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HOROCYCLE FLOW ON GEOMETRICALLY
FINITE SURFACES

MARC BURGER

Let S = I'\ D? be a quotient of the Poincaré disc by a finitely generated discrete
group I of orientation preserving isometries acting without fixed points on D2
Topologically S can be obtained from a compact surface by removing a finite
number of closed discs.

The group of orientation preserving isometries of D? is PSL(2, R) and the unit
tangent bundle T; S of S is a homogeneous space of PSL(2, R):

T,S = I'\PSLQ2, R).

In particular, the unipotent subgroup of PSL(2, R)

1 x
N—-{n(x)=<0 1>.xeR}
acts on T S.

It is our main goal to determine all N-invariant Radon measures on T;S. Our
first remark is that if C is the cone of positive N-invariant Radon measures in the
space #(T,S) of all Radon measures with the vague topology, then C is the
closed convex hull of the union of its extremal generators [B, II No. 2]; moreover
it is easily seen that a measure is on an extremal generator of C if and only if it is
ergodic. This reduces the problem to the classification of all ergodic measures.

To proceed further we consider the following decomposition of T;S: Let S be
the ideal boundary of D? and A < S! be the limit set of I'. Using the visual map:

Vis: T;D? - S!,
we obtain first a decomposition of T; D? as a union of two subsets
Z.={pe T,D?:Vis(p) e A}
Z,={pe T,D*:Vis(p) e S'\A}.

This gives via the projection T; D?> — T, S a decomposition of T, S into two disjoint
subsets
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S=ZVZ,

where %, is closed, %#; open and both are invariant under the action of N and the
action of the geodesic flow of T; S.
Recall at this point that the action of the geodesic flow in T; S = '\ PSL(2, R) is

given by the action of
e? 0
A-—-—{(O e—:/z):teR}'

Now we can describe three families of N-invariant ergodic measures on T; S.

A. For each g € &, the orbit map:
R->TS X > gn(x)

is a homeomorphism onto its image. The direct image of the Lebesgue measure dx
on R under this orbit map gives an N-invariant ergodic measure supported on gN.
Since all orbits of N on %, are closed, this shows that each N-orbit on % is the
support of an ergodic N-invariant measure which is unique up to scaling.

B. To each cusp of S there corresponds an immersed cylinder in &%, < T, S
consisting of N-periodic points. Each of these periodic orbits carries a unique
N-invariant probability measure.

C. Let up be the Patterson measure on the limit set A = S! and let & be the
Hausdorff dimension of A. Using the origin o € D? as a reference point we can
identify canonically each fiber of the visual map

Vis: T, D?> —» S!

with the group AN. Via this identification we put on each fiber Vis™1({), { € S!, the
measure:

e® dt dx,

defined on AN.

Integrating along fibers of the visual map and integrating with respect to up
produces a measure on %, which projects down to an N-invariant measure u
supported on £, Note that if T; denotes the action of the geodesic flow then
Tsp = €'y, In particular, if § < 1 this measure is infinite.

Hopefully any ergodic N-invariant measure is up to scaling a measure in the
families listed above. In the case Vol(S) < +oo, the measure constructed in C
coincides with the PSL(2, R)-invariant probability measure on 7S and &#; = . In
this case the above description of N-invariant ergodic measures is complete as
follows from work of Dani [D1], [D2].
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If Vol(S) = +oo it follows from recent results of M. Ratner [R] that the only
N-invariant ergodic probability measures are supported on periodic orbits of N. In
particular, if S has no cusps there are no invariant probability measures. Here we
want to show that if S is geometrically finite without cusps and the Hausdorff
dimension & of the limit set verifies 6 > 1/2, then the above description of
N-invariant ergodic measures is complete. This follows immediately from the
following:

THEOREM 1. Assume S is geometrically finite without cusps and 6 > 1/2. Then
there is, up to a scalar multiple, a unique N-invariant Radon measure supported on &..

To put the hypothesis on the Hausdorff dimension in the context of our method
we recall the following facts about the Laplacian of S. The Laplace-Beltrami
operator A of S acts in the space of C* functions with compact support Cg(S), and
has a unique self-adjoint extension to an unbounded operator on L2(S). The
spectrum of A in (—1/4, 0] consists only of eigenvalues with finite multiplicity
and the essential spectrum of A is contained in (—oco, —1/4] [DPRS]. It follows
from work of Patterson [P], [S, Th. 2.17], that 6 > 1/2 if and only if Spec Agn
(—1/4,0] # ¥ in which case 1y, = §(6 — 1) is the highest eigenvalue of Ag. This
eigenvalue has multiplicity one and any associated eigenfunction is of constant sign
on S. Patterson showed that such an eigenfunction can be obtained in the following
way: Let L be the Lebesgue measure of S! and j(g) the Radon-Nikodym derivative
of g, L with respect to L, where g € PSL(2, R). Then

@o(h) = L dpp(0)j(h, LY

is a ['-invariant eigenfunction on D? of eigenvalue 8(5 — 1). If § > 1/2 it is in L%(S).
On the other hand, a straightforward computation shows that the direct image of
the measure u via the map 7, S — S is the measure

@o(h) dh,

where dh is the area element of S. In particular, the function ¢, viewed on T, S is in
LY(T,S, p). Theorem 1 shows now that ¢,(h) dh has a topological characterization
in terms of the action of N on T;S. Concerning the proof of Theorem 1 we study
how the probability measure on PSL(2, R):

1 T
ma(9) = 5 j o) dr

acts in the space of a unitary representation of PSL(2, R). We obtain that m, acts
as a contraction in the space of C*-vectors when measured in a suitable norm (see
Proposition 1). Moreover, the contraction constant tends to zero as T — 0. This
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and a certain conservativity property of the action of N on &, enables us to show
Theorem 1. As a corollary of Theorem 1 and the method of proof we obtain the
following equidistribution result.

COROLLARY. Under the assumptions of Theorem 1 we have for all ¢ € Ci(T,S)

f rdxx—"-l f o(gn(t)) dt j ®(p) du(p)
lim 21 —x =0

x - 2
t—'OOJ‘ dxx_é_l Jv (po(gn(t)) dt ||¢0”2
1

-X

uniformly on compact sets in Z..

In the case where S is compact we have a more precise version of this corollary
where we control the rate of uniform distribution of horocycles with respect to the
Lebesgue measure on T; S (see Theorem 2 of §1).

Acknowledgements. I would like to thank Alex Freire, Scot Adams, and Rafe
Mazzeo for helpful discussions.

1. Unitary action of a unipotent subgroup of PSL(2, R). In 1.1 and 1.2 we recall
some classical facts concerning the representation theory of PSL(2, R). Standard
references are [L], [D]. In 1.3 we state the main proposition (Proposition 1) and
derive some corollaries for hyperbolic surfaces (Theorem 2). §1.4 is devoted to the
proof of Proposition 1.

1.1. LetG = PSL(2, R), gits Lie algebra, g¢ the complexification of g and % (gc)
the universal enveloping algebra of g¢c. To a continuous unitary representation n
of G in a separable Hilbert space s# one associates the derived representation dn
of %(gc) which acts in the space of C®-vectors:

H* ={veH:g9—n(g)visa C® map from G to #}.
The center of %(g¢) is generated by the Casimir element w:
w=4QRiW - W2+ E_E_)
01 1 i 1 —i
= = E_ = i i .
where W (__1 0), E, (i _1>, <—i _1>, is a basis of g¢. If

(##, ) is irreducible, drn(w) acts as scalar multiplication on #°®.
1.2, Let

cos @ sin6
K= {k(@) B (—sin() cos 0)’0$ 0= n}
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be a maximal compact subgroup of G. We can state the classification of irreducible
unitary representations of PSL(2, R) in the following way [L, p. 123]:

(a) For each A€ (—o0, 0] there is a unique irreducible unitary representation
(%, m;) which has a K-invariant vector and such that the action of the Casimir
operator on > is dn(w) = A-Id. The trivial representation corresponds to 4 = 0.

(b) Foreacheveninteger m > 2 there is a unique irreducible representation J#(m)
having a lowest weight vector of weight m with respect to K and a unique irreducible
one #(—m) having a highest weight vector of weight —m. These are the discrete
series of PSL(2, R) and drn(w) = (m/2 — 1)m/2-1d on s#°(m) ® # °(—m).

This classification enables us to identify the dual space G of G with the topological
space

(—00,0]uZ, where Z = {+m;m > 2, even}.

If (£, n) is a continuous unitary representation of G in a separable Hilbert space
H#, then (o, n) is a direct sum of multiplicity free representations

(o, m) = (;-T_)l (< %),

see [D, 8.6.6]. Moreover, each multiplicity free representation (%, «,) is defined via
a Borel measure p, on G. We define the support of 7, supp # = G by

supp = | ) supp p,-
n=1

1.3. Let (&%, n) be a continuous unitary representation of PSL(2, R) in a se-
parable Hilbert space #. We assume that we are given a norm N on the space of
C* vectors # * satisfying the following properties:

(a) N(n(g)v) = N(v)forallge G, v e ™.
(b) There is a finite subset S = %(gc) and a constant ¢ > 0 such that

N(v) € ¢ max ||dn(L)v]
LeS

for all v e H#>.
Consider the following one parameter family of probability measures on
PSL(2, R)

T
ma(f) = o f fon@)yde, T>0.

The next proposition shows how the map

T - N(n(mz)v)
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vanishes at infinity for v € . In order to state the proposition we introduce some

notation. Let
1 0 00 0 1
i=(o ) =0 o) x=( )

If S = %(gc) is a finite subset

[vlls = max |[dn(L)oll, veH#™.
LeS

PROPOSITION 1. Let (#, ) be a continuous unitary representation of PSL(2, R)
in a separable Hilbert space # and let N be a norm on 3 * satisfying properties (a),
(b) above.

(1) If (s, n) has no nonzero fixed vector then

lim N(n(mr)v) =0
T—o
Jor every ve # ™.
(2) Let 0 < a < 1/2 and assume that

supp w < (—o0, afx — )JU Z

then we have for allve #*° and T > 1

—a a—1

T—*-T
g (1ol + ldn(EH)ols + ldn(Xyolls},

N(n(mz)v) < c—

where ¢ > 0 is some positive constant.

Let us show how this result applies in concrete situations: Let S = I'\ D? be any
hyperbolic surface. We consider the unitary representation 7= of PSL(2, R) on
# = L*(T'\ PSL(2, R)) given by right translations. On the space of C* vectors #*
we would like to take the norm

N(f) = sup |f(x)].

xeT)S

The case of surfaces with cusps shows that N is not always defined on 5# . However,
assume that there is a positive lower bound on the injectivity radius of S and choose
a left invariant Riemannian metric on PSL(2, R) whose projection on D? is the
hyperbolic metric. It then follows from [A, 2.10 and 2.2.1] that the Sobolev imbed-
ding theorem holds for the Riemannian manifold T3 § = I'\PSL(2, R). In particular
there is a constant ¢ > 0 and a finite subset L = %(g) of polynomials of degree at
most two such that for all f € Cg(T;S) we have
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sup |[f(x)| <c[fll..

We can furthermore identify #* with a subspace of the space of bounded C*®
functions on T; S.

Now we can apply Proposition 1 to the norm N(f) = sup, | f(x)| defined on s~
to obtain

THEOREM 2. Let S = I'\ D? be a hyperbolic surface whose injectivity radius has a
positive lower bound and let || f || 2 be the Sobolev L2 norm involving all the derivatives
of f up to the third order.

(A) For every continuous function f on T, S vanishing at infinity

1 T
lim sup — f(gn(t)) dt = 0.

T—o geTS 2T -T

(B) Assume that the spectrum of the Laplacian of S is contained in (—o0, a(o — 1)],
where o is some number satisfying 0 < o < 1/2. Then we have for all f € C¥(T,S) and
T>1

T

1
o7 | Slano)de

—a __ a

T Tt
Sc————|fllu-

sup 1—2a

geT S

(C) Assume that S is compact. Let 4, < 0 be the first nonzero eigenvalue of the
Laplacian of S and let 0 < a < 1/2 satisfy a(x — 1) = A,. Then we have for all
feCR(T1S)and T = 1

1 T T* — Ta—l
57 | flon@) di — Lsf(h) dhl <e——5—I/lm.

sup T
-T

geT\S

Proof. (A) and (B) are direct consequences of Proposition 1, (1), (2). To obtain
(C) we apply Proposition 1, (2) to the restriction of 7 to the subspace of functions
f e L3 T\ PSL(2, R)) orthogonal to the constants. o

Let us give two examples of surfaces satisfying the hypothesis of Theorem 2 (B):
(1) Let S, = I'\\D? be a compact surface and I'" < T be a normal subgroup of I'
such that I'/T" is not amenable. Then S = I'"\ D? satisfies the hypothesis of Theorem
2 (B) (see [Br] for instance).

(2) Any geometrically finite surface of infinite volume and without cusps [DPRS].

1.4. In this section we prove Proposition 1.

Let (#, ©) be a continuous unitary representation of PSL(2, R). We assume that
the Casimir operator w acts as scalar multiplication on #*: dn(w) = 1 Id and we
fix an a € C such that a(az — 1) = 1. We introduce also the subgroups of PSL(2, R)
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cos sinf

K={k(0)=(—sin9 cosB)’ 0<0<n}

el (F )

1 x
N—{n(x)—(o 1), xeR}.
LEMMA 1.

(A) Forallve #®,Y 2 1,and T > 0 we have

(1 —a)Y ™ — qy*t

n(me)v = - n(mra(Y))v
1Y™*— Yu-l
) Y—l_—T_ n(mra(Y)) dn(H)v

bar [ a9 (S ) RO ) — m(T ) (X

(B) Assume that o € R, — 1 = 0 and that = has no nonzero fixed vector. Then we
have forall T>0,Y>1landve #*

n(mr)v=Y *n(mra(Y))v

Y1—2a_max(1 y)1—2a

1 -1 )
37 dy ( s >[n(n(—T»—n(n(T»] dn(X_)o.

Proof. We recall that in Iwasawa coordinates n(x), a(y), k() the left invariant
differential operators X_, H, W are given by

W—_—%

. 0 0 . 0
= —2ysin 205; + 2y cos 2oa—y + sin 29%

0 . 0 200
X_ = ycos 205; + ysin 205; — cos 0%

and the Casimir operator is
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2 o
=y <ax ) Yox a6

For v e #*® the function
(x, y, 0)—> n(mpn(x)a(y)k(0))v

is an eigenfunction of the Casimir operator of eigenvalue A. In particular

2

2 2 ntmpa(o+y? Ly i
Yy ayzanay y axz

n(myn(x)a(y)k(9)v

x=0=0

0x 060

__ nlmpna()o—y 0

= An(mra(y))v.
Now we have

2 2
2

0 , 0
y xz n(mrn(x)a(y))v =y 2

1 T
02T f n(n(t + x)a(y)o dt

x=0
= ;—T ai [n((T + x)a(y))v — n(n(—T + x)a(y))v]
and
T k(@ 0 T T k(0
Vox 06 mpm0 n(mrn(x)a(y)k( ))v—ﬁ@ [r(n(T))—n(n(—T))]=(a(y)k(6))v.

Putting everything together and using the fact that

0
yax

0

X—|x=0=0 = o - ;379

6=0

we obtain
2
y? (%En(mra(Y))v — An(my(a(y))v = % [n(n(—T)) — n(n(T))]n(a(y)) dn(X_)v.

Define the following functions
9(y) = y“*n(mra(y)v

D(y) = [n(n(—T)) — n(n(T))In(a(y)) dn(X_)v.
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With this notation the above relation becomes

0 ) 0 ya—l
—y*—g(y) = ==D().
a’ ayg(y) > PW)
Let 0 < a < b. Integrating this equality from a to b with respect to y we obtain

b
0 00— @ = [ D0y,

Proof of (A). Multiplying (x) by a~2* and integrating from 1 to b with respect
to a we obtain

(+4) m—w)( b?(w+— @C—lLﬂ(w

From the definition of g it follows that

o
y9'(y) = —ay *n(mra(y))v + y* (ya—yn(mra(y))v) ,
but H,_o = 2y(0/0y) so that

(%) yg'(y) = —ay~*n(mra(y))v + 3y *n(mra(y)) dn(H)v.

Substituting (¥*#) in (**) and using g(y) = y *n(mra(y))v and setting b = Y we
obtain (A).

Proof of (B). We write (*x) in the following form

y*g'(y) = y* 7' [—an(mra(y))v + 3n(mra(y)) dn(H)v].

(1) « — 1 > 0: then lim,_,, y**g’(y) = 0 in .
(2) a — 1 = 0: since 7 has no nonzero invariant vectors it follows from [H-M] that
for every w € # lim,_, o m(a(y))w = 0 weakly in 5. In particular lim,_,, y?¢’(y) = 0
weakly in .

In both cases equation () implies that

1 b
b2’ (b =——f “1p(y) dy.
g'(b) T 0y (») dy

Multiplying both sides with b~2* and integrating from 1 to Y with respect to b we
obtain
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Y =22 _ 1-2a

which proves (B). O

Proof of Proposition 1. Let (#, ) be a continuous unitary representation of
PSL(2, R) in a separable Hilbert space #. Let

(o, m) = '@(%’ ﬂn)

be its decomposition in a direct sum of multiplicity free representations (%,, f,).
For each n there is a bounded Borel measure u, on G such that

@
B = f B d.,(B)
G

(see [D, 8.6.5]).

We are going to use the following elementary fact: any bounded Borel function
F: G — C defines via the direct integral decomposition a bounded intertwining
operator of ©

Tp: H — H

whose operator norm satisfies || Ti| < SUpP,esuppx | F(®)|. Remark also that any inter-
twining operator acts in the space of C® vectors #®.

We show now how to deduce Proposition 1 (1) from Proposition 1 (2). Assume
that (+#, ) does not contain the trivial representation. Take ¢ < 0 and let P, be the
orthogonal projection in # corresponding to the characteristic function of the set

(—00,6]UZ < 6.

Then it follows from the fact that = has no fixed vector that lim,_,, |P,v — v|| =0
forevery v € 5. Assume that we are given a norm N on #® satisfying the conditions
(), (b)of §1.3. Let —1/4<e<0,e=a(x — 1),0 < a < 1/2 and define #, = P,#.
Then P,#° = #,° and we can apply Proposition 1 (2) to the restriction of w to H#,
and the restriction of N to 5. Namely if F = S U {X_, H} then there is a constant
¢ > 0 such that for all v € H#*

N(TC(mT)ng) < CT_a"Psv”F .
Let v e #>, § > 0 and choose ¢ > 0 such that

max ||P, dn(L)v — drn(L)v| < d/c.
LeS



790 MARC BURGER
Writing v = P,v + (v — P,v) we have
N(n(mg)v) < N(n(mr)P.v) + N(n(mp)(v — F.v))
and now
N(n(mz)(v — Pv)) SN - Po)<c max ldr(L)(v — Po)ll < 6.
Hence
N(n(mp)v) < cT™*||Pollp + 6

from which it follows that lim supy_.,, N(n(my)v) < d for each 6 > 0. This proves
Proposition 1 (1).

Proof of Proposition 1 (2). We begin by defining certain functions on G.
(1) The function f

(@ on (—o0,0]: —1/4<i<0, Ai=p(B—1) and 0<B<1/2
A< —1/4, A=BB—1) and ImB>0

(®) on zm¢m=%.

(2) The function f,, y > 1

(1—=p)y*—py'!

= <
54 Y ,  A<0
HEm=y"t,  m=2.
(3) The functions,,y > 1
y P — yp1
- < ,
5,(4) =25 A<0

sy,(xm) =0, mz=2.
(4) The functiont,, Y >y>0,Y >1
t

, =8, on(—o,0] fory>1,

t,=0 on (—o0,0] forO<y<l,
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_y [ max(l, y)'72 — Y
= ypt
t(tm)=y [ 1-2p

] fory > 0.

If F,, S,, T, denote the corresponding intertwining operators on # it follows from

Lemma 1 thatforallve #°, T>0,Y > 1

n(mp)v = Fyn(mpa(Y))v — —;—Syn(mTa(Y)) dn(H)v

Y

+ % dy T,[n(n(—T)) — n(n(T))]n(a(y)) dn(X)v.
o

From this and the properties of N it follows that

N(n(mz)v) < N(Fyv) + %N(Sy dn(H)v) + % LY dy N(T, dn(X _)v)
Y

1
<chnwyum4mmws+fL

T, dn(X_)vls dY] .
Moreover,

IFyolls < Ifrllwllvls, 1Sy dn(H)vlls < lsyllolldn(H)vls,

IT, dn(X_)olls < It |l lldn(X_)olls,

where the supremum || |, is taken over (—oo, a(x — 1)J U Z.
It is now easy to verify from the definitions that

(I —o)y ™ —ay*!

Ihle <C T y=z1,
—a __ a1
Islo € CTr—5—  ¥21,
y—a _ ya—l
ltlle < C—H——  y=1,

e <1,  O<y<l,

where C > 0 is some absolute constant. From this it follows that
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(1 —a)Y ™ — qy*!

[Fyolls < C 1= 2 lvlls
Y > — Ya—l
Sy dr(H)v||s < C“m" ldr(H)v| s

2" a1, anyots < L tanyols + = [ ay (2220 jamyol
T ), QN aMAIols S plama-Ils Top | O\ 71T "o -0l

Putting T = Y we obtain Proposition 1 (2). (m]

2. Geometrically finite surfaces

2.1. Let S=T\D? be any hyperbolic surface. A positive measure 1 on
I'\PSL(2, R)is P = AN quasi invariant if

P4 = x(p)A forallpe P,

where y: P — R* is a character of P and g,/ denotes the action of g € PSL(2, R) on
measures. Let d6 be the Lebesgue measure on S* = {¢?: 0 < 0 < 2n} viewed as the
boundary of D2. A finite measure v on S* is a conformal for T if

YV = J(PYv forallyel,

where j(y) is the Radon-Nikodym derivative of y, df with respect to df. Here « is
a real number (see [S1] for an intrinsic definition).

We show now that there is a natural bijection between the set of P-quasi invariant
positive measures on I'\ PSL(2, R) and the set of positive I conformal measures on
S!. Let A be a P-quasi invariant positive measure on I'\ PSL(2, R) and consider its
lift 1 to PSL(2, R). This measure is left I" invariant and satisfies
*) {a( VA =yP2  forally>0

n(x) A =4 forall xe R,

where g,, denotes the right action of g € PSL(2, R) on measures on PSL(2, R). Using
Iwasawa coordinates on PSL(2, R)

PSL2,R)=K x A x N,
g = k(9)a(y)n(x)

we obtain a projection PSL(2, R) > A x N with comvact fibers. It follows from
properties (*) that the direct image of A on A x N via this projection is the measure
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cdy y~* dx,

where ¢ > 0 is some constant. Therefore there exists for almost all (y, x) e R* x R
a probability measure

d:u(y, X) (0)

on K such that for all continuous functions f on PSL(2, R) with compact support
we have

1= ay? [ ax | @m0

Using properties () again we see that the map

(y» X) = Ky,x)

is essentially constant. Let u be its essential value. It is a probability measure
supported on K. In Iwasawa coordinates the visual map is given by

Vis: PSL(2, R) = T, D* — S*
k(®)a(y)n(x)— e2™®.

Denote again by u the direct image of x on § ! via Vis. It follows from the left T’
invariance of A that uis 1 — f conformal, i.e.,

Ve =jy) Py forallyeTl.

The inverse of the map 4 — p was already considered in the Introduction. It follows
also from our description that

supp A = projection on T; S of Vis™* (supp u).

2.2. We remark now that in order to show Theorem 1 it suffices to prove

PROPOSITION 2.  Let S be a geometrically finite surface without cusps and assume
0> 1/2. If A is a positive N-invariant ergodic measure supported on %, then A is
P-quasi invariant.

Indeed, assume that Proposition 2 is true. Then A is obtained from an « conformal
probability measure on S' supported on the limit set A = S'. Then it follows
from Sullivan’s characterization of Patterson’s measure that « =6 and v = pp
[S1, Theorem 8]. In other words, 4 is a multiple of the measure y constructed in
the Introduction (C).
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2.3. The rest of §2 is devoted to the proof of Proposition 2. We assume
from now on that S is geometrically finite without cusps and é > 1/2. Let 4, <
Ak—y € € A4 < Ap = 6(5— 1) be the eigenvalues of the Laplacian of S in (— 1/4, 0].
Consider the unitary representation n of PSL(2, R)in s# = L%(I"'\ PSL(2, R)). Then
we have the direct sum decomposition

k
O, m) =D, 1) D (', )

i=0
(cf. §1.2 for the definition of #,, n,) and

suppn’ = (—o0, —1/4]JU Z.
In particular, the function

1—|h-o?Y . .. 5
®oW = | dup){—5 ], o being the origin of D?,
st lh-o—{|

is up to scalar multiple the unique K invariant vector in . Viewed as a function
on T; S, @, is also in L(T; S, u) where u is the P-quasi invariant measure associated
to the Patterson measure pp.

2.4. Before we go into the proof of Proposition 2 we make a preliminary remark.
If 6 = 1 then ¢, is an L? harmonic function on S which is not identically zero. It
follows from [Y] that ¢, is constant and hence Vol(S) < +o0. Since S is without
cusps this implies that S is compact. In this case Theorem 2 (C) shows that all N
orbits in TS are uniformly distributed with respect to the PSL(2, R) invariant
measure on T, S. This implies that the action of N on TS is uniquely ergodic, a
result due to H. Furstenberg [F]. We therefore make the further assumption that
d < 1 throughout the rest of the paper.

2.5. We first need to show a certain conservativity property of the action of N
on %,.

LEMMA 2. Let F = &, be any compact set. There is a constant ¢ = ¢ > 0 such
that forallge F and © > 2

f dx x~%1 J dt po(gn(t)) = c(1 + In 7).
1 -x
Proof. (a) It follows from Proposition 1 (2) that for all x > Oand allge T, S

f " polgn(®)) dt < ex?,

-X
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where ¢ > 0 is some positive constant. In particular

J " dxxt f " polgn(t)) de

1 -x

converges for all s < — 4.
(b) We show now that there is a constant ¢ = ¢y > 0 such that for all g € F and
—l<s< -4

L X*[@o(gn(x)) + @o(gn(—x))] dx > s i Ak

We use the following representation of ¢,:

oolk) = f dup(Qi(h, O

where

) _1—1h-of?
J(%C)—m

hence
@olgn(x)) = Ll dup()i(g, in(x), g71¢).

We can assume g to be in a fixed compact set F in PSL(2, R). Then j(g, {)?, { € §?,
is between two positive constants so that we are reduced to consider

L dup(0) J et {jnts), g0 + Jin(— ) g70)

= Ll dupQ) {u(g ™) + u(g~'0)}

where

P x*dx
u(e”) = 4 L [2x2(1 — cos 8) — 4x sin § + 4]°

x*dx
— ctg(6/2))® + 17°

= (sin?(6/2))~° fl [x

(recall that n(x)- o0 = x/(2i + x)).
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A few computations show that there is a constant ¢ > 0 such that
(*) u(e®) + ue™) = cl0|=7%, |0l <.

Let d be the K invariant metric on S!. There is a constant ¢ > 0 such that for all
geFand{ (' eSt

cHd(G, ) < d(gl, gl') < cd(C, L),
Therefore, it follows from (%) that for all { € S*
u(g™ ) +u(g ) = cd(l, O, E=g-1.

From this it follows that there is a constant ¢ > 0 such that for all g € F and
—l<s< -0

J x*[@o(gn(x)) + polgn(—x)] dx > ¢ Ll dup(€) d(C, &),

1

Now if I(&, r) is the interval of radius r about £ an integration by parts shows that

(3%) f dpp(0) (G, §)77% = (s + 20) r £ 2 (I, 1) dt.
st 0

Note that g € Z, is equivalent to g+ 1 = £ € A. From [S2, §7] and the fact that S is
convex cocompact we deduce that there is a constant ¢ > 0 such that for all £ e A
and0<r<n

et < pp(E 1) S e

Putting this into (x*%) and using (#*) we obtain the claim (b).
(c) Now we prove the Lemma. Let —1 <s< —dand 7 > 2:

f Cdx x0 f golgn(t)) dt
1 -X
> f dxx* 1 f volgn(t)) dt
1 -X

- f " et f " polgn(t) dt — J " dx j " golgn(®) dt

1 - . x

using (a) we obtain
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A ¢(gn(t))dt<ﬂ.
. D |s + o]

On the other hand

<] x 1
f dx x*7 j <oo(gn(t))dt=(—S")£1 @olgn(t)) dt

1 -X

+(=s7) Lw x*[00(gn(x)) + go(gn(—x)] dx

cls|

= ing (b).
5+ 0] using (b)
Hence
T x ¢, —c ,l.s+d
d —o-1 n(t)) dt > bt S A
L x x f_x%(g()) 5% 0]
Choosing |s + d| of size 1/In 1, we obtain the Lemma. a

LeMMA 3. Let ¢ € CZ(S) and consider it as a function on T, S. Then we have

Jt dx x~%1 Jx o(gn(t)) dt

1 -
T

lim _ <(p’ (p0>
x - 2
T—00 J; dx x_a-]_ f (po(gn(t)) dt "(Po"

uniformly on compact sets in %,.

Proof. Let ¢ =<, 9o (@o/lPoll3) + @1, where ¢, is orthogonal to .
It follows from Proposition 1 (2) applied to ¢, and the orthogonal of #, in
L*(I'\ PSL(2, R)) that

—-ay __ xl"d'x

X
<8 @)

su
Pgets 24,

b

SICCL

where 0 < o, < 1/2, ay(a; — 1) = A,(S) if 44(S) > —1/4 and «;, = 1/2 if
Spec As N (—1/4,0] = {4 }. In any case we have é + «, > 1 and hence for t — o0

f 1 dx x4 f o(gn(t)) dt = T(;:’ﬁ"f : dx x5 f j 0olgn(t)) dt + 0(1).
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Dividing by [fdx x°7! [*, ¢o(gn(r)) dt and using Lemma 2 enable us to conclude
the proof.

Remark. 1t follows from the proof of Lemma 3 that if ¢ € CR(S), ¢ = 0, ¢ # 0,
then there is a constant ¢ > 0 such that for allt > 2 and g € &#,

jt dx x~%1 fx o(gn(®))dt = c(1 +1n7)
1 -x

from which it follows easily that

00

1 T
lim sup = J o(gn(t)) dt > 0.
On the other hand we know from Proposition 1 (2) that this last quantity is bounded,
so that one may ask if

1 T
= f_ o(gn(t)) dt >0

has a limit as T — oo. The following example shows that this is not always the case.

Let S be geometrically finite with one expanding end and without cusps. Letg < S
be a closed geodesic distinct from the closed geodesic bounding the expanding end.
We represent S = '\ H? as the quotient of the upper half plane H? in such a way
that the geodesic x = 0 is a lift of g. Let A =« RU {00} be the limit set of I'. By
construction oo € A. Let C(A) be the convex hull of A and S, = I'\C(A). In our

example we take g = e, ¢ € Cg(S), ¢ nonnegative and with support in S,. We can
assume that

lim sup‘:—‘s J o(gn(t)) dt > 0.
T 0

=00

Consider t — I en(t), the N orbit of I" e in '\ PSL(2, R) and let c(¢) be its projection
on S. We denote by t, < t] <t, < t, < --- the sequence of times ¢, t > 0, at which
c(t) crosses the boundary of S,, so that c(f) leaves S, at t, for all n> 1. By
construction we have

(*) 73

1 t, t, 31 (tn
J o(gn(r)) dt = <7) t—‘,f @(gn(?)) dt.
n 0 n n JO

Let h be the geodesic bounding S, and let i be some lift of h contained in
{z € H?:x > 0}. Let {y) be the subgroup of T’ of elements with axis x = 0. Then
y"(h) is a sequence of lifts of h and for n > n, y"(h) intersects the horocycle
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{i+t:t>0} = H.
Leti+s,, i+ s,, s, <s, be the two intersection points. An explicit computation

shows that lim,_, , (si|s,) = b|a where a < b are the end points of 4. On the other
hand, (s, s;)n=; is a subsequence of (¢,, t,)¥. Using this and (*) we conclude that

T

1 1
lim inf p @(gn(t)) dt < lim sup pr’ J o(gn(t)) dt.
(4] o

T—>00 >0

In the sequel we will need the following version of Hopf’s ergodic theorem: Given
a locally compact, g-compact topological space X with a continuous R action

Rx X—-X
(t, x) > xn(t),

let v be a positive N invariant ergodic Radon measure on X and assume that there
exists an everywhere positive function g € L!(X, v) such that for v almost all x € X

Jw g(xn(t)) dt = + o0,

then:

TueoreM. (Hopf [H]) For all f € L'(X, v) we have for v almost all x € X
fUmwm ﬁmmw

lim

[ atmoyar [owacy

Using this ratio ergodic theorem we can prove

LEMMA 4. Let v be an N invariant positive ergodic measure on &,. Then v is an
eigenmeasure of the Casimir operator of eigenvalue Ay: for all f € C3(T,S) we have

j dn(w)f(g) dv(g)=loj f(g) dv(g).
T, S s

Proof. It is sufficient to show that if f € Cg(T;S) is orthogonal to 5, then

j f(g) dv(g) =0.
T,5
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Choose an everywhere positive continuous function ¥ € L!(T; S, v). Fix some non-
negative function ¢ € Cg(S), ¢ # 0 and consider it as a function on T;S. Then
¥ = co for some positive constant c. It follows from Lemma 3 that for all g € &,

(%) fw dx x~ %! Jx Y(gn(t)) dt = + 0.

1

In particular [%, y(gn(r)) dt = +o0.
Now it follows from Hopf’s ergodic theorem and (*) that for v almost all g € %,

Jt dx x99t jx f(gn()) dt r dx x 727 h(x) Jx Y(gn(t)) dt
lim = = lim = =

”‘”J dx x~%7! j ) Y(gn@)de % j " dx x1 r Y(gn(t)) dt
1 —x 1 -x

b

where

f " fgn(o) de
Mg =4
f_ W (gn(0) di

and this last limit equals

Jf (g) dv(g)
(#%) lim h(x) =

e Jt//(g) dv(g)

If f € CR(T;S) and is orthogonal to #, we apply Proposition 1 (2) to find that for
allge T, S

< cx—(6+a,)’

X1 j f(gn(t)) dt

where 6 + a;, > 1 and hence

fw dx x~%1 Jx Sflgn@®) dt < +0.

1

It follows now from (x) that { f(g) dv(g) = 0. u
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25.

Proof of Proposition2. Letvbe an N invariant positive ergodic measure on &..
Let f € CR(T,S) and consider

u(n(x)a(y)k(6)) = J

T

S n(n(x)a(y)k(6))f(g) dv(g).

It follows from Lemma 4 that u satisfies

2 (P Pu\_ | Pu
Y\ox oy? Yoxaog ~ Mot

But u is also left N invariant hence

2
,0%u

y W=/'Lou

in particular there are constant ¢,(f), c¢,(f) such that forally > 0
(%) L S n(@(y)f(g) dv(g) = c1(f)y® + c2(f)y'~°.

From this equality we deduce that f — ¢,(f), f — c,(f) are positive N invariant
Radon measures and v = ¢; + ¢,. Since v is ergodic there are numbers «, § = 0,
|a| + | B] > 0 such that

(+%) acy(f) = Bes(f)  for all f € Cy(T,S).
On the other hand it follows from (x) that

¢y (m@y)f) = yes(f)

e (m@(y)f) = y' %,y (f).

Hence (*x) is only possible if « =0 or f =0, so ¢; =0 or ¢, = 0. This proves
Proposition 2. O

2.6.

Proof of the Corollary. Consider the following family of measures

jT dx x~071 jx o(gn(t)) dt

I/y, T((p) = ;‘ x ’ g € '% 9
j dx x~7 j Po(gn(?)) dt

1 —

T>=2.
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Since ¢, has a positive lower bound on each compact set of T} S, it follows that the
set

(VorigeZ, T>2}

is relatively compact in the vague topology of .#(T; S). Suppose that the Corollary
is false. Then there exists a compact set F < &, sequences (g,);~, < F, T, = o0, a
function ¢ € Cg(T;S) and & > 0 such that for alln > 0

(*) V. 1.(0) — w(@)/ 0ol *| = &.

Let v be an accumulation point of the sequence (V, r,).2;. From the fact that

ns

lim J dx x""“f @olgn(t)) dt = +©

700 1 -X

uniformly on compact sets in &, (Lemma 2) it follows easily that v is N invariant
and supported on %,. Hence v = Ay, where A = 0 is some constant. From Lemma
3 it follows that for all € C2(S)

Y, 90> 1(9)
Y(g) dv(g) = = .
f ool llooll?
Hence A = 1/|¢,||? which contradicts (¥). O
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