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1. Introduction 

Let X be a symmetric space of noncompact type or more generally a Hadamard 
manifold, i.e. a complete simply connected Riemannian manifold of nonpositive 
sectional curvature. We consider a finite positive Borel-measure # on the ideal 
boundary X(~)  (see Sect. 2 for the definitions). Let G be the isometry group of X 
and G~ the subgroup which stabilizes the measure #. In the case of a symmetric 
space we obtain the following result. 

Theorem 1. Let X be a symmetric space of nonpositive curvature and ~ a finite 
positive measure on X(oo) such that the support of ~ contains at least one regular 
point. Then the group G~ is amenable and the identity component G ~ has a normal 
cocompact solvable subgroup. 

Remark. One should compare our result with a theorem of Moore I-M], who 
proved that Gu is the group of real points of an algebraic R-group and has a 
normal eocompact solvable subgroup in the case that p is a positive measure on 
G/P for a minimal parabolic subgroup P of G. Our theorem is related to Moore's 
result in the following way: G/P can be viewed as a submanifold of the regular 
points of X(~),  and, hence, a measure on G/P induces a measure on X(~)  with 
regular support. Thus, by our theorem G ~ is a compact extension of a solvable 
group. In Moore's case, the additional information that G/P is an algebraic variety 
enables one to prove that GJG ~ is finite. In fact, we can not prove this for our more 
general measures/~. 

The proof of Theorem 1 is very geometric and we give a brief outline: the 
measure # on X(~)  induces a measure #x on the unit tangent sphere at every point 
xeX. The mean value of #x at each point gives a vectorfield V(x) which is the 
gradient field of a G~,-quasi invariant convex function F. If F assumes the 
minimum, then G~ leaves the minimal set E o fF  invariant. It turns out, that E is a 
euclidean submanifold of X and G is amenable as a compact extension of the 
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isometry group of E. If F does not assume the minimum, we prove that G~ fixes a 
point z s X(oo). In this case, G~, is contained in the parabolic subgroup G= of G and 
we can use an induction on the boundary component asymptotic to z to obtain the 
result. 

Since the proof is geometric, we can use similar arguments to study groups 
stabilizing a measure on the boundary of an arbitrary Hadamard manifold. We 
obtain the following structure result for the action of amenable groups. 

Theorem 2. Let F be an amenable group of isometries operating on a Hadamard 
manifold X. Then one (or both) of the following holds: 

(1) F fixes a point zEX(oo). 
(2) F leaves a totally geodesic subspace E C X invariant and E is isometric to an 

euclidean space. 

From this theorem we derive the following results of Avez, Zimmer, and 
Anderson. 

Corollary 1 (Avez [Av], Zimmer [Z]). Let M be a complete Riemannian manifold of 
n o n  positive curvature and finite volume with amenable fundamental group. Then, M 
is flat. 

Corollary 2 (Anderson [A]). Let M be a compact manifold of non positive 
curvature, then every amenable subgroup of nI(M) is a Bieberbach group. 

2. Preliminaries 

A. Amenable Groups (General Reference [P])  

A topological group H is amenable if for every continuous action of H on a 
compact topological space Y there exists a positive H-invariant measure on Y. We 
collect some well known properties of amenable groups. 

a) Compact extensions of solvable topological groups are amenable 
(Kakutani-Markov). 

b) A connected amenable Lie group is a compact extension of a solvable group 
IF]. 

c) If f :  G-*H is a continuous surjective homomorphism with kernel K then 0 
is amenable if and only if both K and H are amenable. 

d) Closed subgroups of locally compact amenable groups are amenable. 
There exists a geometric interpretation of amenability in the case that F is the 

fundamental group of a compact manifold. Then let S be a finite set of generators 
. o I I ~ J l l  = 0 .  

and Iti the corresponding graph, Then/~ is amenable if and only if sm 

This follows from FSlner's condition [P]. Equivalently [B] the infinimum of the 
L2-spectrum of the universal covering M of M is 0. 

Equivalent is also the condition inf Vol(dB) = 0. 
B ~  Vol(B) 
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B. Manifolds of non Positive Curvature (General Reference [E-O'N,  BGS])  

Let X be a Hadamard  manifold, this means a complete simply connected 
Riemannian manifold of nonpositive curvature. We denote by d( ,  ) the distance 
function and by 37 = XuX(oo) the Eberlein-O'Neill compactification of X. Thus 
X(oo) is the set of classes of asymptotic rays and homeomorphic to S ~- 1 where 
n= dimX. For  p ~ X and q ~.g, there is a unique unit speed geodesic from p to q. 
The initial vector at p of this geodesic is denoted by V(p, q). For  p e X, q 1, q2 e)~, let 
gv(ql, q2) be the angle between V(p, ql) and V(p, q2)" 

For a unit speed geodesic c the Busemannfunction be is defined by be(p) 
= lim(d(p, c(t))-t). Then bc is a C2-function with gradient Vbc(p)=- V(p,c(oo)) 

t--a. cO 

where c(~)eX(oo) is the asymptotic class of c. Thus up to a constant, the 
Busemannfunction bc depends only on c(oo). The function bc is convex, this means 
that b, o h: R ~ R  is a convex function for every geodesic h. 

Two geodesics c and h are called parallel, if c(oo) = h(oo) and c( - ~ )  = h ( -  oo). 
Parallel geodesics bound a totally geodesic flat euclidean strip in X. More 
generally, let Pc be the set of all points contained on parallels to c. Then Pc is a 
convex subset of X which splits isometrically as P~ = P'c x R.  If X is an analytic 
manifold, then Pc is a complete submanifold. 

If h is a geodesic segment, z e X(oo), then the function 
~b(t) : = ,~ h(t)(V(h(t), z), h(t)) is monotone increasing. If ~b(t 1)= ~b(tz) , then h[tn, t~j and 
the geodesics from h(Q to z bound a flat strip. 

C. Symmetric Spaces (General Reference [W, K, I H ] )  

Let X be a symmetric space of noncompact  type with isometry group G. We fix a 
point x o e X and identify X with the homogeneous space G/K where K is the 
isotropy group of x0. We consider the Cartan-decomposition (5 = ~ ~ of the Lie 
algebra of G and we identify ~ with the tangent space T~oX. 

A flat in X is a complete totally geodesic euclidean subspace in X of maximal 
dimension. This maximal dimension is the rank of the symmetric space. Let F be a 
flat with x o ~ F, then TxoF is a maximal abelian subalgebra of ~ .  Every tangent 
vector v in ~3 is contained in some maximal abelian subalgebra, hence every 
geodesic c is contained in some flat. A geodesic c (vector in ~)  is called regular, if it 
is contained in a unique flat (unique maximal abelian subalgebra). A point 
zsX(oo) is called regular, if it is the endpoint c (~ )  of a regular geodesic c. The 
singular vectors in a maximal abelian subalgebra ~B of ~ are contained in finitely 
many hyperplanes which divide $ into the Weylchambers. Correspondingly, the 
!ingular geodesics through x 0 in a pointed flat (F, x0) divide the euclidean space 
into Weylchambers. 

For a geodesic c through x0 we consider the parallel set Pc. Let v = ~(o) in ~ ,  
then T~oP,= {w E ~1 l-w, v] = 0}. Thus v is regular, if the centralizer of  v in ~ is 
abelian, and c is regular if and only if Pc is an euclidean space. For  the geodesic, we 
Consider the transvection q~r := expotve  G. Then ~b t translates the geodesic c, i.e. 
6,c(s) = c(s + t) and the differential d~bt realizes the parallel translation along c. 
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We define the horocyclic group 

No:=  { , e G  ~im~,-xTr 

(cf. [K, Sect. 4.21, [IH, Sect. 2]). 
Then N c is a subgroup of the parabolic group G~, the stabilizer of z = e(~). 

Indeed Nc is a maximal nilpotent normal subgroup of G~. The orbit Ncxo is the 
horocycle determined by c. We have the decomposition of X as a disjoint union 
X =  U nPc. This decomposition has the following geometric description: we 

neNc 
consider all geodesics asymptotic to z and call two of them equivalent, if they are 
parallel. Then, an equivalence class of geodesics can be written as n. Pc for a unique 
n e N~. This is the viewpoint in I'K]. In correspondence to this decomposition of X 
we have the Harish-Chandra decomposition G= = K'A'N of the parabolic group 
G,. An element g e G ,  can be written as g=k'a'n, where k 'eK,  n eNc and 
a' e Isom (Pc). 

We have the projection maps 

p : X-~ P c 

xF-~n- * x, if x e nP~ 

and 

ql : G ~ G  ffN~ = K'A' 

g = k'a'nF--,k'a' = lira r  'gr  

Let q2:K'A'~Isom(Pc) be the restriction map. The kernel of q2 is a compact 
normal subgroup of K'A'. Let q:G=~Isom(Pc) be the composition q = q2 o qr 

Lemma. a) The projection p : X ~ P c  extends to a Borel measurable projection 
p:X(~)-~Pc(oo). 

b) p(regular points in X(oo))C regular points in Pc(~176 

To prove a) we remark that for a point weX(oo) there exists a geodesic c' 
asymptotic to z with w e Pe(oo) [IH].  

Then, Pc' =nPc for a suitable n e N  c and the projection map extends by 
p ( w )  = n - i w .  

To prove that p is well defined, it suffices to show that if n{y)e Pc(~) for some 
yePc(~),  then n(y)=y. To prove this choose a one parameter group of 
transvections r such that c(t) = r x = c(0). Then y = }im (p,- ln~p,(y) = n(y) since 

4,, fixes every point of Pc(~). We note that the projection p: X(~)~Pc(~ )  is not 
continuous even in the case that X is the hyperbolic plane. However p is clearly 
Borel measurable. 

b) Let wenPc(~) be a regular point of X ( ~ )  and let h be a geodesic in nPc 
asymptotic to w. Then Pn is an euclidean space and n - l h  is a geodesic in Pc 
asymptotic to n-  lw = p(w). Since P , -  ,h is euclidean, also P , -  ~c~P~ is euclidean and 
thus p(w) is a regular point of Pc(~). 
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3. The Function F 

Let # be a finite positive measure on the boundary X ( ~ )  of a Hadamard  manifold 
X. We associate to # a convex function on X (comp. [Z]). For  z e X(oo) and p e X, 
let bp(., z) be the Busemannfunction of z normalized such that bpfp, z) = 0. 

We define 
F~(q): = I bp(q, z) d#(z). 

x (o~)  

As a positive mean of convex functions F~ is convex. Since Busemann functions are 
C: it is not difficult to check that F~ is C 2 with 

VF~(q) = ~ Vb~(q, z) do(z) = - ~ V(p, z) d#(z). 
;~( oo ) ;C( o~ ) 

Lerama 1. The function F~ is quasi-invariant under the action of  the stabilizer G, of  
#, i.e. for 7 e G~ there exists a constant c(7) such that 

Proof. 

F~(?q) = F~(q) + c(~). 

F~(Tq) = j bp(~q, z) dp(z) 
z(ao) 

= j b~-,p(q, ~- 'z) d#(z) 
z(oo) 

= I z) 
z( oo ) 

where the last equality holds since Y e G~,. 
Note that bp(., z) and b~-,p(-, z) differ by the constant b~-,p(p, z). Thus 

F~(~q) = I (bp(q, z) + br- ,p(p, z)) d#(z) 
x(oo) 

= F (ql + 
with 

c(~) = c~(7) = S br-,p(p, z) dl~(z). 
z(oo) 

Remark. The quasi invariance of F~ is equivalent to the invariance of the vector 
field 7F~. 

We now study the case that F~ does not assume the minimum. 

Lerama 2. Let f be a convex function on X quasi-invariant under the action o f  a 
group F of  isometrics on X. Let us assume that f does not assume a minimum. Then 
there is a point z e X ( ~ )  f ixed by all v e F .  

Proof. Let a : = i n f f e  N w  { - oo } and let at > a be a monotone decreasing sequence 
converging to a. We consider the convex subsets A t = f - 1 ( ( _  ao ,a j )  of X, then 
nA~---O. We fix a point p e X and let pi:= zcA,(p ) be the projected points, where 7r~, 
is the orthogonal projection onto Ai. Then the sequence p~ has no accumulation 
point in X and by choosing a subsequence we can assume that p i ~ z  e X(oo). We 
Prove that 7z = z for 7 e F. Note that 7Ai = A'~, where A'~ is another sublevel of f .  
Without loss of generality let A~ 3 Ai (in the opposite case we consider ~,- 1 instead 
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of ~). Let b : = d(p, ),p), t i : = d(p, Pi) = d(~p, 7P~). ci : = d(])p, Pl), si: = d(pi, ?Pi), 
~ :  = r ~p(P,, ~Pi). 

We will prove that ~ 0 .  Since p i~z ,  this implies that also 7p i~z  and hence 
7z = z. By the triangle inequality we have c i < t i + b. Since 7Pi = ~za~(TP) and Pi ~ A'i we 
have 9: ~p,(p,, 7p)= ~. Thus, by the law of cosine [E-O'N],  we have c 2 > t 2 + s~. 
Hence (t i + b) 2 > t 2 + s 2 and 2tib + b 2 > s 2. 

Moreover, s2>c~+t2-2ci t icoso~i>-2cit i (1-cos~i)  by the law of cosines 
applied to the triangle ~p, p,, 7p, and hence ~ 0 .  

To investigate the case that F~ does assume the minimum, we study subsets, on 
which convex functions are linear. 

Definition. Let f be a convex function on X and let M be a convex subset of X. 
Then f is called linear on M, if the function t~--~fo c(t) is affine for all geodesic 
segments c in M. 

Lemma 3. Let  M C X be a convex subset on which F~ is linear. Then the functions 
bp(., z) are linear on M for all z ~ supp(p). 

Proof, Let us assume to the contrary that bp(., z) is not linear on M for z E supp(/0. 
Then there exists a geodesic segment c:[0,  1] ~ M  such that 

bp(c(1/2), z) < 1/2(bp(c(O), z) + bp(c(1), z) ). 

Since the function (p, q, z)v--~bp(q,z) is continuous, we have 

bp(c(1/2), w) < 1/2(bp(c(O), w) + bp(c(1), w)) 

for all w in an open neighborhood U of z. 
Since/~(U)>0, we have 

iW~(c0/2)) < 1/2(V~(c(O)) + V~(c(1))) 

a contradiction to the linearity of F~. 

Lemma 4. Let  b be a Busemann function on X for a point z ~ X(oo). Let  A c X be a 
convex subset on which b is linear. Then the vectorfield V( . , z) is parallel on A. I f  X is 
analytic, then A is contained in a parallel set P~ for a geodesic c asymptotic to z. 

Proof. Let g: [ 0 , 1 ] ~ A  be a geodesic segment. Since b is affine on g, we have 

< Vb(g(t)), ~(t)> = - < V(g(t), z), ~(t)> 

is constant. Thus, by the last remark in Sect. 2 B, the points g(0), g(1) and z span a 
totally geodesic euclidean strip. It follows that V(g(t), z) is tangent to this strip and 
parallel. 

If X is analytic, then let c be the geodesic with c(0)= p ~ A and c(c~)= ~. The 
argument above shows that, for a geodesic segment g from p to q ~ A, the ray Clio. | 
is the boundary of a flat strip containing q. By analyticity, this lies in a flat plane 
and hence q ~ Pc. 

l k m m a  5. Let  X be analytic and let us assume that F~ assumes the minimum with 
Y: = { q ~ X IF~,(q) minimum}. 

Let  q e  Y, then Y =  ~ P~ ,  where ~ is the geodesic with c(0)=q, c(~176 ~-z" 
z e s u p p ( t ~ )  
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Proof. By Lemma 3, bp(.,z) is linear on Y for all z esupp(#) and thus 
YC 0 P~  by Lemma 4. To prove the opposite inclusion, note that V(., z) is a 

zcsupp(t~) 
parallel vectorfield on P~e- Thus VF~ = ~ V(., z) d#(z) is a parallel vectorfield on 

X(oo) 
M = 0 P~. Since VF~(q) = O, we have VF, u = 0 on M and thus M C E 

zesupp(,u) 

Proof of Theorem 1. We prove the theorem by induction on the dimension of X 
where the case dimX = 1 is trivial. 

We first consider the case that X has a non-trivial euclidean de Rham factor. 
We write X = IR s x X*, where s > 1 and X* is symmetric of noncompact type. We 
assume that X* has positive dimension for otherwise the result is immediately true. 
If# is a finite positive Borel measure on X(oo) whose support contains a point of 
R(o0), the set of regular points of X(oo), then the restriction of/t to R(~)  is nonzero. 

We define a continuous projection p: R(~)--,R*(oo)C X*(~)  in the following 
way. For a point xeR(oo) and a geodesic c of X with c(oo)=x we write c(t) 
= (cl(~t), c2(flt)) where ~ and fl are positive constants with ct 2 + f12 = 1 and el, cz unit 
speed geodesics of R s, X* respectively. Since c is a regular geodesic in X it follows 
that B 4:0 and c2 is a regular geodesic in X*. We define p(x): = c2(~). One checks 
that this definition is independent of c. 

We define a measure #* on X*(oo) by p*(A*) = p(p- ~A*) for A* C X*(~). By the 
hypothesis on/~ the measure/~* is nonzero and its support lies in R*(oo). Let 
G* = Isom(X*) and G = Isom(X) = I som(~ ~) x G*. If we define q: G-,G* to be the 
obvious projection then H = q-  I(G**) is a closed subgroup of G. The homomorph- 
ism q: H ~  G** is continuous and surjective with amenable kernel Hc~Isom(N'). By 
induction Gg* is amenable thus H is amenable by property c) of 2A. It follows from 
property d) of 2A that G is amenable as a closed subgroup of H. 

Thus we can assume that X is a symmetric space of noncompact type. Let/~ be a 
positive measure on X(oo) and F~, the corresponding convex function as in Sect. 3. 
We have to consider two cases: 

(1) If F~ assumes the minimum, then G, leaves the minimal set Y of F~ 
invariant. The set Y can be written as Y= 0 P~  by Lemma 5. Since by 

zvsupp(~) 
assumption at least one Zo ~ supp(#) is regular, Y is an euclidean submanifold of X. 
This shows that G~, modulo a compact subgroup is a closed subgroup of the 
isometrics of the euclidean space and hence amenable. 

(2) If F~ does not assume the minimum, then G~, is contained in a parabolic 
subgroup Gz for some z e X(oo) by Lemma 2. We choose a geodesic c asymptotic to 
z and consider the associated projections p : X ( ~ ) ~ P c ( ~ )  and q:Gz~G* 
described in Sect. 2C with G*= Isom(Pc). 

Then #* defined by/~*(A*) = #(p- 1A*) is a positive measure on P~(~). Since the 
map p is q-equivariant, we have q(G~,)CG*,. If A*=supp(kt*) then 
/~:--- closure (t9 - 1A*) contains the support of/~. If A* contains only singular points 
of p~(~) then B would contain only singular points of X(oo) by the lemma in 2C 
which contradicts the hypothesis on/~. Thus the support of#* contains at least one 
regular point. Note  that dimP, < dimX since X does not contain an euclidean 
factor. Then by induction G** is amenable. But q-  I(G**) is a closed subgroup of G, 
and q-~(G*,)/Kerqnq-I(G**) is topologically isomorphic to G~,. But Kerq is a 
COmpact extension of a nilpotent group, hence amenable, and q-  ~(G**) is amenable 
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as an amenable extension of an amenable group. Thus G, is amenable as a closed 
subgroup of q-  I(G*.). 

4. Proof of Theorem 2 and the Corollaries 

We will prove Theorem 2 in larger generality only assuming that X is a closed 
convex subset of a Hadamard manifold (we need this generalization for an 
induction argument, cf. [BGS, Sect. 6]). 

Let W be a closed convex F-invariant subset of X which is minimal under these 
conditions. If there does not exist such a minimal set IF, then there is a sequence 
W1 D W2 D Wa... of F-invariant closed convex subsets with c~ W~ = O and the group/~ 
has a fixed point z e X(oo) by the arguments of Lemma 2 and we are in case (1) of 
Theorem 2. Thus we can assume that such a minimal set W exists. 

If W is compact, then by a "center of mass" construction (see e.g. [BGS, 
Sect. 1 ]), F has a fixed point p e W and we are in case (2) of Theorem 2 with a trivial 
subspace E. 

If W is not compact, we consider W(oo)CX(oo), W(oo) is compact. The 
amenable group F operates on W(oo) and thus leaves a probability measure # on 
W(oo) invariant. Thus we can consider the F-quasi-invariant convex function F~ 
on W as defined in Sect. 3 for a point p e IV. 

If F~ does not assume the minimum we are in case (1) by Lemma 2. If F~ 
assumes the minimum, then F~ and the set where F~ is minimal are F-invariant. By 
the minimality of IV, F~ is constant on IV. Let q be a point in the interior of W and 
let zo e W(~)  be a point in the support of#. Let cq: [0, oo)F--~ W be the geodesic from 
q to z o. We claim, that we can extend cq to a complete geodesic ?q: JR--, W. Let as 
assume to the contrary that r =~(So)~ OW for a point So <0. Since W is convex, 
there is a vector v e T,W with g (v, w) < ~ for all vectors w e T,W pointing inside W. 
In particular, g(v ,V(r ,z ) )~  for all zeW(oo). Note that g(v,V[r, Zo)) 
= ~c (v, ~a(So))< ~ since cq(0) is in the interior of W. Thus 

(17F~(r),v) = -  I (V(r,z)d#(z),v)<O 
W( oo ) 

which is a contradiction to the fact that F~, is constant. 
The proof of Lemma 4 shows that cp and cq are parallel for p, q in the interior of 

W. Thus W is contained in a parallel set Pc for a geodesic c. This argument applied 
for all z e supp(~) shows that W = IF' x ~ :  and supp(/~) (R'(oo) .  Thus F operates 
on W and respects the splitting, i.e. every y e F operates as (~', ,~") on I4:' • ~ ' .  We 
consider the projections P:)'--*7'. Then the amenable group p(F) operates on W' 
with dim W ' <  dim W. By induction on W', we obtain the result. 

Proof of Corollary 1. (Compare the proof of the corollary in [S].) Since M =X/Y 
has finite volume, the fundamental group F satisfies the duality condition [C-El, 
thus for any geodesic c: R ~ X  there is a sequence y, e F such that y,x converges to 
c(oo) and ~ ix converges to c ( - o o )  for any x e X. This implies easily that there 
does not exist a proper F-invariant convex subset WCX. Thus, if we are in case (2) 
of Theorem 2, then X is flat and F a Bieberbach group. If F has a fixed point 
zeX(oo), then by [C-E,  Theorem 4.21, X splits F-invariantly as X=Xo • 
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where Xo is an euclidean space of positive dimension and every 3: ~ F splits as (70, 3:') 
with a translation 3:0. Let p:?~--~3:' be the projection. Then p(F) is an amenable 
group on X' which satisfies the duality condition. By induction, X'  is fiat and we 
obtain the desired result. 

Remark. The proof  of the corollary shows more generally that X is flat, ifit  allows 
the operation of an amenable group F satisfying the duality condition. 

Proof of Corollary 2. Let M = X/F and let A C F be an amenable subgroup. We 
apply Theorem 2 to our group A. If we are in case (2), then A leaves an euclidean 
space E C X invariant and thus is a Bieberbach group. Let us therefore assume that 
we are in case (1) and A fixes a point z ~ X(~) .  Let us furthermore assume that A is 
finitely generated by elements 0c 1 . . . . .  ~.  Let c : R ~ X  be a geodesic with c(oo) = z. 
For an isometry ~ on X, let dr:p~--~d(~p, p) be the convex displacement function. 
Since the elements ~ fix the point z ~ X(oo), d~ o c is monotone decreasing. We 
choose elements 3:~ ~ F such that 3:~(c(i)) ~ D, where D is a fixed compact fundamental 
domain of F. By choosing a subsequence we can assume ~(c(i))~p ~ D and 3:i(c)~g, 
where g is a geodesic with g(0)=p. Note that d~,~j~r~O,~(c(i)))=d~j(c(i))<C with 

C:= max (d~,(c(0))). Thus the displacement of 3:~j3:7 ~ is universally bounded at p. 
1 < j<s  

Since the group F is discrete, there exists an clement 3: ~ F such that, for all j, we 
have 3:~ajTi-~=3:aj? -~ for infinitely many i. By the same argument dr,~jrc, is 
bounded by C on 3:~(c(0, oo )) --. g( - i, oo). 

This implies that dm~-, is a bounded function on g and thus ~j is bounded on 
h = ?- ~g. Thus the ~j are constant on h as bounded convex functions and hence the 
group A leaves the parallel set Ph = P~ • R invariant. Every ~ ~ A splits as (~', 
translation). 

Now let r > 1 be the largest integer such that there exists an r-fiat F in X with d~ 
bounded on F for all a e A. Let PF denote the union of all r-fiats F '  that are parallel 
to F, that is, F(oo)=F'(oo). Then P~=  IV' xF [  *, where W' is a dosed convex subset 
of X and F = {p'} x R '  for some p '~ W'. If F' is an r-fiat parallel to F, then d~ is 
constant on F' for all a ~ A by convexity. Hence A leaves Pe and the splitting above 
invariant and for each ~ e A  one may write a=0c 'x  translation where a' is an 
isometry of W'. Now consider the action of the amenable group A ' =  {~'la ~ A} on 
W'. By Theorem 2 either A' leaves invariant some fiat subspace E' of W' or A' fixes 
a point of W'(~) .  It  suffices to show that the second case does not occur. If A' and 
hence also A fixes some point z' in W'(~),  then by the same argument as in the first 
part of the proof  one can show that there exists an element 7 ~ F, an r-fiat F* and a 
geodesic c* orthogonal  to F* with c* ~P~, such that dm~-~ is bounded on 
c*(R)~F* for all 1 < j  < s. Hence d~,j~-, is bounded on the (r + 1)-flat c*(R) x F* for 
all j, which contradicts the definition of the integer r. 

Thus we have proved, that every finitely generated subgroup A 0 of A leaves an 
euclidean space E invariant. It is not difficult to prove now that also A itself leaves 
an euclidean space invariant and is a Bieberbach group. 

R~ark. We used the compactness of M only to show that the points c(0 can be 
translated into a compact fundamental domain. Note  that d,~ o c(t)< C for t > 0. 
~?hus the injectivity radius of n(c(t)) for t > 0 and n : X ~ M  is bounded by C/2. Thus 
the proof works also in the case that th-e set {p ~ Mlinjectivity radius (p)<R} is 
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compact for all R. This condition is satisfied, for example, i fM is noncompact with 
curvature K < - a 2 < 0  and finitely many expanding ends. This case was also 
considered by Anderson [A]. 
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