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1. Introduction

Let X be a symmetric space of noncompact type or more generally a Hadamard
manifold, i.e. a complete simply connected Riemannian manifold of nonpositive
sectional curvature. We consider a finite positive Borel-measure u on the ideal
boundary X(o0) (see Sect. 2 for the definitions). Let G be the isometry group of X
and G, the subgroup which stabilizes the measure p. In the case of a symmetric
space we obtain the following result.

Theorem 1. Let X be a symmetric space of nonpositive curvature and u a finite
positive measure on X(co) such that the support of u contains at least one regular
point. Then the group G, is amenable and the identity component G$ has a normal
cocompact solvable subgroup.

Remark. One should compare our result with a theorem of Moore [M], who
proved that G, is the group of real points of an algebraic R-group and has a
normal cocompact solvable subgroup in the case that p is a positive measure on
G/P for a minimal parabolic subgroup P of G. Our theorem is related to Moore’s
tesult in the following way: G/P can be viewed as a submanifold of the regular
points of X(c0), and, hence, a measure on G/P induces a measure on X(co0) with
regular support. Thus, by our theorem G is a compact extension of a solvable
group. In Moore’s case, the additional information that G/P is an algebraic variety
enables one to prove that G,/GY is finite. In fact, we can not prove this for our more
genera]l measures u.

The proof of Theorem 1 is very geometric and we give a brief outline: the
Measure u on X(oo) induces a measure y, on the unit tangent sphere at every point
*€X. The mean value of p, at each point gives a vectorfield V(x) which is the
gradient field of a G,-quasi invariant convex function F. If F assumes the
Minimum, then G, leaves the minimal set E of F invariant. It turns out, that Eisa

tuclidean submamfold of X and G is amenable as a compact extension of the
\—
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isometry group of E. If F does not assume the minimum, we prove that G, fixes a
point z & X(c0). In this case, G, is contained in the parabolic subgroup G, of G and
we can use an induction on the boundary component asymptotic to z to obtain the
result.

Since the proof is geometric, we can use similar arguments to study groups
stabilizing a measure on the boundary of an arbitrary Hadamard manifold. We
obtain the following structure result for the action of amenable groups.

Theorem 2. Let I be an amenable group of isometries operating on a Hadamard
manifold X. Then one (or both) of the following holds:

(1) T fixes a point z e X(00).

(2) I leaves a totally geodesic subspace E C X invariant and E is isometric to an
euclidean space.

From this theorem we derive the following results of Avez, Zimmer, and
Anderson.

Corollary 1 (Avez[Av], Zimmer [Z]). Let M be a compiete Riemannian manifold of
non positive curvature and finite volume with amenable fundamental group. Then, M
is flat.

Corollary 2 (Anderson [A]). Let M be a compact manifold of non positive
curvature, then every amenable subgroup of n,(M) is a Bieberbach group.

2. Preliminaries
A. Amenable Groups ( General Reference [P])

A topological group H is amenable if for every continuous action of H on 2
compact topological space Y there exists a positive H-invariant measure on Y. We
collect some well known properties of amenable groups.

a) Compact extensions of solvable topological groups are amenable
(Kakutani-Markov).

b) A connected amenable Lie group is a compact extension of a solvable group
[F].
¢) If f: G—H is a continuous surjective homomorphism with kernel K then G
is amenable if and only if both K and H are amenable.

d) Closed subgroups of locally compact amenable groups are amenable.

There exists a geometric interpretation of amenability in the case that I is the

fundamental group of a compact manifold. Then let § be a finite set of genjf”ators
0
and G the corresponding graph. Then I' is amenable if and only if Aircltf5 Iln—Aj”’ =0.

This follows from Félner’s condition [P]. Equivalently [B] the infinimum of the
L?-spectrum of the universal covering M of M is 0.

. , . . » Yol(éB)
Equivalent is also the condit f =0,
9 1o Vol(B)
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B. Manifolds of non Positive Curvature ( General Reference [E-O’N, BGS])

Let X be a Hadamard manifold, this means a complete simply connected
Riemannian manifold of nonpositive curvature. We denote by d( , ) the distance
function and by X = X U X(0) the Eberlein~O’Neill compactification of X. Thus
X(o0) is the set of classes of asymptotic rays and homeomorphic to $*~*! where
n=dimX. For pe X and g€ X, there is a unique unit speed geodesic from p to g.
The initial vector at p of this geodesic is denoted by V(p, q). Forpe X, q,,q,€ X, let
¥,(41,9) be the angle between V(p,q,) and V(p,q,).

For a unit speed geodesic ¢ the Busemannfunction b, is defined by b (p)
= lim (d(p, c(t)) —t). Then b, is a C*-function with gradient Vb (p)= — V(p, c(0))

[andee]

where c(w0)e X(o0) is the asymptotic class of ¢. Thus up to a constant, the
Busemannfunction b, depends only on ¢(cc). The function b, is convex, this means
that b, h:IR—1R is a convex function for every geodesic h.

Two geodesics ¢ and h are called parallel, if ¢(c0)=h(o0) and ¢(— o0)=h(— o).
Parallel geodesics bound a totally geodesic flat euclidean strip in X. More
generally, let P, be the set of all points contained on parallels to ¢. Then P, is a
convex subset of X which splits isometrically as P,=P,x R. If X is an analytic
manifold, then P, is a complete submanifold.

If h is a geodesic segment, zeX(oo), then the function
0):= X (V(A(2), 2), h(t)) is monotone increasing. If ¢(t,) = ¢(t,), then hi,,.,; and
the geodesics from h(t;) to z bound a flat strip.

C. Symmetric Spaces ( General Reference [W, K, IH])

Let X be a symmetric space of noncompact type with isometry group G. We fix a
point xo€ X and identify X with the homogeneous space G/K where K is the
isotropy group of x,. We consider the Cartan-decomposition & = R P of the Lie
algebra of G and we identify B with the tangent space T, X.

Aflat in X is a complete totally geodesic euclidean subspace in X of maximal
dimension. This maximal dimension is the rank of the symmetric space. Let F be a
flat with x, e F, then T, F is a maximal abelian subalgebra of . Every tangent
vector v in B is contained in some maximal abelian subalgebra, hence every
geodesic ¢ is contained in some flat. A geodesic c (vector in ) is called regular, if it
I8 contained in a unique flat (unique maximal abelian subalgebra). A point
2€ X(o0) is called regular, if it is the endpoint ¢(c0) of a regular geodesic c. The
Singular vectors in a maximal abelian subalgebra B of P are contained in finitely
many hyperplanes which divide 8 into the Weylchambers. Correspondingly, the
Singular geodesics through x, in a pointed flat (F, x,) divide the euclidean space
lnto Weylchambers.

For a geodesic ¢ through x, we consider the parallel set P,. Let v=¢o) in B,
then L. P.={weB|[w,v]=0}. Thus v is regular, if the centralizer of v in P is
abelian, and ¢ is regular if and only if P, is an euclidean space. For the geodesic, we
‘onsider the transvection ¢,:=expgtve G. Then ¢, translates the geodesic c, i.e.
¢xC(S)=c(s+ t) and the differential d¢, realizes the parallel translation along c.
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We define the horocyclic group
N,.:= {y € G’ lim ¢, 1y¢, =id}
o

(cf. [K, Sect. 4.2], [TH, Sect. 2]).

Then N, is a subgroup of the parabolic group G, the stabilizer of z=c(ox).
Indeed N, is a maximal nilpotent normal subgroup of G.. The orbit N x, is the
horocycle determined by c¢. We have the decomposition of X as a disjoint union
X = {J nP,. This decomposition has the following geometric description: we

neN.

consider all geodesics asymptotic to z and call two of them equivalent, if they are
parallel. Then, an equivalence class of geodesics can be written as n - P, for a unique
ne N.,. This is the viewpoint in [K]. In correspondence to this decomposition of X
we have the Harish-Chandra decomposition G,=K’A’'N of the parabolic group
G,. An element ge G, can be written as g=k'a'n, where k'e K, ne N, and
a' elsom(P).

We have the projection maps

p:X—-P,
x—n"!x, if xenP,
and
4,:6,~G/N.=K'A’

g=kKan—k'ad=lim¢, 'g¢,.
t—>

Let q,: K’A’—Isom(P,) be the restriction map. The kernel of g, is a compact
normal subgroup of K’'4’". Let q: G,—Isom(P,) be the composition g=4g, 4.

Lemma. a) The projection p: X —P, extends to a Borel measurable projection
p:X(0)—=P(0).
b) p(regular points in X(o0))Cregular points in P{0).

To prove a) we remark that for a point we X(o0) there exists a geodesic ¢
asymptotic to z with we P_(o0) [TH].

Then, P, =nP, for a suitable neN, and the projection map extends by
p(w)=n"w.

To prove that p is well defined, it suffices to show that if n(y) e P(c0) for some
ye€P[0), then n(y)=y. To prove this choose a one parameter group ©
transvections ¢, such that ¢(t)= ¢,(x), x=c(0). Then y = tlirg &, Ing(y)=n(y) since
, fixes every point of P(c0). We note that the projection p: X(c0)—P(c0) is not
continuous even in the case that X is the hyperbolic plane. However p is clearly
Borel measurable. _

b) Let wenP,(0) be a regular point of X(c0) and let h be a geodesic in 1P,
asymptotic to w. Then P, is an euclidean space and n~'h is a geodesic 10 P,
asymptotic to n~ 'w=p(w). Since P,-, is euclidean, also P, -,N P, is euclidean and
thus p(w) is a regular point of Pc0).



Amenable Groups 509

3. The Function F

Let u be a finite positive measure on the boundary X(co) of a Hadamard manifold
X. We associate to u a convex function on X (comp. [Z]). For ze X(o0) and pe X,
let b,(-,2) be the Busemannfunction of z normalized such that b,(p, z)=0.

We define
Fiq):= X(j;o ) b,(q,z)dul(z).

Asa positive mean of convex functions F% is convex. Since Busemann functions are

C? it is not difficult to check that F% is C? with
VFy(q) = x! Vbg,2)duz)=— [ V(p,2)du(z).

(o0) x(00)

Lemma 1. The function FY, is quasi-invariant under the action of the stabilizer G, of
i, i.e. for ye G, there exists a constant c(y) such that

Filyg)=F(q) +c(y)-
Proof.

Fiyg)= | )bp(vq, z) du(z)

2

§ by-ila,y " D) dulz)
2(®)

= j by‘ ‘p(qs Z) dﬂ(Z) »

x{0)

where the last equality holds since y€ G,
Note that b,(-,2) and b,-. (-, z) differ by the constant b, -1 (p, z). Thus

F:(yq) = x({o) (bp(qa Z) + by‘ ‘p(ps Z)) d[.t(Z)
_ =Fp(q)+c(y)
with

cy)=cply)= x({o , b,-1,(p, 2) du(z).

tIfemark. The quasi invariance of F% is equivalent to the invariance of the vector
leld 7 F*
o

We now study the case that F* does not assume the minimum.

Lemma 2. Let f be a convex function on X quasi-invariant under the action of a
group I' of isometries on X. Let us assume that f does not assume a minimum. Then
there is a point ze X(c0) fixed by all yeT.

Proof. Leta: = inffeRuU{— o0} and let g, a be a monotone decreasing sequence
converging to a. We consider the convex subsets 4;= f ~!((— o0, q;]) of X, then
N4;=0. We fix a point pe X and let p;:= = 4,(p) be the projected points, where 7,
Is ‘Ehe orthogonal projection onto A;. Then the sequence p; has no accumulation
Pomt in X and by choosing a subsequence we can assume that p;—z € X(o0). We
Prove that yz=z for ye I'. Note that yA4;= A4}, where A} is another sublevel of f.
Without loss of generality let A;D 4, (in the opposite case we consider y ™! instead
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of y). Let b:=d(p,yp), t;:=dlp,p)=d0p.yp). c;:=d(yp,p)), s::=dp,p),
o= X yp(pi’ }’pl)

We will prove that a;—0. Since p;— z, this implies that also yp;—z and hence
yz =z. By the triangle inequality we have c; <t;+b. Since yp; =7 ,,(yp) and p; € A} we
have ¥,,(p>yp)= 3% Thus, by the law of cosine [E-O’N], we have ¢f =7 +s2.
Hence (t;+b)>=t? +s? and 2t,b+b* =52

Moreover, s?2=c?+1t2—2c;t;cosa;=2¢;t(1—cosa;) by the law of cosines
applied to the triangle yp, p;, yp; and hence a;—0.

To investigate the case that F% does assume the minimum, we study subsets, on
which convex functions are linear.

Definition. Let f be a convex function on X and let M be a convex subset of X,
Then f is called linear on M, if the fenction t— fo c(t) is affine for all geodesic
segments ¢ in M.

Lemma 3. Let M CX be a convex subset on which F% is linear. Then the functions
b,(-,z) are linear on M for all z e supp().

Proof. Letus assume to the contrary that b,( -, z) is not linear on M for z € supp(u).
Then there exists a geodesic segment c:[0,1]—M such that

b(c(1/2), 2) < 1/2(b (c(0), 2) + b (c(1), 2)).
Since the function (p, g, 2)—b (g, z) is continuous, we have
b,(c(1/2), w) <1/2b {c(0), w) + b (c(1), w))

for all w in an open neighborhood U of z.
Since p(U)>0, we have )

FRc(1/2) <1/2(Fi(c(0) + File(1)))

a contradiction to the linearity of FY.

Lemma 4. Let b be a Busemann function on X for a point z € X(0). Let ACX befl
convex subset on which b is linear. Then the vectorfield V(- , z)is parallel on A. If X is
analytic, then A is contained in a parallel set P, for a geodesic ¢ asymptotic 10 Z.

Proof. Let g:[0,1]— A be a geodesic segment. Since b is affine on g, we have

<Pbgle), 1)) = —<V(g@), 2), §(1)>

is constant. Thus, by the last remark in Sect. 2 B, the points g(0), g(1) and z span
totally geodesic euclidean strip. It follows that V(g(t), z) is tangent to this strip and
parallel.

If X is analytic, then let ¢ be the geodesic with c(0)=pe A and c(c0)= 3- The
argument above shows that, for a geodesic segment g from p to g € 4, the 1ay clo.«)
is the boundary of a flat strip containing ¢. By analyticity, this Les in a flat plane
and hence geP,.

Lemma 5. Let X be analytic and let us assume that F% assumes the minimut with
Y:= {q e X|Fi(q) minimum}.
Let geY,then Y= (| Pg, where Gz is the geodesic with c(0)=¢; ¢(w0)=2%

zesupp(y)
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Proof. By Lemma 3, b,(-,z) is linear on Y for all zesupp(x) and thus

Y¢ () PgzbyLemma 4. To prove the opposite inclusion, note that V(-,z)is a
zesupp ()

parallel vectorfield on Pz. Thus VFy= | V{(-,z)du(z)is a parallel vectorfield on
X(w0)
M= () Pg Since VFi(q)=0, we have VF,=0 on M and thus MCY.

zesupp(u)
Proof of Theorem 1. We prove the theorem by induction on the dimension of X
where the case dimX =1 is trivial.

We first consider the case that X has a non-trivial euclidean de Rham factor.
We write X =IR®x X* where s =1 and X* is symmetric of noncompact type. We
assume that X* has positive dimension for otherwise the result is immediately true.
If 1 is a finite positive Borel measure on X(o0) whose support contains a point of
R(0), the set of regular points of X(00), then the restriction of y to R(c0) is nonzero.

We define a continuous projection p: R{co)—R*(00) C X *(o0) in the following
way. For a point xe R(o0) and a geodesic ¢ of X with ¢(o0)=x we write c(f)
=(c,(xt), c,(Bt)) where o and B are positive constants with % + f>=1and c,, ¢, unit
speed geodesics of IR®, X * respectively. Since ¢ is a regular geodesic in X it follows
that $+0 and c, is a regular geodesic in X*, We define p(x): = c,(o0). One checks
that this definition is independent of c.

We define a measure y* on X*(co) by p*(4*) == u(p~* A¥)for A* C X*(c0). By the
hypothesis on u the measure p* is nonzero and its support lies in R*{c0). Let
G*=Isom(X*)and G=Isom(X)=Isom(R%} x G*. If we define g: G—G* to be the
obvious projection then H =g~ '(G%)is a closed subgroup of G. The homomorph-
ism g : H-» G is continuous and surjective with amenable kernel HnIsom(R%). By
induction G}, is amenable thus H is amenable by property c) of 2A. It follows from
property d) of 2A that G is amenable as a closed subgroup of H.

Thus we can assume that X is a symmetric space of noncompact type. Let ube a
positive measure on X(co) and F% the corresponding convex function as in Sect. 3.
We have to consider two cases:

m It F% assumes the minimum, then G, leaves the minimal set Y of F}
invariant. The set Y can be written as Y= () P by Lemma 5. Since by

zesupp(p)
assumption at least one z, € supp(u) is regular, Y is an euclidean submanifold of X.

This shows that G, modulo a compact subgroup is a closed subgroup of the
Isometries of the euclidean space and hence amenable.

) If F% does not assume the minimum, then G, is contained in a parabolic
subgroup G, for some z € X(c0) by Lemma 2. We choose a geodesic ¢ asymptotic to
Z and consider the associated projections p:X(o0)—P[o0) and q:G,—G*
described in Sect. 2C with G*=Isom(P,).

Then u* defined by u*(4*)=u(p~* A*) is a positive measure on P (o0). Since the
Map p is g-equivariant, we have ¢(G,)CGh. If A*=supp(u*) then
B:=closure (p~ ' A*) contains the support of u. If A* contains only singular points
of P «(c0) then B would contain only singular points of X(o0) by the lemma in 2C
which contradicts the hypothesis on p. Thus the support of u* contains at least one
Tegular point. Note that dim P, <dimX since X does not contain an euclidean
factor. Then by induction G% is amenable. But ¢~ '(G}) is a closed subgroup of G,
and 47 '(GX)/Kergnq~*(G}) is topologically isomorphic to G%. But Kerq is a

Compact extension of a nilpotent group, hence amenable, and g~ f(G;‘.) is amenable
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as an amenable extension of an amenable group. Thus G, is amenable as a closed
subgroup of g~ '(G}).

4. Proof of Theorem 2 and the Corollaries

We will prove Theorem 2 in larger generality only assuming that X is a closed
convex subset of a Hadamard manifold (we need this generalization for an
induction argument, cf. [BGS, Sect. 6]).

Let W be a closed convex I'-invariant subset of X’ which is minimal under these
conditions. If there does not exist such a minimal set W, then there is a sequence
W, D W, D W,... of I'-invariant closed convex subsets with "W, =@ and the group I
has a fixed point z € X{o0) by the arguments of Lemma 2 and we are in case (1) of
Theorem 2. Thus we can assume that such a minimal set W exists.

If W is compact, then by a “center of mass” construction (see e.g. [BGS,
Sect. 17), I' has a fixed point p € W and we are in case (2) of Theorem 2 with a trivial
subspace E.

If W is not compact, we consider W(w)CX(0), W(w) is compact. The
amenable group I" operates on W(oo) and thus leaves a probability measure y on
W(co) invariant. Thus we can consider the I'-quasi-invariant convex function F%
on W as defined in Sect. 3 for a point pe W.

If F% does not assume the minimum we are in case (1) by Lemma 2. If F}
assumes the minimum, then F4 and the set where Fl, is minimal are I'-invariant. By
the minimality of W, F% is constant on W. Let g be a point in the interior of ¥ and
let zo € W(c0) be a point in the support of 1. Let ¢, : [0, c0)— W be the geodesic from
g to zy. We claim, that we can extend ¢, to a complete geodesic ¢,:IR— W. Let us
assume to the contrary that r=¢,(s,)e dW for a point 5, <0. Since W is convex,
there is a vector ve T,W with ¥ (v, w) < Zfor all vectors we T,W pointing inside W.
In particular, X(v,V(r,z)<% for all zeW(w). Note that x(v,V(rz0)
= ¥ (v, ¢,(50)) < since c,(0) is in the interior of W. Thus

VFr),v>=— W(jw) {V(r,2)duz),v)> <0

which is a contradiction to the fact that F, is constant. ‘

The proof of Lemma 4 shows that ¢, and ¢, are parallel for p, g in the inter1of of
W. Thus W is contained in a parallel set P, for a geodesic c. This argument applied
for all z e supp(y) shows that W= W’ x IR® and supp(y) CIR*(c0). Thus [ operal¢s
on W and respects the splitting, i.e. every ye I operates as (y, ") on W’ X R" Wel
consider the projections p:y—7". Then the amenable group p(I') operates on 4
with dim W’ <dim W. By induction on W’, we obtain the result.

Proof of Corollary 1. (Compare the proof of the corollary in [S].) Since M =X/T
has finite volume, the fundamental group I' satisfies the duality condition [C-E],
thus for any geodesic ¢ : R — X there is a sequence y, € I such that y,x converges to
¢(c0) and y,; 1x converges to c¢(— oo) for any x € X. This implies easily that there
does not exist a proper I'-invariant convex subset W C X. Thus, if we are in ¢asc! 2
of Theorem 2, then X is flat and I a Bieberbach group. If I' has a fixed pomlt
ze X(c0), then by [C~E, Theorem 4.2], X splits -invariantly as X =XoxX>
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where X is an euclidean space of positive dimension and every y € I splits as (y, 1)
with a translation y,. Let p:y—y’ be the projection. Then p(I') is an amenable
group on X" which satisfies the duality condition. By induction, X" is flat and we
obtain the desired result.

Remark. The proof of the corollary shows more generally that X is flat, if it allows
{he operation of an amenable group I satisfying the duality condition.

Proof of Corollary 2. Let M=X/I' and let ACI" be an amenable subgroup. We
apply Theorem 2 to our group A. If we are in case (2), then A leaves an euclidean
space E C X invariant and thus is a Bieberbach group. Let us therefore assume that
weare in case (1) and A fixes a point z € X(o0). Let us furthermore assume that A4 is
finitely generated by elements a, ..., a,. Let c:IR— X be a geodesic with ¢(co)=12z.
For an isometry y on X, let d,: pr>d(yp, p) be the convex displacement function.
Since the elements a; fix the point ze X(00), d,, < c is monotone decreasing. We
choose elements y; € I' such that y,(c(i)) € D, where D is a fixed compact fundamental
domain of I'. By choosing a subsequence we can assume y{c(i))—»>pe D and y(c)—g,
where g is a geodesic with g(0)=p. Note that d,, ,- (y{c()))) =d,(c()) < C with
C= 1max (d,,(c(0))). Thus the displacement of yo;y; * is universally bounded at p.
Sjss

Since the group I is discrete, there exists an element yeI” such that, for all j, we
have y,uy; ' =payy~* for infinitely many i. By the same argument d,,, ,-. is
bounded by C on y{c(0, c0))—>g(—1i, o).

This implies that d,, -1 is a bounded function on g and thus «; is bounded on
h=y~'g. Thus the «; are constant on h as bounded convex functions and hence the
group A leaves the parallel set P,=P, xR invariant. Every ac A4 splits as («/,
translation),

Now let > 1 be the largest integer such that there exists an r-flat F in X with d,
bounded on F for all a € A. Let P, denote the union of all r-flats F’ that are parallel
to F, that is, F(c0)=F'(c0). Then Pr= W’ xR", where W’ is a closed convex subset
of X and F={p'} xR’ for some p'e W'. If F’ is an r-flat parallel to F, then d, is
constant on F” for all « € A by convexity. Hence 4 leaves P and the splitting above
nvariant and for each x€ 4 one may write #=a’ X translation where o' is an
sometry of W’. Now consider the action of the amenable group A'= {«’|a€ A} on
W'. By Theorem 2 either A’ leaves invariant some flat subspace E’ of W’ or A’ fixes
apoint of W'(o0). It suffices to show that the second case does not occur. If A’ and
hence also A fixes some point z’ in W’(co), then by the same argument as in the first
part of the proof one can show that there exists an element ye I', an r-flat F* and a
godesic c* orthogonal to F* with ¢*CPp such that d,, ,-: is bounded on
HR)UF*forall1 < j<s.Henced,, ,-:is bounded on the (r+ 1)-flat c*(IR) x F* for
all j, which contradicts the definition of the integer r.

Thus we have proved, that every finitely generated subgroup A, of A leaves an
tuclidean space E invariant. It is not difficult to prove now that also A itself leaves
40 euclidean space invariant and is a Bieberbach group.

Remark, We used the compactness of M only to show that the points c(i) can be
transiated into a compact fundamental domain. Note that d, ;o)< C for £20.

hus the injectivity radius of n(c(f)) for t 20 and = : X — M is bounded by C/2. Thus
the proof works also in the case that the set {p e M|injectivity radius (p)S R} is
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compact for all R. This condition is satisfied, for example, if M is noncompact with
curvature K< —a®<0 and finitely many expanding ends. This case was also
considered by Anderson [A].

Acknowledgement. We would like to thank the referee for his detailed comments.
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