ASYMPTOTICS OF SMALL EIGENVALUES OF RIEMANN SURFACES

MARC BURGER

Recently there has been a great deal of interest in geometric bounds on small eigenvalues of the Laplace operator on a Riemann surface [S.W.Y, **D.P.R.S.**]. Here we determine the precise asymptotic behaviour of these small eigenvalues. Let S_{δ} be a compact Riemann surface of genus $g \geq 2$ whose first k nonzero eigenvalues $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$ are small, i.e., $\lambda_k \leq \delta$ and $\lambda_{k+1} \geq c_1$. Then by [S.W.Y.] there exists a constant a = a(g) > 0 such that the closed geodesics $\gamma_1 \cdots \gamma_r$ of length less than $a \cdot \delta$ separate S_{δ} into k + 1 pieces S_1, \ldots, S_{k+1} and all other closed geodesics of S_{δ} have length greater than a(g). Let Λ be the graph whose vertices are the pieces S_i . Suppose vertex S_i has mass $v_i = \operatorname{vol}(S_i)$ and the length L_{ij} of an edge joining S_i to S_j is the total length of the geodesics contained in $S_i \cap S_j$. Furthermore, let $0 < \lambda_1(\Lambda) \leq \cdots \leq \lambda_k(\Lambda)$ be the spectrum of the quadratic form $\sum (F(S_i) - F(S_j))^2 L_{ij}$ with respect to the norm $\sum F(S_i)^2 v_i$. Then one has

THEOREM 1.

$$\lim_{\delta \to 0} \frac{\lambda_j(S_\delta)}{\lambda_j(\Lambda)} = \frac{1}{\pi} \quad \text{for all } 1 \le j \le k.$$

This convergence is uniform for all surfaces S_{δ} with $\lambda_{k+1}(S_{\delta}) \geq c_1$ and fixed genus.

REMARK. The fact that $\limsup_{\delta \to 0} \lambda_j(S_\delta)/\lambda_j(\Lambda) \leq 1/\pi$ follows easily from [C.CdV]. This paper also shows the convergence of this ratio in the case that the lengths $l(\gamma_i)$ all have the same behaviour near zero, i.e. $l(\gamma_i) = d_i \varepsilon$ for $\varepsilon \to 0$, and fixed d_i .

SKETCH OF PROOF. Complete $\gamma_1 \cdots \gamma_r$ to a set of geodesics $\gamma_1 \cdots \gamma_{3g-3}$, giving a decomposition of S into Y-pieces with length $l(\gamma_i) \leq L_g$, a constant depending only on g (see [**Bu2**, §13]). Then using a modified version of an argument of [**B1**] we show that $\lambda_j \cdot (1 + o(\sqrt{\delta})) \geq \pi^{-1}\lambda_j(\Gamma)$, where Γ is the graph of the Y-pieces, and the length of an edge corresponding to a small geodesic is $l(\gamma)$. The proof of this also uses the asymptotic of the first nonzero eigenvalue of $Y_1 \cup Y_2$ for the Neumann problem, where Y_1, Y_2 are Y-pieces, $Y_1 \cap Y_2 = \gamma$ and $l(\gamma)$ is small. This can be deduced from [**C.CdV**], because there is only one small geodesic separating $Y_1 \cup Y_2$. To finish the proof we have then to compare $\lambda_j(\Gamma)$ with $\lambda_j(\Lambda)$. To do this we consider Λ to be the graph of the connected components of Γ after removing the small edges of Γ .

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors February 10, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C22, 58G25; Secondary 30F99.

If f is an eigenfunction corresponding to $\lambda_j(\Gamma)$ we write f = h + g, where, on each component, h is constant and g of mean zero: Applying the quadratic form to h + g we estimate the resulting terms.

If one is interested in lower bounds on λ_j in terms of $\lambda_j(\Lambda)$ it is more convenient to relate λ_j to a graph associated to a geodesic triangulation of Sas considered in [**Bu1**] and used in [**B2**, §4]. As in the proof of Theorem 1, one relates then the spectrum of this graph to $\lambda_j(\Lambda)$.

THEOREM 2. Let S be a compact Riemann surface of genus $g \ge 2$ and $l(\gamma_1) \le \cdots \le l(\gamma_r) \le l(\gamma_{r+1}) \cdots$ be the length of the closed geodesics of length smaller than $2 \ln 2$. Then there exists a universal constant c > 0 s.t. if $l(\gamma_r) \le l(\gamma_{r+1})/g^2$ then $\lambda_j(S) \ge c\lambda_j(\Lambda)$ for $1 \le j \le k$. And Λ is the graph associated to the components of S after removing the geodesics $\gamma_1, \ldots, \gamma_r$.

REMARKS. (a) It is easy to generalize Theorems 1 and 2 to the case of geometrically finite surfaces.

(b) In [**D.P.R.S.**] the inequality of Theorem 2 is stated with a constant c(g) depending on the genus of S. But for fixed g there are only finitely many graph structures which can occur if one forgets the length of the edges, thus a constant depending on g "destroys" the combinatorial information contained in $\lambda_j(\Lambda)$.

(c) If there are no small geodesics or if the small geodesics don't disconnect the surface then $\lambda_1(S) \ge c/g^2$, c > 0 being a universal constant.

References

[B1] M. Burger, Estimation de petites valeurs propres du Laplacien d'un revêtement de variétés riemanniennes compactes, C.R. Acad. Sci. Paris Sér. I **302** (1986), 191–194.

[B2] ____, Spectre du Laplacien, graphes et topologie de Fell, preprint.

[Bu1] P. Buser, Cubic graphs and the first eigenvalue of a Riemann surface, Math. Z. 162 (1978), 87–99.

[Bu2] ____, Riemannsche Flächen und Längenspektrum vom trigonometrischen Standpunkt aus, Habilitationsschrift, Bonn, 1980.

[C.CdV] B. Colbois and Y. Colin de Verdière, Sur la multiplicité de la première valeur propre d'une surface de Riemann à courbure constante, preprint.

[D.P.R.S.] J. Dodziuk, T. Pignataro, B. Randol, and D. Sullivan, *Estimating small eigenvalues of Riemann surfaces*, preprint.

[S.W.Y.] R. Schoen, S. Wolpert, and S. T. Yau, Geometric bounds on low eigenvalues of a compact Riemann surface, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 279–285.

MATHEMATISCHES INSTITUT, RHEINSPRUNG 21, 4051 BASEL, SWITZERLAND