA desk and shareholders capital

As anticipated at the start of the last section, in addition to the CA and clean desks, the bank also
has a KVA desk in charge of the management of KVA. At inception of each contract, the clients
pay an additional add-on called KVA that the KVA desk puts in the so-called risk margin (RM)
account. The RM is then gradually released by the KVA desk into the shareholders dividend
stream D (see Assumption 3.30), to remunerate shareholders for their capital at risk, which is
contained in the shareholders capital at risk (SCR) account, at a certain so-called hurdle rate h.
In other words, as we will see more rigorously in Definition 4.20, KVA is the expected (minimal)
amount needed by the bank to be able to pay a rate of return h to the shareholders on their
capital at risk SCR until maturity T , without the necessity of making new trades (in fact, for
now we work under the run-off assumption). As we explain in Remark 4.24, in the incremental
XVA approach, KVA is always computed in such a way that the bank could go into run-off at
any time in the future, if wished, without giving up the interest payments to the shareholders at
rate h on their capital at risk.19

The function of the SCR account is to cover any “exceptional” trading loss, beyond the
expected (or estimated) losses, which are already covered by the RC. Last, there may be an
additional account called uninvested capital (UC) account, whose amount is typically unknown.
The RM, SCR, and UC accounts yield risk-free interest payments to shareholders.

19This possibility is the so-called “soft-landing-option”.
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Sometimes we will refer to the shareholders capital or shareholders wealth SHC := SCR+UC.
We also define the core equity tier I capital of the bank:

CET1 = RM + SCR + UC. (3.4)

Remark 3.17. From a regulatory point of view, the amount CET1 is usually seen as an indicator
of the financial strength of a bank. Note that, as asserted in Section 3.3, we do not model the
default of the bank τ as the first time CET1 ≤ 0, which corresponds to a “structural default” (as
it is called in [AC18]). In our setup, CET1 < 0 is allowed, and it is interpreted as recapitalisation
(or equity dilution). In fact, the default of a bank is not simply insolvency, but it is a liquidity
event, as stressed, for example, in [Duf10, Chapter 5].

3.2.4 Mark-to-model and balance sheet

As in [AC18], we make the following assumption in our model:

Assumption 3.18 (Mark-to-model). The amounts RC, RM, CMc, and SCR are continuously,
instantaneously reset to some theoretical target level. In particular,

RC = CA, RM = KVA, CMc = Pc1J0,τcδK, (3.5)

and SCR will be specified later (see (4.20)).

Hence, by (3.3),
CM =

∑
c

CMc =
∑
c

Pc1J0,τcδK = MtM. (3.6)

To keep our model self-financed, the only account which is not mark-to-model, which is the
UC account, plays the role of a residual “adjustment-variable”; so, this amount does not need
to be computed explicitly. Note that all these amounts, including UC, only matter before the
default of the bank τ ; thus, we assume that they are all stopped before τ .

Remark 3.19. The setup described in the previous two subsections highlights the balance sheet
approach to pricing and risk management of financial derivatives, as opposed to the hedging
paradigm, which was used before the development of the XVA metrics. We can see in Figure 1
an analogous of the balance sheet in [AC18, Figure 1]. Note that we separate MVA from FVA
in the liability side, and we separate MDA from FDA in the asset side; the rest is the same.
We see that the balance sheet is structured in different “floors”. In the lowest floor, the clean
desks have the collateral CM+ received from the clients and external funder (through the CA
desk), which counts as a liability, and they expect the future promised cash-flows from the clients
with valuation MtM+, which counts as an asset (receivables). In case that MtM < 0, the clean
desks post the collateral CM− that they expect to receive back from the clients (so it counts as
an asset), and they owe the future promised cash-flows to the clients valued MtM−, which is a
liability (payables). On the second floor, the CA desk receives the reserve capital RC = CA from
the clients (an asset for them), and expect the losses due to counterparty credit risk and risky
funding given by CVA + FVA + MVA = CA (a liability). On the third floor, we have the KVA
desk dealing with the KVA payments received from the clients that they use to build the risk
margin. The risk margin is then gradually released as dividend payments to the shareholders.
Since a failed dividend payment is no materiality of default, the risk margin is not considered
a liability for the bank. Together, RM and SCR form the capital at risk CR := SCR + RM,
which is used by the shareholders to cover the losses beyond expectation (this is computed
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Liabilities

Assets

CM−

MtM+

MtM−

CM+

CVA

FVA

MVA
Reserve Capital

RC = CA

Risk Margin
RM = KVA

SCR

UC

DVA

FDA

MDA

Clean desks

CA desk

KVA desk

Contra-assets CA

Contra-liabilities CL

Core equity tier I capital CET1

Capital at risk CR

Shareholders’ wealth SHC

Figure 1: Balance sheet of the bank.
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using an expected shortfall; see Section 4.3 for more details). Clearly, the shareholders’ wealth
SHC = SCR + UC is an asset for the bank, which together with the risk margin forms the
core equity tier I capital CET1. The contra-liabilities CL = DVA + FDA + MDA (where DVA
stands for debs value adjustment, FDA for funding debt adjustment, and MDA for margin debt
adjustment), represent the valuation of the windfall to the bank occurring at τ , as described in
Section 3.3. This is clearly an asset for the bank as a whole, but does not count as shareholders’
capital, because shareholders do not actually benefit from it, as the management of the bank
goes to bondholders at the time of default τ . Additionally, as illustrated in [AA14, Section 3.1],
by regulatory requirements DVA should not be part of CET1. See also [AC18, Appendix A] for
other considerations on the balance sheet of the bank.

Note that, even though we assumed the run-off assumption, the balance sheet of Figure 1
also represents the situation in the incremental XVA approach of Section 4.4.

3.3 The event of default

We have already introduced the notations τ and τc, representing the time of default of the bank
and of the clients related to the netting set c, respectively. We stress that, default does not
simply mean bankruptcy; by “event of default” we actually mean that, by one party’s fault (the
defaulted party), the trade must be terminated prematurely. This may include various type of
events: see, for example the list of events of default in the ISDA Master Agreement [ISD19,
Figure 2].

We model the default time of the bank as an exogenously given totally inaccessible G stopping
time τ that has a (G,Q)-intensity γ. The default of clients, given by τc, are assumed to be
exogenously given G-stopping times.

Remark 3.20. To calibrate τ , one may use the bank observed CDS, as in [Ces+09, Section 3.3].

Recall that at the default time of the bank the management of the bank passes from the
shareholders to the bondholders. Moreover, we assume the following.

Assumption 3.21. At time τ the residual amounts RC and RM flow from the shareholders to
the bondholders of the bank.

Remark 3.22. Note that any residual SHC = SCR + UC amount stays the property of the
shareholders at default time τ . As pointed out in [AC18], the above assumption is justified by a
no-arbitrage argument. Namely, in the limit event in which the bank defaults right after receiving
the payments CA=RC and KVA=RM from the clients at inception (technically Q[τ = 0] = 0, as
τ is totally inaccessible, but let us assume τ = 0 for the sake of the argument), if some (strictly
positive) part of the amount RC + RM goes to shareholders at default, then this generates a
positive arbitrage20 for them, since we assumed that no other cash-flows take place at time
t = 0. Conversely, if in the same situation a (strictly positive) part of SCR flows to bondholders
at default, this constitutes a (negative) arbitrage for the shareholders. The amount received by
the bondholders is not a positive arbitrage for them either, as they have to face the bankruptcy
costs, which are beyond the scope of this thesis.

Definition 3.23. We call contra-assets the process on [0, τ̄ ] given by

S := C◦ + F◦ + G◦ +H◦ + 1JτKRCτ , (3.7)
20We do not define arbitrage formally in our model. In this case, we simply mean a possible non-negative gain

without any downside risk.
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which denotes the cumulative cash-flows sourced from the shareholders by the activity of the CA
desk. We call contra-liabilities the process on [0, τ̄ ] given by

B := C• + F• + G• + 1JτKRCτ , (3.8)

which denotes the cumulative cash-flows received by the bondholders from the activity of the
CA desk.

Note that both S and B include the bullet cash-flows RCτ from the shareholders to the
bondholders at default of the bank, accordingly to Assumption 3.21. The RM is not included, as
we consider cash-flows triggered by the activity of the CA desk. The Contra-Assets give the name
to the CA desk and to the process CA, which is the valuation of S, as shown in Remark 4.12.
Contra-assets and contra-liabilities can be thought of as “synthetic derivatives payoff,”21 whose
value process appears in the balance sheet of the bank respectively as special liabilities and assets
(see Figure 1). As emphasised in [AC18], the purpose of the this capital structure model of the
bank is to put in a balance sheet perspective the contra-assets and contra-liabilities.

Remark 3.24. As we illustrate in Section 4.2 (see, in particular, Definition 4.9 and Remark 4.12),
the (G,Q)-valuation of the contra-liabilities, which we denote by CL = DVA + FDA + MDA,
represents a gain for the bank (an asset) due to its own default (see also Remark 4.14 for a
more detailed discussion on this). We can see the contra-liabilities DVA, FDA, and MDA as
counterparts of CVA, FVA, and MVA in the following sense. DVA accounts for the exposure
of the clients to the risk of default of the bank itself, while FDA and MDA account for the
“non-reimbursement” by the bank of its funding debt (due to its own default). In a complete
market one should subtract these gains for the bank from the add-ons CA = CVA+FVA+MVA
to obtain the (symmetric) “fair valuation of counterparty risk” FV = CA − CL.22 However,
as explained in more details in Remark 4.15, in our incomplete market setup, the bank needs
to source the full amount CA from the clients to protect against counterparty risk. The extra
gain given by CL will then flow to the bondholders as a recovery at the default of the bank.
Thus, we do not interpret DVA, FDA, and MDA as part of the entry prices, but as a gains (or
recoveries, since the bondholders also face a loss at bank’s default) for the bondholders due to
the incompleteness of the market.

Remark 3.25. Up to now we have implicitly assumed that all the payments after the default
of the bank are instantaneously performed, with no delay between τ and the actual end of the
liquidation period of the bank, that is, τ δ = τ . In practice, this period may last even many
years, as in the case of Lehman Brothers showed in [Gre15, Figure 3.3] (see also [FS14]). The
motivation for this assumption is that, taking the point of view of shareholders, we are only
interested in what happens before τ . Indeed, as we can see in Theorem 6.10, the XVAs are
computed unilaterally, only considering the cash-flows before τ (see also Section 6.2).

The following assumption illustrates the exchange of cash-flows occurring at the liquidation
of each netting set. Note that, the liquidation (or close-out) period of a netting set c goes from
the first default time τc ∧ τ to the liquidation time τcδ ∧ τ .

Assumption 3.26. On the client portfolio side, at the time a party defaults (the bank or a
client), the property of the variation margin posted by any of the two parties is transferred to
the other one. The property of the initial margin posted by a defaulted party is transferred
to the receiving party, if the latter is non-defaulted at the liquidation time. Moreover, at the
liquidation time of a netting set c:

21This is how they are called in [AC18]
22This is what was done in [HW12].
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• any positive value due by a non-defaulted party is paid in full to the other one;

• any positive value do by a defaulted party is only paid up to some exogenously given
recovery rate.

On the clean portfolio side, during the liquidation period, the CA desk pays to the clean desks
all the promised cash-flows, even if these are not received form a client (in case it defaults), and
at each liquidation time the property of any amount CMc = Pc of rehypothecable collateral on
the clean margin account goes from the CA to the clean desks.23

By “positive value”, it is meant clean valuation Pc of the not yet payed promised cash-flows
of the netting set c minus the corresponding collateral (which has already been transferred).
Note that, the initial margin posted by the non-defaulted party stays its property, even if the
counterparty defaults.

In particular, assume there is a netting set c that is liquidated before the default of the bank,
that is, τcδ < τ̄ . Denoting by Rc the recovery rate of the client, at τcδ the CA desk receives from
the client the amount

Rc
(
Pcτcδ − P

c
τc− + Pcτcδ −VMc

τc− − RIMc
τc−
)+
,

while the CA desk guarantees to the clean desks the full promised cash-flows Pcτcδ −P
c
τc− during

the close-out period, as well as the rehypothecable collateral on the CM account

Pcτcδ =
(
Pcτcδ −VMc

τc− − RIMc
τc−
)

+
(
VMc

τc− + RIMc
τc−
)

(the first part provided through unsecured funding and the second posted by the client) at the
liquidation time τcδ of the netting set. Hence, the credit exposure relative to the netting set c
that the CA desk faces is given by

(1−Rc)
(
Pcτcδ − P

c
τc− + Pcτcδ −VMc

τc− − RIMc
τc−
)+
. (3.9)

According to the assumption, any positive value due to the defaulted client is paid in full by the
bank, which means that the client receives at time τcδ(

Pcτcδ − P
c
τc− + Pcτcδ −VMc

τc−
)−
.

This payment does not constitute a loss for the CA desk, as this amount is actually owed to the
client, even in case of no default. Moreover, in this case, any initial margin PIMc posted by the
(non-defaulted) bank is fully returned to the bank (the same would hold symmetrically in case
the bank defaults before a client).

Now, following [AC20], we can make things more general, by allowing the close-out period of
the bank and the clients to overlap, giving rise to the following credit default loss for the bank
at the liquidation time τcδ ∧ τ of the netting set c, in case τc ≤ τ̄ ,24

(1−Rc)
(
Pcτcδ∧τ − P

c
τc− + Pcτcδ∧τ −VMc

τc− − RIMc
τc−
)+
. (3.10)

23As usual, in case some of the promised cash-flows or posted collateral on the clean margin account is negative,
the payments go in the opposite direction.

24Recall that, if τc ≤ T , we assume τcδ < T .
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Similarly, we can compute the loss of a client associated to a netting set c in case the bank
defaults before the liquidation time of the contract, i.e., τ ≤ τcδ ∧T , which is given by a “bullet”
cash-flow at time τcδ ∧ τ = τ equals to

(1−Rb)
(
Pcτ − Pc(τ∧τc)− + Pcτ −VMc

(τ∧τc)− + PIMc
(τ∧τc)−

)−
, (3.11)

where Rb represents the recovery rate of the bank.
Summing over all the netting sets, we obtain the credit default exposure cash-flows on [0, τ̄ ]:

C =
∑
c

τc≤τ̄

(1−Rc)
(
Pcτcδ∧τ − P

c
τc− + Pcτcδ∧τ −VMc

τc− − RIMc
τc−
)+
1Jτcδ∧τ,τ̄K

−
∑
c

τ≤τcδ∧T

(1−Rb)
(
Pcτ − Pc(τ∧τc)− + Pcτ −VMc

(τ∧τc)− + PIMc
(τ∧τc)−

)−
1JτK.

(3.12)

Now, if we stop before τ , we obtain

C◦ =
∑
c

τc
δ<τ̄

(1−Rc)
(
Pcτcδ∧τ − P

c
τc− + Pcτcδ∧τ −VMc

τc− − RIMc
τc−
)+
1Jτcδ,τ̄K, (3.13)

and

C• = C◦ − C

= −
∑
c

τc≤τ≤τcδ∧T

(1−Rc)
(
Pcτ − Pcτc− + Pcτ −VMc

τc− − RIMc
τc−
)+
1JτK

+
∑
c

τ≤τcδ∧T

(1−Rb)
(
Pcτ − Pc(τ∧τc)− + Pcτ −VMc

(τ∧τc)− + PIMc
(τ∧τc)−

)−
1JτK,

(3.14)

where the first sum represents the counterparty default losses for the bank relative to netting
sets c for which τc ≤ τ ≤ τc

δ (that is, the bank defaults during the liquidation period of the
netting set c), and the second sum represents the counterparty default losses for the clients due
to bank’s default (which is a windfall for the bank).

Remark 3.27. It is important to recall that the variation margin VMc
(τc∧τ)− may be both

positive or negative, depending if before τc ∧ τ the clean valuation Pc of the future promised
cash-flows is positive or negative. It may also happen that Pc changes sign during the liquidation
period. In such a case, say at default of the client Pcτc− < 0 and τc < τc

δ < τ ∧ T , the bank
may have posted a variation margin VMc,−

τc− = −VMc
τc− > 0, and received no collateral (VM

or IM) from the client at that point; if at the liquidation time we have Pcτcδ > 0 (and, for
simplicity, we assume that the trade consists in a single promised cash-flow at maturity T , so
that Pcτcδ − P

c
τc− = 0), then the bank looses

(1−Rc)
(
Pcτcδ + VMc,−

τc−
)
> (1−Rc)Pcτcδ .

This approach is, therefore, a bit more general than the one in [AC20, Equation (27)] in this
sense,25 since we take into account this issue. However, it is in line with [ACC17, Lemma 3.1].

25But we assumed immediate liquidation for the bank, i.e., τδ = τ .
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3.4 The trading loss processes

Since the shareholders are only affected by the cash-flows before τ , it is important to distinguish
the shareholders’ cash-flows from that of the bank as a whole (shareholders and bondholders
altogether), which also includes the default time of the bank. Therefore, we first introduce the
cash-flows of the bank as a whole triggered respectively by the activities of the CA and clean
desks:

Definition 3.28. The accounting result of the CA desk and the accounting result of the clean
desks are respectively given by the following two processes:

Aca := −(RC− RC0 + C + F + G +H), (3.15)

Acl :=
∑
c

(CMc − CMc
0 + Pc −Hc)τc

δ

. (3.16)

Definition 3.29. The trading loss of the CA desk and the trading loss of the clean desks are
respectively defined by

Lcl := −Acl, and Lca := −(Aca)◦. (3.17)

The trading loss of the bank is defined by

L := −(Acl +Aca)◦ = (Lcl)◦ + Lca. (3.18)

The processes Lca and L are stopped before τ , since we see them from the point of view of
shareholders. On the other hand, Lcl is not stopped, because the clean desks do not consider the
dafault of the bank in their modelling. Moreover, we can set CMc = Pc1J0,τcδK and RC = CA as
in Assumption 3.18, and we obtain

Lcl = −
∑
c

(Pc − Pc0 + Pc −Hc)τc
δ

, (3.19)

Lca = CA− CA0 + C◦ + F◦ + G◦ +H◦, (3.20)
L = CA− CA0 + C◦ + F◦ + G◦ +H◦ + (Lcl)◦. (3.21)

Note that the initial amount on the reserve capital RC0 = CA0 is provided by the client
at inception of the contract at t = 0,26 via the CVA, FVA, and MVA add-ons, whereas the
difference RCt − RC0 = CAt − CA0, for each t ∈ ]0, τ [∩]0, T ] is covered by the shareholders in
the following sense. As the losses C◦ + F◦ + G◦ +H◦ occur, the amount in the RC account is
used to cover these expenses, resulting in lower reserves. Simultaneously, by Assumption 3.18,
at each time t ∈ ]0, τ [∩]0, T ], RCt is reset at a level sufficient to cover the expected future losses
due to counterparty default (C) and risky funding (F and G), which is CAt. In case that more
reserve capital is needed, then the shareholders’ capital is used. This can happen, for example,
if the actual losses up to time t (C◦t + F◦t + G◦t +H◦t ) are higher than expected, or if the credit
quality of some clients worsens (and the additional risk is not covered by additional collateral
posted by those clients). Conversely, it can also happen that at some point the reserve capital is
higher than necessary, and some of it flows into SHC, as a gain for shareholders.

Regarding the loss of the clean desks, we have already seen that, before default, the difference
CMc−CMc

0 = Pc−Pc0, for each netting set c, is the additional rehypothecable collateral posted by
the CA desk to the clean desks reflecting the fluctuations in the clean valuation of the promised

26Recall that we assumed run-off view; see Assumption 3.1.
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cash-flows; one part of it may be posted by the client as VM and the rest is provided by the
CA desk using risky funding.27 The remainder terms composing (Lcl)◦ are the losses due to
derivatives trading with clients, (possibly only partially) offset by the respective hedges,

−
∑
c

(Pc −Hc)τc
δ∧(τ−),

which flows out of (or “into”, in case of a negative loss) the shareholders’ capital.
Therefore, we have the following assumption.

Assumption 3.30. Before τ , the following equality between stochastic processes holds:

SHC = SHC0 +D, (3.22)

where the process
D := −(L + RM− RM0) (3.23)

denotes the cumulative dividends to the shareholders.

As the processes SHC, RM, and L are all assumed to be without jump at τ , the equality holds
on J0, τ̄K. The difference RM0 −RM above corresponds to the payments received from the KVA
desk (see Subsection 3.2.3) that remunerate the shareholders for their capital at risk SCR. Note
that negative dividends, which correspond to a decreasing process D (on a certain interval), are
possible in this setup.

Lemma 3.31. The following equality between stochastic processes holds on [0, τ̄ ]:

CET1 = CET10 − L. (3.24)

Proof. By (3.22) and (3.4), we obtain

CET1− CET10 = SHC− SHC0 + RM− RM0 = D + RM− RM0 = −L.

�

How exactly the gains and losses are distributed in the different accounts RM, SCR, and UC
constituting CET1, will be more clear once we define the capital at risk and the economic capital
in Section 4.3.

27In practice, the capital of shareholders may also be used for funding the collateral; see [CSS20]. We assume
this is not the case in this thesis.
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4 The XVA Equations

In this chapter we state the XVAs equations resulting from the financial setup exposed in Chap-
ter 3. For now, we simply assume the well-posedness of these equations under the assumptions
we describe in Section 4.1 and limit ourselves to study their relations and interpretations (Sec-
tions 4.2 and 4.3). The discussion on the well-posedness is postponed to the next chapter.
Finally, in Section 4.4, we describe the incremental XVA approach and justify the run-off view
of Assumption 3.1.

4.1 Invariance Valuation Setup

As anticipated in Section 3.2.2, the CA desk and clean desks use different filtration in their
valuations; the former takes into account the default of the bank τ , which is a G-stopping time,
the latter does not and can simply use the “clean” filtration F.

Assumption 4.1. All the processes describing cumulative cash-flows introduced in the previous
chapter are càdlàg Q-integrable (G,Q)-semimartingales on [0, T ]. Additionally, the cash-flows
related to the activity of the clean desks (Pc and Hc) are also F-adapted, and the cash-flows
related to the activity of the CA desk (C, F , G, and H) are stopped at τ . Lastly, the client
default times τc and liquidation times τcδ are assumed to be F-stopping times, for all netting sets
c.

Remark 4.2. The rationale for the last assumption that the default times of the clients are
F-stopping times, is given by item i) of Lemma B.9, which states that for any τc (assuming it is
a G-stopping time, which is reasonable) there always exists an F-stopping time τ ′c such that

τ ′c ∧ τ = τc ∧ τ.

Since we are only interested in the cash-flows up to time τ , passing to the reduction τ ′c is not
a loss of generality. Regarding τcδ, we can generally assume a measurable dependence from τc,
e.g., τcδ = τc + δ, for a fixed short period of time δ, such as two weeks.

Lemma 4.3. An F-adapted (G,Q)-semimartingale on [0, T ] is an (F,P)-semimartingale on
[0, T ].

Proof. Let X = M + A be an F-adapted (G,Q)-semimartingale on [0, T ], where M is the local
martingale part and A the finite variation part. M is a (G,Q)-local martingale with no jump at
τ , since M is F-optional and it can only have jumps at F-stopping times (see Proposition A.9).
So, by item iii) of Lemma B.9, we know that S−�M ′ + [S,M ′], where M ′ = M is the F-optional
reduction of M and S is the Azéma supermartingale, is an (F,Q)-local martingale on [0, T ]. By
Theorem B.16, this is equivalent to say that M is an (F,P)-local martingale on [0, T ]. Since P is
equivalent to Q on FT , A is also a finite variation process with respect to P. So, X = M +A is
an (F,P)-semimartingale on [0, T ]. �

So, the processes Pc and Hc, for all netting sets c, are (F,P)-semimartingales on [0, T ],
whereas the processes C, F , G, and H are (G,Q)-semimartingales on [0, τ̄ ]. In order to fully
benefit from the invariance times theory of Appendix B, and, in particular, form Corollary 2.2,
which gives us a one-to-one correspondence between (G,Q)-martingales in S◦2 (so, with no jump
at τ ) and (F,P)-martingales on [0, T ] in S′2, we make the following additional assumption.

32



Assumption 4.4. The following holds:

Pc,Hc ∈ S2(F), for any netting set c, (4.1)
C,F ,G,H ∈ S2. (4.2)

Remark 4.5. The rationale for the previous assumption is twofold: as mentioned, we want to use
Corollary 2.2 to pass from (F,P)-martingales on [0, T ] to (G,Q)-martingales with no jump at τ ,
by stopping them before τ , and from (G,Q)-martingales without jump at τ to (F,P)-martingales
on [0, T ], by F-optional reduction; the second (and most important) reason to work in the spaces
S2 and S2(F) is to be able to solve the XVA BSDEs using the theory of Appendix A.2.

As expressed in [AC18], in practice, the processes Hc, H, F , and G are given by stochastic
integrals of predictable ratios against “wealth processes of buy-and-hold strategies” in hedging
and funding assets, respectively. For F and G, this is made explicit in Section 6.1. These wealth
processes are assumed to be local martingales with respect to (G,Q) or (F,P), depending if they
are related to the default of the bank or not. Assuming that the predictable ratios mentioned
above are integrable, the resulting stochastic integrals are local martingales as well. Thus, we
have the following:
Assumption 4.6. The processes Hc are (F,P)-local martingales on [0, T ] , for all netting sets c.
The process H is a (G,Q)-local martingale on [0, τ̄ ] with no jump at τ . The processes F and G
are (G,Q)-local martingales with finite variation on [0, τ̄ ] with non-decreasing components given
by F◦ and G◦, respectively.

Combining this with Assumption 4.4, each of the local martingales above is actually a true
martingale bounded in L2 (thus, uniformly integrable) with respect to (F,P) or (G,Q), as ap-
propriate.28

The fact that H has no jump at τ reflects our Assumption 3.3 that it is not possible to
hedge against the default of the bank itself. For the same reason, we assume that F◦ and G◦
are non-decreasing, that is, the bank can only borrow (not invest) at its own credit spread over
risk-free rate. In fact, if the bank invests at its credit spread, at default time τ this spread would
be infinity and cannot be payed back; so, the bank faces a loss (shortfall) at τ . This would be
hedging the bank’s jump-to-default exposure, which contradicts Assumption 3.3. For this reason,
we can only have windfalls at τ , that is, F• ≥ 0 and G• ≥ 0.
Remark 4.7. By the martingale assumption of F , G, and H we immediately see that their
(G,Q) value process is zero.
Proposition 4.8. The loss process of the clean desks Lcl is an (F,P)-martingale on [0, T ] and
it is bounded in L2 with respect to P, that is Lcl ∈ S2(F) ∩MT (F,P).

Proof. By (3.19), Lcl is a finite sum of processes of the form −(Pc −Pc0 +Pc −Hc)τcδ, where Hc
is an (F,P)-martingale on [0, T ] by Assumption 4.6, Pc +Pc is an (F,P)-martingale on [0, T ] by
the observation after Definition 2.5, Pc0 is a finite constant, and τcδ is an F-stopping time. The
processes Hc and Pc are bounded in L2 with respect to P by Assumption 4.6. The fact that the
martingale Pc + Pc = (E′t[PcT ])t≥0 is also bounded in L2 follows by Doob’s inequality:

E′
[

sup
t∈[0,T ]

E′t[PcT ]2
]
≤ 4E′

[
(PcT )2] ≤ 4E′

[
sup
t∈[0,T ]

(Pct )2

]
<∞. (4.3)

This completes the proof. �

28See Proposition A.21.
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4.2 Contra-assets and contra-liabilities valuation

We now consider the equations of the contra-assets add-ons CVA, FVA, and MVA, as well as
the relative contra-liabilities DVA, FDA, and MDA. In the previous section we have assumed
a martingale condition on the cash-flows processes H, F , and G resulting from the activities of
the CA desk. The last process associated to the activities of the CA desk still to consider is the
counterparty exposure cash-flows process C, which does not need to be a martingale. We have
already assumed that C is a (G,Q)-semimartingale on [0, τ̄ ] (see Assumption 4.1). Additionally,
as we anticipated in Remark 3.11 and by looking at (3.12) we know that C is a process of finite
variation, and C◦ is non-decreasing (but not necessarily the non-decreasing component of C, as
we can see by (3.14)).

For now we assume that the given fixed-point problem of the next definition are well-posed
in S◦2;29 see Section 5.3 for concrete well-posedness result.
Definition 4.9. We define the processes CA, CVA, FVA, MVA ∈ S◦2 as the solutions to the
following equations: for t ∈ [0, τ̄ ],

CAt = Et
[
C◦τ̄ + F◦τ̄ + G◦τ̄ − C◦t −F◦t − G◦t + CAτ1{τ<T}

]
, (4.4)

CVAt = Et
[
C◦τ̄ − C◦t + CVAτ1{τ<T}

]
, (4.5)

FVAt = Et
[
F◦τ̄ −F◦t + FVAτ1{τ<T}

]
, (4.6)

MVAt = Et
[
G◦τ̄ − G◦t + MVAτ1{τ<T}

]
. (4.7)

Let CVACL, FVACL, and MVACL be defined by
CVACL

t = Et
[
CVAτ1{τ<T}

]
, (4.8)

FVACL
t = Et

[
FVAτ1{τ<T}

]
, (4.9)

MVACL
t = Et

[
MVAτ1{τ<T}

]
, t ∈ [0, τ̄ ], (4.10)

which are the respective (G,Q)-valuation of the “bullet cash-flows” CVAτ1{τ<T}, FVAτ1{τ<T},
and MVAτ1{τ<T} at time τ̄ . Then, we define the processes DVA, FDA, and MDA as follows:
for t ∈ [0, τ̄ ],

DVAt = Et[C•τ̄ − C•t ] + CVACL
t , (4.11)

FDAt = Et[F•τ̄ −F•t ] + FVACL
t , (4.12)

MDAt := Et[G•τ̄ − G•t ] + MVACL
t . (4.13)

Moreover, let CL := DVA + FDA + MDA denote the contra-liabilities process. Last, we call fair
valuation of counterparty risk, denoted FV, the (G,Q)-valuation of the sum C + F + G +H.
Remark 4.10. Note that all the equations and fixed-point-problems of the previous definition,
as well as for the rest of the thesis, are intended to hold Q-.a.s. (or P-a.s., if applicable), in the
sense that there exists a measurable set A ⊆ Ω of probability one such that, for all ω ∈ A, the
equality holds at all times t (in [0, τ̄(ω)], or [0, T ], or as indicated).
Lemma 4.11. The following equalities between stochastic processes hold:

CA = CVA + FVA + MVA, (4.14)
FDA = FVA, (4.15)
MDA = MVA, and (4.16)
FV = CA− CL = CVA−DVA. (4.17)

29Meaning that they exist and are unique.

34



Furthermore, FV is equal to the (G,Q)-valuation of C.

Proof. By the assumption of uniqueness of the fixed-point problems above, if we insert the process
X := CVA + FVA + MVA in (4.4), we see that X = CA. This yields (4.14). To see (4.15), note
that for t ∈ [0, τ̄ ] we have

FDAt = Et
[
F•τ̄ −F•t + FVAτ1{τ<T}

]
= Et[F•τ̄ −F•t − (F◦τ̄ −F◦t )] + Et

[
F◦τ̄ −F◦t + FVAτ1{τ<T}

]︸ ︷︷ ︸
=FVAt

= FVAt − Et[Fτ̄ −Ft]︸ ︷︷ ︸
=0

= FVAt,

since F = F◦ −F• and F is a (G,Q)-martingale by Assumption 4.6. The exact same argument
with G in place of F yields (4.16). By linearity of the conditional expectation and Remark 4.7, it
is clear that FV is the (G,Q)-valuation of C. Using the same idea as above, we write C = C◦−C•
and obtain for all t ∈ [0, τ̄ ]:

FVt = Et[C◦τ̄ − C◦t − (C•τ̄ − C•t )] + CVACL
t − CVACL

t

= Et
[
C◦τ̄ − C◦t + CVAτ1{τ<T}

]
−
(
Et[C•τ̄ − C•t ] + CVACL

t

)
= CVA−DVA
= CVA + FVA + MVA− (DVA + FDA + MDA) = CA− CL.

This gives (4.17) and concludes the proof. �

Remark 4.12. Note that the processes CA and CL are the respective (G,Q)-valuation of the
contra-assets S and contra-liabilities B of Definition 3.23. In fact, for any t ∈ [0, τ̄ ]

Et[Sτ̄ − St] = Et
[
C◦τ̄ + F◦τ̄ + G◦τ̄ + CAτ1{τ<T} − C◦t −F◦t − G◦t − CAt1{t=τ<T}

]
+ Et[H◦τ̄ −H◦t ]

= Et
[
C◦τ̄ + F◦τ̄ + G◦τ̄ − C◦t −F◦t − G◦t + CAτ1{τ<T}

] (4.4)= CAt,

using that RC = CA, H = H◦ is a martingale, and Q [τ = t] = 0 since τ is totally inaccessible.
For the contra-liabilities we have, similarly,

Et[Bτ̄ − Bt] = Et
[
C•τ̄ + F•τ̄ + G•τ̄ + CAτ1{τ<T} − C•t −F•t − G•t − CAt1{t=τ<T}

]
= Et[C•τ̄ − C•t ] + Et

[
CVAτ1{τ<T}

]
+ Et[F•τ̄ −F•t ] + Et

[
FVAτ1{τ<T}

]
+ Et[G•τ̄ − G•t ] + Et

[
MVAτ1{τ<T}

]
= DVAt + FDAt + MDAt = CLt,

using that CA = CVA + FVA + MVA and Definition 4.9.

Proposition 4.13. The trading loss process of the CA desk Lca is a (G,Q)-martingale on [0, τ̄ ]
without jump at τ , and it is bounded in L2 with respect to Q, that is Lca ∈ S2 ∩Mτ−∧T (G,Q).
Therefore, the trading loss process L is also a (G,Q)-martingale on [0, τ̄ ] without jump at τ
bounded in L2 with respect to Q.

Proof. The process H = H◦ is a (G,Q)-martingale with no jump at τ by Assumption 4.6. The
process given by

CAt + C◦t + F◦t + G◦t
(4.4)= Et

[
C◦τ̄ + F◦τ̄ + G◦τ̄ + CAτ1{τ<T}

]
, t ∈ [0, τ̄ ],

35



is a (G,Q)-martingale on [0, τ̄ ], since the random variable C◦τ̄ + F◦τ̄ + G◦τ̄ + CAτ1{τ<T} is a Q-
integrable random variable (since everything is bounded in L2 by our assumptions). As CA0 is
constant, we see from (3.20) that Lca is actually a (G,Q)-martingale on [0, τ̄ ]. Since CA ∈ S◦2,
CA is without jump at τ ; all the other summands in (3.20) are also stopped before τ , so Lca
is without jump at τ . As all the summands in Lca are in S2, so is Lca. By Definition 3.29,
L = Lca + (Lcl)◦, where (Lcl)◦ a (G,Q)-martingale in S2 by Proposition 4.8 and Corollary 2.2.

�

Remark 4.14. We observe that the contra-assets CVA, FVA, and MVA also take into account
for the impact of the default of the bank itself, besides that of the clients. Indeed, the residual
amount CAτ1{τ<T} = RCτ1{τ<T} on the reserve capital account flows from shareholders to
bondholders at τ , as per Assumption 3.21. However, as we see in Section 6.2, the resulting XVAs
are unilateral in a certain sense. The contra-liabilities DVA, FDA, and MDA accounts for the
windfalls C•, F•, and G• at bank’s default, which depends on the agreements of the bank with the
clients and the external funder (see Section 6.1 for a more concrete example); they also include
the contra-liability components CVACL, FVACL, and MVACL. The latter quantities can be seen
as a gain for the bank (particularly for the bondholders) coming from the residual amount on
the reserve capital

CVAτ1{τ<T} + FVAτ1{τ<T} + MVAτ1{τ<T} = RCτ1{τ<T},

which is not payed to the clients and external funder after the default of the bank.

Remark 4.15. The reason for the name “fair valuation of counterparty risk” of the process FV
given in [AC18, Section 5.3] is that, under the assumption that the bank would be able to hedge
against its own default by selling the contra-liabilities cash-flow B = C•+F•+G•+CAτ1JτK (in
the sense that the bank would pay the amount C•τ + F•τ + G•τ + CAτ at τ to a third party), the
bank would receive the (G,Q) valuation CL of this cash-flow and use it to (partially) cover the
needed amount CA. In such a case, the only amount required by the CA desk to reach RC = CA
would be FV = CA− CL. Observe that this amount would be initially provided by the clients,
with the payment FV0 at time t = 0, and then by the shareholders (using their capital), covering
the difference FVt − FV0 at each t > 0 (in a similar way as described after Definition 3.29).
Moreover, note that in this situation the bondholders do not receive the contra-liabilities cash-
flow B at default. This would significantly reduce their recovery at default and, by consequence,
it is against the “pari passu” rules protecting bondholders.

Since by Assumption 3.3 the bank cannot hedge its own default exposure, in reality we have
that the clients and shareholders pay together the whole amount CA0 + (CA − CA0) = CA to
the CA desk. This is the (minimal) amount needed to cover the expected future counterparty
default and risky funding costs, even though this also includes the additional amount CL, which
can be seen as the portion of CA (always in conditionally expected terms) that will not be used
to actually cover counterparty default and funding costs, due to the default of the bank. So this
is a “gift” to the bondholders (from clients and shareholders); however, as explained in [AC18,
Section 5.3], it is “not necessarily a positive arbitrage,” since bondholders have to cover the
bankruptcy costs after the default of the bank.

Requiring this additional component as value adjustment form the clients is what makes the
resulting XVAs unilateral, as opposed to bilateral. See the relative discussion in Section 6.2.
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4.3 Capital at risk and cost of capital

As discussed in Section 3.1.1, for the bank it is not only problematic to hedge against its own
default exposure, but also against that of the clients. So, by regulatory requirement, the bank
has to to protect itself—and, by consequence, protecting other clients making the default of
the bank less likely—by setting at risk an amount called capital at risk (CR). As the expected
losses due to counterparty default and risky funding are already covered by the reserve capital
RC = CA, the CR is used for the losses beyond expectation. The CR is formed by the amounts
SCR and RM:

CR = RM + SCR. (4.18)

Recall that the RM=KVA is provided by the clients at inception via KVA0 with the share-
holders covering the difference KVA−KVA0 afterwords. Hence, we assume (as in [AC18]) that
the RM is “loss-absorbing”, and hence it is part of CR. Indeed, in Subsection 3.2.3, we declared
that the function of RM is to compensate the shareholders for their capital at risk SCR at a
certain given hurdle rate h. But this is a decision of the bank’s management;30 a failed RM
payment to shareholders is not a materiality for default (while failed counterparty default and
risky funding payments are), so RM is not an actual liability for the bank.

The actual minimum amount of capital at risk needed by regulation is the economic capital
(EC), which we assume31 to be the 97.5% expected shortfall of the negative of the variation over
a one-year period of CET1.32 By (3.24), we know that the variation of CET1 is −L. Typically,
this capital calculation are made under the assumption that the bank cannot default, that is “on
a going concern”. This means, in our setup, that the (F,P) valuation is used:

Definition 4.16. The stochastic process EC, denoting the economic capital, is defined at each
time t ∈ [0, T ] as the (Ft,P) conditional 97.5% expected shortfall of

(
L′(t+∆)∧T − L′t

)
, where L′

is the F-optional reduction of L and ∆ denotes a period of one year.

Lemma 4.17. EC is non-negative.

Proof. By Corollary 2.2, the F-optional reduction L′ of the loss process L is an (F,P)-martingale
on [0, T ], and thus E′t[L′(t+∆)∧T − L′t] = 0, for all t ∈ [0, T ]. Then, the result follows from
Lemma C.4. �

Thus, once we have determined CA by (4.4), we can obtain the processes L and L′, we
calculate EC as above, and then we require that CR ≥ EC. Additionally, we said that CR includes
the risk margin RM, which by Assumption 3.18 is mark-to-model to KVA. In the following we
turn our focus to this last valuation adjustment. First, let

CR = max (EC,KVA) . (4.19)

Note that, once KVA is computed, we can determine the mark-to-model of SCR as per
Assumption 3.18 as

SCR = CR− RM = (EC−KVA)+
. (4.20)

Next, to establish the KVA equation, we need to know the target hurdle rate h.
30In practice, where there are many banks competing with each other, the level of compensation to shareholders

for their capital at risk is strongly influenced by the market.
31As in [AC18, Section 5.4].
32See Appendix C for a summary on the expected shortfall.
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Assumption 4.18. The hurdle rate h ≥ 0 is constant and exogenously give.

Goal: We want that the payments from the KVA desk to the shareholders remunerating them
for their capital at risk are as follows: at any t ∈ [0, τ̄ ],

“shareholders’ instantaneous average return” = hSCRt. (4.21)

For the cost-of-capital computation, we assume again that the bank is default prone and
we use the (G,Q) valuation. The shareholders return is given by the dividends cash-flow D =
−(L+KVA−KVA0) defined in Assumption 3.30. Given our general assumptions, it is reasonable
to assume that KVA is a (G,Q)-semimartingale on [0, τ̄ ], that is, there is a (G,Q)-local martingale
M and a process of finite variation A, both defined on [0, τ̄ ] and started from zero, such that
KVA = KVA0 +M−A. If we assume KVA ∈ S◦2, then KVA is a special semimartingale bounded
in L2 and we can assume that the decomposition above is the unique canonical decomposition
(see Proposition-Definition A.26). Let us assume that the finite variation part A of KVA is given
by

dAt = hSCRtdt.
In such a case we simply say that KVA has the drift coefficient hSCR. Then, A is continuous
non-decreasing and, noting that

SCR = CR−KVA = max (EC,KVA)−KVA = (EC−KVA)+ ≤ EC, (4.22)

we have

E

 sup
0≤t≤T
t<τ

|At|2
 = E

[
|Aτ̄ |2

]
= E

[(∫ τ̄

0
hSCRtdt

)2]

≤ h2T 2E

[∫ T

0
1{t<τ}EC2

tdt

]
≤ h2T 2E

[∫ T

0
eΓt1{t<τ}EC2

tdt

]
.

Therefore, if we assume EC ∈ L2 (recall its definition in (2.7)), then A is bounded in L2 and
so is M = KVA−KVA0−A. Thus, M is a true martingale, and KVA is a supermartingale with
drift coefficient A, which means that the “shareholders’ instantaneous average return” is equal
to hSCRt, at any t ∈ [0, τ̄ ], as we wanted.

So, to finally write the KVA equation, we need the following assumption:
Assumption 4.19. EC ∈ L2.

As in Definition 4.9, we assume that the next problem is well-posed in S◦2 (see Section 5.2
for the well-posedness).
Definition 4.20. We define the process KVA ∈ S◦2 as the (G,Q)-special semimartingale on
[0, τ̄ ] with canonical decomposition KVA = KVA0 +M −A such that

dAt = h (ECt −KVAt)+
dt, t ∈ [0, τ̄ ]. (4.23)

Theorem 4.21. Under the assumption that the fixed-point problem of Definition 4.20 is well-
posed in S◦2, the shareholders’ wealth SHC = SCR + UC is a (G,Q)-submartingale on [0, τ̄ ]
without jump at τ given by

SHC = SHC0 − (L + KVA−KVA0) = SHC0 − L−M +A, (4.24)

where M is a (G,Q)-martingale and At =
∫ t

0 hSCRs ds, t ∈ [0, τ̄ ]; that is, SHC has the drift
coefficient hSCR. Moreover, SHC ∈ S2.
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Proof. By (3.22), SHC = SHC0 − (L + KVA−KVA0), where SHC0 is a constant and KVA −
KVA0 = M−A is the canonical decomposition of the (G,Q)-special semimartingale KVA−KVA0
as in Definition 4.20. In the discussion above we have seen that, under Assumption 4.19 and
with (4.23), M ∈ S2 is a true martingale on [0, τ̄ ] with no jump at τ , and the non-decreasing
component A is as wanted. Since KVA ∈ S◦2, KVA has no jump at τ , and, by Proposition 4.13,
we conclude that SHC is a (G,Q)-submartingale on [0, τ̄ ] with no jump at τ that is in S2. �

Remark 4.22. As stressed in [AC18], the main purpose of this concept of KVA is to have a
“sustainable dividend release strategy,” where sustainable means that, even without new trades
(since we assumed a run-off view; see also the incremental approach in the next section), the
shareholders can be repaid at the hurdle rate h for their capital at risk.

Remark 4.23. Note that, if h = 0, then KVA = 0 and SHC is a martingale. Such a situation
could only be accepted by risk-neutral shareholders. So we can see h as a risk-aversion parameter
of the shareholders; see [AC18, Appendix B.4] for a discussion in a one-period static setup.

4.4 Incremental XVA approach

Up to now we worked under the run-off assumption (see Assumption 3.1). In this subsection
we expose how to introduce new trades in our model, maintaining the equilibrium given by the
“shareholders’ balance conditions” of the previous subsections, which means that the following
equalities hold on [0, τ̄ ]:

CM = MtM, RC = CA, RM = KVA, (4.25)

where MtM, CA, and KVA are given respectively by (3.3), (4.4), and (4.23). Of course, a
new trade at a certain time θ > 0 may alterate the values of MtM, CA, and KVA, and thus the
bank would have to charge the new client the right add-ons, to preserve the above equilibrium.
This has to be done in such a way that the shareholders, which are in control of the bank
before default, are indifferent to the new deal, in the sense that the shareholders’ wealth SHC
is unchanged (in particular, no losses for the shareholders) and the hurdle rate h is preserved.
More precisely:
Goal: The entry price of the new deal should be such that the shareholders’ balance condition
(4.25) is preserved—with the same, constant hurdle rate h ≥ 0 of Assumption 4.18—without
modification of SHC.

Remark 4.24. The advantage of the run-off view in the computation of the MtM, CA, and
KVA is that they can be interpreted as the target amounts to be maintained on the clean
margin, reserve capital, and risk margin accounts (see Assumption 3.18), so that the bank, if
desired, could go into run-off at any time (not only at time 0) without giving up the interest
payments to the shareholders at the hurdle rate h. This possibility is referred to in [AC18] as
the “soft landing option”. In other words, this means that the bank does not necessarily need
new trades to sustain the already existing business (and, in particular, the shareholders’ interest
payments), like in a “Ponzi scheme”.

Thus, we now introduce a scheme that describes how to manage the new deal, in order to
achieve the above goal, but then, between one new deal and the other, we always work under the
run-off assumption, in the sense that the values of the processes (MtM, XVA, and so on) after
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the new deal are computed using the same rules as in the previous chapters. This guarantees
the soft landing option after each new deal.

Suppose that at a positive time θ > 0 a new deal is made, and denote by P the cumulative
contractually promised cash-flows on [θ, T ]. The clean valuation of the new deal at time θ is

Pθ := E′θ [PT − Pθ] .

Clearly, the new deal is not part of a netting set already involved in a liquidation procedure, in
the sense that either a new netting set is created, or the new deal is part of a netting set c with
θ < τc. For a process Y (e.g. Y = MtM or XVA), we denote by ∆θY the difference of the values
of Y at time θ computed with and without the new deal. Hence, ∆θMtM = Pθ.

Assumption 4.25. We assume that the following pricing and accounting scheme takes place
when a new deal is made at time θ > 0.

• If Pθ > 0, the clean desks pay Pθ to the client and the CA desk provides a rehypothecable
cash collateral of value Pθ (partially posted by the client of the new deal as a VM, the rest
being covered through unsecured funding) that flows into the CM account. If Pθ < 0, the
client pays −Pθ to the clean desks and an amount of value −Pθ is withdrawn from the CM
account by the CA desk and posted as collateral to the client.33

• If ∆θCA > 0, the client pays ∆θCA to the CA desk that puts this amount in the RC
account; if ∆θCA < 0, an amount of value −∆θCA is withdrawn from the RC account and
is passed from the CA desk to the client;

• if ∆θKVA > 0, the client pays ∆θKVA to the KVA desk that puts this amount in the RM
account; if ∆θKVA < 0, an amount of value −∆θKVA is withdrawn from the RM account
and is passed from the KVA desk to the client.

At the same time, we assume that the clean desks may set up a hedge, (partially) offsetting P,
and any required initial margin is posted by the client or the bank (depending on the sign of
Pθ).

Using this scheme, the goal above is achieved:

Proposition 4.26. Under Assumption 4.25, the shareholders’ balance condition (4.25) and the
hurdle rate h are preserved, and ∆θSHC = 0.

Proof. It is easy to see that, following the scheme of Assumption 4.25, we have

∆θMtM = Pθ = ∆θCM, ∆θCA = ∆θRC, ∆θKVA = ∆θRM.

Hence, the shareholders’ balance condition (4.25) is preserved, and, since the KVA with and
without the new trade is computed using the same h (see (4.23)), the hurdle rate h is also
preserved. As the amounts ∆θMtM, ∆θCA and ∆θKVA on the clean margin, reserve capital,
and risk margin accounts are provided by34 the client (and partially by the CA desk through
risky funding, in case that the collateral posted by the client is less than ∆θMtM = Pθ), there
is no loss for the shareholders, in the sense that ∆θSHC = 0. �

33Possibly, the amount posted as rehypothecable collateral to the client in this case may not be the whole −Pθ
but only a part of it, depending on the collateral agreements. In any case, the amount withdrawn from the CM
account stays exactly −Pθ.

34Or “received by”, if negative.
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Definition 4.27. The all-inclusive XVA add-on that the client of the new deal pays to the bank
at time θ is called funds transfer price (FTP) and is given by

FTP : = ∆θCA + ∆θKVA
= ∆θCVA + ∆θFVA + ∆θMVA + ∆θKVA = ∆θFV + ∆θCL + ∆θKVA.

(4.26)

Remark 4.28. We see from (4.26) that the only XVAs that affect the entry price of the new
deal are CVA, FVA, MVA, and KVA. Note also that the current portfolio of the bank before
the new deal influences the FTP; it may happen that the new trade reduces the risk of the total
portfolio of the bank, resulting in a negative price: FTP < 0.

As anticipated above, between one deal and the other we always work under the run-off
assumption. More precisely:

Assumption 4.29. We assume the following cost-of-capital XVA rolling strategy:

• between time 0 and the next deal, we assume the run-off view in the computation of the
amounts MtM, CA, and KVA, obtaining the shareholders’ balance condition (4.25);

• at the time of the next deal (whenever finite), which we assume to be a G-stopping time
θ > 0, we proceed as in Assumption 4.25;

• after that, we assume again the run-off view, and iterate the same strategy at every new
trade.

So, after each new trade all the processes and amounts in the different banking accounts (in
particular, the trading process L and the XVAs) are recalculated relatively to the new portfolio
of the bank, which includes the new trade. Observe that we may have more the one new trade
at the same time θ. This does not change the rolling strategy; in fact, at each time new deals
are made, the portfolio is updated accordingly, taking into account all the new deals. Hence, we
can assume without loss of generality that the successive times at which new trades occur form
an increasing sequence of G-stopping times (θi){i≥1} such that θi < θi+1 on {θi <∞}, for i ≥ 1.

For the statement of the next theorem, let us extend the processes introduced up to now (in
particular, L, KVA, and SHC) from [0, τ̄ ] to [0, τ ] ∩ [0,∞[ by constancy from time T onward.

Theorem 4.30. Under the Assumption 4.29 and assuming that the processes L and KVA relative
to each successive portfolio do not jump at the time of the following deal, SHC is a (G,Q)-
submartingale on [0, τ ] ∩ [0,∞[ with drift coefficient hSCR.

Remark 4.31. If we assume that the times of the new deals are G-predictable stopping times
(and recall that the filtration G is quasi-left-continuous), then the martingales L and

M := KVA−
∫ ·

0
hSCRs ds

(compare with Definition 4.20) do not jump at these times, by Proposition A.10. Since the
finite variation part of KVA is continuous, KVA does not jump at predictable times too. The
assumption that the new deals happen at predictable times appears intuitively reasonable.

Proof of Theorem 4.30. Let us first focus on the period between time 0 and the first new deal
(assumed to be just one, without lost of generality), happening at the G-predictable time θ1 > 0.
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We also assume that θ1 < τ ,35 since otherwise nothing would have to be done. For a generic
process Y (that can be L, KVA, or SHC), let us denote by Ỹ the process on [0, τ ∧ θ1] without
the new deal, while the notation Y is the “true” process considering all the successive new deals,
as per Assumption 4.29. Thus, Y = Ỹ on [0, τ ]∩ [0, θ1[, and at time θ1 it holds Yθ1 = Ỹθ1 +∆θ1Y
(using the notation ∆θ· introduced before the Assumption 4.25 with θ = θ1). By Theorem 4.21,
we know that on [0, τ ] ∩ [0, θ1[

SHC = S̃HC = S̃HC0 −
(
L̃ + K̃VA− K̃VA0

)
= SHC0 − (L + KVA−KVA0)

is a (G,Q)-submartingale with drift hSCR = hS̃CR. By our assumption, L̃, and K̃VA do not
jump at θ1, and, by Proposition 4.26, ∆θ1SHC = 0. Thus, on [0, τ ∧ θ1], SHC is a (G,Q)-
submartingale with drift hS̃CR, and

SHC = SHC0 −
(
L̃ + K̃VA−KVA0

)
.

Since at time θ1 the processes SHC, L, and KVA (as well as the others) are re-calibrated to the
new portfolio including the new trade (in particular, KVA is set to make sure that (4.24) still
holds after θ1), from time θ1 onward we have

SHC = SHCθ1 − (L− Lθ1 + KVA−KVAθ1) ,

where L − Lθ1 and KVA − KVAθ1 are respectively a (G,Q)-martingale and supermartingale
on [θ1, τ ] ∩ [0, θ2[ and KVA − KVAθ1 has the drift coefficient hSCR. By “glueing together”
the submartingale SHC before and after θ1, we obtain that SHC is a (G,Q)-submartingale on
[0, τ ] ∩ [0, θ2[, with drift coefficient hSCR and without jump at θ1. Iterating the same argument
for each successive new trade, we obtain the result. �

Remark 4.32. From the above proof we can observe that the (as we called them) “true”
processes L and KVA considering all the successive new trades may actually jump at θ1, since,
for example,36

∆Lθ1 = Lθ1 − Lθ1− = Lθ1 − L̃θ1− = Lθ1 − L̃θ1 = ∆θ1L,

as L̃ does not jump at θ1. Including the new trade in the portfolio may alter the loss process L
of the bank, so in general ∆Lθ1 6= 0. The same applies to KVA. Now, as SHCθ1 = S̃HCθ1 , on
[θ1, τ ] ∩ [0, θ2[ it holds

SHC = SHCθ1 − (L− Lθ1 + KVA−KVAθ1)

= SHC0 −
(
L̃θ1 − L0 + K̃VAθ1 −KVA0

)
− (L− Lθ1 + KVA−KVAθ1)

= SHC0 − (L− L0 −∆Lθ1 + KVA−KVA0 −∆KVAθ1) ,

where the contributions ∆Lθ1 and ∆KVAθ1 are provided by the client via the FTP. Last, note
that while SHC does not jump at θ1, SCR = (EC−KVA)+ may.

Remark 4.33. The same as in Theorem 4.30 holds with (F,P) instead of (G,Q) if we replace
all the processes with their F-optional reduction and set τ = ∞. To see this, note that, by the
uniqueness of the F-optional reduction (see Lemma B.11), the F-optional reduction of a sum of

35This implies assuming θ1 <∞.
36Note that the notation ∆X, for a generic process X, is the usual notation we use for the jump process

∆Xt = Xt −Xt−, t ≥ 0; see (A.4).
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processes is the sum of the F-optional reductions. Furthermore, the F-optional reduction of the
process A = hSCR�λ is A′ := hSCR′ �λ. Indeed, A′ is an F-optional process on [0, T ] with

A′1J0,τJ =
∫ ·

0
1{s<τ}SCR′sds1J0,τJ =

∫ ·
0
1{s<τ}SCRsds1J0,τJ = A1J0,τJ.

Hence, by repeating the same argument as in the proof of Theorem 4.30, if the F-optional
reductions37 L′ and KVA′ relative to each successive portfolio have no jump at the time of the
following deal, then SHC′ (the F-optional reduction of SHC) is an (F,P)-submartingale on [0,∞[
with drift coefficient hSCR′.

37By Corollary 2.2, L′ is an (F,P)-martingale on [0, T ] and KVA′ = M ′ − hSCR′ �λ is an (F,P)-submartingale
on [0, T ] with drift hSCR′.
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5 Well-Posedness of the XVA Equations

In this chapter we prove the well-posedness of the XVA equations derived in the previous chap-
ter. In Section 5.1 we simplify slightly the general assumptions we used so far, and afterwards
we show the well-posedness of the KVA equation (Section 5.2) and CVA, FVA, and MVA equa-
tions (Section 5.3), by first writing them in an “F-reduced form”, and then using the theory of
invariance times developed in Appendix B to come back to the well-posedness of the original
equation.

5.1 Fine-Tuning of the Assumptions

In the incremental XVA approach we have seen that, at each new trade, the XVA computations
of the new portfolio are performed under the run-off assumption. Hence, in this chapter we
continue to work under Assumption 3.1 and study the well-posedness of the XVA equations of
Section 4.2 and 4.3, which were also constructed using this assumption.

Moreover, we add some further simplifying assumptions. Firstly, we assume that the clean
desks perfectly hedge all the market risk of the portfolio, resulting in a vanishing clean desks
trading loss process Lcl = 0. As explained in [AC20], this is a natural assumption; in fact, by
the Volcker rule,38 a dealer bank is not allowed to do “proprietary trading.” Secondly, we also
conservatively assume that the CA desk does not hedge against counterparty risk, that is, H = 0.

Assumption 5.1. We assume that Lcl = 0 and that H = 0.

We immediately get by Definition 3.28:

L = Lca = CA− CA0 + C◦ + F◦ + G◦. (5.1)

So the computation of the loss process L, which is used to determine the economic capital
EC in the KVA equation (see Section 4.3), needs the process CA. On the other hand, the cash-
flows C, F , and G, which are used in the CA computation, take as input the clean valuation
of the portfolio of the bank, that is, the processes Pc and MtM. This is intuitively clear for
the credit exposure cash-flows C, since the credit exposure of a trade depends on the market
value of the trade itself (see (3.12)-(3.13)-(3.14)). The risky funding processes F and G arise
to finance collateral posting, which directly depends on the MtM of the portfolio of the bank
( see also Section 6.1 for a concrete example). Therefore, we see a connection between MtM,
CA = CVA+FVA+MVA, and KVA, which are the processes representing the target values on the
clean margin, reserve capital, and risk margin accounts, respectively (as per shareholders’ balance
condition (4.25)), and as such they describe the bank’s derivative portfolio pricing problem as
a whole. This connection makes the MtM, CA, and KVA equations a “self-contained problem
under the cost-of-capital XVA approach.”39

In this thesis we are more interested in the valuation of XVAs, so we leave aside the valuation
of MtM and we assume it to be given, in the sense that we assume that Q is the risk-neutral
measure used for pricing the promised cash-flows Pc to obtain the (market consistent) clean
valuations of the derivative trades of the bank.

Finally, we assume, as in [AC18], that the capital CET1= CR + UC is not used for funding
purposes:

38See, for example, [FR].
39As defined in [AC18].
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Assumption 5.2. We assume that the bank does not use its equity capital CET1 for funding
purposes.

In (6.32) we describe how we can change this assumption in the concrete setup of the Sec-
tion 6.1. See also [CSS20].

5.2 The KVA equation

5.2.1 The case of a default-free bank

In this subsection we assume that the bank cannot default, that is, τ =∞ and (F,P) = (G,Q).40

In the next subsection we extend the result to the general case of a defaultable bank. To
differentiate between the general results and the ones obtained under the no-default assumption,
where F = G, we use the notation “·′”. The results of this subsection will be then interpreted as
an F reduction (optional or predictable, as appropriate) of the ones of the next subsection, and
will help us solve the general case.

Since τ = ∞, we have that the Azéma supermartingale S is constant equal 1, so Q = 1
and D = 0 (using the notation of Appendix B.1). Thus Γ = γ′ � λ = 1

S−
� D = 0 and we

easily see by (2.1) that S◦2 = S′2. By Definition 4.20 and Theorem 4.21, KVA′ ∈ S′2 is an
(F,P)-supermartingale on [0, T ] with finite variation component given by

−At := −
∫ t

0
h
(
ECs −KVA′s

)+
ds, t ∈ [0, T ],

if it exists. So KVA′ = KVA′0 + M − A, where M is an (F,P)-martingale of class(D) on [0, T ]
started from 0. Note that we do not write EC′, since the economic capital is already assumed to
be F-adapted in Definition 4.16. Moreover, by Assumption 4.19 and since τ =∞, EC ∈ L2 = L′2.
Assuming existence of such a supermartingale KVA′, we have

KVA′t = E′t
[
KVA′t

]
= E′t

[
KVA′t −KVA′T︸ ︷︷ ︸

=0

]
= −E′t[MT −Mt]︸ ︷︷ ︸

=0

+E′t[AT −At],

for any t ∈ [0, T ]. Hence, if KVA′ exists, it solves the following fixed-point problem:

KVA′t = E′t

[∫ T

t

h
(
ECs −KVA′s

)+
ds

]
, t ∈ [0, T ]. (5.2)

Conversely, if we assume that KVA′ ∈ S′2 satisfies (5.2) and

M := KVA′ +
∫ ·

0
h
(
ECs −KVA′s

)+
ds ∈ S2(F), (5.3)

then

E′t[MT −Mt] = E′t

[
KVA′T −KVA′t +

∫ T

t

h
(
ECs −KVA′s

)+
ds

]
= 0, ∀ t ∈ [0, T ],

40Indeed, by (B.4), if τ =∞ we have dP
dQ = 1, as the Azéma supermartingale S would be constant equal 1.
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that is, M is a true (F,P)-martingale of class(D) and KVA′ = M −
∫ ·

0 h(ECs − KVA′s)+ds
satisfies Definition 4.20. We conclude that, in the case τ = ∞, solving the fixed-point problem
in the definition of KVA′ is equivalent to find a process KVA′ ∈ S′2 with (5.2)-(5.3).41 To
put this problem in the form of a BSDE as in Section A.2, we write the martingale M as in
Proposition A.32 (with W one-dimensional standard Brownian motion and µ a homogeneous
Poisson random measure on Ω×B([0,∞[)×B(U), U ⊆ Rm \ {0}, as in Section A.2):

M =
∫ ·

0
ZsdWs +

∫ ·
0

∫
U
ψs(u)µ̃(du, ds) +N,

where Z ∈ L2
loc(W ), ψ ∈ G(µ), and N is an (F,P)-local martingale on [0, T ] orthogonal to W

and µ, in the sense of (A.15). Note that, if KVA′ ∈ S′2 satisfies (5.2)-(5.3), then, P-a.s. for all
t ∈ [0, T ],

KVA′t = −
(
KVA′T −KVA′t

)
=
∫ T

t

h
(
ECs −KVA′s

)+
ds− (MT −Mt)

=
∫ T

t

h
(
ECs −KVA′s

)+
ds−

∫ T

t

ZsdWs −
∫ T

t

∫
U
ψs(u)µ̃(du, ds)−

∫ T

t

dNs.

(5.4)

Last, before we focus on the well-posedness of the latter BSDE, we introduce a similar fixed-
point problem: for given C ′ ∈ L′2 such that C ′ ≥ EC ≥ 0, K ′ ∈ S′2 satisfies

K ′t = E′t

[∫ T

t

h (C ′s −K ′s) ds
]
, t ∈ [0, T ]. (5.5)

As above, this problem can be written as a linear BSDE of the form

K ′t =
∫ T

t

h (C ′s −K ′s) ds−
∫ T

t

ZsdWs +
∫ T

t

∫
U
ψs(u)µ̃(du, ds)−

∫ T

t

dNs. (5.6)

Lemma 5.3. i) The BSDE (5.6) is well posed in S′2 with solution

K ′t = hE′t

[∫ T

t

e−h(s−t)C ′sds

]
, t ∈ [0, T ]; (5.7)

ii) the BSDE (5.4) is well posed in S′2.

Recall that by well-posedness we mean both existence of a unique solution in S′2 and com-
parison (in the sense of Proposition A.35).

Proof. We only prove the well-posedness for BSDE (5.4), as the other one can be proved similarly.
By Proposition A.34 and Proposition A.35,we need to check that the function

f : Ω× [0, T ]× R −→ R, (ω, t, y) 7→ h (ECt − y)+

satisfies (H1), (H2), and (H4) (the measurability of f is clear, as EC is F-progressive). As usual,
we omit the dependence on ω ∈ Ω. It is easy to see that f is continuous in y and, for any
y, y′ ∈ R, (

f(t, y)− f(t, y′)
)
(y − y′) ≤ h(y − y′)2,

41This is comparable to [AC20, Definition 4.1].
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which gives (H1) with α = h. Let r > 0. Then,

E′
[∫ T

0
sup
|y|≤r
|f(t, y)− f(t, 0)|dt

]
= hE′

[∫ T

0
sup
|y|≤r

∣∣(ECt − y)+ − ECs
∣∣dt]

≤ hE′
[∫ T

0
(2ECt + r)dt

]

≤ h

Tr + 2
√
TE′

(∫ T

0
EC2

tdt

) 1
2
 <∞,

using Hölder’s inequality and that EC ∈ L′2. This gives (H2). Since f(·, 0) = (EC·−0)+ = EC ∈
L′2, (H4) is also satisfied. This shows that a unique solution KVA′ ∈ S2(F) to the BSDE exists
(that is, KVA′ is a càdlàg adapted process bounded in L2), and that the comparison result holds.
Finally, since KVA′T = 0, we can conclude that the unique solution of the BSDE (5.4) is in S′2.
This shows the well-posedness of the KVA′ BSDE in S′2. Let us now show that the solution
of (5.6) is actually of the form of (5.7). Assume that (K ′, Z, ψ,N) is the unique L2-solution of
(5.6), and let βt := e−ht, for t ∈ [0, T ]. Then, by Itô’s formula,42

d(βtK ′t) = −he−htK ′tdt− e−hth(C ′t −K ′t)dt+ e−ht
[∫
U
ψt(u)µ̃(du, dt) + ZtdWt + dNt

]
,

where the last summand is a true martingale by Remark A.33, because (Z,ψ,N) ∈ L2×L2
µ×M2,⊥

by Proposition A.34 (recall the notation in (A.19)-(A.20)-(A.21)). Therefore,

e−htK ′t = Mt −
∫ t

0
he−hsC ′sds, t ∈ [0, T ],

for some (F,P)-martingale M ; using K ′T = 0, we obtain

e−htK ′t = −E′t
[
e−hTK ′T − e−htK ′t

]
= E′t

[∫ T

t

he−hsC ′sds

]
,

From which it immediately follows (5.7). This concludes the proof. �

Remark 5.4. It is easy to see that, for the unique L2-solutions of the BSDEs (5.4) and (5.6), the
processes KVA′ and K ′ respectively solve the fixed-point problems (5.2) and (5.5). In particular,
KVA′ uniquely solves the problem given by (5.2)-(5.3), which is equivalent to say that the KVA
equation of Definition 4.20 (in the case τ =∞) is well-posed.

Note that, since C ′ ≥ 0, K ′ is also non-negative. Moreover, by uniqueness of the solution we
can write K ′ = K ′(C ′). Let us define the set

C′ :=
{
C ′ ∈ L′2

∣∣∣C ′ ≥ max
(
EC,K ′(C ′)

)}
. (5.8)

This can be interpreted as a set of admissible capital at risk processes, since C ′ ≥ EC satisfies
the capital requirements of Section 4.3 and K ′(C ′) plays the role of the risk margin, which is
part of the capital at risk. Recall that, by (4.19) (and since we are assuming τ = ∞), we have
CR′ = max(EC,KVA′), where KVA′ is the unique solution of (5.4).

42See Theorem A.29.
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Lemma 5.5. We have KVA′ = K ′(CR′), that is

KVA′t = hE′t

[∫ T

t

e−h(s−t) max
(
ECs,KVA′s

)
ds

]
, t ∈ [0, T ]. (5.9)

Proof. By definition of CR′, we have that
(
EC−KVA′

)+ = CR′−KVA′, and thus, for t ∈ [0, T ],

KVA′t = E′t

[∫ T

t

h
(
CR′s −KVA′s

)
ds

]
,

which means that KVA′ ∈ S′2 solves the linear BSDE (5.6) for C ′ = CR′ ∈ L′2. By uniqueness
of the solution, it follows KVA′ = K ′(CR′), and (5.9) is obtained by inserting C ′ = CR′ in
(5.7). �

Proposition 5.6. Using the above notation, on the interval [0, T ] the following holds:

i) CR′ = minC′;

ii) KVA′ = minC′∈C′ K ′(C ′);

iii) The process KVA′ is non-decreasing in the hurdle rate h.

Remark 5.7. The minimum here is intended with respect to the usual order relation “≤”,
where, for two stochastic processes X and Y ,

X ≤ Y ⇔
{

(ω, t) ∈ Ω× [0,∞[ |Xt(ω) > Y(ω)
}
is an evanescent set,

in line with [HWY92, Definition 4.9] (see also the definition of evanescent set in Definition A.4).

Proof of Proposition 5.6. Since EC ∈ L′2 and KVA′ ∈ S′2 ⊆ L′2, CR′ ∈ L′2, and hence CR′ ∈ C′,
because

CR′ = max(EC,KVA′) = max(EC,K ′(CR′)).

Let C ′ ∈ C′. Then, P-a.s. for any t ∈ [0, T ],

f(t,K ′t(C ′)) = h
(
ECt −K ′t(C ′)

)+ ≤ h(C ′t −K ′t(C ′))+ = h
(
C ′t −K ′t(C ′)

)
.

Hence, the generator of the KVA′ BSDE (5.4) is always smaller or equal to the one of the K ′
linear BSDE (5.6) if both generators are evaluated at the solution K ′(C ′) of the second BSDE.
Therefore, by the comparison principle of Proposition A.35, we have that KVA′ ≤ K ′(C ′). As
CR′ ∈ C′ and KVA′ = K ′(CR′), item ii) is proved. This also yields item i), as

C ′ ≥ max(EC,K ′(C ′)) ≥ max(EC,KVA′) = CR′, ∀C ′ ∈ C′.

The last item follows again by the comparison principle applied to the KVA′ BSDE (5.4) with two
different hurdle rates h1 ≤ h2. Indeed, as EC ≥ 0, the coefficient of the BSDE is non-decreasing
in h. This completes the proof. �
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5.2.2 The case of a defaultable bank

Now we remove the assumption τ = ∞ and study the KVA equation in the general invariance
times setup. Recall that, by Definition 4.20 and Theorem 4.21, the process KVA ∈ S◦2, if it
exists, is a (G,Q)-supermartingale on [0, τ̄ ] without jump at τ and with finite variation part
given by −A, where

At :=
∫ t

0
h
(
ECs −KVA′s

)+
ds, t ∈ [0, τ̄ ].

In the case KVA exists, as KVAT1{T<τ} = 0, with a similar argument as before (5.2) we obtain43

KVAt = Et
[∫ τ̄

t

h (ECs −KVAs)+
ds+ KVAτ1{τ<T}

]
, t ∈ [0, τ̄ ]. (5.10)

As in the case of default-free bank of Subsection 5.2.1, we can see that solving the KVA fixed-
point problem of Definition 4.20 is equivalent to find a process KVA ∈ S◦2 satisfying (5.10) and
such that

M := KVA +
∫ ·

0
h (ECs −KVAs)+

ds ∈ S2. (5.11)

Again, we could rewrite this problem as a BSDE, and then try to directly solve it.44Instead, we
follow [AC18] (which uses an approach that is generalised in [AC20, Theorem 4.1]). This consists
in writing the fixed-point problem in differential form. First, the general (that is, with τ general
invariance time) KVA problem can be written as follows: the (G,Q)-special semimartingale
KVA ∈ S◦2 satisfies

dKVAt = −h (ECt −KVAt)+
dt+ dnt, t ∈ ]0, τ̄ ], (5.12)

where n ∈ S2 is some (G,Q)- martingale on [0, τ̄ ] without jump at τ . Similarly, the same problem
in the case τ =∞ can be written as follows: the (F,P)-special semimartingale KVA′ ∈ S′2 satisfies

dKVA′t = −h
(
ECt −KVA′t

)+
dt+ dmt, t ∈ ]0, T ], (5.13)

where m ∈ S2(F) is some (F,P)-martingale on [0, T ].

Lemma 5.8. The KVA problem (5.12) in S◦2 is equivalent to the KVA′ problem (5.13) in S′2 via
F-optional reduction. Specifically, if the process KVA solves (5.12), then its F-optional reduction
solves (5.13), and if KVA′ solves (5.13), then (KVA′)◦ solves (5.12).

Proof. Assume first that KVA ∈ S◦2 solves (5.12). By (2.3) (see also the discussion before
Corollary 2.2), its F-optional reduction KVA′ is in S′2. We can show as in Remark 4.33 that the
F-optional reduction of h(EC − KVA)+�λ is given by h(EC − KVA′)+�λ. Take the F-optional
reduction m := n′ ∈ S′2, which is an (F,P)-martingale on [0, T ], by Corollary 2.2. Then, (5.13)
holds on J0, τJ∩[0, T ]. In other words, before τ the following indistinguishable equality between
F-optional processes holds

KVA′ = −
∫ ·

0
h
(
ECs −KVA′s

)+
ds+m.

Hence, by Lemma B.11, the same equality holds on [0, T ] ⊆ {S− > 0}, which means that (5.13)
holds. Conversely, if KVA′ ∈ S′2 solves (5.13), then we define KVA := (KVA′)◦, which is in S◦2,

43This corresponds to the “shareholder valuation” of [AC20, Section 4.1].
44Possibly, one could try using the BSDE transfer properties of [CS18, Section 9].
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by (2.3). In a similar way as above, we take n := m◦ ∈ S2, which is a (G,Q)-martingale on
[0, τ̄ ] with no jump at τ , by Corollary 2.2. Then, (5.12) holds before τ . Since all the processes
involved have no jump at τ , the equation also holds on K0, τ̄K. �

Theorem 5.9. The KVA problem of Definition 4.20 is well-posed in S◦2.

Proof. The KVA problem is equivalent to the problem given in (5.12), which is equivalent to
(5.13) by Lemma 5.8. The latter problem is well-posed by Lemma 5.3 (in particular, see Re-
mark 5.4), and hence the theorem is proved. �

Therefore, to compute the process KVA, one should first solve the KVA′ equation in the case
of a default-free bank, and then take KVA = (KVA′)◦.

Before turning our attention to the other XVAs, we prove the same minimality result of
Proposition 5.6 in the general case of a defaultable bank. To do that, we introduce again an
alternative problem: given C ∈ L2 such that C ≥ EC ≥ 0, we want to find K ∈ S◦2 such that

Kt = Et
[∫ τ̄

t

h (Cs −Ks) ds+Kτ1{τ<T}

]
, t ∈ [0, τ̄ ]. (5.14)

This equation is a generalised version of (5.5). Noting that, for C ∈ L2, its F-progressive
reduction C ′ is in L′2, by (2.9), it can be proved in the same way as in Lemma 5.8 (passing
through a differential form first) that this problem is equivalent to (5.5).45In particular, for any
C ∈ L2, if a solution K to (5.14) exists, then its F-optional reduction K ′ solves (5.5) for C ′.
This means that K ′ = K ′(C ′) (recall that K ′(C ′) denotes the unique solution to (5.5) for C ′).
Conversely, the process K := (K ′(C ′))◦ solves (5.14) for C. Therefore, we have the following
result:

Lemma 5.10. The problem (5.14) is well-posed in S◦2; that is, for each C ∈ L2 there is a unique
K = K(C) ∈ S◦2 that solves the equation.

Recall that the capital at risk process is given by CR = max(EC,KVA) (see (4.19)). We
define the set

C :=
{
C ∈ L2

∣∣∣C ≥ max
(
EC,K(C)

)}
, (5.15)

which can be seen as a set of admissible capital at risk processes (compare it with C′ in (5.8)).

Theorem 5.11. Using the above notation, on the interval [0, τ̄ ] the following holds:

i) CR = minC;

ii) KVA = minC∈CK(C);

iii) The process KVA is non-decreasing in the hurdle rate h.
45The proof of this equivalence is skipped, since it would be exactly the same as the proof of Lemma 5.8. The

only difference is that, unlike for EC, in general C 6= C′ (not even on J0, τJ, since C′ is defined as the F-predictable
reduction of the G-predictable projection pC of C). This apparent issue can be solved by substituting C with its
G-predictable projection pC. Since C only appears inside an integral with respect to dt, this substitution does
not change the problem.
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Proof. First, we show that KVA = K(CR). To this end, note that KVA = (KVA′)◦, which
implies that CR = max

(
EC, (KVA′)◦

)
= (CR′)◦ on [0, τ̄ ]. By Lemma 5.5, KVA′ = K ′(CR′).

By the argument before Lemma 5.10, KVA =
(
K ′(CR′)

)◦ solves (5.14) for C = CR. Thus, by
uniqueness, KVA = K(CR). Now, since CR ∈ L2 and CR = max(EC,K(CR)), CR ∈ C. On the
interval [0, τ [∩ [0, T ], we have the following:

KVA = KVA′ ≤ min
C∈C

K ′(C ′) = min
C∈C

K(C)

where the inequality is given by item ii) of Proposition 5.6, using that {C ′
∣∣C ∈ L2} ⊆ C′. Since

KVA = K(CR) with CR ∈ C, the inequality is actually an equality. As both sides of the equality
have no jump at τ , item ii) is proved. As in the proof of Proposition 5.6, item i) follows easily.
The last item can be proved with a similar argument as above: by Proposition 5.6, KVA is
non-decreasing in h before τ , and, having no jump at τ , the same holds on [0, τ̄ ]. �

5.3 The other XVA equations

We now study the well-posedness of the equations (4.5), (4.6), and (4.7) in a similar way as
we did for KVA. First, we write C′, F ′, and G′ for the F-optional reductions of C, F , and G,
respectively. So, C◦ = C′, F◦ = F ′, and G◦ = G′ before τ . Note that, by Assumption 4.4 and
(2.3), we have

C′,F ′,G′ ∈ S2(F).

We also add a further assumption of the risky funding cash-flow F◦, as proposed in [AC18].

Assumption 5.12. Whenever the CVA and MVA process are already well defined in S◦2, we
assume that

dF◦t = ft(FVAt)dt, (5.16)

for a P(F)⊗B(R)-measurable function f : Ω× [0, T ]× R→ R.46

Remark 5.13. See Section 6.1 for a concrete example, where this holds. This assumption does
not change the qualitative results we have obtained in the previous chapters.

Assume for a moment, as we did for KVA, that the bank is default free, that is τ = ∞ and
(F,P) = (G,Q). Then the CVA, FVA, and MVA equations become

CVA′t = E′t[C′T − C′t], (5.17)

FVA′t = E′t[F ′T −F ′t] = E′t

[∫ T

t

fs(FVA′s)ds
]
, and (5.18)

MVA′t = E′t[G′T − G′t] , t ∈ [0, T ]. (5.19)

Lemma 5.14. The CVA and MVA equations (4.5) and (4.7) in S◦2 are equivalent to the CVA′
and MVA′ equations (5.17) and (5.19) in S′2, respectively. Assuming (5.17) and (5.19) are well
posed, the FVA equation (4.6) in S◦2 is equivalent to the FVA′ equation (5.18) in S′2.

46As usual, we omit the dependence on ω ∈ Ω.
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Proof. The idea of the proof is exactly the same as we did for KVA, so we only give the main
steps of the proof of the CVA statement. First, write the two problems in differential form:
solving (4.5) in S◦2 is equivalent to find a (G,Q)-special semimartingale CVA ∈ S◦2 such that

dCVAt = −dC◦t + dnt, t ∈]0, τ̄ ], (5.20)

where n ∈ S2 is some (G,Q)-martingale on [0, τ̄ ] without jump at τ . Solving (5.17) in S′2 is
equivalent to find an (F,P)-special semimartingale CVA′ ∈ S′2 such that

dCVA′t = −dC′t + dmt, t ∈]0, T ], (5.21)

where m ∈ S2(F) is some (F,P)-martingale on [0, T ]. Since we have C◦ = C′ before τ , applying
the exact same argument as in the proof of Lemma 5.8 yields the result. For FVA and MVA we
can repeat the same argument. Note that the particular form of F◦ does not change anything.

�

Therefore, as in the KVA case, if CVA′, FVA′, and MVA′ are well defined, the processes
CVA, FVA, and MVA are obtained by stopping before τ :

CVA = (CVA′)◦, FVA = (FVA′)◦, and MVA = (MVA′)◦. (5.22)

Lemma 5.15. i) By our assumptions, the CVA′ and MVA′ eqautions (5.17) and (5.19) are
well-posed in S′2;

ii) A sufficient condition for the well-posedness in S′2 of the FVA′ equation (5.18) is that the
function f of Assumption 5.12 satisfies the conditions (H1), (H2), and (H4) of Section A.2.

Proof. As the process C′ is well-defined and integrable, the process CVA′ is also well-defined and
unique (up to modification). We can write, for every t ∈ [0, T ],

CVA′t = E′t[C′T ]− C′t,

where the first summand is an (F,P)-martingale. Thus, by Proposition A.1, we can choose a
modification of this martingale that is càdlàg. Since C′ is also càdlàg, there exists a unique (up
to indistinguishability) càdlàg process CVA′ satisfying (5.17). Clearly, CVA′T = 0, and, by the
boundedness in L2 of C′ and the Doob’s inequality, we have

E′
[

sup
t∈[0,T ]

(
CVA′t

)2] = E′
[

sup
t∈[0,T ]

(E′t[C′T ]− C′t)
2
]

≤ 2E′
[

sup
t∈[0,T ]

E′t[C′T ]2
]

+ 2E′
[

sup
t∈[0,T ]

(C′t)
2
]

≤ 8E′
[
(C′T )2

]
+ 2E′

[
sup
t∈[0,T ]

(C′t)
2
]
<∞.

This proves that CVA′ ∈ S′2. The exact same argument applies to the MVA′ equation and
yields item i). To prove the well-posedness of the FVA′ equation, we proceed as in the proof on
Lemma 5.3, writing the problem as a BSDE:

FVA′t = −
∫ T

t

fs(FVA′s)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
U
ψs(u)µ̃(du, ds)−

∫ T

t

dNs (5.23)

for t ∈ [0, T ]. By Proposition A.34 and Proposition A.35, the BSDE is well-posed in S′2. This
proves item ii) and finishes the proof. �
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Putting all the pieces together, we obtain the following.

Theorem 5.16. The CVA and MVA equations (4.5) and (4.7) are well-posed in S◦2. If f in
Assumption 5.12 satisfies (H1), (H2), and (H4) form Section A.2, then the FVA equation (4.6)
is well-posed in S◦2.

Remark 5.17. Note that if f : Ω× [0, T ]×R 3 (ω, t, y) 7→ ft(y) ∈ R is Lipschitz in y uniformly
in (ω, t) and f·(0) ∈ L′2, then the conditions (H1), (H2), (H4) are fulfilled. Thus, item ii) of
Lemma 5.15 can be seen a slight generalisation of the second part of [AC20, Proposition 4.2].
On the other hand, for the well-posedness of the CVA′ equation in [AC20, Proposition 4.2] only
the P-square integrability of C′T is required. Since C◦ is non-decreasing, the process C′ can be
assumed to be non-decreasing on [0, T ] (this is also the idea in [AC18]), and hence, the P-square
integrability of C′T implies that C′ ∈ S2(F), which is what we used (since this is equivalent to
C ∈ S2 in Assumption 4.4). The MVA equation is treated in a similar way as the CVA one,
even if in [AC18] MVA is part of FVA. See the concrete example in the next section, where this
choice becomes more clear. We obtain an MVA equation in line with the one in [ACC17].
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6 Concrete Setup

In the previous two chapters we set up the assumptions on the cash-flows processes, we defined the
XVAs through fixed point problems and proved their well-posedness. In this chapter we now give
a more concrete example of the cash-flows processes obtaining implementable XVA equations.
In Section 6.1 we slightly enhance the example in [AC18, Section 7.4] (which corresponds to the
one in [AC20, Section 5]), by generalising some of the simplifying assumptions. In Section 6.2
we discuss about the fact that our resulting XVAs are in fact computed unilaterally, even if we
do consider the default of the bank in our model. Lastly, in Section 6.3 we give an even more
concrete example of bank’s derivative portfolio that could be used in an implementation.

6.1 An example

Let us denote by U and Ū the processes describing the (discounted) value of the risky funding
assets that are assumed to be used by the bank to repay the external funder for the provided
unsecured funding for the variation and initial margin, respectively. We assume that some
exogenously given constant recovery rates R, R̄ ∈ [0, 1] exist, representing the portion of debt
recovered by the external funder at time τ in case of default of the bank. So, we assume that U
and Ū satisfy the following.

U0 = 1, and dUt = ϕtUtdt+ (1−R)Ut−dJt = Ut−(ϕtdt+ (1−R)dJt), (6.1)
Ū0 = 1, and dŪt = ϕ̄tŪtdt+ (1− R̄)Ūt−dJt = Ūt−(ϕ̄tdt+ (1− R̄)dJt), t ∈ [0, τ̄ ], (6.2)

where ϕ, ϕ̄ ≥ 0 are processes on [0, τ̄ ], representing the spreads over the risk-free rate (for us,
the OIS rate, as expressed in Remark 2.4) that the external funder charges to the bank for the
unsecured funding (relative to the variation and initial margin, respectively). At the default time
of the bank τ , the external funder faces a loss amounting to

(1−R)Uτ− + (1− R̄)Ūτ−,

which is interpreted as a windfall for the bank. This is expressed by the differential

dJt = d(1J0,τJ),

where the process J is always constant except at τ , where it has a jump ∆Jτ = −1.

Remark 6.1. Note that the bank can only be short in U and Ū , as otherwise it would sell
protection against its own default, which is not allowed, by our Assumption 3.3.

Assumption 6.2. We assume that the value processes U and Ū are a (G,Q)-martingales on
[0, τ̄ ].

The reason for this assumption is that, if the price process of an asset is uniformly bounded,
it should be a martingale with respect to the pricing measure Q.47 If ϕ is uniformly bounded
on [0, τ [∩ [0, T ], then so is U . Even though theoretically the spread ϕ should rise as the credit
quality of the bank worsens approaching default, in practice it is reasonable to assume that it
will never exceed some fixed threshold.

47This would be in line with the fundamental theorem of asset pricing; see, for example, [DS06, Theorem 9.1.1].
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Thus, assuming R 6= 1 and R̄ 6= 1, the processes χ and χ̄ given by

(1−R)dχt = ϕtdt+ (1−R)dJt and (1− R̄)dχ̄t = ϕ̄tdt+ (1− R̄)dJt

are two (G,Q)-martingales. By Proposition A.18, this holds if and only if ϕt = (1 − R)γt and
ϕ̄t = (1 − R̄)γt, where γtdt is the compensator of 1Jτ,∞J = 1 − J , that is, γ is the intensity of
τ . By our assumption that, without lost of generality, γ is F-predicable, it follows that ϕ and ϕ̄
are also F-predictable. Hence, dχt = dχ̄t = γtdt+ dJt is the (G,Q) compensated jump-to-default
martingale of the bank, and γ is interpreted as default intensity of the bank.

Now we focus on the cash-flow F , and then we see how to treat G. Recall that VMc denotes
of the exchanged variation margin between the bank and the clients (relative to a netting set
c), which can be positive (if posted by the client) or negative (if posted by the bank). Then, we
have

VM =
∑
c

VMc. (6.3)

Let
D := MtM−VM (6.4)

denote the difference between the valuation of the derivative portfolio of the bank and the total
exchanged variation margin. That is, when MtM is positive, D is positive (since |VM| ≤ |MtM|)
and it represents the difference between the collateral posted by the CA desk to the clean desks
and the collateral posted by the clients; when MtM is negative, D is negative and it represents
the difference between the collateral posted by the clean desks to the CA desk and the collateral
posted by the CA desk to the clients. Since the variation margin VMc of each netting set c
generally follows the clean valuation of the trade Pc, it is reasonable to assume that it is given as
a measurable function of the promised cash-flow Pc. In other words, it make sense to assume that
the processes VMc, and hence VM, are F-adapted.48 Thus, D is also assumed to be F-adapted;
as such, it has no jump at τ .

Using this notation, we have the following characterisation of the risky funding cash-flows F .

Lemma 6.3. We have, for t ∈ [0, τ̄ ],

dF◦t = ϕt(Dt − CVA′t − FVA′t −MVA′t)+dt, (6.5)
dF•t = (1−R)(Dt − CVAt − FVAt −MVAt)+(−dJt), (6.6)

and
dFt = (1−R)(Dt − CVAt − FVAt −MVAt)+dχt. (6.7)

Remark 6.4. By consequence, F◦ is of the form of Assumption 5.12 with

ft(y) = ϕt(Dt − CVA′t −MVA′t − y)+, t ∈ [0, T ], y ∈ R.

It is easy to verify that f is in fact aP(F)⊗B(R)-measurable function satisfying the assumptions
of Lemma 5.15, since Pc ∈ S2(F) for each netting set c, by Assumption 4.4. Indeed, the continuity
in (H1) is clear, and (H2) and (H4) follow because in this case, by (3.3), we have MtM ∈ S2(F),
and thus D ∈ S2(F), as well.

Proof of Lemma 6.3. Note that, by Theorem 5.16, the CVA and MVA equations are well posed
in S◦2. Recall that with Assumption 5.2 we rule out the possibility for the bank to use its

48See also Section 6.3.
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own capital for funding purposes. In this case, the funding strategy of the CA desk consists in
borrowing form the external funder any amount of cash needed to be able to post the collateral
MtM to the clean desks. Thus, we can split the reserve capital RC = CA in the following way:

CA = D + (CA−D)+ − (CA−D)−. (6.8)

The first term is posted collateral (from the CA desk, net of the collateral already posted by the
clients) remunerated at the risk-free rate,49 the second one is cash surplus that the CA desk can
invest at the risk-free rate, and the third one is the amount that needs to be unsecurely funded
to be able to post all the necessary rehypothecable collateral in the clean margin account. By
our definition, the risky funding cash-flow F◦ before τ consists in the interest payments to the
external funder for this rehypothecable collateral, that is,

dF◦t = (CAt −Dt)−ϕtdt, t ∈ [0, τ [∩ [0, T ], (6.9)

where (CA−D)− is the borrowed amount and ϕ is the interest rate—which also corresponds to
a spread over risk-free rate, since we use the risk-free asset as numéraire. Note that, before τ ,
we have (CA − D)− = (D − CA)+ = (D − CVA′ − FVA′ −MVA′)+. Since both sides of (6.9)
have no jump at τ , we obtain (6.5). On the other hand, the cash-flow F• represents the windfall
to the bank at default due to the unpaid borrowed amount to the external funder (beyond the
recovery rate). This means that the process F• vanishes on [0, τ [∩ [0, T ] and has a (positive)
jump at τ equals to (1 − R) times the unsecurely funded rehypothecable collateral before time
τ , that is,

∆F•τ = (1−R)(CAτ− −Dτ−)− = (1−R)(Dτ − CAτ )+,

as both D and CA have no jump at τ . Since dJt = −1{t=τ}, this yields (6.6). It follows that,
for t ∈ [0, τ̄ ],

dFt = dF◦t − dF•t
= (Dt − CVAt − FVAt −MVAt)+ϕtdt+ (1−R)(Dt − CVAt − FVAt −MVAt)+dJt

= (Dt − CVAt − FVAt −MVAt)+(ϕtdt+ (1−R)dJt)
= (1−R)(Dt − CVAt − FVAt −MVAt)+dχt.

This finishes the proof. �

Remark 6.5. Note that we used a slightly different proof than the one in [AC18, Lemma 7.6],
following the idea of [ACC17, Lemma 3.3], which seems more intuitive.

Remark 6.6. Note that, in this case, F = F◦−F• is actually a process of finite variation, being
the difference of two non-decreasing processes, and it is also a (G,Q)-martingale, since it is the
stochastic integral with respect to the bounded martingale χ and the integrand is bounded by

0 ≤ (1−R)(D − CA)+ ≤ D+ ≤ MtM+,

which is bounded in L2. Thus, the requirement of Assumption 4.6 for F is fulfilled.

With a similar (but simpler) argument, we obtain the cash-flow G for the unsecured funding
of the initial margin. Recall that, for each netting set c, the initial margin posted by the bank
to the client is given by PIMc ≥ 0, and it is assumed to be F-adapted, with a similar argument

49As usual, if D < 0, this means that D is received collateral.
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as for VMc (see before Lemma 6.3). Thus, if we want to define a process PIM describing the
total initial margin posted by the bank at each time, we may assume with no loss of generality
that τ =∞. If the client defaults before maturity, at the liquidation time τcδ < T the segregated
initial margin PIMc is returned to the bank (see Assumption 3.26 and the discussion following
it). Thus, the process describing the total initial margin posted by the bank at each time is

PIM :=
∑
c

PIMc
1J0,τcδK, on [0, T ]. (6.10)

Since there is no capital account to fund the initial margin, the whole PIM is borrowed by the
external funder at the spread over risk-free rate ϕ̄ = (1−R̄)γ. Therefore, we obtain the following.

Lemma 6.7. For t ∈ [0, τ̄ ],

dG◦t = ϕ̄tPIMtdt, (6.11)
dG•t = (1− R̄)PIMtd(−Jt), (6.12)

and
dGt = (1− R̄)PIMtdχt. (6.13)

Proof. As in the case of F in Lemma 6.3, before τ the cash-flow G◦ consists in interest payments
to the external funder for the needed initial margin fundings, that is,

dG◦t = PIMtϕ̄tdt, t ∈ [0, τ̄ [∩ [0, T ].

Since both sides of the equality have no jump at τ , we obtain (6.11). On the other hand, the
cash-flow G• represents the windfall to the bank at default due to the received funding for the
initial margin that is not returned to the external funder (beyond the recovery rate). Thus,

∆G•τ = (1− R̄)PIMτ− = (1− R̄)PIMτ ,

and (6.12) follows. As in Lemma 6.3, (6.13) follows form the fact that

(1− R̄)dχt = ϕ̄tdt+ (1− R̄)dJt.

This concludes the proof. �

Remark 6.8. It is reasonable to assume that the initial margin posted by the bank never exceed
the MtM of the derivative portfolio. Thus, we can assume that PIM is bounded in L2. Then, one
can prove that G ∈ S2 is a (G,Q)-martingale of finite variation, as required in Assumption 4.4
and Assumption 4.6.

We now move our attention to the counterparty exposure cash-flows C. For each netting set
c, let

Jc := 1J0,τcδJ

denote the survival indicator process of the netting set up to liquidation time τcδ, where τcδ =
τc + δ, for a fixed short period of time δ > 0, such as two weeks.50 Recall that we denote by
Rc ∈ [0, 1] the recovery rate that the client relative to the netting set c guarantees to the bank in
case of default, and by Rb ∈ [0, 1] the fixed recovery rate that all the (not yet defaulted) clients
receive in case of bank’s default.

By looking at (3.12), (3.13), and (3.14), we immediately get the following.
50Recall the we assumed after Definition 3.15 that if τc ≤ T , then τcδ < T as well.
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Lemma 6.9. For t ∈ [0, τ̄ ],

dC◦t =
∑
c

τc
δ<τ̄

(1−Rc)
(
Pcτcδ − P

c
τc− + Pcτcδ −VMc

τc− − RIMc
τc−
)+(−dJct ), (6.14)

and

dC•t = −
∑
c

τc≤τ<τcδ

(1−Rc)
(
Pcτ − Pcτc− + Pcτ −VMc

τc− − RIMc
τc−
)+(−dJt)

+ (1−Rb)
∑
c

τ≤τcδ∧T

(
Pcτ − Pc(τ∧τc)− + Pcτ −VMc

(τ∧τc)− + PIMc
(τ∧τc)−

)−
(−dJt).

(6.15)

To simplify the notation we let

∆+
c := (Pcτcδ − P

c
τc− + Pcτcδ −VMc

τc− − RIMc
τc−)+, (6.16)

∆+
c,τ := (Pcτcδ∧τ − P

c
τc− + Pcτcδ∧τ −VMc

τc− − RIMc
τc−)+, and (6.17)

∆−c,τ :=
(
Pcτ − Pc(τ∧τc)− + Pcτ −VMc

(τ∧τc)− + PIMc
(τ∧τc)−

)−
. (6.18)

Recall that the processes Pc, VMc, RIMc, and PIMc are all F-adapted. Moreover, by Assump-
tion 4.1, each clients’ default time τc is an F-stopping time. Therefore, all the random variables
∆+
c above are Fτcδ -measurable.51 This means that we can easily find the F-optional reduction C′

of C by sending τ to infinity; we obtain the following process on [0, T ]:

C′ =
∑
c

τc≤T

(1−Rc)∆+
c 1Jτcδ,T K. (6.19)

Note that, then C◦ = (C′)◦. Additionally, since by Assumption 4.4 Pc is bounded in L2, all the
∆+
c and ∆−c above are Q-square integrable, and hence C′ is also bounded in L2, being a finite

sum of those; that is, C′ ∈ S2(F). By (2.1), we see that C ∈ S2 and Assumption 4.4 is satisfied.
Putting all the pieces together, we can use the concrete form of the cash-flows C, F , and G

developed in this example to compute the XVAs.

Theorem 6.10. Under the setup of this section, the CVA, FVA, and MVA equations (4.5),
(4.6), and (4.7) are well-posed in S◦2 and

CVA = (CVA′)◦, FVA = (FVA′)◦, and MVA = (MVA′)◦, (6.20)

where, for t ∈ [0, T ],

CVA′t =
∑
c

(1−Rc)E′t
[
1{t<τcδ<T}∆

+
c

]
, (6.21)

MVA′t = (1− R̄)E′t

[∫ T

t

γsPIMsds

]
, (6.22)

FVA′t = E′t

[∫ T

t

(1−R)γs(Ds − CVA′s −MVA′s − FVA′s)+ds

]
. (6.23)

51In other words, we can see ∆+
c as an “F-reduction” version of ∆+

c,τ .
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Moreover, we have, for t ∈ [0, τ̄ ],

DVAt = −
∑
c

(1−Rc)Et
[
1{τc≤τ≤τcδ∧T}∆

+
c,τ

]
+
∑
c

(1−Rb)Et
[
1{τ≤τcδ∧T}∆

−
c,τ

]
+ Et

[
CVAτ1{τ≤T}

]
,

(6.24)

MDAt = Et
[
1{τ≤T}(1− R̄)PIMτ

]
+ Et

[
MVAt1{τ≤T}

]
, (6.25)

FDAt = Et
[
1{τ≤T}(1−R)(Dτ − CVAτ −MVAτ − FVAτ )+]+ Et

[
FVAτ1{τ≤T}

]
, (6.26)

FVt =
∑
c

(1−Rc)Et
[
1{t<τcδ<τ̄}∆

+
c,τ

]
+
∑
c

(1−Rc)Et
[
1{τc≤τ≤τcδ∧T}∆

+
c,τ

]
−
∑
c

(1−Rb)Et
[
1{τ≤τcδ∧T}∆

−
c,τ

]
,

(6.27)

dLt =
∑
c

(1−Rc)∆+
c (−dJct ) + dCVAt + (1− R̄)γtPIMtdt+ dMVAt

+ (1−R)γt(Dt − CVAt − FVAt −MVAt)+dt+ dFVAt.
(6.28)

Proof. The well-posedness and (6.20) follow respectively from Theorem 5.16 combined with Re-
mark 6.4, and (5.22). The equations (6.21), (6.22), and (6.23) follow directly from (5.17), (5.19),
and (5.18) inserting the correct values of C′, G′, and F ′. The first one is directly given by
(6.19). By (6.11), G′ =

∫ ·
0 ϕ̄tPIMtdt on [0, T ], as both γ and PIM are F-adapted on [0, T ]

and by the uniqueness of the F-optional reduction, form Lemma B.11. Similarly, by (6.5),
F ′ =

∫ ·
0 ϕt(Dt − CA′t)+dt on [0, T ]. The equations (6.24), (6.25), and (6.26) follow by Defini-

tion 4.9, inserting the cash-flows C•, G•, and F• we derived in this section (see (6.15), (6.12), and
(6.6)). Similarly, (6.27) follows from Lemma 4.11, inserting the cash-flow C = C◦ − C•. Lastly,
(6.28) follows from (5.1), writing CA = CVA + MVA + FVA. �

We see that, once one has all the promised cash-flows Pc, for all netting sets c, and the default
times τc of the clients and τ (together with its intensity γ) of the bank, then one can compute all
the XVAs (including KVA) in the following way. First, one has to compute the clean valuation of
the promised cash-flows Pc and of the total portfolio MtM, using a risk neutral measure Q. Then,
depending on the collateral agreements of each trade, one can also calculate the corresponding
VMc, RIMc, and PIMc on [0, T ] (seethe example in Section 6.3). Having these, it is now easy to
compute the F-reductions of the credit exposure cash-flow C′ and initial margin funding cash-flow
G′. By calculating a conditional expectation, we directly obtain CVA′ and MVA′. Then, FVA′
is obtained by solving its BSDE (6.23). Subsequently, one obtains the F-optional reduction of
the trading loss process:

L′t = CVA′t − CVA′0 + C′t + MVA′t −MVA′0 + G′t + FVA′t − FVA′0 + F ′t, 0 ≤ t ≤ T, (6.29)

which can be used to compute the economic capital EC; in fact, by Definition 4.16,

ECt = ESt
[
L′(t+1)∧T − L′t

]
, 0 ≤ t ≤ T, (6.30)

where ESt represents the (Ft,P) conditional 97.5% expected shortfall. Finally, we have all
ingredients to write down the KVA BSDE (5.9)

KVA′t = hE′t

[∫ T

t

e−h(s−t) max
(
ECs,KVA′s

)
ds

]
, t ∈ [0, T ]. (6.31)

By stopping before τ we then obtain all the XVAs.
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Remark 6.11. From the equation (6.21) we easily see that CVA is additive over netting sets.
We can draw the same conclusion from (6.22) about MVA, by noting that PIM is additive over
netting sets, by (6.10). On the contrary, FVA is clearly not additive over single netting sets.
In fact, according to [AA14] FVA is only additive over so-called “funding sets”, which are sub-
portfolios of the bank’s portfolio for which the VM can be rehypothecated across all the trades
of the sub-portfolio; in our case, we only have one “funding set”, since we assumed that VM can
be rehypothecated across all trades of the bank’s portfolio.

Note that our results in Theorem 6.10 are a slight generalisation of [AC18, Proposition 7.2]52

for the following two reasons:

1. we considered a portfolio with more than one client, allowing the liquidation of the clients
to be non-instantaneous, i.e. τcδ > τc (but the one of the bank is still instantaneous, i.e.
τ δ = τ), also with the possibility of contractual promised cash-flows occurring during the
liquidation period;

2. we did not assume all rehypothecable collateral, but considered a situation in which the
bank can both post and receive initial margin, resulting in an improved CVA formula and
the addition of an MVA formula.

Therefore, our results are more akin to formulas in [ACC17, Proposition 4.1], although there the
positive liquidation period is modelled through an approximation (see [ACC17, Equation (11)]).
Moreover, in [ACC17, Equations (28)-(29)] we can see how the system of “decoupled” equations
above transforms into a coupled forward-backward SDE (FBSDE) if we allow the capital of share-
holders to be used as a funding source (which we previously excluded in Assumption 5.2). Using
the setup of this thesis, if we allow the FVA desk to use the capital at risk of the shareholders

CR = max(EC,KVA)
(
or CR′ = max(EC,KVA′)

)
to fund the variation margin, the equations (6.23), (6.29), and (5.2) build the following FBSDE:53

dL′t = dCVA′t +
∑
c(1−Rc)∆+

c (−dJct ) + dMVA′t + (1− R̄)γtPIMtdt

+dFVA′t + ϕt
(
Dt − CVA′t −MVA′t − FVA′t −max(ECt(L′),KVA′t)

)+
dt,

FVA′t = E′t
[∫ T
t
ϕs
(
Ds − CVA′s −MVA′s − FVA′s −max(ECs(L′),KVA′s)

)+
ds
]
,

KVA′t = E′t
[∫ T
t
h
(
ECs −KVA′s

)+
ds
]
,

(6.32)

for 0 < t ≤ T and with initial and terminal conditions L′0 = 0 and FVA′T = KVA′T = 0,
respectively. The obtained FBSDE is comparable with [CSS20, Equation (27)], where there is no
MVA and the cash-flows are not already discounted. Note that, in this case we assumed that CR
is only used to fund VM, not PIM; therefore, CR does not influence MVA. Under the assumption
of L2-boundedness of Pc of this thesis, it should be possible to prove that the above FBSDE is
well-posed in a similar way as [CSS20, Theorem 4.1].

52Which also corresponds to the one in [AC20, Proposition 5.1].
53We can use the F-optional reduction L′ instead of L, since then L = (L′)◦. Note that we also write EC(L′),

to stress that the economic capital depends on L′.
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6.2 First to default, bilateral, and unilateral XVAs

We can see from (6.27) that the fair valuation of counterparty risk FV = CVA − DVA can be
written as the difference between the so-called first-to-default CVA and DVA:

FVt = Et[C◦τ̄ − C◦t ]− Et[C•τ̄ − C•t ]

= CVAt − CVACL
t︸ ︷︷ ︸

=:FTDCVAt

−
(
DVAt − CVACL

t

)
︸ ︷︷ ︸

=:FTDDVAt

(6.33)

for 0 ≤ t ≤ τ̄ . So, in the concrete setup of Theorem 6.10,

FTDCVAt =
∑
c

(1−Rc)Et
[
1{t<τcδ<τ̄}∆

+
c

]
, and (6.34)

FTDDVAt = −
∑
c

(1−Rc)Et
[
1{τc≤τ≤τcδ∧T}∆

+
c,τ

]
−
∑
c

(1−Rb)Et
[
1{τ≤τcδ∧T}∆

−
c,τ

]
, (6.35)

0 ≤ t ≤ τ̄ .
In particular, FTDCVA and FTDDVA only value the credit exposure cash-flows between the

bank and its clients up to time τ , without considering the contra-liability cash-flow CVAτ1JτK
that is passed from the shareholders to the bondholders at the default of the bank if τ < T ,54

and has (G,Q)-valuation given by CVACL (see (4.8)). As discussed in Remark 4.15, the resulting
FV is a fair and symmetric valuation of counterparty risk between the bank and its clients, which
is consistent with the so-called “law of one price”. Given our market incompleteness assumption
(for which the bank is not able to hedge its own jump to default; see Assumption 3.3), the actual
add-on (relative to counterparty exposure) needed by the bank also comprises the contra-liability
component CVACL. In this sense, we can say that CVA is computed unilaterally, while FTDCVA
is bilateral, since it also compensates the clients for the risk of default of the bank itself. Actually,
a unilateral computation of CVA is not only necessary due to market incompleteness, but also
by a regulatory point of view. In fact, as summarised in [AA14, Section 3.1], the capital CET1
of shareholders is not supposed to increase as an effect of the sole deterioration of the bank’s own
creditworthiness. Suppose that we replace CVA by FTDCVA in the computation of the trading
loss of the bank L (recall that L describes the change in CET1 by (3.24)); then, a deterioration
of the credit quality of the bank (the rest staying unchanged) would result in a higher valuation
of the contra-liability component CVACL, and hence a lower FTDCVA = CVA − CVACL and a
lower loss L. Therefore, a bilateral computation of CVA would not fulfil the above mentioned
regulatory requirement.

Analogously, FVA, MVA, and KVA are also computed unilaterally in this setup. In fact,
since we assumed a run-off view, the add-ons payed by the client are given by XVA0 = XVA′0,
since Q[τ > 0] = 1 and X can be C, F, M, or K, where XVA′ is the F-optional reduction version
of XVA and is computed under the assumption that τ =∞, that is, the bank is default-free. In
[AC18, Section 8] is illustrated how one could obtain bilateral KVA and FVA (MVA could be
done similarly, but in [AC18] MVA and FVA are merged) by changing some of the assumptions
regarding the default of the bank. Specifically, if one assumes that the residual amounts KVAτ on
the risk margin account and FVAτ on the reserve capital account go to the shareholders instead
of the bondholders at the default time of the bank, one obtains bilateral KVA and FVA. Such an
assumption would be less conservative and against the “no-arbitrage argument” of Remark 3.22.
However, a bilateral FVA would not be problematic regarding the regulatory requirement we
pointed out above for CVA, as expressed in [AA14, Section 3.3].

54Recall Assumption 3.21 and Definition 3.23.
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6.3 Portfolio Case Study

In Theorem 6.10 and the discussion following it, we have seen that knowing the contractually
promised cash-flows Pc of each netting set c of the bank’s derivative portfolio, we can compute
first MtM, and then CVA, FVA, MVA, and KVA. In this section we consider the following simple
example of a derivative portfolio of the bank.55

We consider ten different clients buying in-arrears interest rate swaps (IRS) from the bank at
time t = 0; no other trades occur after t = 0 (that is, we assume a run-off situation). We assume
that the clients comes from different economies using a different interest rates and currencies;
this can be model as in [Ces+09]: one simulates ten different interest rate models with separable
volatility terms as in [Ces+09, Section 2.3], and nine foreign exchange models as in [Ces+09,
Section 2.4]. This gives the prices of a zero coupon bonds at time s ≥ 0 with maturity s ≤ t ≤ T
(in the ten different currencies) Di

s,t, i = 1, . . . , 10, and exchange rates (taking the currency of
the first economy as reference currency) χit, i = 2, . . . , 10, 0 ≤ t ≤ T. We denote the (simply
compounded) forward rate of the economy i ∈ {1, . . . , 10} at time t ≥ 0 for the period [S1, S2],
for t ≤ S1 ≤ S2, by

F i(t;S1, S2) := α−1

(
Di
t,S1

Di
t,S2

− 1
)
, (6.36)

where α denotes the distance in years between S1 and S2 (see [BM06, Definition 1.2.1]). Here,
we can simply assume α = S2 − S1. When valued at time t = S1, this rate gives the simply
compounded interest rate

Li(S1, S2) := F i(S1;S1, S2) = α−1

(
1

Di
S1,S2

− 1
)
. (6.37)

Then, one can model the payoff of the IRSs in the following way—see also [BM06]. Let
T0, . . . , T20, T21 be fixed dates distanced six months one another with T0 = 0 and T20 = 10
(years). The last date is only used to compute the last interest rate payment occurring at time
T20. So, we can assume T = T20 + δ be the final maturity of the portfolio, including a potential
liquidation period δ. Let us denote by B = (Bt)0≤t≤T the bank account of the economy i = 1
that we use as numéraire (in line with our setup; see Section 2.3). Recall that Q is the risk-
neutral measure with respect to the numéraire B. Then, the cumulative discounted payoff of the
first IRS (counted positive when received by the bank) is given by56

IRS1
t := N

∑
j≥1
Tj≤t

1
BTj

1
2
(
L1(Tj , Tj+1)−K1) , 0 ≤ t ≤ T, (6.38)

where K1 is the fixed-leg rate for the IRS relative to client 1 and N is a fixed notional amount
(we can assume, for example, N = 10′000). Analogously, the cumulative discounted payoff of
the other IRSs expressed in the reference currency is given by

IRSit := N
∑
j≥1
Tj≤t

1
BTj

1
2χ

i
Tj

(
Li(Tj , Tj+1)−Ki

)
, 0 ≤ t ≤ T, (6.39)

55Inspired from the swap portfolio case study of [Alb+19, Section 5].
56The multiplication times 1

2 corresponds to the distance between the coupon payments αj = Tj+1 − Tj = 1
2 .

62



for fixed-leg rates Ki, i = 2, . . . , 10. Let us denote by πi the clean valuation at time 0 (i.e., the
mark-to-market) of the i-th IRS, that is,

πi := E′
[
IRSiT

]
, i = 1, . . . , 10, (6.40)

where E′ denotes the expectation with respect to the invariance measure P, as usual. This
measure can be computed by (B.4), once one has the default time of the bank τ (see Remark ??
below).

We can assume that the prices πi, i = 1, . . . , 10, are payed by the bank to the respective
clients (if negative, this means that a positive amount flows from the client to the bank, as
usual) at time t = T1. This makes the contract fair at inception.

Once one has all this, it is possible to compute all the cash-flows building the portfolio of the
bank. For each netting set c = c1, . . . , c10, the cumulative promised cash-flow is given by

Pcit = −πi1JT1,∞J + IRSit, 0 ≤ t ≤ T, (6.41)

and P =
∑10
i=1 Pci . Then, the clean valuation of the promised cash-flows are

Pcit = E′t[PciT − P
ci
t ] , 0 ≤ t ≤ T. (6.42)

Before one can start computing the XVAs, one has to fix a way to compute explicitly the
collateral quantities VM and IM. Up to now, these are assumed to be exogenously given by the
collateral agreements between the bank and its clients. According to [Gre15, Section 6.2.2], the
possibilities range from “no CSA” to “one-way CSA” or “two-way CSA”; moreover, if collateral
is exchanged, we could assume either a threshold or an initial margin (which work in the opposite
direction; see [Gre15, Section 6.4.2]). For simplicity, we assume as in [Alb+19] that we only have
two possibilities: either no collateral is exchanged (“no CSA”) or there is full collateralisation
with posting of an initial margin (“CSA”). In the latter case, for each netting set c the variation
margin is given by VMc = Pc, and the received and posted initial margins may be computed
respectively as an αRIM and αPIM value-at-risk of the gap risk, which is the risk that the valuation
of the transaction may fluctuate considerably during a short period of time.57 Let δ denote a
fixed short period of time, which may correspond to the liquidation period of a contract; then,
we set, for each netting set c and 0 ≤ t ≤ T ,

RIMc
t = VaRαRIM

t

[
Pct+δ +

(
Pct+δ − Pct−

)
− Pct

]
, (6.43)

PIMc
t = VaRαPIM

t

[
−
(
Pct+δ +

(
Pct+δ − Pct−

)
− Pct

)]
, (6.44)

where, for α ∈ [0, 1], VaRαt denotes the level α value-at-risk with respect to P conditional on
Ft.58 In the case with “no CSA” we have VMc = RIMc = PIMc = 0.

The last thing to model before we state the XVA equations are the default times τ1, . . . , τ10
of the clients and τ of the bank itself. Hence, we have a total of eleven stopping times to model.
One way to do this is described in [CBB14, Chapter 8] as the “common-shock” model, which is a
generalisation of the Marshall Olkin model (see [MO67]). For example, in [Alb+19] this common-
shock model is used with Cox-Ingersoll-Ross default intensities, as per [CBB14, Example 8.2.12
(ii)].Alternatively, one can also use a Gaussian copula model, as presented in [Ces+09, Section
2.7.2].

57This is the same as in [Alb+19], and it is in line with [Gre15, Chapter 6].
58Where (Ft)t is the filtration that contains all the informations except for the default time τ of the bank.
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To implement the common shock model for default times in our case study, we let Z be the
set of all subsets of I := {1, . . . , 10, b} and

Y := {{1}, . . . , {10}, {b}, I1, . . . , Im} ⊆ Z,

where I1, . . . , Im are so-called multi-name groups that contain at least two elements and represent
a shock causing the default of all their contained elements. For example one could choose, in a
similar way as in [CBB14, Section 8.4.3], Il = {1, . . . , l + 1}, for 1 ≤ l ≤ 9, and I10 = I. Then,
for each Y ∈ Y, one can model the intensity γY by an extended CIR model

dγYt = a(bY (t)− γYt )dt+ c
√
γYt dW

Y
t , 0 ≤ t ≤ T, (6.45)

for non-negative constants a, c independent of Y , a non-negative function bY , and a (G,Q)
standard Brownian motion WY (all the WY , Y ∈ Y are independent of each other). Once one
has the γY , for all Y ∈ Y, one takes ΓY :=

∫ ·
0 γ

Y
s ds, and define

ηY := inf{t > 0: ΓYt > εY }, (6.46)

where εY , Y ∈ Y, are i.i.d. exponentially distributed with parameter 1. Finally, the default time
of each i ∈ I, is given by

τi := min {ηY : i ∈ Y ∈ Y} . (6.47)

Thus, the default of the bank is given by τ := τb. By [CBB14, Lemma 8.2.2], we know that the
intensity γ of the G-stopping time τ (in the sense of Definition A.20) is given by

γ :=
∑
Y ∈Y
i∈Y

γY . (6.48)

Remark 6.12. Theoretically, once we know τ , we can compute the Azéma supermartingale
S as the (F,Q)-optional projection of 1J0,τK, and then compute its Doob-Meyer decomposition
S = S0 +Q−D, where Q is a uniformly integrable (F,Q)-martingale started from 0 and D is an
F-predictable Q-integrable increasing process (in the sense of (A.7)). With this, we can compute
the invariance measure P on FT by (B.4)

dP
dQ

∣∣∣∣
FT

= E
(

1
S−

�Q

)
T

.

We do not discuss here how one could implement such an invariance measure. One way to bypass
this issue is to consider a simpler immersion setup, as described in Remark B.12.

Remark 6.13. Note that, modelling the default times of the clients and the bank completely
independently of the cash-flows Pc would result in an underestimation of the so-called “wrong-
way-risk”, which is the risk that the credit exposure increases when the counterparty is more
likely to default.59

Now we have all ingredients to compute the XVAs. First, recall that we only need to compute
the F-optional reduction of each XVA, and then stop it before τ to obtain the desired add-on.60

59See [Gre15, Chapter 14].
60Compare with Theorem 6.10 and Theorem 5.9.
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We start with CVA. Let R1, . . . , R10 ∈ [0, 1] denote the recovery rates relative to the default
of each client. Then, the process CVA′ is given by

CVA′t =
10∑
i=1

(1−Ri)E′t
[
1{t<τi≤T20}

(
Pci
τδ
i

+
(
Pci
τδ
i

− Pciτi−
)
−VMci

τi− − RIMci
τi−

)+
]
, (6.49)

for 0 ≤ t ≤ T . Note that, if τi > T20, the default of the client happens after the last payment, so
the default does not impact on CVA. Thus, once we have implemented all the promised cash-
flows, initial margins and default times, we directly obtain CVA by computing a conditional
expectation. To simplify the notation in the sequel we write

∆+
i :=

(
Pci
τδ
i

+
(
Pci
τδ
i

− Pciτi−
)
−VMci

τi− − RIMci
τi−

)+
, i = 1, . . . , 10. (6.50)

Recall that the stopping times τ δi denote the liquidation time after default of the client i; we
may assume τ δi := τi + δ, for a fixed short period of time δ, such as two weeks.

Next, we can compute the F-optional reduction of MVA, which is also given by a conditional
expectation. Let γ be the default intensity of the bank (that is given by (6.48)), and R̄ the
recovery rate to the external funder in case of default of the bank relative to the funding of the
initial margin (below we use a different recovery rate R that is related to the funding of variation
margin). Then, we have, for 0 ≤ t ≤ T ,

MVA′t =
(
1− R̄

)
E′t

[∫ T

t

γsPIMsds

]
, (6.51)

where PIM is the total initial margin posted by the bank and it is given by61

PIMt :=
10∑
i=1

PIMci
t 1J0,τδ

i
K, 0 ≤ t ≤ T. (6.52)

Next, we compute the F-optional reduction of FVA by solving a BSDE. Let R denote the
recovery rate related to the funding of variation margin, let MtM and VM be the total clean
valuation of the portfolio of the bank and total exchanged variation margin, which are respectively
given by62

MtMt =
10∑
i=1

Pcit 1J0,τδ
i

K, and VMt =
10∑
i=1

VMci
t , 0 ≤ t ≤ T. (6.53)

Then, once CVA′ and MVA′ are determined, FVA′ satisfies the following BSDE on [0, T ]:

FVA′t =
∫ T

t

(1−R)γs
(
MtMs −VMs − CVA′s −MVA′s − FVA′s

)+
ds

−
∫ T

t

ZsdWs −
∫ T

t

∫
U
ψs(u)µ̃(du, ds),

(6.54)

where W is a one dimensional standard Brownian motion and µ̃ is a compensated homogeneous
Poisson random measure; see Appendix A.2.

61Compare with (6.10).
62Compare with (3.3) and (6.3).
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Remark 6.14. Note that this is a simplified version of the more general BSDE (5.23). Here we
assume that any local martingale M can be represented as in Proposition A.32 with N = M0,
which is equivalent to say that the semimartingale X with continuous component Xc = W and
associated jump-measure µX = µ has the weak property of predictable representation, according
to [HWY92, Definition 13.13].

After the computation of CVA′, MVA′, and FVA′ it is possible to compute the clean loss L′,
which corresponds to the F-optional reduction of the trading loss process L. In fact, we have,
for 0 ≤ t ≤ T ,63

L′t = CVA′t − CVA′0 +
10∑
i=1

(1−Ri)∆+
i 1{τδi ≤t}

+ MVA′t −MVA′0 + (1− R̄)
∫ t

0
γsPIMsds

+ FVA′t − FVA′0 + (1−R)
∫ t

0
γs
(
MtMs −VMs − CVA′s −MVA′s − FVA′s

)+
ds.

(6.55)

Then, we can use L′ to compute the economic capital ECt, as in (6.30).
Lastly, we can write and solve the BSDE for the F-optional reduction of KVA, which is given

by (5.4) (with dN = 0):

KVA′t =
∫ T

t

h
(
ECs −KVA′s

)+
ds−

∫ T

t

ZsdWs −
∫ T

t

∫
U
ψs(u)µ̃(du, ds), (6.56)

where h is an exogenously given constant hurdle rate.
Once we have obtained all the F-optional versions of each XVA, we can easily compute

CVA = (CVA′)◦, MVA = (MVA′)◦, FVA = (FVA′)◦, KVA = (KVA′)◦. (6.57)

However, if one is just interested in computing the entry prices that the clients pay at inception
of the contract, it is sufficient to compute the reduced processes XVA′, and value them at time
0, since XVA0 = XVA′0.

The next step would be to actually implement this case study portfolio. After this, it would be
interesting to enhance the given example to the level of a true banking portfolio, with thousands
of transactions and different types of derivatives.

63Compare with (6.29).
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A Semimartingale Theory and BSDEs

A.1 Semimartingales theory and stochastic calculus

In this section we introduce the necessary basic results of the theory of semimartingales and
stochastic calculus in continuous time. Our main reference is [HWY92].

A.1.1 Stochastic processes and stopping times

Let (Ω,F,P) be a general probability space with a right-continuous filtration F = (Ft)t∈[0,∞[,
such that F0 contains all the P-nullsets, that is, F satisfies the usual condition.64 Any stochastic
object in this section is assumed to be defined on this probability space. We denote by E the
expectation with respect to P.

We say that a stochastic process X : Ω× [0,∞[→ R is right-continuous (resp. left-continuous,
resp. càdlàg) if there is a measurable set A ∈ F with probability one such that, for any ω ∈ A, the
trajectory X·(ω) is right-continuous (resp. left-continuous, resp. càdlàg).65 Two processes X and
Y are modification of each other if, for any t ∈ [0,∞[, Xt = Yt a.s.. They are indistinguishable
if there is a set A ∈ F of probability one such that, for any ω ∈ A, X·(ω) = Y·(ω). Any equality
between two stochastic processes is intended in the sense of indistinguishability, and when we
speak of uniqueness of a process, we mean up to indistinguishability.

We denote by E(F), O(F) and P(F) the progressive, optional and predictable σ-fields on
Ω× [0,∞[ with respect to the filtration F, respectively,66 as defined in [HWY92, Section 3.2]. We
say that a stochastic process X is progressively measurable (respectively optional, respectively
predictable) if it is measurable with respect to E(F) (respectively O(F), respectively P(F)). In
particular, a stochastic process X is progressively measurable if, for all t ≥ 0, X restricted on
Ω × [0, t] is Ft ⊗ B([0, t])-measurable, where Ft ⊗ B([0, t]) denotes the product σ-field of Ft
and the Borel σ-field on the interval [0, t]. Note that P(F) ⊆ O(F) ⊆ E(F). In general, when
we introduce a stochastic process X, we only assume that it is measurable, in the sense that
X : Ω× [0,∞[→ R is F⊗B([0,∞[)-measurable.

Putting together Theorem 2.46 and 2.47 in [HWY92], we have the following result.

Proposition A.1. If X is an F-supermartingale such that the map t 7→ E[Xt] is right-continuous,
then there exists a modification of X which is a càdlàg F-supermartingale.

Definition A.2. For an F-stopping time θ : Ω→ [0,∞], we define

Fθ := {A ∈ F∞ : ∀ t ≥ 0 A ∩ {θ ≤ t} ∈ Ft}; (A.1)
Fθ− := σ (F0, {A ∩ {t < θ} : A ∈ Ft, t ≥ 0}) , (A.2)

where F∞ := σ (Ft, t ≥ 0).

Note that, for a constant stopping time θ = t > 0, Fθ− = Ft− = σ(Fs, s < t), and F0− = F0.
See Definition 3.3 and Theorem 3.4 of [HWY92] for more details on the definition and some basic
properties of stopping times.

64The filtration F in this section may represent both the filtrations G and F introduced in Chapter 2.
65Note that this is different than in [HWY92], where a right-continuous process has right-continuous trajectory

for each ω ∈ Ω; our definition corresponds to the “a.s. right-continuity” in [HWY92].
66See [HWY92, Definition 3.10 and 3.15] for more details.
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Definition A.3. A stochastic set is a set B ⊆ Ω × [0,∞[ such that the indicator process
1B = (1B(·, t))t≥0 is F-progressively measurable. A particular type of stochastic sets we are
interested in are stochastic intervals, which are defined as follows: for two given stopping times
θ ≤ η, put

Jθ, ηK := {(ω, t) ∈ Ω× [0,∞[ : θ(ω) ≤ t ≤ η(ω)} , (A.3)

and analogously Jθ, ηJ, Kθ, ηK, and Kθ, ηJ. When θ = η, we write JθK := Jθ, θK , which is called the
graph of θ.

Definition A.4. A stochastic set B is said to be thin if there exist countable many stopping
times (θn)n∈N such that B =

⋃
nJθnK. It is said to be evanescent if its projection

π(B) := {ω ∈ Ω | ∃ t ≥ 0: (ω, t) ∈ B}

is a P-null set. A process X is said to be thin (respectively evanescent) if the set

{(ω, t) ∈ Ω× [0,∞[ |Xt(ω) 6= 0}

is thin (respectively evanescent).

Definition A.5. A stopping time θ is called predictable time if Jθ,∞J∈ P(F). A sequence of
stopping times (θn)n∈N is said to foretell a stopping time θ if, on {θ > 0}, θn < θ for each n and
θn ↑ θ. Then, θ is called fortellable. A stopping time θ is totally inaccessible if P[θ = η <∞] = 0,
for any predictable time η. A stopping time θ is called accessible if there exists a sequence of
predictable times (θn)n such that JθK ⊆

⋃
nJθnK.

Definition A.6. The filtration F is said to be quasi-left-continuous if Fθ = Fθ−, for any pre-
dictable time θ.

By [HWY92, Theorem 3.27], a fortellable stopping time is a predictable time. Conversely,
since we assume the completeness of F, by [HWY92, Theorem 4.34], any predictable time is
foretellable. Moreover, by [HWY92, Theorem 3.40.1)], the filtration F is quasi-left-continuous if
and only if all accessible times are predictable times. Hence, in our setup we have the following:

Proposition A.7. A stopping time is foretellable if and only if it is a predictable time. Assuming
that the filtration F is quasi-left-continuous, a stopping time is accessible if and only if it is a
predictable time.

Proposition A.8. Let θ be a stopping time. Then, there exists a (a.s. unique) set B ∈ Fθ−
with A ⊆ {θ < ∞} such that θa := θ1B + (+∞)1Ω\B is an accessible stopping time and
θi := (+∞)1B + θ1Ω\B is a totally inaccessible stopping time. θa and θi are respectively called
accessible part and totally inaccessible part of θ.

Proof. See [HWY92, Theorem 4.20]. �

So, we can see that the graph of the stopping time θ can be (uniquely) decomposed as the
disjoint union of the graphs of θa and θi: JθK = JθaK∪ JθiK. Also, if F is quasi-left-continuous, we
can say that the accessible part θa is a predictable time. From this, we also have the following
result.
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Proposition A.9. For any càdlàg adapted process X, one can find a sequence of strictly positive
stopping times (θn)n that are either predictable or totally inaccessible, have disjoint graphs (in
the sense that JθnK ∩ JθmK = ∅ for n 6= m), and exhaust the jumps of X, in the sense that{

(ω, t) ∈ Ω× [0,∞[
∣∣ ∆Xt(ω) 6= 0

}
⊆
⋃
n

JθnK.

Proof. See [HWY92, Theorem 4.21]. �

Note that, by ∆Xt we denote the jump of X and time t > 0, that is

∆Xt := Xt −Xt− = Xt − lim
s↑t

Xs. (A.4)

If t = 0, we use the convention X0− = X0 and ∆X0 = 0.

Proposition A.10. Let X be a càdlàg martingale stopped at some positive time T > 0, and as-
sume that the filtration F is quasi-left-continuous. Then, X has only totally inaccessible jumps.67

Proof. By [HWY92, Theorem 4.41], we have

E[Xθ |Fθ−] = Xθ− a.s.,

for any F-predictable time θ. Since F is quasi-left-continuous, Fθ = Fθ−, and thus Xθ =
E[Xθ |Fθ] = Xθ− a.s.. Hence, X cannot have predictable jumps, but it only has totally in-
accessible jumps. �

Another important result form the classical semimartingale theory that we need, is the Doob-
Meyer decomposition of supermartingales. We say that a process X is of class(D), if the set
{Xθ1{θ<∞} | θ stopping time} is uniformly integrable.

Theorem A.11 (Doob-Meyer Decomposition). Let X be a right-continuous supermartingale of
class(D). Then, X can be uniquely decomposed as X = M−A, where M is a uniformly integrable
martingale and A is a predictable integrable increasing process (in the sense of (A.7)) starting
from zero.

Proof. See [HWY92, Theorem 5.48]. �

A.1.2 Optional and predictable projections

We now define the important concept of optional and predictable projection of a process. By
[HWY92, Definition 1.15], a random variable ξ is said σ-integrable with respect to a sub-σ-
field G ⊆ F if there exists a sequence (Ωn)n∈N ⊆ G with Ωn ↑ Ω such that, for each n,
ξ1Ωn ∈ L1(Ω,F,P).

67In [HWY92, Definition 4.22] a process with only totally inaccessible jumps is called quasi-left-continuous.
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Proposition-Definition A.12. By [HWY92, Theorem 5.1], if a measurable process X is such
that, for all stopping time θ, Xθ1{θ<∞} is σ-integrable with respect to Fθ, then there exists a
unique optional process oX such that

E[Xθ1{θ<∞} |Fθ] = oXθ1{θ<∞} a.s., ∀ θ stopping time. (A.5)

The process oX is called optional projection of X. Similarly, by [HWY92, Theorem 5.2], if
Xθ1{θ<∞} is σ-integrable with respect to Fθ− for all predictable times θ, then there exists a
unique predictable process pX such that

E[Xθ1{θ<∞} |Fθ−] = pXθ1{θ<∞} a.s., ∀ θ predictable time. (A.6)
The process pX is called predictable projection of X.

Remark A.13. Note that, if X is a progressive measurable process, then Xθ is Fθ-measurable,
for any stopping time θ. Thus, we can see that Xθ1{θ<∞} is actually σ-integrable with respect
to Fθ, by choosing Ωn := {|Xθ1{θ<∞}| ≤ n} in the definition of σ-integrability. So, if we have
a progressive process X, the optional projection always exists. Assuming that the filtration F
is quasi-left-continuous, we can conclude the same regarding the existence of the predictable
projection.

We also recall the following “smoothing property” of [HWY92, Theorem 5.4].

Proposition A.14. If the predictable projection of a process X exists and Y is a predictable
process, then p(XY ) = pXY.

We now define the dual predictable projection of a non-decreasing non-negative right-continuous
measurable process A which is integrable,68 in the sense that

E[A∞] = lim
t→∞

E[At] <∞. (A.7)

In this thesis, we simply call any process like A a (P-)integrable increasing process—note that
we do not require adaptedness. We define the integral of a process H with respect to A as in
[HWY92, Definition 3.45], and we denote it as

H �A =
∫ ·

0
HsdAs =

∫
]0,·]

HsdAs.

Note that the integral starts after zero, that is
∫

[0,t]HsdAs = H0A0 + (H �A)t.

Summing up Definition 5.10, 5.17, and 5.21 of [HWY92], we get the following.

Definition A.15. The dual predictable projection, or compensator Ap of A is the unique non-
decreasing predictable process such that, for any bounded measurable process X, it satisfies

E

[∫
[0,∞[

pXsdAs

]
= E

[∫
[0,∞[

XsdA
p
s

]
. (A.8)

Note that, if A is already predictable, then Ap = A (this is an easy consequence of [HWY92,
Theorem 5.13]).

In Appendix B we make use of the following two important propositions.
68Actually, local integrability in the sense of [HWY92, Definition 5.18] is enough, but in this thesis we only see

dual predictable projections of integrable processes.
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Proposition A.16. Let A be a predictable integrable increasing process, and H a non-negative
process such that pH exists and H �A is an integrable non-decreasing process. Then,

(H �A)p = pH �A.

Proof. See [HWY92, Theorem 5.25.2)]. �

Remark A.17. Integrating with respect to the deterministic process given by At = t, t ≥ 0, is
equivalent to integrating with respect to the Lebesgue measure on [0,∞[, which we denote by λ.
For a process H that is integrable with respect to A, we write

H �λ := H �A =
∫ ·

0
Hsds.

This integral is continuous (for each ω ∈ Ω), and thus it is predictable. As the dual predictable
projection of a predictable process is the process itself, by the previous proposition, we get that

H �λ = (H �λ)p = pH �λ.

Proposition A.18. Let A be an adapted integrable increasing process and B a predictable inte-
grable increasing processes. Then, B is the compensator of A if and only A − B is a uniformly
integrable martingale starting from zero.

Proof. See [HWY92, Corollary 5.31.1)] (recalling that when we say process we already mean
progressively measurable process). �

Remark A.19. As in [CS17], we call compensator of a stopping time θ, the compensator of the
increasing process A = 1Jθ,∞J. In [CS17] a stopping time θ is defined to be totally inaccessible
if θ > 0 and its compensator is continuous on [0, θ]. To show that this is equivalent to our
definition, we use [HWY92, Theorem 5.27.2)], which states the following:

∆Apη1{η<∞} = E[∆Aη1{η<∞} |Fη−] a.s., for all predictable times η.

For simplicity, we also assume that F is quasi-left-continuous. The only jump of A happens at
the stopping time θ. If θ is totally inaccessible, then for any predictable time η, ∆Aη = 0, so
Ap is continuous, and one direction is proved. Let θa and θi denote the accessible and totally
inaccessible parts of θ as in Proposition A.8. Then, we can decompose

A = 1Jθa,∞J + 1Jθi,∞J =: Aa +Ai.

Assume that θ is not totally inaccessible, that is P[θa < ∞] > 0. As Ai has only a jump at the
totally inaccessible time θi, for any predictable time η, ∆Aiη = 0. Thus, for the predictable time
η = θa (which is predictable by Proposition A.7), we have

∆Apθa = E[1{θa<∞} |Fθa−] = 1{θa<∞} a.s.,

that is, Ap is not continuous on [0, θ]. This shows the equivalence of the two definitions.

Definition A.20. Let θ by a totally inaccessible stopping time and A = 1Jθ,∞J. If Ap is also
absolutely continuous with respect to the Lebesgue measure, in the sense that there exists a
non-negative process γ on [0, θ] such that

dApt = γtdt, 0 ≤ t ≤ θ,

then θ is said to have an intensity (and γ is the intensity of θ).
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A.1.3 Semimartingales and stochastic integrals

We define the class of local martingales Mloc as in [HWY92, Definition 7.11], that is, as the
localised class69 of uniformly integrable martingales, denoted byM. Thus, any local martingale
is already assumed to be adapted and càdlàg.

Proposition A.21. A local martingale is a uniformly integrable true martingale if and only if
it is of class(D).

Proof. See [HWY92, Theorem 7.12]. �

Proposition A.22. A local martingale M can be uniquely decomposed as M = M0 +M c +Md,
where M c is a continuous local martingale started from zero and Md is a purely discontinuous
local martingale.

Proof. See [HWY92, Theorem 7.25]. �

Definition A.23. A process of finite variation A is defined as the difference of two non-negative
non-decreasing right-continuous processes. The class of semimartingales S contains all the pro-
cesses X = M+A, whereM ∈Mloc (called the local martingale part) and A is a process of finite
variation (called the finite variation part). For any X ∈ S with decomposition X = M + A, we
set Xc = M c, the continuous part of the semimartingale X. Note that the continuous part Xc

does not depend on the decomposition, but it is uniquely determined by X, because a continuous
local martingale that is also purely discontinuous has to be equal to zero (see [HWY92, Definition
7.21 and Lemma 7.22]). We also define the quadratic covariation of two semimartingales X and
Y as a finite variation process started from zero given by

[X,Y ]t := 〈Xc, Y c〉t +
∑
s≤t

∆Xs∆Ys, t ≥ 0, (A.9)

where the predictable quadratic covariation term 〈Xc, Y c〉 is defined as the unique locally in-
tegrable predictable process of finite variation such that XcY c − 〈Xc, Y c〉 is a locally square
integrable martingale.70

Remark A.24. Note that the above definition of quadratic covariation of two semimartingales is
well-defined, since the continuous part of a semimartingale does not depend on the decomposition
and the sum converges a.s. for all t ≥ 0, by [HWY92, Lemma 7.27]. Moreover, note that we used
a different convention than [HWY92] here, as we assumed the quadratic covariation starts from
zero, removing the term X0Y0 from the definition. This is in line with [CS17].

Definition A.25. If the finite variation part of a semimartingale is locally integrable, the semi-
martingale is called special semimartingale.

Proposition-Definition A.26. For any special semimartingale X, there is exactly one so-called
canonical decomposition X = M +A such thatM ∈Mloc and A is a predictable process of finite
variation starting from zero. A sufficient (and also necessary) condition for a semimartingale X
to be a special semimartingale is that the “running maximum” X∗t := sup0≤s≤t|Xs|, t ≥ 0, is
locally integrable.

69See also [HWY92, Definition 7.1].
70Which exists by [HWY92, Theorem 7.28], since continuous local martingales are locally square integrable.
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Proof. See [HWY92, Theorem 8.5 and 8.6]. �

An important tool in the theory of invariance times in [CS17] are the so-called sets of interval
type. These are sets B ∈ Ω × [0,∞[ for which there exists a random variable θ : Ω → [0,∞]
such that for each ω ∈ Ω the section Bω = {t ∈ [0,∞[ | (ω, t) ∈ B} is either given by [0, θ(ω)[
or [0, θ(ω)] and Bω 6= ∅. In particular, [CS17] focuses on predictable sets of interval type, which
can be characterised as follows.

Proposition A.27. Let B ∈ Ω× [0,∞]. Then B is a predictable set of interval type if and only
if there exists an increasing sequence of stopping times (θn)n∈N (called a fundamental sequence
of B) such that B =

⋃
n[0, θn].

Proof. See [HWY92, Theorem 8.16]. �

For a given predictable set of interval type B with fundamental sequence (θn)n∈N, we say
that a process X defined on B is a semimartingale on B if, for each n, the stopped process Xθn

is a semimartingale (on [0,∞[). Hence, as pointed out in [CS17], the stochastic calculus on B
simply reduces to standard stochastic calculus on [0,∞[ for each Xθn.

For the definitions and basic properties of stochastic integrals with respect to local martingales
and semimartingales we refer to [HWY92, Chapter 9]. In particular, for a predictable process H
integrable with respect to a local martingale M , we denote the stochastic integral by

H �M =
∫

]0,·]
HsdMs =

∫ ·
0
HsdMs.

By [HWY92, Theorem 7.32], a sufficient condition on H such that the local martingale H �M is
a true martingale, is that the quadratic variation of the stochastic integral [H �M ] = H2 �[M ] is
integrable, that is, E

[∫∞
0 H2

sd[M ]s
]
<∞ (actually, in this case H �M is also bounded in L2).

Definition A.28. For a semimartingale X, we denote by E(X) the stochastic exponential of X,
which is the unique semimartingale Z such that a.s. for all t ≥ 071

Zt = 1 +
∫ t

0
Zs−dXs.

Lastly, we recall the important Itô’s formula (see [HWY92, Theorem 9.35]).

Theorem A.29. Let d ∈ N, X1, . . . , Xd be semimartingales, and F : Rd → R be C2. Writing
X = (X1, . . . , Xd), we have, P-a.s. for all t ≥ 0,

F (Xt)− F (X0) =
d∑
j=1

∫ t

0
DjF (Xs−)dXj

s +
∑

0<s≤t

∆F (Xs)−
d∑
j=1

DjF (Xs−)∆Xj
s


+

d∑
i,j=1

∫ t

0
Di,jF (Xs−)d〈(Xi)c, (Xj)c〉s,

where Dj and Di,j denote partial derivatives.
71See [HWY92, Theorem 9.39].
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A.1.4 The representation property

To understand the results in [KP15] on the theory of BSDEs, we need to introduce the concept
of martingale representation property. To this end, we first give a brief summary on random
measures and characteristics of semimartingales from [HWY92, Chapter 11].

Let U ⊆ Rm \ {0}, for some m ∈ N, and denote by B(U) the Borel σ-field on U .

Definition A.30. We call a map µ : Ω× (B([0,∞[)⊗B(U))→ [0,∞],72 a random measure if

i) ∀ω ∈ Ω: µ(ω, ·) is a σ-finite measure on B([0.∞[)⊗B(U);

ii) ∀ B̂ ∈ B([0,∞[)⊗B(U) : µ(·, B̂) : Ω→ [0,∞] is an F-measurable random variable.

A random measure µ generates the following measuregiven by

Mµ(B̃) := E

[∫
[0,∞[×U

1B̃(·, t, u)µ(·, dt, du)
]
, B̃ ∈ F̃ (A.10)

on the measurable space
(

Ω× [0,∞[×U , F̃ := F⊗B([0,∞[)⊗B(U)
)
.

We say that µ is predictably (respectively optionally) σ-integrable if Mµ is σ-finite on the
product σ-field P̃ := P(F) ⊗ B(U) (respectively Õ := O(F) ⊗ B(U)). Let ψ be a measurable
real-valued function on Ω × [0,∞[×U such that, for all t ≥ 0,

∫
[0,t[×U |ψ|dµ < ∞; then, the

process defined by
ψ ∗ µt :=

∫
[0,t[×U

ψ(·, s, u)µ(·, ds, du), t ≥ 0,

is a process of finite variation. We may simply denote the integral with respect to Mµ by
Mµ[ψ] := E[ψ ∗ µ∞]. If µ is predictably σ-finite, we can define the notion of “conditional
expectation relative to Mµ” with respect to the σ-field P̃, as in [JS03, No. 3.16 of Chapter
III]: for a non-negative measurable function ψ on Ω × [0,∞[×U , the “conditional expectation”
ψ′ := Mµ[ψ |P̃] is the Mµ-a.e. unique P̃-measurable function such that

Mµ[ψϕ] = Mµ[ψ′ϕ], for all non-negative P̃-measurable functions ϕ.

Then, we can easily generalise this to all Mµ-integrable functions ψ.

A random measure µ is said predictable (respectively optional) if, for all P̃-measurable (re-
spectively Õ-measurable) functions ψ such that ψ ∗ µ exists, ψ ∗ µ is a predictable (respectively
optional) process.

Definition A.31. Let µ be a random measure. The compensator (or dual predictable projection)
ν = µp of µ (if exists) is a predictable random measure which is predictably σ-integrable and
such that Mν = Mµ on P̃.

By [HWY92, Theorem 11.5], we know that the compensator of a random measure is unique
(up to indistinguishability), and by [HWY92, Theorem 11.8] we also know that it exists if and
only if µ is predictably σ-integrable.

72The notation (B([0,∞[)⊗B(U)) denotes the product σ-field between the Borel σ-fields on [0,∞[ and U .
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An optional and optionally σ-integrable random measure µ is called integer-valued, if it takes
values in N0 ∪ {+∞} and µ({t}× U) ≤ 1, for all t ≥ 0. From now on, let us assume that µ is an
integer-valued random measure that has a compensator ν := µp and such that µ({0} × U) = 0
a.s.. We now define the stochastic integral of a predictable function ψ with respect to µ − ν as
in [HWY92, Definition 11.16]. To simplify the notation, one denotes ν̂t(du) := ν(·, {t}, du), for
t ≥ 0. For a P̃-measurable function ψ such that P-a.s., for all t ≥ 0,

∫
U |ψ(·, t, u)|ν̂t(du) <∞, we

also define
ψ̂t :=

∫
U
ψ(·, t, u)ν̂t(du), t ≥ 0, (A.11)

and
ψ̃t :=

∫
U
ψ(·, t, u)µ(·, {t}, du)− ψ̂t, t ≥ 0. (A.12)

Let

G(µ) :=
{
ψ P̃-measurable |P-a.s.∀ t ≥ 0

∫
U
|ψ(·, t, u)|ν̂t(du) <∞

and
√

Σ(ψ̃)2 is locally integrable
}
, (A.13)

where the summation process ΣX of a thin process X is defined as ΣXt =
∑
s≤tXs, t ≥ 0, if∑

s≤t|Xs| < ∞ for all t ≥ 0.73 Then, if ψ ∈ G(µ), there exists a unique totally discontinuous
local martingale M such that ∆M = ψ̃.74 We write M = ψ ∗ (µ − ν) and call it the stochastic
integral of W with respect to µ− ν.

In [KP15], the only random measure needed is a homogeneous Poisson random measure,
which is an integer-valued random measure µ such that75

i) the measure π : B([0,∞[)⊗B(U)→ [0,∞], B 7→ π(B) := E[µ(B)] is σ-finite and given by
π(dt, du) = g(du)dt, for a non-negative σ-finite measure g on U ;

ii) for every s ≥ 0 and any Borel-measurable set B ⊆ ]s,∞[×U with π(B) <∞, the random
variable µ(·, B) is independent of Fs.

The measure π is called intensity measure of µ. By [JS03, Proposition II.1.21], the compen-
sator of a homogeneous Poisson random measure µ always exists, and it is given by the intensity
measure π, that is, µp = π.

The next result is a martingale representation property, which is crucial to show the well-
posedness of BSDEs in [KP15]. We denote by W a one-dimensional standard Brownian motion
with respect to (F,P), and by µ̃(dt, du) = µ(dt, du)−g(du)dt a compensated homogeneous Poisson
random measure. We also denote by L2

loc(W ) the set of (real-valued) predictable processes Z
such that Z2 �〈W 〉 = Z2 �λ is locally integrable.

Proposition A.32. Every local martingale M has the decomposition

M = Z �W + ψ ∗ µ̃+N, (A.14)
73See [HWY92, Definition 7.39]. The process ψ̃2 is thin, because the integer-valued random measure µ has thin

support by [HWY92, Theorem 11.13] and (ν̂t(U))t≥0 is a thin process by [HWY92, Theorem 11.14].
74This follows by [HWY92, Theorem 7.42], since ψ̃ is a thin process with pψ = 0 by [HWY92, Theorem 11.11].
75See, for example, [JS03, Definition II.1.20].
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where Z ∈ L2
loc(W ), ψ ∈ G(µ), and N is a local martingale that is orthogonal to W and µ̃, in

the following sense:
[N c,W ] = 0 and Mµ[∆N |P̃] = 0. (A.15)

Proof. This is a particular case of [JS03, Lemma III.4.24] for a semimartingale X with continuous
martingale component Xc = W and associated jump-measure µX = µ (as defined in [JS03,
Proposition II.1.16], or equivalently in [HWY92, Theorem 11.15]). �

A.2 Theory of BSDEs

We summarise here the results on BSDEs from [KP15], to which we refer in Chapter 5. We
continue to assume that (Ω,F,P) is a probability probability space with a filtration F satisfying
the usual condition. Additionally, we assume that F is quasi-left-continuous.

Let W denote a one-dimensional Brownian motion with respect to (F,P), and µ be a homo-
geneous Poisson random measure on Ω × (B([0,∞[)⊗B(U)) (recall that U ⊆ Rm \ {0}) with
intensity π(dt, du) = g(du)dt, for some non-negative σ-finite measure g on U such that∫

U
(1 ∧ |u|2)g(du) <∞. (A.16)

Let us denote by L2
g the set of Borel-measurable functions ϕ : U → R such that∫

U
ϕ(u)2g(du) <∞.

We fix a time finite time T > 0, and denote the progressive σ-field on Ω× [0, T ] by P(0, T ). We
consider the following BSDE:

Yt = ξ +
∫ T

t

f(s, Ys, Zs, ψs)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
U
ψ(s, u)µ̃(ds, du)−

∫ T

t

dNs, (A.17)

where ξ is an FT -measurable random variable, called the terminal condition, and

f : Ω× [0, T ]× R× R× L2
g → R

is a P(0, T ) ⊗B(R) ⊗B(Rk) ⊗B(L2
g)-measurable random function (we omit to write the de-

pendence on ω), which we call driver or generator of the BSDE. The unknowns of the BSDE are
(Y, Z, ψ,N), where Y is a real-valued càdlàg adapted process, Z ∈ L2

loc(W ), ψ ∈ G(µ), and N is
a local martingale orthogonal to W and µ̃.

For the purpose of this thesis, we can assume that f is independent of (Z,ψ), that is, our
generator is of the form f : Ω× [0, T ]×R→ R, (ω, t, y) 7→ f(t, y), and we also have ξ = 0. Hence,
the assumptions on f and ξ in [KP15] reduce to the following:

(H1) for every t ∈ [0, T ], the map y 7→ f(t, y) is continuous, and there exists a constant α such
that P-a.s., for all t ∈ [0, T ] and for all y, y′ ∈ R,(

f(t, y)− f(t, y′)
)
(y − y′) ≤ α(y − y′)2;

(H2) ∀ r > 0, E
[∫ T

0 sup|y|≤r|f(t, y)− f(t, 0)|dt
]
<∞;
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(H4) E
[∫ T

0 f(t, 0)2dt
]
<∞.

We define the following spaces of processes:

S2 :=
{
Y càdlàg adapted process

∣∣∣∣ E
[

sup
t∈[0,T ]

Y 2
t

]
<∞

}
, (A.18)

L2 :=
{
Z predictable process

∣∣∣∣ E
[∫ T

0
Z2
t dt

]
<∞

}
, (A.19)

L2
µ :=

{
ψ ∈ G(µ)

∣∣∣∣ E
[∫ T

0

∫
U
ψ(t, u)2g(du)dt

]
<∞

}
, (A.20)

M2,⊥ :=
{
N martingale orthogonal to W and µ̃

∣∣ E[[N ]T ] <∞
}
. (A.21)

Remark A.33. Note that, if (Z,ψ,N) ∈ L2 × L2
µ ×M2,⊥, then the process∫ ·

0
ZtdWt +

∫ ·
0

∫
U
ψ(t, u)µ̃(dt, du) +

∫ ·
0
dNt

is a true martingale bounded in L2 on [0, T ]. Indeed, the first integral Z�W is a local martingale
with E [[Z �W ]T ] = E

[
Z2 �[W ]T

]
< ∞, which by [HWY92, Theorem 7.32] is equivalent to the

boundedness in L2 of Z �W .76 Similarly, N is a local martingale bounded in L2, and so a true
martingale as well. Consider now the second summand M :=

∫ ·
0
∫
U ψ(t, u)µ̃(dt, du). Note that,

as the compensator of µ is π(dt, du) = g(du)dt, we have π({t} × U) = 0 and ψ̂t = 0, using the
notation in (A.11). So, the process

C(ψ) := (ψ − ψ̂)2 ∗ πt +
∑
s≤t

(
1− π({s} × U)

)
ψ̂2
s = ψ2 ∗ πt, 0 ≤ t ≤ T,

defines an integrable increasing process on [0, T ] (in the sense of (A.7)), since

E
[
ψ2 ∗ πT

]
= E

[∫ T

0

∫
U
ψ(t, u)2g(du)dt

]
<∞.

By [JS03, Theorem II.1.33a)], this proves that M is a true martingale bounded in L2 on [0, T ]

Proposition A.34. Suppose that ξ = 0 and f is independent of (Z,ψ). If the generator f
satisfies the assumptions (H1), (H2), and (H4), then the BSDE (A.17) has a unique solution
(Y, Z, ψ,N) ∈ S2 × L2 × L2

µ ×M2,⊥.

Proof. See [KP15, Theorem 1]. �

Note that, by solution we mean that (A.17) is satisfied P-a.s. for all t ∈ [0, T ] (this is equivalent
to [KP15, Definition 1] that the equation holds P × λ-a.e. in Ω × [0, T ], since both sides of the
equation are càdlàg), and by uniqueness we mean up to indistinguishability, as usual.

We also have the following comparison principle.
76Recall that, by Proposition A.21, a local martingale bounded in L2 is a true martingale.
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Proposition A.35. Assume that f1 and f2 are two generators both satisfying (H1), (H2), and
(H4). Denote by (Y i, Zi, ψi, N i) the corresponding unique solutions in S2×L2×L2

µ×M2,⊥, for
i = 1, 2. If P-a.s. for all t ∈ [0, T ] we have f1(t, Y 1

t ) ≤ f2(t, Y 1
t ), then Y 1 ≤ Y 2.

As in [AC18], when we say that a BSDE is well-posed, we mean that a unique solution exists
in S2 × L2 × L2

µ ×M2,⊥ and that the comparison principle holds.
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B Invariance Times

In this section we introduce the theory of invariance time of [CS17], which is crucial to study the
well-posedness of the XVA equations in Chapter 5. We only give the proofs that are omitted or
only sketched in [CS17]; for all other results, we refer to the original paper.

We assume that a probability space (Ω,A,Q) is given, together with two filtrations G =
( Gt)t≥0 and F = (Ft)t≥0 with Ft ⊆ Gt, for all t ≥ 0 (that is, F is a subfiltration of G). Both
filtrations are assumed to satisfy the usual condition. Let τ be a G-stopping time that is not
an F-stopping time. For the purposes of this thesis it is enough to assume that τ is totally
inaccessible and has an intensity γ with respect to G (see Definition A.20). This simplifies some
of the arguments in [CS17], where a general stopping time is considered.

B.1 The condition (B)

Condition(B) For any G-predictable process L, there exists an F-predictable process L′ such
that L1K0,τK = L′1K0,τK.

The process L′ is called F-predictable reduction of L.

Assumption B.1. From now on in this section, we assume that the condition(B) holds.

Remark B.2. As shown in [CS17, Lemma 2.1], the condition(B) is satisfied if and only if G is
a subfiltration of F :=

(
Ft

)
t≥0

, where

Ft := {B ∈ A| ∃A ∈ Ft : B ∩ {t < τ} = A ∩ {t < τ}} , ∀ t ≥ 0.

We can easily verify that F is right-continuous, and, being larger than F, it is also complete;
hence, it satisfies the usual condition. Note that, τ is always an F-stopping time; indeed, for
any t ≥ 0, B := {t < τ} = A ∩ {t < τ}, if A := Ω ∈ Ft. Therefore, if we assume that G is the
smallest filtration larger than F and such that τ is a G-stopping time, then G is a subfiltration
of F and condition(B) holds.

Definition B.3. Let J := 1J0,τJ. We define the Azéma supermartingale of τ as the (F,Q)-
optional projection S := oJ (which exists, because J is bounded).

Thus, S is an F-optional process such that St = Q[τ > t|Ft] a.s. for all t ≥ 0. To see that S
is actually a supermartingale, note that, since 1{τ>t} ≤ 1{τ>s} for s ≤ t, by the tower property
we have

E[St|Fs] = E[1{τ>t}|Fs] ≤ E[1{τ>s}|Fs] = Ss, Q-a.s. for s ≤ t.

Since S is bounded and F-adapted, it is an (F,Q)-supermartingale. Observing that the func-
tion t 7→ Q[τ > t] is right-continuous (by the continuity of measures), by Proposition A.1 we
can choose S to be a càdlàg F-supermartingale. By the Doob-Meyer decomposition (see Theo-
rem A.11), we can write S = S0 + Q −D, where Q is a uniformly integrable (F,Q)-martingale
with Q0 = 0 and D is an F-predictable Q-integrable increasing process (in the sense of (A.7))
starting from zero. Since τ is totally inaccessible, we have that τ > 0; thus, we know that S0 = 1.

Proposition B.4. The process D is the (F,Q)-compensator of 1{0<τ}1Jτ,∞J = 1Jτ,∞J.
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Proof sketch. This can be seen by looking at the construction of D in the proof of its existence
in [HWY92, Theorem 5.47]. The bounded non-negative right-continuous supermartingale Z =
(St − E[S∞|Ft])t≥0 is a potential of class(D), since E[Zt] = E[St] − E[S∞] and St → S∞ in L1

by [HWY92, Theorem 2.50].77 By inserting Z in the definition of the measure µ in [HWY92,
Equation (46.2)], we see that µ is the measure generated by the non-decreasing process A :=
1 − J = 1Jτ,∞J (that is, µ = µA using the notation of [HWY92, Definition 5.10]), using that
E[Sθ] = E[Jθ], for any F-stopping time θ. Then, it follows from the above mentioned proof, that
D is actually the (F,Q)-compensator of A.78 �

Lemma B.5. The left limit process S− is equal to the F-predictable projection p(J−) of J− =
1J0,τK.

Proof. S− is a predictable process, and, since J− is bounded, a predictable projection exists;
thus, by [HWY92, Remark 5.3.2)] it is enough to check that

E[J−(θ)1{0<θ<∞}] = E[Sθ−1{0<θ<∞}]

for any F-predictable time θ. Let θ be an F-predictable time. Since S is càdlàg, we have
Sθ− = limn→∞ Sθn Q-a.s., where θ is an F-predictable time and (θn)n a sequence of F-stopping
times foretelling θ (which exists by Proposition A.7). Thus, using that S = oJ and that θn <∞
on {θ > 0} for all n, yields

Sθ− = lim
n→∞

Sθn = lim
n→∞

E[Jθn |Fθn ] = lim
n→∞

Q[θn < τ |Fθn ] a.s. on {θ > 0}.

By dominated convergence theorem,

E[Sθ−1{θ>0}|Fθm ] = lim
n→∞

Q[θn < τ |Fθm ]1{θ>0} = Q[0 < θ ≤ τ |Fθm ], for any m ∈ N.

By [HWY92, Theorem 3.4.11)], Fθ− = σ
(⋃

m∈N Fθm
)
, which implies that

Sθ−1{θ>0} = Q[0 < θ ≤ τ |Fθ−].

Therefore, since {θ <∞} ∈ Fθ−,

E[Sθ−1{0<θ<∞}] = E
[
Q[0 < θ <∞, θ ≤ τ |Fθ−]

]
= Q[0 < θ <∞, θ ≤ τ ] = E[J−(θ)1{0<θ<∞}].

�

Furthermore, we have by [HWY92, Remark 3.5.1)], that the F-predictable projection of the
uniformly integrable martingale Q is Q−, and D is already predictable; thus,

pS = Q− −D = S −∆Q = S− −∆D ≤ S−.

In particular, pS = S−, if D is continuous.
77Note: S is a potential ⇔ S∞ = 0 ⇔ Q[τ =∞] = 0.
78Note that A is not F-adapted, but this is not necessary in the definition of the dual predictable projection

in [HWY92]; indeed, only measurability and local integrability are required. In particular, since τ is not an
F-stopping times, we cannot say that D is the compensator of τ .
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Lemma B.6. The (G,Q)-compensator v of τ satisfies

v =
∫ ·

0

1
Ss−

dDs =
∫ ·∧τ

0

1
Ss−

dDs. (B.1)

Moreover, D = γ′S−�λ on {S− > 0}, where γ′ is the F-predictable reduction of the (G,Q)-intensity
γ of τ .

Proof. The process v := 1
S−

�D is F-predictable (see [HWY92, Theorem 3.46]), so we need to
show that, for any bounded measurable process H, it holds79

E
[∫ ∞

0
Hsdvs

]
= E

[∫ ∞
0

pHsdAs

]
, (B.2)

where A = 1Jτ,∞J and pH denotes the (G,Q)-predictable projection of H. Let H be a bounded
measurable process. By the predictability of v, we have

E
[∫ ∞

0
Hsdvs

]
= E

[∫ ∞
0

pHsdvs

]
= E

[∫ ∞
0

pHs
1
Ss−

dDs

]
.

Let us denote by H ′ the F-predictable reduction of pH. Since H ′ = pH on K0, τK and D is stopped
at τ , we have

E
[∫ ∞

0

pHs
1
Ss−

dDs

]
= E

[∫ ∞
0

H ′s
1
Ss−

dDs

]
= E

[∫ ∞
0

H ′sdDs

]
,

where the last equality follows by the fact that {S− = 1} = {p(J−) = 1} is the largest F-
predictable set in J0, τK (this follows by [Jeu80, Lemme (4,3)]) and D is F-predictable. Now,
since D is the (F,Q)-compensator of A (see Proposition B.4) and H ′ is F-predictable,

E
[∫ ∞

0
H ′sdDs

]
= E

[∫ ∞
0

H ′sdAs

]
= E[H ′τ ] = E[pHτ ],

which yields (B.2). This shows the first equality in (B.1), and that v is indeed the compensator
of τ . By Proposition A.18, the difference A− v is a martingale. Since A is constant after τ and
v is non-decreasing, v is also stopped at τ . This yields the second equality in (B.1).

Since τ has a (G,Q)-intensity γ, it holds

v = 1
S−

�D = γ �λ, on [0, τ ].

Since v is stopped at τ , we can assume that γ vanishes on Kτ,∞J, and obtain the above equality
on [0,∞[. Thus, D = γS− �λ on [0,∞[. Let γ′ denote the F-predictable reduction of γ, which is
identical to γ on K0, τK. Then, D = γ′S− �λ on J0, τK. By Lemma B.11 below, the equality holds
on {S− > 0}. �

Remark B.7. Therefore, D is continuous and S− = pS. Also, we have

E
(
± 1
S−

�D

)
= e
± 1
S−

�D = e±γ
′�λ, on {S− > 0},

79Note that both v and A start from zero, so it is enough to integrate on ]0,∞[, instead of [0,∞[.
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where E(·) denotes the stochastic exponential (see Definition A.28). This is an important sim-
plification of the general setup in [CS17] due to our assumption that τ is totally inaccessible and
has an intensity.

Since we are not interested in what happens after τ , we assume with no loss of generality
that γ is F-predictable.

Next, we define the following stopping times:

ς := inf{s > 0: Ss = 0}, and ςn := inf
{
s > 0: Ss ≤

1
n

}
, n ≥ 1.

Then, we immediately have ς = supn ςn, and, since S is a non-negative supermartingale, we also
know that ς = inf{s > 0: Ss− = 0} (see, for example, [HWY92, Theorem 2.62] or [DM82, No.
17 Chapter VI]). Note that, by right-continuity {S > 0} = J0, ςJ, whearas it holds

{S− > 0} =
⋃
n

J0, ςnK.

To see this, note that for ω ∈ {Sς− > 0}, that is, where the trajectory S(ω) has a jump at
ς(ω), one has {s ≥ 0: Ss−(ω) > 0} = [0, ς(ω)] and there exists a (random) n = n(ω) such
that Sς−(ω) > 1

n , which means that ςn(ω) = ς(ω) and
⋃
n[0, ςn(ω)] = [0, ς(ω)]. Conversely, for

ω ∈ {Sς− = 0} the trajectory S(ω) has no jump at ς(ω) and ς(ω) is not an attained maximum.
So, {s ≥ 0: Ss−(ω) > 0} = [0, ς(ω)[=

⋃
n[0, ςn(ω)]. To sum up, we have80

J0, ςJ = {S > 0} ⊆ {S− > 0} =
⋃
n

J0, ςnK ⊆ J0, ςK.

Thus, on Kς,∞J, it holds S = S− = 0; hence, D and Q are constant on [ς,∞[. Additionally, note
that, by [Yor78, Lemme 0], Sτ− > 0 on {τ <∞}.

Remark B.8. Note that, although Jτ = 0, S is not necessarily zero at τ , being S the F-optional
(not G) projection of J . If τ were also an F-stopping time, by the definition of optional projection
we would have Sτ = E[Jτ |Fτ ] = 0. This would imply that τ = ς. Since we assumed that this is
not the case, in general we only have ς ≤ τ .

Lemma B.9. i) For any G-stopping time θ, there exists an F-stopping time θ′, such that
{θ < τ} = {θ′ < τ} ⊆ {θ = θ′}; θ′ is called F-reduction of θ.

ii) Let (E, E) be a measurable space. Any P(G) ⊗ E (resp. O(G) ⊗ E) measurable function
g : Ω× R+ × E → R admits a P(F)⊗ E-(resp. O(F)⊗ E-) reduction, that is, a P(F)⊗ E-
(resp. O(F) ⊗ E-) measurable function g′ : Ω × R+ × E → R such that 1K0,τKg = 1K0,τKg

′

(resp. 1J0,τJg = 1J0,τJg
′).

iii) Let T > 0 and assume ST > 0. LetM be a (G,Q)-local martingale on [0, T ] with no jump at
τ . For any F-optional reduction M ′ of M (which exists by item ii); see also Remark B.10),
M ′ is an F-semimartingale on [0, T ] and

S− �M
′ + [S,M ′] is an (F,Q)-local martingale on [0, T ]. (B.3)

Conversely, for any F-semimartingale X on [0, T ] such that S−�X+[S,X] is an (F,Q)-local
martingale on [0, T ], the stopped process Xτ− is a (G,Q)-local martingale.

80Note that all the inclusion and equalities between stochastic sets are intended up to evanescent set.
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iv) Let T > 0 and assume that ST > 0. The Azéma supermartingale S admits a predictable
multiplicative decomposition S = S0QD on [0, T ], where D = e−γ�λ is an F-predictable
process of finite variation and Q = E

(
1
S−

�Q
)
> 0 is an (F,Q)-local martingale on [0, T ].

Proof. For the first item,81 let θ be a G-stopping time, and L := 1K0,θK. Then, L is G-predictable
and θ′ := inf{t ≥ 0 |L′t = 0}, where L′ denotes the F-predictable reduction of L, is an F-stopping
time. It is easy to see that, on {θ < τ}, L′ = 1K0,θK, so θ = θ′ and θ′ < τ . Similarly, on {θ′ < τ},
we have θ = θ′ and θ < τ .

For item ii), see [CS17, Lemma 2.2 (2)]. For item iii) see [Son16, Lemma 6.5 and 6.8]. Item iv)
is a special case of [CS17, Lemma 2.2 (5)] with ST > 0, combined with the fact that 1

S−
�D = γ �λ

on [0, T ] (see Remark B.7). �

Remark B.10. Therefore, by item ii) in Lemma B.9, any G-optional process L has an F-optional
reduction L′, such that L1J0,τJ = L′1J0,τJ.

Lemma B.11. Two F-predictable (resp. optional) processes indistinguishable on J0, τK (resp.
on J0, τJ) are indistinguishable on {S− > 0} (resp. {S > 0}).

Proof. See [CS17, Lemma 2.3]. �

Let T > 0. By the above lemma, if ST > 0, the F-predictable and optional reductions
of processes are unique (up to indistinguishability) on [0, T ]. In this case, if a process L is
G-predictable, its F-optional and F-predictable reductions are indistinguishable on [0, T ]. Never-
theless, it is crucial to always carefully distinguish where the notation ·′ indicates a predictable
or an optional reduction (and with respect to which filtration).

B.2 The condition (A)

We assume the same setup of section B.1, also assuming condition(B) and, as before, that τ has
a (G,Q)-intensity γ (which can be assumed F-predictable by reduction). We also fix T > 0.
Condition(A) There exists a probability measure P on A equivalent to Q on FT such that

∀ X ∈Mloc(F,P) : Xτ− ∈Mloc,[0,T ](G,Q),

where Mloc,[0,T ](G,Q) denotes the set of (G,Q)-local martingales on the interval [0, T ]. If
the condition holds, we call τ an invariance time and P an invariance measure.

Remark B.12. As explained in [CS16], this setup goes beyond the basic immersion setup, where
P = Q and the F-local martingales are Q-local martingales without jump at τ .

We now give some of the results in [CS17] on the condition(A). To simplify things, we always
assume that ST > 0, that is, ς > T . Recall that the supermartingale S has Doob-Meyer
decomposition S = S0 +Q−D, where Q is a uniformly integrable (F,Q)-martingale with Q0 = 0
and D is an F-predictable Q-integrable increasing process (in the sense of (A.7)) starting from
zero.

81For this argument, we follow [DMM92, Chapitre XX, no. 75 b)].
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Theorem B.13. Assume ST > 0. The condition(A) holds if and only if the predictable process
1
S−

is (F,Q) integrable with respect to Q on [0, T ] and Q = E( 1
S−

� Q) is a positive (F,Q) true
martingale on [0, T ]. In this case, a probability measure P on A is an invariance measure if and
only if

dP
dQ

∣∣∣∣
FT

= E
(

1
S−

�Q

)
T

. (B.4)

Proof. See [CS17, Theorem 3.2]. �

So we have uniqueness of the invariance probability measure P on FT ; note that we only need
to know P on FT , as in the sequel we will only use it for the valuation of F-adapted processes on
[0, T ].

Theorem B.14. If ST > 0 and that E[E( 1
S−

�D)τ∧T ] <∞, then the condition(A) holds.

Proof. See [CS17, Theorem 3.5]. �

Remark B.15. By Remark B.7, the condition of Theorem B.14 reduces to a condition on γ. In
fact,

E
(

1
S−

�D

)
τ∧T

= e(γ�λ)τ∧T .

So, under the assumptions ST > 0 (and that τ has a (G,Q)-intensity γ), it is enough that
e

∫ τ∧T
0

γsds is Q-integrable, to make sure that condition (A) holds.

In addition, we give the following characterisation of (F,P)-local martingales on [0, T ] in case
the condition(A) holds, which is needed in the proof of Theorem B.18.

Theorem B.16. If ST > 0 and the condition(A) holds with an invariance measure P, then

X ∈Mloc,[0,T ](F,P) ⇐⇒ S− �X + [S,X] ∈Mloc,[0,T ](F,Q).

Moreover, in this case {S− > 0} = {S > 0} = J0, ςJ.

B.3 The condition (C)

As in [CS18], in order to benefit from all the results of the previous subsections, we can assume
the following condition.
Condition(C) The condition (B) holds, ST > 0, and E[e(γ�λ)τ∧T ] <∞.

During the thesis we make use of the following “expectation transfer formulas” to pass from
an expectation with respect to Q to one with respect to P, and vice versa.

Theorem B.17. Let A be an F-optional non-decreasing process starting from 0. Then, the
following holds:

E
[
Aτ−T

]
= E′

[∫ T

0
e−ΓsdAs

]
. (B.5)

Proof. See [CSS20, Theorem 5.1] or [CS18, Theorem 3.1]. �
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The following theorem corresponds to the first part of [CS18, Theorem 4.1].

Theorem B.18. Denote byMT
loc(F,P) the set of all (F,P)-local martingales (on [0,∞[) stopped

at T , and byMτ−∧T
loc (G,Q) the set of all (G,Q)-local martingales (on [0,∞[) stopped at τ −∧T ,

that is, stopped at T and before τ . Then, the map

MT
loc(F,P) 3 L 7−→ Lτ− ∈Mτ−∧T

loc (G,Q) (B.6)

is a bijection with inverse the F-optional reduction

Mτ−∧T
loc (G,Q) 3 L 7−→ L′ ∈MT

loc(F,P) (B.7)

Proof. Let X ∈ MT
loc(F,P). By the condition(A), Xτ− ∈ Mτ−∧T

loc (G,Q). Conversely, if M ∈
Mτ−∧T

loc (G,Q) and M ′ denotes its F-optional reduction, S−�M ′ + [S,M ′] is an (F,Q)-local mar-
tingale on [0, T ], by Lemma B.9 iii), which is equivalent to M ′ ∈ MT

loc(F,P), by Theorem B.16.
This shows that the two maps are well defined. To prove that they are bijective, we need to show
that for any X ∈ MT

loc(F,P), (Xτ−)′ = X, and for any M ∈ Mτ−∧T
loc (G,Q), (M ′)τ− = M . For

the first one, we have that (Xτ−)′ = Xτ− = X on J0, τJ. By the optional version of Lemma B.11,
the (indistinguishable) equality holds also on [0, T ], and, since everything is stopped at T , we
have equality on [0,∞[. For the second one, we have that M ′ = (M ′)τ− = M on J0, τJ, and,
since M is stopped before τ , the second equality holds on [0,∞[. This completes the proof. �

Therefore, in our setup, an (F,P)-local martingale on [0, T ] stopped before τ defines a unique
(up to indistinguishability) (G,Q)-local martingale on [0, τ ∧ T ] with no jump at τ . Conversely,
the F-optional reduction of a (G,Q)-local martingale on [0, τ ∧ T ] with no jump at τ defines a
unique (F,P)-local martingale on [0, T ].
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C Value at Risk and Expected Shortfall

In this section we give a short summary on value at risk and expected shortfall. Our references
are [FS11] and [MFE05].

Suppose a probability space (Ω,F,P) is given, and let E denote the expectation with respect
to P. Let α ≥ 50% be a given confidence level, and L be a real-valued random variable on
(Ω,F,P) representing a loss.

Definition C.1. The value at risk at the confidence level α of L is defined by

VaRα(L) := inf {x ∈ R |P[L ≤ x] ≥ α} . (C.1)

Note that we take a “loss view” as in [MFE05, Definition 2.10]; in [FS11, Definition 4.45]
another convention is used, where the random variable in the value at risk denotes a gain.

Definition C.2. Assuming E[|L|] < ∞, the expected shortfall at the confidence level α of L is
defined by82

ESα(L) := 1
1− α

∫ 1

α

VaRu(L)du. (C.2)

This corresponds to the definition of average value at risk (AV@R) in [FS11, Definition 4.48],
in the sense that,

AV@R1−α(−L) = ESα(L).

Lemma C.3. Assume E[L] ≥ 0. Then, ESα(L) ≥ 0.

Proof. By [FS11, Theorem 4.52], we know that ESα is a coherent risk measure; hence, it can be
written as

ESα(L) = max
Q∈Qα

EQ[L],

where Qα is the set containing all probability measures Q absolutely continuous with respect to
P with density dQ

dP bounded by 1
1−α (EQ denote the expectation with respect to Q). Since P ∈ Qα

and E[L] ≥ 0, the maximum is also non-negative. �

By [FS11, Equations (11.21)-(11.22)], we see that we can define conditional versions of value
at risk and expected shortfall. Let F = (Ft)t≥0 be a filtration on (Ω,F,P). By adapting to our
notation, we get

VaRα,t(L) := ess inf
{
xt ∈ L∞(Ft)

∣∣P[L ≤ xt |Ft] ≥ α
}

and (C.3)
ESα,t(L) := ess sup

Q∈Qαt
EQ[L |Ft], for t ≥ 0, (C.4)

where L∞(Ft) is the set of all bounded Ft-measurable random variables and Qαt denotes the set
of all probability measures Q absolutely continuous with respect to P such that Q = P on Ft and
the density dQ

dP is bounded by 1
1−α .

With a similar argument as above we have the following lemma.

Lemma C.4. Let t ≥ 0 and assume E[L |Ft] ≥ 0. Then, ESα,t(L) ≥ 0.

82See also [MFE05, Definition 2.15].
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