HOROCYCLE FLOW ON GEOMETRICALLY FINITE SURFACES

MARC BURGER

Let $S=\Gamma \backslash D^{2}$ be a quotient of the Poincaré disc by a finitely generated discrete group Γ of orientation preserving isometries acting without fixed points on D^{2}. Topologically S can be obtained from a compact surface by removing a finite number of closed discs.

The group of orientation preserving isometries of D^{2} is $\operatorname{PSL}(2, \mathbb{R})$ and the unit tangent bundle $T_{1} S$ of S is a homogeneous space of $\operatorname{PSL}(2, \mathbb{R})$:

$$
T_{1} S=\Gamma \backslash P S L(2, \mathbb{R})
$$

In particular, the unipotent subgroup of $\operatorname{PSL}(2, \mathbb{R})$

$$
N=\left\{n(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{R}\right\}
$$

acts on $T_{1} S$.
It is our main goal to determine all N-invariant Radon measures on $T_{1} S$. Our first remark is that if C is the cone of positive N-invariant Radon measures in the space $\mathscr{M}\left(T_{1} S\right)$ of all Radon measures with the vague topology, then C is the closed convex hull of the union of its extremal generators [B, II No. 2]; moreover it is easily seen that a measure is on an extremal generator of C if and only if it is ergodic. This reduces the problem to the classification of all ergodic measures.

To proceed further we consider the following decomposition of $T_{1} S$: Let S^{1} be the ideal boundary of D^{2} and $\Lambda \subset S^{1}$ be the limit set of Γ. Using the visual map:

$$
\text { Vis: } T_{1} D^{2} \rightarrow S^{1}
$$

we obtain first a decomposition of $T_{1} D^{2}$ as a union of two subsets

$$
\begin{aligned}
& \tilde{\mathscr{F}}_{c}=\left\{p \in T_{1} D^{2}: \operatorname{Vis}(p) \in \Lambda\right\} \\
& \tilde{\mathscr{F}}_{d}=\left\{p \in T_{1} D^{2}: \operatorname{Vis}(p) \in S^{1} \backslash \Lambda\right\} .
\end{aligned}
$$

This gives via the projection $T_{1} D^{2} \rightarrow T_{1} S$ a decomposition of $T_{1} S$ into two disjoint subsets

Received January 8, 1990. Revision received March 9, 1990.

$$
T_{1} S=\mathscr{F}_{c} \cup \mathscr{F}_{d},
$$

where \mathscr{F}_{c} is closed, \mathscr{F}_{d} open and both are invariant under the action of N and the action of the geodesic flow of $T_{1} S$.

Recall at this point that the action of the geodesic flow in $T_{1} S=\Gamma \backslash P S L(2, \mathbb{R})$ is given by the action of

$$
A=\left\{\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 & e^{-t / 2}
\end{array}\right): t \in \mathbb{R}\right\}
$$

Now we can describe three families of N-invariant ergodic measures on $T_{1} S$.
A. For each $g \in \mathscr{F}_{d}$ the orbit map:

$$
\mathbb{R} \rightarrow T_{1} S \quad x \mapsto g n(x)
$$

is a homeomorphism onto its image. The direct image of the Lebesgue measure $d x$ on \mathbb{R} under this orbit map gives an N-invariant ergodic measure supported on $g N$. Since all orbits of N on \mathscr{F}_{d} are closed, this shows that each N-orbit on \mathscr{F}_{d} is the support of an ergodic N-invariant measure which is unique up to scaling.
B. To each cusp of S there corresponds an immersed cylinder in $\mathscr{F}_{c} \subset T_{1} S$ consisting of N -periodic points. Each of these periodic orbits carries a unique N-invariant probability measure.
C. Let μ_{P} be the Patterson measure on the limit set $\Lambda \subset S^{1}$ and let δ be the Hausdorff dimension of Λ. Using the origin $o \in D^{2}$ as a reference point we can identify canonically each fiber of the visual map

$$
\text { Vis: } T_{1} D^{2} \rightarrow S^{1}
$$

with the group $A N$. Via this identification we put on each fiber $\mathrm{Vis}^{-1}(\zeta), \zeta \in S^{1}$, the measure:

$$
e^{\delta t} d t d x
$$

defined on $A N$.
Integrating along fibers of the visual map and integrating with respect to μ_{P} produces a measure on $\widetilde{\mathscr{F}}_{c}$ which projects down to an N-invariant measure μ supported on \mathscr{F}_{c}. Note that if T_{t} denotes the action of the geodesic flow then $T_{t^{*}} \mu=e^{t(1-\delta)} \mu$. In particular, if $\delta<1$ this measure is infinite.

Hopefully any ergodic N-invariant measure is up to scaling a measure in the families listed above. In the case $\operatorname{Vol}(S)<+\infty$, the measure constructed in C coincides with the $\operatorname{PSL}(2, \mathbb{R})$-invariant probability measure on $T_{1} S$ and $\mathscr{F}_{d}=\varnothing$. In this case the above description of N-invariant ergodic measures is complete as follows from work of Dani [D1], [D2].

If $\operatorname{Vol}(S)=+\infty$ it follows from recent results of M. Ratner [R] that the only N-invariant ergodic probability measures are supported on periodic orbits of N. In particular, if S has no cusps there are no invariant probability measures. Here we want to show that if S is geometrically finite without cusps and the Hausdorff dimension δ of the limit set verifies $\delta>1 / 2$, then the above description of N -invariant ergodic measures is complete. This follows immediately from the following:

Theorem 1. Assume S is geometrically finite without cusps and $\delta>1 / 2$. Then there is, up to a scalar multiple, a unique N-invariant Radon measure supported on \mathscr{F}_{c}.

To put the hypothesis on the Hausdorff dimension in the context of our method we recall the following facts about the Laplacian of S. The Laplace-Beltrami operator Δ of S acts in the space of C^{∞} functions with compact support $C_{K}^{\infty}(S)$, and has a unique self-adjoint extension to an unbounded operator on $L^{2}(S)$. The spectrum of Δ in $(-1 / 4,0]$ consists only of eigenvalues with finite multiplicity and the essential spectrum of Δ is contained in $(-\infty,-1 / 4$] [DPRS]. It follows from work of Patterson [P], [S, Th. 2.17], that $\delta>1 / 2$ if and only if Spec $\Delta_{S} \cap$ $(-1 / 4,0] \neq \varnothing$ in which case $\lambda_{0}=\delta(\delta-1)$ is the highest eigenvalue of Δ_{s}. This eigenvalue has multiplicity one and any associated eigenfunction is of constant sign on S. Patterson showed that such an eigenfunction can be obtained in the following way: Let L be the Lebesgue measure of S^{1} and $j(g)$ the Radon-Nikodym derivative of $g_{*} L$ with respect to L, where $g \in \operatorname{PSL}(2, \mathbb{R})$. Then

$$
\varphi_{0}(h)=\int_{S^{1}} d \mu_{P}(\zeta) j(h, \zeta)^{\delta}
$$

is a Γ-invariant eigenfunction on D^{2} of eigenvalue $\delta(\delta-1)$. If $\delta>1 / 2$ it is in $L^{2}(S)$. On the other hand, a straightforward computation shows that the direct image of the measure μ via the map $T_{1} S \rightarrow S$ is the measure

$$
\varphi_{0}(h) d h,
$$

where $d h$ is the area element of S. In particular, the function φ_{0} viewed on $T_{1} S$ is in $L^{1}\left(T_{1} S, \mu\right)$. Theorem 1 shows now that $\varphi_{0}(h) d h$ has a topological characterization in terms of the action of N on $T_{1} S$. Concerning the proof of Theorem 1 we study how the probability measure on $\operatorname{PSL}(2, \mathbb{R})$:

$$
m_{T}(\varphi)=\frac{1}{2 T} \int_{-T}^{T} \varphi(n(t)) d t
$$

acts in the space of a unitary representation of $\operatorname{PSL}(2, \mathbb{R})$. We obtain that m_{T} acts as a contraction in the space of C^{∞}-vectors when measured in a suitable norm (see Proposition 1). Moreover, the contraction constant tends to zero as $T \rightarrow \infty$. This
and a certain conservativity property of the action of N on \mathscr{F}_{c} enables us to show Theorem 1. As a corollary of Theorem 1 and the method of proof we obtain the following equidistribution result.

Corollary. Under the assumptions of Theorem 1 we have for all $\varphi \in C_{K}\left(T_{1} S\right)$

$$
\lim _{\tau \rightarrow \infty} \frac{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi(g n(t)) d t}{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t}=\frac{\int_{T_{1} S} \varphi(p) d \mu(p)}{\left\|\varphi_{0}\right\|_{2}^{2}}
$$

uniformly on compact sets in $\mathscr{F}_{\text {c }}$.
In the case where S is compact we have a more precise version of this corollary where we control the rate of uniform distribution of horocycles with respect to the Lebesgue measure on $T_{1} S$ (see Theorem 2 of §1).

Acknowledgements. I would like to thank Alex Freire, Scot Adams, and Rafe Mazzeo for helpful discussions.

1. Unitary action of a unipotent subgroup of $\operatorname{PSL}(2, \mathbb{R})$. In 1.1 and 1.2 we recall some classical facts concerning the representation theory of $\operatorname{PSL}(2, \mathbb{R})$. Standard references are [L], [D]. In 1.3 we state the main proposition (Proposition 1) and derive some corollaries for hyperbolic surfaces (Theorem 2). $\S 1.4$ is devoted to the proof of Proposition 1.
1.1. Let $G=P S L(2, \mathbb{R}), \mathfrak{g}$ its Lie algebra, $\mathfrak{g}_{\mathbb{C}}$ the complexification of \mathfrak{g} and $\mathscr{U}\left(\mathfrak{g}_{\mathbb{C}}\right)$ the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. To a continuous unitary representation π of G in a separable Hilbert space \mathscr{H} one associates the derived representation $d \pi$ of $\mathscr{U}\left(\mathfrak{g}_{\mathbb{C}}\right)$ which acts in the space of C^{∞}-vectors:

$$
\mathscr{H}^{\infty}=\left\{v \in \mathscr{H}: g \rightarrow \pi(g) v \text { is a } C^{\infty} \text { map from } G \text { to } \mathscr{H}\right\} .
$$

The center of $\mathscr{U}\left(\mathbf{g}_{\mathbb{C}}\right)$ is generated by the Casimir element w :

$$
w=\frac{1}{4}\left(2 i W-W^{2}+E_{+} E_{-}\right)
$$

where $W=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), E_{+}=\left(\begin{array}{rr}1 & i \\ i & -1\end{array}\right), E_{-}=\left(\begin{array}{rr}1 & -i \\ -i & -1\end{array}\right)$, is a basis of $\mathrm{g}_{\mathbb{C}}$. If (\mathscr{H}, π) is irreducible, $d \pi(w)$ acts as scalar multiplication on \mathscr{H}^{∞}.
1.2. Let

$$
K=\left\{k(\theta)=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), 0 \leq \theta \leq \pi\right\}
$$

be a maximal compact subgroup of G. We can state the classification of irreducible unitary representations of $\operatorname{PSL}(2, \mathbb{R})$ in the following way [L, p. 123]:
(a) For each $\lambda \in(-\infty, 0]$ there is a unique irreducible unitary representation $\left(\mathscr{H}_{\lambda}, \pi_{\lambda}\right)$ which has a K-invariant vector and such that the action of the Casimir operator on $\mathscr{H}_{\lambda}^{\infty}$ is $d \pi(w)=\lambda \cdot$ Id. The trivial representation corresponds to $\lambda=0$.
(b) For each even integer $m \geqslant 2$ there is a unique irreducible representation $\mathscr{H}(m)$ having a lowest weight vector of weight m with respect to K and a unique irreducible one $\mathscr{H}(-m)$ having a highest weight vector of weight $-m$. These are the discrete series of $\operatorname{PSL}(2, \mathbb{R})$ and $d \pi(w)=(m / 2-1) m / 2 \cdot$ Id on $\mathscr{H}^{\infty}(m) \oplus \mathscr{H}^{\infty}(-m)$.

This classification enables us to identify the dual space \hat{G} of G with the topological space

$$
(-\infty, 0] \cup Z, \quad \text { where } Z=\{ \pm m ; m \geqslant 2, \text { even }\}
$$

If (\mathscr{H}, π) is a continuous unitary representation of G in a separable Hilbert space \mathscr{H}, then (\mathscr{H}, π) is a direct sum of multiplicity free representations

$$
(\mathscr{H}, \pi)=\bigoplus_{n=1}^{\infty}\left(\mathscr{L}_{n}, \alpha_{n}\right)
$$

see [D, 8.6.6]. Moreover, each multiplicity free representation $\left(\mathscr{L}_{n}, \alpha_{n}\right)$ is defined via a Borel measure μ_{n} on \hat{G}. We define the support of π, supp $\pi \subset \hat{G}$ by

$$
\operatorname{supp} \pi=\bigcup_{n=1}^{\infty} \operatorname{supp} \mu_{n} .
$$

1.3. Let (\mathscr{H}, π) be a continuous unitary representation of $\operatorname{PSL}(2, \mathbb{R})$ in a separable Hilbert space \mathscr{H}. We assume that we are given a norm N on the space of C^{∞} vectors \mathscr{H}^{∞} satisfying the following properties:
(a) $N(\pi(g) v)=N(v)$ for all $g \in G, v \in \mathscr{H}^{\infty}$.
(b) There is a finite subset $S \subset \mathscr{U}\left(\mathfrak{g}_{\mathrm{C}}\right)$ and a constant $c>0$ such that

$$
N(v) \leqslant c \max _{L \in S}\|d \pi(L) v\|
$$

for all $v \in \mathscr{H}^{\infty}$.
Consider the following one parameter family of probability measures on $\operatorname{PSL}(2, \mathbb{R})$

$$
m_{T}(f)=\frac{1}{2 T} \int_{-T}^{T} f(n(t)) d t, \quad T>0
$$

The next proposition shows how the map

$$
T \rightarrow N\left(\pi\left(m_{T}\right) v\right)
$$

vanishes at infinity for $v \in \mathscr{H}^{\infty}$. In order to state the proposition we introduce some notation. Let

$$
H=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad X_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad X_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

If $S \subset \mathscr{U}\left(\mathfrak{g}_{\mathbb{C}}\right)$ is a finite subset

$$
\|v\|_{S}=\max _{L \in S}\|d \pi(L) v\|, \quad v \in \mathscr{H}^{\infty}
$$

Proposition 1. Let (\mathscr{H}, π) be a continuous unitary representation of $\operatorname{PSL}(2, \mathbb{R})$ in a separable Hilbert space \mathscr{H} and let N be a norm on \mathscr{H}^{∞} satisfying properties (a), (b) above.
(1) If (\mathscr{H}, π) has no nonzero fixed vector then

$$
\lim _{T \rightarrow \infty} N\left(\pi\left(m_{T}\right) v\right)=0
$$

for every $v \in \mathscr{H}^{\infty}$.
(2) Let $0<\alpha \leqslant 1 / 2$ and assume that

$$
\operatorname{supp} \pi \subset(-\infty, \alpha(\alpha-1)] \cup Z
$$

then we have for all $v \in \mathscr{H}^{\infty}$ and $T \geqslant 1$

$$
N\left(\pi\left(m_{T}\right) v\right) \leqslant c \frac{T^{-\alpha}-T^{\alpha-1}}{1-2 \alpha}\left\{\|v\|_{S}+\|d \pi(H) v\|_{S}+\left\|d \pi\left(X_{-}\right) v\right\|_{S}\right\},
$$

where $c>0$ is some positive constant.
Let us show how this result applies in concrete situations: Let $S=\Gamma \backslash D^{2}$ be any hyperbolic surface. We consider the unitary representation π of $\operatorname{PSL}(2, \mathbb{R})$ on $\mathscr{H}=L^{2}(\Gamma \backslash P S L(2, \mathbb{R}))$ given by right translations. On the space of C^{∞} vectors \mathscr{H}^{∞} we would like to take the norm

$$
N(f)=\sup _{x \in T_{1} S}|f(x)|
$$

The case of surfaces with cusps shows that N is not always defined on \mathscr{H}^{∞}. However, assume that there is a positive lower bound on the injectivity radius of S and choose a left invariant Riemannian metric on $\operatorname{PSL}(2, \mathbb{R})$ whose projection on D^{2} is the hyperbolic metric. It then follows from [A, 2.10 and 2.2.1] that the Sobolev imbedding theorem holds for the Riemannian manifold $T_{1} S=\Gamma \backslash P S L(2, \mathbb{R})$. In particular there is a constant $c>0$ and a finite subset $L \subset \mathscr{U}(\mathrm{~g})$ of polynomials of degree at most two such that for all $f \in C_{K}^{\infty}\left(T_{1} S\right)$ we have

$$
\sup _{x}|f(x)| \leqslant c \cdot\|f\|_{L}
$$

We can furthermore identify \mathscr{H}^{∞} with a subspace of the space of bounded C^{∞} functions on $T_{1} S$.

Now we can apply Proposition 1 to the norm $N(f)=\sup _{x}|f(x)|$ defined on \mathscr{H}^{∞} to obtain

Theorem 2. Let $S=\Gamma \backslash D^{2}$ be a hyperbolic surface whose injectivity radius has a positive lower bound and let $\|f\|_{H_{3}^{2}}$ be the Sobolev L^{2} norm involving all the derivatives of f up to the third order.
(A) For every continuous function f on $T_{1} S$ vanishing at infinity

$$
\lim _{T \rightarrow \infty} \sup _{g \in T_{1} S} \frac{1}{2 T} \int_{-T}^{T} f(g n(t)) d t=0
$$

(B) Assume that the spectrum of the Laplacian of S is contained in $(-\infty, \alpha(\alpha-1)]$, where α is some number satisfying $0<\alpha \leqslant 1 / 2$. Then we have for all $f \in C_{\mathrm{K}}^{\infty}\left(T_{1} S\right)$ and $T \geqslant 1$

$$
\sup _{g \in T_{1} S}\left|\frac{1}{2 T} \int_{-T}^{T} f(g n(t)) d t\right| \leqslant c \frac{T^{-\alpha}-T^{\alpha-1}}{1-2 \alpha}\|f\|_{H_{3}^{2}}
$$

(C) Assume that S is compact. Let $\lambda_{1}<0$ be the first nonzero eigenvalue of the Laplacian of S and let $0<\alpha \leqslant 1 / 2$ satisfy $\alpha(\alpha-1) \geqslant \lambda_{1}$. Then we have for all $f \in C_{K}^{\infty}\left(T_{1} S\right)$ and $T \geqslant 1$

$$
\sup _{g \in T_{1} S}\left|\frac{1}{2 T} \int_{-T}^{T} f(g n(t)) d t-\int_{T_{1} S} f(h) d h\right| \leqslant c \frac{T^{-\alpha}-T^{\alpha-1}}{1-2 \alpha}\|f\|_{H_{3}^{2}} .
$$

Proof. (A) and (B) are direct consequences of Proposition 1, (1), (2). To obtain (C) we apply Proposition 1, (2) to the restriction of π to the subspace of functions $f \in L^{2}(\Gamma \backslash P S L(2, \mathbb{R}))$ orthogonal to the constants.

Let us give two examples of surfaces satisfying the hypothesis of Theorem 2 (B): (1) Let $S_{0}=\Gamma \backslash D^{2}$ be a compact surface and $\Gamma^{\prime} \triangleleft \Gamma$ be a normal subgroup of Γ such that Γ / Γ^{\prime} is not amenable. Then $S=\Gamma^{\prime} \backslash D^{2}$ satisfies the hypothesis of Theorem 2 (B) (see [Br] for instance).
(2) Any geometrically finite surface of infinite volume and without cusps [DPRS].
1.4. In this section we prove Proposition 1.

Let (\mathscr{H}, π) be a continuous unitary representation of $\operatorname{PSL}(2, \mathbb{R})$. We assume that the Casimir operator w acts as scalar multiplication on $\mathscr{H}^{\infty}: d \pi(w)=\lambda$ Id and we fix an $\alpha \in \mathbb{C}$ such that $\alpha(\alpha-1)=\lambda$. We introduce also the subgroups of $\operatorname{PSL}(2, \mathbb{R})$

$$
\begin{aligned}
& K=\left\{k(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \quad 0 \leqslant \theta \leqslant \pi\right\} \\
& A=\left\{a(y)=\left(\begin{array}{cc}
\sqrt{y} & 0 \\
0 & 1 / \sqrt{y}
\end{array}\right), \quad y>0\right\} \\
& N=\left\{n(x)=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right), \quad x \in \mathbb{R}\right\} .
\end{aligned}
$$

Lemma 1.
(A) For all $v \in \mathscr{H}^{\infty}, Y \geqslant 1$, and $T>0$ we have

$$
\begin{aligned}
\pi\left(m_{T}\right) v= & \frac{(1-\alpha) Y^{-\alpha}-\alpha Y^{\alpha-1}}{1-2 \alpha} \pi\left(m_{T} a(Y)\right) v \\
& -\frac{1}{2} \frac{Y^{-\alpha}-Y^{\alpha-1}}{1-2 \alpha} \pi\left(m_{T} a(Y)\right) d \pi(H) v \\
& +\frac{1}{2 T} \int_{1}^{Y} d y\left(\frac{y^{-\alpha}-y^{\alpha-1}}{1-2 \alpha}\right)[\pi(n(-T))-\pi(n(T))] \pi(a(y)) d \pi\left(X_{-}\right) v .
\end{aligned}
$$

(B) Assume that $\alpha \in \mathbb{R}, \alpha-1 \geqslant 0$ and that π has no nonzero fixed vector. Then we have for all $T>0, Y \geqslant 1$ and $v \in \mathscr{H}^{\infty}$

$$
\begin{aligned}
\pi\left(m_{T}\right) v= & Y^{-\alpha} \pi\left(m_{T} a(Y)\right) v \\
& -\frac{1}{2 T} \int_{0}^{Y} d y y^{\alpha-1}\left(\frac{Y^{1-2 \alpha}-\max (1, y)^{1-2 \alpha}}{1-2 \alpha}\right)[\pi(n(-T))-\pi(n(T))] d \pi\left(X_{-}\right) v .
\end{aligned}
$$

Proof. We recall that in Iwasawa coordinates $n(x), a(y), k(\theta)$ the left invariant differential operators X_{-}, H, W are given by

$$
\begin{aligned}
& W=\frac{\partial}{\partial \theta} \\
& H=-2 y \sin 2 \theta \frac{\partial}{\partial x}+2 y \cos 2 \theta \frac{\partial}{\partial y}+\sin 2 \theta \frac{\partial}{\partial \theta} \\
& X_{-}=y \cos 2 \theta \frac{\partial}{\partial x}+y \sin 2 \theta \frac{\partial}{\partial y}-\cos ^{2} \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

and the Casimir operator is

$$
w=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-y \frac{\partial^{2}}{\partial x \partial \theta} .
$$

For $v \in \mathscr{H}^{\infty}$ the function

$$
(x, y, \theta) \mapsto \pi\left(m_{T} n(x) a(y) k(\theta)\right) v
$$

is an eigenfunction of the Casimir operator of eigenvalue λ. In particular

$$
\begin{aligned}
& y^{2} \frac{\partial^{2}}{\partial y^{2}} \pi\left(m_{T} a(y)\right) v+\left.y^{2} \frac{\partial^{2}}{\partial x^{2}}\right|_{x=0} \pi\left(m_{T} n(x) a(y)\right) v-\left.y \frac{\partial^{2}}{\partial x \partial \theta}\right|_{x=\theta=0} \pi\left(m_{T} n(x) a(y) k(\theta)\right) v \\
& \quad=\lambda \pi\left(m_{T} a(y)\right) v .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\left.y^{2} \frac{\partial^{2}}{\partial x^{2}}\right|_{x=0} \pi\left(m_{T} n(x) a(y)\right) v & =\left.y^{2} \frac{\partial^{2}}{\partial x^{2}}\right|_{x=0} \frac{1}{2 T} \int_{-T}^{T} \pi(n(t+x) a(y)) v d t \\
& =\left.\frac{y^{2}}{2 T} \frac{\partial}{\partial x}\right|_{x=0}[\pi(n(T+x) a(y)) v-\pi(n(-T+x) a(y)) v]
\end{aligned}
$$

and

$$
\left.y \frac{\partial^{2}}{\partial x \partial \theta}\right|_{x=\theta=0} \pi\left(m_{T} n(x) a(y) k(\theta)\right) v=\left.\frac{y}{2 T} \frac{\partial}{\partial \theta}\right|_{\theta=0}[\pi(n(T))-\pi(n(-T))] \pi(a(y) k(\theta)) v
$$

Putting everything together and using the fact that

$$
\left.X_{-}\right|_{x=\theta=0}=\left.y \frac{\partial}{\partial x}\right|_{x=0}-\left.\frac{\partial}{\partial \theta}\right|_{\theta=0}
$$

we obtain

$$
y^{2} \frac{\partial^{2}}{\partial y^{2}} \pi\left(m_{T} a(y)\right) v-\lambda \pi\left(m_{T}(a(y))\right) v=\frac{y}{2 T}[\pi(n(-T))-\pi(n(T))] \pi(a(y)) d \pi\left(X_{-}\right) v .
$$

Define the following functions

$$
\begin{aligned}
& g(y)=y^{-\alpha} \pi\left(m_{T} a(y)\right) v \\
& D(y)=[\pi(n(-T))-\pi(n(T))] \pi(a(y)) d \pi\left(X_{-}\right) v .
\end{aligned}
$$

With this notation the above relation becomes

$$
\frac{\partial}{\partial y} y^{2 \alpha} \frac{\partial}{\partial y} g(y)=\frac{y^{\alpha-1}}{2 T} D(y)
$$

Let $0<a<b$. Integrating this equality from a to b with respect to y we obtain

$$
\begin{equation*}
b^{2 \alpha} g^{\prime}(b)-a^{2 \alpha} g^{\prime}(a)=\frac{1}{2 T} \int_{a}^{b} y^{\alpha-1} D(y) d y \tag{*}
\end{equation*}
$$

Proof of (A). Multiplying (*) by $a^{-2 \alpha}$ and integrating from 1 to b with respect to a we obtain

$$
\begin{equation*}
g(1)=g(b)-\left(\frac{b-b^{2 \alpha}}{1-2 \alpha}\right) g^{\prime}(b)+\frac{1}{2 T} \int_{1}^{b} d y\left(\frac{y^{-\alpha}-y^{\alpha-1}}{1-2 \alpha}\right) D(y) \tag{**}
\end{equation*}
$$

From the definition of g it follows that

$$
y g^{\prime}(y)=-\alpha y^{-\alpha} \pi\left(m_{T} a(y)\right) v+y^{-\alpha}\left(y \frac{\partial}{\partial y} \pi\left(m_{T} a(y)\right) v\right),
$$

but $\left.H\right|_{\theta=0}=2 y(\partial / \partial y)$ so that

$$
\begin{equation*}
y g^{\prime}(y)=-\alpha y^{-\alpha} \pi\left(m_{T} a(y)\right) v+\frac{1}{2} y^{-\alpha} \pi\left(m_{T} a(y)\right) d \pi(H) v . \tag{***}
\end{equation*}
$$

Substituting ($* * *$) in ($* *$) and using $g(y)=y^{-\alpha} \pi\left(m_{T} a(y)\right) v$ and setting $b=Y$ we obtain (A).

Proof of (B). We write (***) in the following form

$$
y^{2 \alpha} g^{\prime}(y)=y^{\alpha-1}\left[-\alpha \pi\left(m_{T} a(y)\right) v+\frac{1}{2} \pi\left(m_{T} a(y)\right) d \pi(H) v\right] .
$$

(1) $\alpha-1>0$: then $\lim _{y \rightarrow 0} y^{2 \alpha} g^{\prime}(y)=0$ in \mathscr{H}.
(2) $\alpha-1=0$: since π has no nonzero invariant vectors it follows from [$\mathrm{H}-\mathrm{M}]$ that for every $w \in \mathscr{H} \lim _{y \rightarrow 0} \pi(a(y)) w=0$ weakly in \mathscr{H}. In particular $\lim _{y \rightarrow 0} y^{2} g^{\prime}(y)=0$ weakly in \mathscr{H}.

In both cases equation (*) implies that

$$
b^{2 \alpha} g^{\prime}(b)=\frac{1}{2 T} \int_{0}^{b} y^{\alpha-1} D(y) d y
$$

Multiplying both sides with $b^{-2 \alpha}$ and integrating from 1 to Y with respect to b we obtain

$$
g(Y)-g(1)=\frac{1}{2 T} \int_{0}^{Y} d y D(y) y^{\alpha-1}\left[\frac{Y^{1-2 \alpha}-\max (1, y)^{1-2 \alpha}}{1-2 \alpha}\right]
$$

which proves (B).
Proof of Proposition 1. Let (\mathscr{H}, π) be a continuous unitary representation of $\operatorname{PSL}(2, \mathbb{R})$ in a separable Hilbert space \mathscr{H}. Let

$$
(\mathscr{H}, \pi)=\bigoplus_{n=1}^{\infty}\left(\mathscr{L}_{n}, \beta_{n}\right)
$$

be its decomposition in a direct sum of multiplicity free representations $\left(\mathscr{L}_{n}, \beta_{n}\right)$. For each n there is a bounded Borel measure μ_{n} on \hat{G} such that

$$
\beta_{n}=\int_{\hat{\boldsymbol{G}}}^{\oplus} \beta d \mu_{n}(\beta)
$$

(see [D, 8.6.5]).
We are going to use the following elementary fact: any bounded Borel function $F: \hat{G} \rightarrow \mathbb{C}$ defines via the direct integral decomposition a bounded intertwining operator of π

$$
T_{F}: \mathscr{H} \rightarrow \mathscr{H}
$$

whose operator norm satisfies $\left\|T_{F}\right\| \leqslant \sup _{\alpha \in \text { supp } \pi}|F(\alpha)|$. Remark also that any intertwining operator acts in the space of C^{∞} vectors \mathscr{H}^{∞}.

We show now how to deduce Proposition 1 (1) from Proposition 1 (2). Assume that (\mathscr{H}, π) does not contain the trivial representation. Take $\varepsilon<0$ and let P_{ε} be the orthogonal projection in \mathscr{H} corresponding to the characteristic function of the set

$$
(-\infty, \varepsilon] \cup Z \subset \hat{G} .
$$

Then it follows from the fact that π has no fixed vector that $\lim _{\varepsilon \rightarrow 0}\left\|P_{\varepsilon} v-v\right\|=0$ for every $v \in \mathscr{H}$. Assume that we are given a norm N on \mathscr{H}^{∞} satisfying the conditions (a), (b) of $\S 1.3$. Let $-1 / 4<\varepsilon<0, \varepsilon=\alpha(\alpha-1), 0<\alpha<1 / 2$ and define $\mathscr{H}_{\varepsilon}=P_{\varepsilon} \mathscr{H}$. Then $P_{\varepsilon} \mathscr{H}^{\infty}=\mathscr{H}_{\varepsilon}^{\infty}$ and we can apply Proposition 1 (2) to the restriction of π to $\mathscr{H}_{\varepsilon}$ and the restriction of N to $\mathscr{H}_{\varepsilon}^{\infty}$. Namely if $F=S \cup\left\{X_{-}, H\right\}$ then there is a constant $c>0$ such that for all $v \in \mathscr{H}^{\infty}$

$$
N\left(\pi\left(m_{T}\right) P_{\varepsilon} v\right) \leqslant c T^{-\alpha}\left\|P_{\varepsilon} v\right\|_{F}
$$

Let $v \in \mathscr{H}^{\infty}, \delta>0$ and choose $\varepsilon>0$ such that

$$
\max _{L \in S}\left\|P_{\varepsilon} d \pi(L) v-d \pi(L) v\right\| \leqslant \delta / c
$$

Writing $v=P_{\varepsilon} v+\left(v-P_{\varepsilon} v\right)$ we have

$$
N\left(\pi\left(m_{T}\right) v\right) \leqslant N\left(\pi\left(m_{T}\right) P_{\varepsilon} v\right)+N\left(\pi\left(m_{T}\right)\left(v-P_{\varepsilon} v\right)\right)
$$

and now

$$
N\left(\pi\left(m_{T}\right)\left(v-P_{\varepsilon} v\right)\right) \leqslant N\left(v-P_{\varepsilon} v\right) \leqslant c \max _{L \in S}\left\|d \pi(L)\left(v-P_{\varepsilon} v\right)\right\| \leqslant \delta .
$$

Hence

$$
N\left(\pi\left(m_{T}\right) v\right) \leqslant c T^{-\alpha}\left\|P_{\varepsilon} v\right\|_{F}+\delta
$$

from which it follows that $\lim \sup _{T \rightarrow \infty} N\left(\pi\left(m_{T}\right) v\right) \leqslant \delta$ for each $\delta>0$. This proves Proposition 1 (1).

Proof of Proposition 1 (2). We begin by defining certain functions on \hat{G}.
(1) The function β
(a) on $(-\infty, 0]:-1 / 4 \leqslant \lambda \leqslant 0, \quad \lambda=\beta(\beta-1)$ and $0 \leqslant \beta \leqslant 1 / 2$

$$
\lambda<-1 / 4, \quad \lambda=\beta(\beta-1) \quad \text { and } \quad \operatorname{Im} \beta \geqslant 0
$$

(b) on $Z: \beta(\pm m)=\frac{m}{2}$.
(2) The function $f_{y}, y \geqslant 1$

$$
\begin{aligned}
f_{y}(\lambda) & =\frac{(1-\beta) y^{-\beta}-\beta y^{\beta-1}}{1-2 \beta}, \quad \lambda \leqslant 0 \\
f_{y}(\pm m) & =y^{-\beta}, \quad m \geqslant 2 .
\end{aligned}
$$

(3) The function $s_{y}, y \geqslant 1$

$$
\begin{aligned}
s_{y}(\lambda) & =\frac{y^{-\beta}-y^{\beta-1}}{1-2 \beta}, \quad \lambda \leqslant 0 \\
s_{y}(\pm m) & =0, \quad m \geqslant 2
\end{aligned}
$$

(4) The function $t_{y}, Y>y>0, Y \geqslant 1$

$$
\begin{aligned}
& t_{y}=s_{y} \quad \text { on }(-\infty, 0] \quad \text { for } y \geqslant 1 \\
& t_{y}=0 \quad \text { on } \quad(-\infty, 0] \text { for } 0<y<1,
\end{aligned}
$$

$$
t_{y}(\pm m)=y^{\beta-1}\left[\frac{\max (1, y)^{1-2 \beta}-Y^{1-2 \beta}}{1-2 \beta}\right] \quad \text { for } y>0
$$

If F_{y}, S_{y}, T_{y} denote the corresponding intertwining operators on \mathscr{H} it follows from Lemma 1 that for all $v \in \mathscr{H}^{\infty}, T>0, Y>1$

$$
\begin{aligned}
\pi\left(m_{T}\right) v= & F_{Y} \pi\left(m_{T} a(Y)\right) v-\frac{1}{2} S_{Y} \pi\left(m_{T} a(Y)\right) d \pi(H) v \\
& +\frac{1}{2 T} \int_{0}^{Y} d y T_{y}[\pi(n(-T))-\pi(n(T))] \pi(a(y)) d \pi\left(X_{-}\right) v .
\end{aligned}
$$

From this and the properties of N it follows that

$$
\begin{aligned}
N\left(\pi\left(m_{T}\right) v\right) & \leqslant N\left(F_{Y} v\right)+\frac{1}{2} N\left(S_{Y} d \pi(H) v\right)+\frac{1}{T} \int_{0}^{Y} d y N\left(T_{y} d \pi\left(X_{-}\right) v\right) \\
& \leqslant c\left[\left\|F_{Y} v\right\|_{S}+\left\|S_{Y} d \pi(H) v\right\|_{S}+\frac{1}{T} \int_{0}^{Y}\left\|T_{y} d \pi\left(X_{-}\right) v\right\|_{S} d y\right] .
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
\left\|F_{Y} v\right\|_{S} \leqslant\left\|f_{Y}\right\|_{\infty}\|v\|_{S}, \quad\left\|S_{Y} d \pi(H) v\right\|_{S} \leqslant\left\|s_{Y}\right\|_{\infty}\|d \pi(H) v\|_{S}, \\
\left\|T_{y} d \pi\left(X_{-}\right) v\right\|_{S} \leqslant\left\|t_{y}\right\|_{\infty}\left\|d \pi\left(X_{-}\right) v\right\|_{S}
\end{gathered}
$$

where the supremum $\left\|\|_{\infty}\right.$ is taken over $(-\infty, \alpha(\alpha-1)] \cup Z$.
It is now easy to verify from the definitions that

$$
\begin{aligned}
& \left\|f_{y}\right\|_{\infty} \leqslant C \frac{(1-\alpha) y^{-\alpha}-\alpha y^{\alpha-1}}{1-2 \alpha} \quad y \geqslant 1 \\
& \left\|s_{y}\right\|_{\infty} \leqslant C \frac{y^{-\alpha}-y^{\alpha-1}}{1-2 \alpha} \quad y \geqslant 1 \\
& \left\|t_{y}\right\|_{\infty} \leqslant C \frac{y^{-\alpha}-y^{\alpha-1}}{1-2 \alpha} \quad y \geqslant 1 \\
& \left\|t_{y}\right\|_{\infty} \leqslant 1, \quad 0<y<1
\end{aligned}
$$

where $C>0$ is some absolute constant. From this it follows that

$$
\begin{gathered}
\left\|F_{Y} v\right\|_{S} \leqslant C \frac{(1-\alpha) Y^{-\alpha}-\alpha Y^{\alpha-1}}{1-2 \alpha}\|v\|_{S} \\
\left\|S_{Y} d \pi(H) v\right\|_{S} \leqslant C \frac{Y^{-\alpha}-Y^{\alpha-1}}{1-2 \alpha}\|d \pi(H) v\|_{S} \\
\frac{1}{T} \int_{0}^{Y} d y\left\|T_{y} d \pi\left(X_{-}\right) v\right\|_{S} \leqslant \frac{1}{T}\left\|d \pi\left(X_{-}\right) v\right\|_{S}+\frac{1}{T} \int_{1}^{Y} d y\left(\frac{y^{-\alpha}-y^{\alpha-1}}{1-2 \alpha}\right)\left\|d \pi\left(X_{-}\right) v\right\|_{S}
\end{gathered}
$$

Putting $T=Y$ we obtain Proposition 1 (2).

2. Geometrically finite surfaces

2.1. Let $S=\Gamma \backslash D^{2}$ be any hyperbolic surface. A positive measure λ on $\Gamma \backslash P S L(2, \mathbb{R})$ is $P=A N$ quasi invariant if

$$
p_{*} \lambda=\chi(p) \lambda \quad \text { for all } p \in P
$$

where $\chi: P \rightarrow \mathbb{R}^{+}$is a character of P and $g_{*} \lambda$ denotes the action of $g \in P S L(2, \mathbb{R})$ on measures. Let $d \theta$ be the Lebesgue measure on $S^{1}=\left\{e^{i \theta}: 0 \leqslant \theta<2 \pi\right\}$ viewed as the boundary of D^{2}. A finite measure v on S^{1} is α conformal for Γ if

$$
\gamma_{*} v=j(\gamma)^{\alpha} v \quad \text { for all } \gamma \in \Gamma,
$$

where $j(\gamma)$ is the Radon-Nikodym derivative of $\gamma_{*} d \theta$ with respect to $d \theta$. Here α is a real number (see [S1] for an intrinsic definition).

We show now that there is a natural bijection between the set of P-quasi invariant positive measures on $\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$ and the set of positive Γ conformal measures on S^{1}. Let λ be a P-quasi invariant positive measure on $\Gamma \backslash P S L(2, \mathbb{R})$ and consider its lift $\tilde{\lambda}$ to $\operatorname{PSL}(2, \mathbb{R})$. This measure is left Γ invariant and satisfies

$$
\begin{cases}a(y)_{*} \lambda=y^{\beta} \lambda & \text { for all } y>0 \tag{*}\\ n(x)_{*} \lambda=\lambda & \text { for all } x \in \mathbb{R}\end{cases}
$$

where g_{*} denotes the right action of $g \in \operatorname{PSL}(2, \mathbb{R})$ on measures on $\operatorname{PSL}(2, \mathbb{R})$. Using Iwasawa coordinates on $\operatorname{PSL}(2, \mathbb{R})$

$$
\begin{aligned}
\operatorname{PSL}(2, \mathbb{R}) & =K \times A \times N, \\
g & =k(\theta) a(y) n(x)
\end{aligned}
$$

we obtain a projection $\operatorname{PSL}(2, \mathbb{R}) \rightarrow A \times N$ with compact fibers. It follows from properties (*) that the direct image of $\tilde{\lambda}$ on $A \times N$ via this projection is the measure

$$
c d y y^{-\beta} d x
$$

where $c>0$ is some constant. Therefore there exists for almost all $(y, x) \in \mathbb{R}^{+} \times \mathbb{R}$ a probability measure

$$
d \mu_{(y, x)}(\theta)
$$

on K such that for all continuous functions f on $\operatorname{PSL}(2, \mathbb{R})$ with compact support we have

$$
\tilde{\lambda}(f)=c \int_{0}^{\infty} d y y^{-\beta} \int_{-\infty}^{\infty} d x \int_{0}^{\pi} d \mu_{(y, x)}(\theta) f(k(\theta) a(y) n(x))
$$

Using properties (*) again we see that the map

$$
(y, x) \rightarrow \mu_{(y, x)}
$$

is essentially constant. Let μ be its essential value. It is a probability measure supported on K. In Iwasawa coordinates the visual map is given by

$$
\begin{aligned}
& \text { Vis: } \operatorname{PSL}(2, \mathbb{R})=T_{1} D^{2} \rightarrow S^{1} \\
& k(\theta) a(y) n(x) \mapsto e^{2 \pi i \theta} .
\end{aligned}
$$

Denote again by μ the direct image of μ on S^{1} via Vis. It follows from the left Γ invariance of $\tilde{\lambda}$ that μ is $1-\beta$ conformal, i.e.,

$$
\gamma_{*} \mu=j(\gamma)^{1-\beta} \mu \quad \text { for all } \gamma \in \Gamma
$$

The inverse of the map $\lambda \rightarrow \mu$ was already considered in the Introduction. It follows also from our description that

$$
\text { supp } \lambda=\text { projection on } T_{1} S \text { of } \operatorname{Vis}^{-1}(\operatorname{supp} \mu)
$$

2.2. We remark now that in order to show Theorem 1 it suffices to prove

Proposition 2. Let S be a geometrically finite surface without cusps and assume $\delta>1 / 2$. If λ is a positive N-invariant ergodic measure supported on \mathscr{F}_{c} then λ is P-quasi invariant.

Indeed, assume that Proposition 2 is true. Then λ is obtained from an α conformal probability measure on S^{1} supported on the limit set $\Lambda \subset S^{1}$. Then it follows from Sullivan's characterization of Patterson's measure that $\alpha=\delta$ and $v=\mu_{P}$ [S1, Theorem 8]. In other words, λ is a multiple of the measure μ constructed in the Introduction (C).
2.3. The rest of $\S 2$ is devoted to the proof of Proposition 2. We assume from now on that S is geometrically finite without cusps and $\delta>1 / 2$. Let $\lambda_{k} \leqslant$ $\lambda_{k-1} \leqslant \cdots \leqslant \lambda_{1}<\lambda_{0}=\delta(\delta-1)$ be the eigenvalues of the Laplacian of $S \operatorname{Sin}(-1 / 4,0]$. Consider the unitary representation π of $\operatorname{PSL}(2, \mathbb{R})$ in $\mathscr{H}=L^{2}(\Gamma \backslash P S L(2, \mathbb{R}))$. Then we have the direct sum decomposition

$$
(\mathscr{H}, \pi)=\bigoplus_{i=0}^{k}\left(\mathscr{H}_{\lambda_{i}}, \pi_{\lambda_{i}}\right) \oplus\left(\mathscr{H}^{\prime}, \pi^{\prime}\right)
$$

(cf. $\S 1.2$ for the definition of $\mathscr{H}_{\lambda}, \pi_{\lambda}$) and

$$
\operatorname{supp} \pi^{\prime} \subset(-\infty,-1 / 4] \cup Z
$$

In particular, the function

$$
\varphi_{0}(h)=\int_{S^{1}} d \mu_{P}(\zeta)\left(\frac{1-|h \cdot o|^{2}}{|h \cdot o-\zeta|^{2}}\right)^{\delta}, \quad o \text { being the origin of } D^{2},
$$

is up to scalar multiple the unique K invariant vector in $\mathscr{H}_{\lambda_{0}}$. Viewed as a function on $T_{1} S, \varphi_{0}$ is also in $L^{1}\left(T_{1} S, \mu\right)$ where μ is the P-quasi invariant measure associated to the Patterson measure μ_{P}.
2.4. Before we go into the proof of Proposition 2 we make a preliminary remark. If $\delta=1$ then φ_{0} is an L^{2} harmonic function on S which is not identically zero. It follows from [Y] that φ_{0} is constant and hence $\operatorname{Vol}(S)<+\infty$. Since S is without cusps this implies that S is compact. In this case Theorem $2(\mathrm{C})$ shows that all N orbits in $T_{1} S$ are uniformly distributed with respect to the $\operatorname{PSL}(2, \mathbb{R})$ invariant measure on $T_{1} S$. This implies that the action of N on $T_{1} S$ is uniquely ergodic, a result due to H . Furstenberg [F]. We therefore make the further assumption that $\delta<1$ throughout the rest of the paper.
2.5. We first need to show a certain conservativity property of the action of N on \mathscr{F}_{c}.

Lemma 2. Let $F \subset \mathscr{F}_{c}$ be any compact set. There is a constant $c=c_{F}>0$ such that for all $g \in F$ and $\tau \geqslant 2$

$$
\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} d t \varphi_{0}(g n(t)) \geqslant c(1+\ln \tau)
$$

Proof. (a) It follows from Proposition 1 (2) that for all $x>0$ and all $g \in T_{1} S$

$$
\int_{-x}^{x} \varphi_{0}(g n(t)) d t \leqslant c x^{\delta}
$$

where $c>0$ is some positive constant. In particular

$$
\int_{1}^{\infty} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t
$$

converges for all $s<-\delta$.
(b) We show now that there is a constant $c=c_{F}>0$ such that for all $g \in F$ and $-1<s<-\delta$

$$
\int_{1}^{\infty} x^{s}\left[\varphi_{0}(g n(x))+\varphi_{0}(g n(-x))\right] d x \geqslant \frac{c}{|s+\delta|} .
$$

We use the following representation of φ_{0} :

$$
\varphi_{0}(h)=\int_{\mathbf{S}^{1}} d \mu_{P}(\zeta) j(h, \zeta)^{\delta}
$$

where

$$
j(h, \zeta)=\frac{1-|h \cdot o|^{2}}{|h \cdot o-\zeta|^{2}}
$$

hence

$$
\varphi_{0}(g n(x))=\int_{\mathcal{S}^{1}} d \mu_{P}(\zeta) j(g, \zeta)^{\delta} j\left(n(x), g^{-1} \zeta\right)^{\delta}
$$

We can assume g to be in a fixed compact set \widetilde{F} in $\operatorname{PSL}(2, \mathbb{R})$. Then $j(g, \zeta)^{\delta}, \zeta \in S^{1}$, is between two positive constants so that we are reduced to consider

$$
\begin{gathered}
\int_{S^{1}} d \mu_{P}(\zeta) \int_{1}^{\infty} d x x^{s}\left\{j\left(n(x), g^{-1} \zeta\right)^{\delta}+j\left(n(-x), g^{-1} \zeta\right)^{\delta}\right\} \\
\quad=\int_{S^{1}} d \mu_{P}(\zeta)\left\{u\left(g^{-1} \zeta\right)+u\left(\overline{g^{-1} \zeta}\right)\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
u\left(e^{i \theta}\right) & =4^{\delta} \int_{1}^{\infty} \frac{x^{s} d x}{\left[2 x^{2}(1-\cos \theta)-4 x \sin \theta+4\right]^{\delta}} \\
& =\left(\sin ^{2}(\theta / 2)\right)^{-\delta} \int_{1}^{\infty} \frac{x^{s} d x}{\left[(x-\operatorname{ctg}(\theta / 2))^{2}+1\right]^{\delta}}
\end{aligned}
$$

(recall that $n(x) \cdot o=x /(2 i+x))$.

A few computations show that there is a constant $c>0$ such that

$$
\begin{equation*}
u\left(e^{i \theta}\right)+u\left(e^{-i \theta}\right) \geqslant c|\theta|^{-s-2 \delta}, \quad|\theta| \leqslant \pi . \tag{*}
\end{equation*}
$$

Let d be the K invariant metric on S^{1}. There is a constant $c>0$ such that for all $g \in \widetilde{F}$ and $\zeta, \zeta^{\prime} \in S^{1}$

$$
c^{-1} d\left(\zeta, \zeta^{\prime}\right) \leqslant d\left(g \zeta, g \zeta^{\prime}\right) \leqslant c d\left(\zeta, \zeta^{\prime}\right)
$$

Therefore, it follows from (*) that for all $\zeta \in S^{1}$

$$
u\left(g^{-1} \zeta\right)+u\left(\overline{g^{-1 \zeta}}\right) \geqslant c d(\zeta, \xi)^{-s-2 \delta}, \quad \xi=g \cdot 1 .
$$

From this it follows that there is a constant $c>0$ such that for all $g \in F$ and $-1<s<-\delta$

$$
\int_{1}^{\infty} x^{s}\left[\varphi_{0}(g n(x))+\varphi_{0}(g n(-x))\right] d x \geqslant c \int_{S^{1}} d \mu_{P}(\zeta) d(\zeta, \xi)^{-s-2 \delta} .
$$

Now if $I(\xi, r)$ is the interval of radius r about ξ an integration by parts shows that

$$
\begin{equation*}
\int_{S^{1}} d \mu_{P}(\zeta) d(\zeta, \xi)^{-s-2 \delta} \geqslant(s+2 \delta) \int_{0}^{\pi} t^{-s-2 \delta-1} \mu_{P}(I(\xi, t)) d t \tag{***}
\end{equation*}
$$

Note that $g \in \mathscr{F}_{c}$ is equivalent to $g \cdot 1=\xi \in \Lambda$. From [S2, §7] and the fact that S is convex cocompact we deduce that there is a constant $c>0$ such that for all $\xi \in \Lambda$ and $0 \leqslant r \leqslant \pi$

$$
c^{-1} r^{\delta} \leqslant \mu_{P}(I(\xi, r)) \leqslant c r^{\delta}
$$

Putting this into (***) and using (**) we obtain the claim (b).
(c) Now we prove the Lemma. Let $-1<s<-\delta$ and $\tau \geqslant 2$:

$$
\begin{aligned}
\int_{1}^{\tau} d x & x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t \\
& \geqslant \int_{1}^{\tau} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t \\
& =\int_{1}^{\infty} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t-\int_{\tau}^{\infty} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t
\end{aligned}
$$

using (a) we obtain

$$
\int_{\tau}^{\infty} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t \leqslant \frac{c \tau^{s+\delta}}{|s+\delta|}
$$

On the other hand

$$
\begin{aligned}
\int_{1}^{\infty} d x x^{s-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t= & \left(-s^{-1}\right) \int_{-1}^{1} \varphi_{0}(g n(t)) d t \\
& +\left(-s^{-1}\right) \int_{1}^{\infty} x^{s}\left[\varphi_{0}(g n(x))+\varphi_{0}(g n(-x))\right] d x \\
\geqslant & \frac{c|s|}{|s+\delta|} \quad \text { using }(b)
\end{aligned}
$$

Hence

$$
\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t \geqslant \frac{c_{1}-c_{2} \tau^{s+\delta}}{|s+\delta|}
$$

Choosing $|s+\delta|$ of size $1 / \ln \tau$, we obtain the Lemma.
Lemma 3. Let $\varphi \in C_{K}^{\infty}(S)$ and consider it as a function on $T_{1} S$. Then we have

$$
\lim _{\tau \rightarrow \infty} \frac{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi(g n(t)) d t}{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t}=\frac{\left\langle\varphi, \varphi_{0}\right\rangle}{\left\|\varphi_{0}\right\|^{2}}
$$

uniformly on compact sets in \mathscr{F}_{c}.
Proof. Let $\varphi=\left\langle\varphi, \varphi_{0}\right\rangle\left(\varphi_{0} /\left\|\varphi_{0}\right\|_{2}^{2}\right)+\varphi_{\perp}$, where φ_{\perp} is orthogonal to $\mathscr{H}_{\lambda_{0}}$. It follows from Proposition 1 (2) applied to φ_{\perp} and the orthogonal of $\mathscr{H}_{\lambda_{0}}$ in $L^{2}(\Gamma \backslash P S L(2, \mathbb{R}))$ that

$$
\sup _{g \in T_{1} S}\left|\frac{1}{x} \int_{-x}^{x} \varphi_{\perp}(g n(t)) d t\right| \leqslant c\left(S, \varphi_{\perp}\right) \frac{x^{-\alpha_{1}}-x^{1-\alpha_{1}}}{1-2 \alpha_{1}}
$$

where $0<\alpha_{1} \leqslant 1 / 2, \alpha_{1}\left(\alpha_{1}-1\right)=\lambda_{1}(S)$ if $\lambda_{1}(S)>-1 / 4$ and $\alpha_{1}=1 / 2$ if Spec $\Delta_{S} \cap(-1 / 4,0]=\left\{\lambda_{0}\right\}$. In any case we have $\delta+\alpha_{1}>1$ and hence for $\tau \rightarrow \infty$

$$
\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi(g n(t)) d t=\frac{\left\langle\varphi, \varphi_{0}\right\rangle}{\left\|\varphi_{0}\right\|^{2}} \int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t+O(1)
$$

Dividing by $\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t$ and using Lemma 2 enable us to conclude the proof.

Remark. It follows from the proof of Lemma 3 that if $\varphi \in C_{K}^{\infty}(S), \varphi \geqslant 0, \varphi \not \equiv 0$, then there is a constant $c>0$ such that for all $\tau \geqslant 2$ and $g \in \mathscr{F}_{c}$

$$
\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi(g n(t)) d t \geqslant c(1+\ln \tau)
$$

from which it follows easily that

$$
\limsup _{\tau \rightarrow \infty} \frac{1}{\tau^{\delta}} \int_{-\tau}^{\tau} \varphi(g n(t)) d t>0
$$

On the other hand we know from Proposition 1 (2) that this last quantity is bounded, so that one may ask if

$$
\frac{1}{\tau^{\delta}} \int_{-\tau}^{\tau} \varphi(g n(t)) d t>0
$$

has a limit as $\tau \rightarrow \infty$. The following example shows that this is not always the case.
Let S be geometrically finite with one expanding end and without cusps. Let $g \subset S$ be a closed geodesic distinct from the closed geodesic bounding the expanding end. We represent $S=\Gamma \backslash \mathbb{H}^{2}$ as the quotient of the upper half plane \mathbb{H}^{2} in such a way that the geodesic $x=0$ is a lift of g. Let $\Lambda \subset \mathbb{R} \cup\{\infty\}$ be the limit set of Γ. By construction $\infty \in \Lambda$. Let $C(\Lambda)$ be the convex hull of Λ and $S_{0}=\Gamma \backslash C(\Lambda)$. In our example we take $g=e, \varphi \in C_{K}^{\infty}(S), \varphi$ nonnegative and with support in S_{0}. We can assume that

$$
\limsup _{\tau \rightarrow \infty} \frac{1}{\tau^{\delta}} \int_{0}^{\tau} \varphi(g n(t)) d t>0
$$

Consider $t \rightarrow \Gamma e n(t)$, the N orbit of Γe in $\Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$ and let $c(t)$ be its projection on S. We denote by $t_{1}<t_{1}^{\prime}<t_{2}<t_{2}^{\prime}<\cdots$ the sequence of times $t, t>0$, at which $c(t)$ crosses the boundary of S_{0}, so that $c(t)$ leaves S_{0} at t_{n} for all $n \geqslant 1$. By construction we have

$$
\begin{equation*}
\frac{1}{t_{n}^{\prime \delta}} \int_{0}^{t_{n}^{\prime}} \varphi(g n(t)) d t=\left(\frac{t_{n}}{t_{n}^{\prime}}\right)^{\delta} \frac{1}{t_{n}^{\delta}} \int_{0}^{t_{n}} \varphi(g n(t)) d t \tag{*}
\end{equation*}
$$

Let h be the geodesic bounding S_{0} and let \tilde{h} be some lift of h contained in $\left.\left\{z \in \mathbb{H}^{2}: x\right\rangle 0\right\}$. Let $\langle\gamma\rangle$ be the subgroup of Γ of elements with axis $x=0$. Then $\gamma^{n}(\tilde{h})$ is a sequence of lifts of h and for $n \geqslant n_{0}, \gamma^{n}(\tilde{h})$ intersects the horocycle

$$
\{i+t: t>0\} \subset \mathbb{H}^{2}
$$

Let $i+s_{n}, i+s_{n}^{\prime}, s_{n}<s_{n}^{\prime}$ be the two intersection points. An explicit computation shows that $\lim _{n \rightarrow \infty}\left(s_{n}^{\prime} \mid s_{n}\right)=b \mid a$ where $a<b$ are the end points of \tilde{h}. On the other hand, $\left(s_{n}, s_{n}^{\prime}\right)_{n=1}^{\infty}$ is a subsequence of $\left(t_{n}, t_{n}^{\prime}\right)_{1}^{\infty}$. Using this and (*) we conclude that

$$
\liminf _{\tau \rightarrow \infty} \frac{1}{\tau^{\delta}} \int_{0}^{\tau} \varphi(g n(t)) d t<\limsup _{\tau \rightarrow \infty} \frac{1}{\tau^{\delta}} \int_{0}^{\tau} \varphi(g n(t)) d t
$$

In the sequel we will need the following version of Hopf's ergodic theorem: Given a locally compact, σ-compact topological space X with a continuous \mathbb{R} action

$$
\begin{gathered}
\mathbb{R} \times X \rightarrow X \\
(t, x) \mapsto x n(t),
\end{gathered}
$$

let v be a positive N invariant ergodic Radon measure on X and assume that there exists an everywhere positive function $g \in L^{1}(X, v)$ such that for v almost all $x \in X$

$$
\int_{-\infty}^{\infty} g(x n(t)) d t=+\infty
$$

then:
Theorem. (Hopf [H]) For all $f \in L^{1}(X, v)$ we have for v almost all $x \in X$

$$
\lim _{\tau \rightarrow \infty} \frac{\int_{-\tau}^{\tau} f(x n(t)) d t}{\int_{-\tau}^{\tau} g(x n(t)) d t}=\frac{\int f(x) d v(x)}{\int g(x) d v(x)}
$$

Using this ratio ergodic theorem we can prove
Lemma 4. Let v be an N invariant positive ergodic measure on \mathscr{F}_{c}. Then v is an eigenmeasure of the Casimir operator of eigenvalue λ_{0} : for all $f \in C_{K}^{\infty}\left(T_{1} S\right)$ we have

$$
\int_{T_{1} S} d \pi(w) f(g) d v(g)=\lambda_{0} \int_{T_{1} S} f(g) d v(g)
$$

Proof. It is sufficient to show that if $f \in C_{K}^{\infty}\left(T_{1} S\right)$ is orthogonal to $\mathscr{H}_{\lambda_{0}}$ then

$$
\int_{T_{1} S} f(g) d v(g)=0
$$

Choose an everywhere positive continuous function $\psi \in L^{1}\left(T_{1} S, v\right)$. Fix some nonnegative function $\varphi \in C_{K}^{\infty}(S), \varphi \not \equiv 0$ and consider it as a function on $T_{1} S$. Then $\psi \geqslant c \varphi$ for some positive constant c. It follows from Lemma 3 that for all $g \in \mathscr{F}_{c}$
(*)

$$
\int_{1}^{\infty} d x x^{-\delta-1} \int_{-x}^{x} \psi(g n(t)) d t=+\infty .
$$

In particular $\int_{-\infty}^{\infty} \psi(g n(t)) d t=+\infty$.
Now it follows from Hopf's ergodic theorem and (*) that for v almost all $g \in \mathscr{F}_{c}$

$$
\lim _{\tau \rightarrow \infty} \frac{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} f(g n(t)) d t}{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \psi(g n(t)) d t}=\lim _{\tau \rightarrow \infty} \frac{\int_{1}^{\tau} d x x^{-\delta-1} h(x) \int_{-x}^{x} \psi(g n(t)) d t}{\int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \psi(g n(t)) d t}
$$

where

$$
h(x)=\frac{\int_{-x}^{x} f(g n(t)) d t}{\int_{-x}^{x} \psi(g n(t)) d t},
$$

and this last limit equals
(**)

$$
\lim _{x \rightarrow \infty} h(x)=\frac{\int f(g) d v(g)}{\int \psi(g) d v(g)} .
$$

If $f \in C_{K}^{\infty}\left(T_{1} S\right)$ and is orthogonal to $\mathscr{H}_{\lambda_{0}}$ we apply Proposition 1 (2) to find that for all $g \in T_{1} S$

$$
\left|x^{-\delta-1} \int_{-x}^{x} f(g n(t)) d t\right| \leqslant c x^{-\left(\delta+\alpha_{1}\right)}
$$

where $\delta+\alpha_{1}>1$ and hence

$$
\int_{1}^{\infty} d x x^{-\delta-1} \int_{-x}^{x} f(g n(t)) d t<+\infty
$$

It follows now from $(* *)$ that $\int f(g) d \nu(g)=0$.

2.5.

Proof of Proposition 2. Let v be an N invariant positive ergodic measure on \mathscr{F}_{c}. Let $f \in C_{K}^{\infty}\left(T_{1} S\right)$ and consider

$$
u(n(x) a(y) k(\theta))=\int_{T_{1} S} \pi(n(x) a(y) k(\theta)) f(g) d v(g)
$$

It follows from Lemma 4 that u satisfies

$$
y^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-y \frac{\partial^{2} u}{\partial x \partial \theta}=\lambda_{0} u
$$

But u is also left N invariant hence

$$
y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\lambda_{0} u
$$

in particular there are constant $c_{1}(f), c_{2}(f)$ such that for all $y>0$

$$
\begin{equation*}
\int_{T_{1} S} \pi(a(y)) f(g) d v(g)=c_{1}(f) y^{\delta}+c_{2}(f) y^{1-\delta} \tag{*}
\end{equation*}
$$

From this equality we deduce that $f \rightarrow c_{1}(f), f \rightarrow c_{2}(f)$ are positive N invariant Radon measures and $v=c_{1}+c_{2}$. Since v is ergodic there are numbers $\alpha, \beta \geqslant 0$, $|\alpha|+|\beta|>0$ such that

$$
\begin{equation*}
\alpha c_{1}(f)=\beta c_{2}(f) \quad \text { for all } f \in C_{K}\left(T_{1} S\right) \tag{**}
\end{equation*}
$$

On the other hand it follows from (*) that

$$
\begin{aligned}
& c_{1}(\pi(a(y)) f)=y^{\delta} c_{1}(f) \\
& c_{2}(\pi(a(y)) f)=y^{1-\delta} c_{2}(f)
\end{aligned}
$$

Hence $(* *)$ is only possible if $\alpha=0$ or $\beta=0$, so $c_{1}=0$ or $c_{2}=0$. This proves Proposition 2.

2.6.

Proof of the Corollary. Consider the following family of measures

$$
V_{g, T}(\varphi)=\frac{\int_{1}^{T} d x x^{-\delta-1} \int_{-x}^{x} \varphi(g n(t)) d t}{\int_{1}^{T} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t}, \quad g \in \mathscr{F}_{c}, \quad T \geqslant 2
$$

Since φ_{0} has a positive lower bound on each compact set of $T_{1} S$, it follows that the set

$$
\left\{V_{g, T}: g \in \mathscr{F}_{c}, T \geqslant 2\right\}
$$

is relatively compact in the vague topology of $\mathscr{M}\left(T_{1} S\right)$. Suppose that the Corollary is false. Then there exists a compact set $F \subset \mathscr{F}_{c}$, sequences $\left(g_{n}\right)_{n=0}^{\infty} \subset F, T_{n} \rightarrow \infty$, a function $\varphi \in C_{K}^{\infty}\left(T_{1} S\right)$ and $\varepsilon>0$ such that for all $n \geqslant 0$

$$
\begin{equation*}
\left|V_{g_{n}, T_{n}}(\varphi)-\mu(\varphi) /\left\|\varphi_{0}\right\|^{2}\right| \geqslant \varepsilon \tag{*}
\end{equation*}
$$

Let v be an accumulation point of the sequence $\left(V_{g_{n}, T_{n}}\right)_{n=1}^{\infty}$. From the fact that

$$
\lim _{\tau \rightarrow \infty} \int_{1}^{\tau} d x x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(g n(t)) d t=+\infty
$$

uniformly on compact sets in \mathscr{F}_{c} (Lemma 2) it follows easily that v is N invariant and supported on \mathscr{F}_{c}. Hence $v=\lambda \mu$, where $\lambda \geqslant 0$ is some constant. From Lemma 3 it follows that for all $\psi \in C_{K}^{\infty}(S)$

$$
\int \psi(g) d v(g)=\frac{\left\langle\psi, \varphi_{0}\right\rangle}{\left\|\varphi_{0}\right\|^{2}}=\frac{\mu(\varphi)}{\left\|\varphi_{0}\right\|^{2}}
$$

Hence $\lambda=1 /\left\|\varphi_{0}\right\|^{2}$ which contradicts ($*$).

References

[A] Thierry Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Grundlehren 252, Springer-Verlag, New York, 1982.
[B] N. Bourbaki, Topological Vector Spaces, Chapters 1-5, Springer-Verlag, Berlin; New York, 1987.
[Br] R. Brooks, The bottom of the spectrum of a Riemannian covering, J. für die Reine und Angew. Math. 357 (1985), 101-114.
[D1] S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces, Invent. Math. 47 (1978), 101-138.
[D2] -On invariant measures, minimal sets, and a lemma of Margulis, Invent. Math. 51 (1979), 239-260.
[DPRS] J. Dodziuk, T. Pignataro, B. Randol, and D. Sullivan, Estimating small eigenvalues of Riemann surfaces, Contemp. Math. 64 (1987), 93-121.
[D] J. Dixmier, C*-Algebras, North Holland, New York, 1982.
[F] H. Furstenberg, "The unique ergodicity of the horocycle flow", in Recent Advances in Topological Dynamics, Springer Lecture Notes 318, Springer-Verlag, New York, 1973.
[H] E. Hopf, Ergodentheorie, Springer, Berlin, 1937.
[H-M] R. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72-96.
[L] S. Lang, $S L(2, \mathbb{R})$, Addison-Wesley, Reading, Mass., 1975.
[P] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273.
[R] M. Ratner, Invariant measures of unipotent translations on homogeneous spaces, Preprint, 1989.
[S1] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math 50 (1979), 171-209.
[S2] -, Entropy, Hausdorff dimension old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259-277.
[S3] - Related aspects of positivity in Riemannian geometry, J. Diff. Geom. 25 (1987), 327-351.
[Y] S. T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.

Department of Mathematics, Stanford University, Stanford, California 94305
Current Address: Institute for Advanced Study, Princeton, New Jersey 08540

