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HOROCYCLE FLOW ON GEOMETRICALLY
FINITE SURFACES

MARC BURGER

Let S F\D2 be a quotient of the Poincar6 disc by a finitely generated discrete
group F of orientation preserving isometries acting without fixed points on D2.
Topologically S can be obtained from a compact surface by removing a finite
number of closed discs.
The group of orientation preserving isometries of D2 is PSL(2, R) and the unit

tangent bundle T1S of S is a homogeneous space of PSL(2, R):

T s r\PSL(2, ).

In particular, the unipotent subgroup of PSL(2, )

acts on T S.
It is our main goal to determine all N-invariant Radon measures on T1S. Our

first remark is that if C is the cone of positive N-invariant Radon measures in the
space ’(Tx S) of all Radon measures with the vague topology, then C is the
closed convex hull of the union of its extremal generators [B, II No. 2]; moreover
it is easily seen that a measure is on an extremal generator of C if and only if it is
ergodic. This reduces the problem to the classification of all ergodic measures.
To proceed further we consider the following decomposition of T S: Let S be

the ideal boundary of D2 and A c S be the limit set of F. Using the visual map:

Vis: T1 D2 - S

we obtain first a decomposition of TxD2 as a union of two subsets

{p e T1D2 Vis(p) e A}

{p TtD2 Vis(p) e S \A}.

This gives via the projection TD2 TS a decomposition of T1S into two disjoint
subsets
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where is closed, open and both are invariant under the action of N and the
action of the geodesic flow of TIS.

Recall at this point that the action of the geodesic flow in T1S F\PSL(2, R) is
given by the action of

Now we can describe three families of N-invariant ergodic measures on T1S.
A. For each g e d the orbit map:

r S x on(x)

is a homeomorphism onto its image. The direct image of the Lebesgue measure dx
on R under this orbit map gives an N-invariant ergodic measure supported on gN.
Since all orbits of N on d are closed, this shows that each N-orbit on is the
support of an ergodic N-invariant measure which is unique up to scaling.

B. To each cusp of S there corresponds an immersed cylinder in c T1S
consisting of N-periodic points. Each of these periodic orbits carries a unique
N-invariant probability measure.

C. Let #e be the Patterson measure on the limit set A c S and let 6 be the
Hausdorff dimension of A. Using the origin o D2 as a reference point we can
identify canonically each fiber of the visual map

Vis: T1 D2 " S

with the group AN. Via this identification we put on each fiber Vis-l((), ( S1, the
measure:

et dt dx,

defined on AN.
Integrating along fibers of the visual map and integrating with respect to #e

produces a measure on which projects down to an N-invariant measure #
supported on . Note that if T denotes the action of the geodesic flow then
T,/ ett 1-)#. In particular, if di < 1 this measure is infinite.

Hopefully any ergodic N-invariant measure is up to scaling a measure in the
families listed above. In the case Vol(S)< +o, the measure constructed in C
coincides with the PSL(2, )-invariant probability measure on T1S and a . In
this case the above description of N-invariant ergodic measures is complete as
follows from work of Dani [D1-1, [D2].
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If Vol(S)= + it follows from recent results of M. Ratner [R] that the only
N-invariant ergodic probability measures are supported on periodic orbits of N. In
particular, if S has no cusps there are no invariant probability measures. Here we
want to show that if S is geometrically finite without cusps and the Hausdorff
dimension 6 of the limit set verifies 6 > 1/2, then the above description of
N-invariant ergodic measures is complete. This follows immediately from the
following:

THEOREM 1. Assume S is geometrically finite without cusps and > 1/2. Then
there is, up to a scalar multiple, a unique N-invariant Radon measure supported on.
To put the hypothesis on the Hausdorff dimension in the context of our method

we recall the following facts about the Laplacian of S. The Laplace-Beltrami
operator A of S acts in the space of C functions with compact support C(S), and
has a unique self-adjoint extension to an unbounded operator on L2(S). The
spectrum of A in (-1/4, 0-1 consists only of eigenvalues with finite multiplicity
and the essential spectrum of A is contained in (-, -1/4] [DPRS]. It follows
from work of Patterson [P], IS, Th. 2.17], that 6 > 1/2 if and only if Spec As c
(-1/4, 0] - in which case 2o 6(6 1) is the highest eigenvalue of As. This
eigenvalue has multiplicity one and any associated eigenfunction is of constant sign
on S. Patterson showed that such an eigenfunction can be obtained in the following
way: Let L be the Lebesgue measure of S and j(g) the Radon-Nikodym derivative
of g,L with respect to L, where g PSL(2, [). Then

qg(h) fsl d#e(()j(h, )

is a F-invariant eigenfunction on D2 of eigenvalue 6(6 1). If 6 > 1/2 it is in L2(S).
On the other hand, a straightforward computation shows that the direct image of
the measure/ via the map T1S S is the measure

qgo(h dh,

where dh is the area element of S. In particular, the function qo viewed on T1S is in
LI(T S, #). Theorem 1 shows now that qgo(h dh has a topological characterization
in terms of the action of N on T S. Concerning the proof of Theorem 1 we study
how the probability measure on PSL(2, R):

mr(qg) - rp(n(t)) at

acts in the space of a unitary representation of PSL(2, ). We obtain that mr acts
as a contraction in the space of Coo-vectors when measured in a suitable norm (see
Proposition 1). Moreover, the contraction constant tends to zero as T . This
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and a certain conservativity property of the action of N on enables us to show
Theorem 1. As a corollary of Theorem 1 and the method of proof we obtain the
following equidistribution result.

COROLLARY. Under the assumptions of Theorem 1 we have for all q Cr(T1 S)

f( dx x-- ;_ tp(gn(t)) dt

lim f; Ldx x--I Cpo(gn(t)) dt CPo 2
2

q)(p) d#(p)

uniformly on compact sets in .
In the case where S is compact we have a more precise version of this corollary

where we control the rate of uniform distribution of horocycles with respect to the
Lebesgue measure on T S (see Theorem 2 of 1).

Acknowledgements. I would like to thank Alex Freire, Scot Adams, and Rafe
Mazzeo for helpful discussions.

1. Unitary action of a unipotent subgroup of PSL(2, ). In 1.1 and 1.2 we recall
some classical facts concerning the representation theory of PSL(2, ). Standard
references are [L], [D]. In 1.3 we state the main proposition (Proposition 1) and
derive some corollaries for hyperbolic surfaces (Theorem 2). {}1.4 is devoted to the
proof of Proposition 1.

1.1. Let G PSL(2, E), t its Lie algebra, tc the complexification of t and q/(tc)
the universal enveloping algebra of tic. To a continuous unitary representation
of G in a separable Hilbert space g one associates the derived representation dn
of q/(tic) which acts in the space of C-vectors:

gtoo {v g n(g)v is a Coo map from G to a}.

The center of q/(tc) is generated by the Casimir element w:

w 1/4(2iW- W2 + E+E_)

where W=( 010)-1 E+=(li -;)’ E-=( 1-i)-i-1
is abasisftc’If

(ot, n) is irreducible, dn(w) acts as scalar multiplication on ocgoo.

1.2. Let

( cos 0
K= k(O)

_sin0 cos0
,0<0<n
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be a maximal compact subgroup of G. We can state the classification of irreducible
unitary representations of PSL(2, g) in the following way [L, p. 123]:

(a) For each 2 (-, 0-1 there is a unique irreducible unitary representation
(f, rx) which has a K-invariant vector and such that the action of the Casimir
operator on foo is dn(w) 2. Id. The trivial representation corresponds to 2 0.

(b) For each even integer m > 2 there is a unique irreducible representation (m)
having a lowest weight vector ofweight m with respect to K and a unique irreducible
one f(-m) having a highest weight vector of weight -m. These are the discrete
series of PSL(2, R) and drc(w) (m/2 1)m/2. Id on f’(R)(m) foo(- m).

This classification enables us to identify the dual space d ofG with the topological
space

(-oo, 0] Z, where Z { + m; m > 2, even}.

If (e, n) is a continuous unitary representation of G in a separable Hilbert space, then (f, n) is a direct sum of multiplicity free representations

{#,
n=l

see [D, 8.6.6]. Moreover, each multiplicity free representation (-9’n, an) is defined via
a Borel measure/n on d. We define the support of n, supp z c d by

supp n U supp/n.
n=l

1.3. Let (vf, n) be a continuous unitary representation of PSL(2, ) in a se-
parable Hilbert space f. We assume that we are given a norm N on the space of
C vectors foo satisfying the following properties:
(a) N(rc(g)v) N(v) for all g G, v foo.
(b) There is a finite subset S c q/(gc) and a constant c > 0 such that

N(v) < c max Ildrc(L)vll
LeS

for all v e foo.
Consider the following one parameter family of probability measures on

PSL(2, )

mr(f) - f(n(t)) dr, T > 0.

The next proposition shows how the map

T N(n(mr)v)
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vanishes at infinity for v e oo. In order to state the proposition we introduce some
notation. Let

If S c q/(gc) is a finite subset

Ilvlls max IId(L)vll,
LeS

PROPOSITION 1. Let (Jcf, z) be a continuous unitary representation of PSL(2, )
in a separable Hilbert space and let N be a norm on 9f satisfying properties (a),
(b) above.

(1) If (9f, re) has no nonzero fixed vector then

lim N(zc(mr)v) 0
Too

for every v oo.
(2) Let 0 < < 1/2 and assume that

supp r c (-, (0t 1)] w Z

then we have for all v e /tOo and T > 1

N(n(mr)v) < c
T-a_ T-

1 2o (llvlls -4- IIdr(H)vils + Ildrc(X-)vlls),

where c > 0 is some positive constant.

Let us show how this result applies in concrete situations: Let S F\D2 be any
hyperbolic surface. We consider the unitary representation r of PSL(2, ) on
Jcf LE(F\PSL(2, g)) given by right translations. On the space of COo vectors 9foo
we would like to take the norm

N(f) sup If(x)l.
xe TIS

The case ofsurfaces with cusps shows that N is not always defined on oo. However,
assume that there is a positive lower bound on the injectivity radius of S and choose
a left invariant Riemannian metric on PSL(2, [) whose projection on D2 is the
hyperbolic metric. It then follows from i-A, 2.10 and 2.2.1] that the Sobolev imbed-
ding theorem holds for the Riemannian manifold T1S F\PSL(2, ). In particular
there is a constant c > 0 and a finite subset L c q/(g) of polynomials of degree at
most two such that for all f C (T1 S) we have
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sup If(x)l c" Ilfll..

We can furthermore identify oo with a subspace of the space of bounded C
functions on T S.
Now we can apply Proposition 1 to the norm N(f) supx If(x)l defined on ’oo

to obtain

THEOREM 2. Let S F\D2 be a hyperbolic surface whose injectivity radius has a
positive lower bound and let f lln] be the Sobolev L2 norm involving all the derivatives
off up to the third order.

(A) For every continuous function f on T1S vanishing at infinity

lim sup
1 fr_rr-,oo g rls - f(gn(t)) dt O.

(B) Assume that the spectrum of the Laplacian ofS is contained in (-c, ( 1)],
where is some number satisfying 0 < < 1/2. Then we have for all f Cff(T1 S) and
T> I

sup
g6 TIS

f(gn(t)) dt
T-a_ Ta-1

< c
1 2 Ilfll.

(C) Assume that S is compact. Let 21 < 0 be the first nonzero eigenvalue of the
Laplacian of S and let 0 < < 1/2 satisfy (- 1) > 21. Then we have for all
f C(T1 S) and T > 1

f(gn(t)) dt f(h) dh
S

T-a_ Ta-1
<c

1-2o Ilfll.

Proof. (A) and (B) are direct consequences of Proposition 1, (1), (2). To obtain
(C) we apply Proposition 1, (2) to the restriction of n to the subspace of functions

f L2(F\PSL(2, I)) orthogonal to the constants. E!

Let us give two examples of surfaces satisfying the hypothesis of Theorem 2 (B):
(1) Let So F\D2 be a compact surface and F’ < F be a normal subgroup of F
such that F/F’ is not amenable. Then S F’\D2 satisfies the hypothesis ofTheorem
2 (B) (see [Br-I for instance).
(2) Any geometrically finite surface of infinite volume and without cusps [DPRS-I.

1.4. In this section we prove Proposition 1.
Let (J’, n) be a continuous unitary representation of PSL(2, ). We assume that

the Casimir operator w acts as scalar multiplication on oo: dn(w) 2 Id and we
fix an C such that ( 1) 2. We introduce also the subgroups of PSL(2, R)
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( cos 0
K= k(O)

_sin0 cos

LEMMA 1.
(A) For all v oo, y > 1, and T > 0 we have

(1 a) Y- aY-I
n(mT)v

1 2a
z(mTa(Y))v

2 1 2a
rc(mra(Y)) drc(H)v

+ dy
1 2a

[(n(- T)) rc(n(T))]n,(a(y)) drc(X_)v.

(B) Assume that a e , a 1 > 0 and that n has no nonzero fixed vector. Then we
have for all T > O, Y > 1 and v e oo

zr(mr)v Y-x(mra(Y))v

max(l, y)-2)1 2a
[x(n( T)) x(n(T))] dx(X_)v.

Proof. We recall that in Iwasawa coordinates n(x), a(y), k(O) the left invariant
differential operators X_, H, W are given by

H -2y sin 20 + 2y cos 20 + sin 20 d--

X_ y cos 20xx + y sin 20-y cos2 0--
and the Casimir operator is
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+ Y gx dO’

For v t the function

(x, y, 0)-- n(mrn(x)a(y)k(O))v

is an eigenfunction of the Casimir operator of eigenvalue 2. In particular

y2
2 2
y2 rC(mra(y))v + y2 x2 x=O

t2
n(mrn(x)a(y))v-y

Ox 00 x=O=O
n(mrn(x)a(y)k(O)) v

2n(mra(y))v.

Now we have

y2
2

x=O
n(mrn(x)a(y))v y2

2
x=O - n(n(t + x)a(y))v dt

2T Ox x=O
[n(n(r + x)a(y))v- n(n(-r + x)a(y))v]

and

x=0=O

y 0
n(mrn(x)a(y)k(O))v - 0=0

[n(n(T))- n(n(- T))3n(a(y)k(O))v.

Putting everything together and using the fact that

X-lx=o=o y
x=O 0=0

we obtain

y2
2 2y2 n(mra(y))v 2n(mr(a(y)))v In(n(- T)) n(n(T))]n(a(y)) dn(X_)v.

Define the following functions

g(y) y-’n(mra(y))v

D(y) In(n(- T)) g(n(T))]n(a(y)) dn(X_)v.
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With this notation the above relation becomes

Let 0 < a < b. Integrating this equality from a to b with respect to y we obtain

(,)
1 fy_b2g’(b) a2#’(a) - O(y) dy.

Proof of (A).
to a we obtain

Multiplying (,) by a-2 and integrating from 1 to b with respect

(bl-b2 l f[a(1) v(b)
2a/I

l’(b) + - dy
1 2

D(y).

From the definition of g it follows that

y#’(y) -y-n(mra(y))v + y- y-y n(mra(y))v

but HI0=o 2y(t3/Oy) so that

yg’(y) -y-n(mra(y))v + 1/2y-n(mra(y)) dn(H)v.

Substituting (***) in (**) and using g(y)= y-n(mra(y))v and setting b Y we
obtain (A).

Proof of (B). We write (***) in the following form

y2g,(y) y- [-rc(mra(y))v + 1/2n(mra(y)) dr(H)v].

(1) 1 > 0: then limy_o y2g,(y) 0 in t.
(2) 1 0: since n has no nonzero invariant vectors it follows from [H-M] that
for every w Jet limy_o n(a(y))w 0 weakly in Jcd. In particular limy_,o y2g,(y) 0
weakly in .

In both cases equation (,) implies that

b2g’(b) - y D(y) dy.

Multiplying both sides with b -2a and integrating from 1 to Y with respect to b we
obtain
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g(Y) g(1) - dy D(y)Y- ,Y-2" max(1, y)1- 2,

1 2a

which proves (B). 121

Proof of Proposition 1. Let (g, n) be a continuous unitary representation of
PSL(2, ) in a separable Hilbert space 0’. Let

(a, .) @ (ft., ft.)

be its decomposition in a direct sum of multiplicity free representations (., ft,).
For each n there is a bounded Borel measure #n on d such that

fl,, fl d#n(fl)

(see I-D, 8.6.5]).
We are going to use the following elementary fact: any bounded Borel function

F: ( C defines via the direct integral decomposition a bounded intertwining
operator of n

whose operator norm satisfies TII supsupp. IF(a)l, Remark also that any inter-
twining operator acts in the space of C vectors goo.
We show now how to deduce Proposition 1 (1) from Proposition 1 (2). Assume

that (ocg, r) does not contain the trivial representation. Take e < 0 and let P be the
orthogonal projection in t corresponding to the characteristic function of the set

Then it follows from the fact that r has no fixed vector that lim_o Ilev vii 0
for every v g. Assume that we are given a norm N on acg satisfying the conditions
(a), (b) of 1.3. Let -1/4 < e < 0, e ( 1), 0 < < 1/2 and define
Then Parg goo and we can apply Proposition 1 (2) to the restriction of
and the restriction ofN to oo. Namely if F S u) {X_, H} then there is a constant
c > 0 such that for all v aeg

N(r:(mr)Pv) < cT-llevll.

Let v ggoo, 5 > 0 and choose e > 0 such that

max IIP dn(L)v d(L)vll < 6/c.
LeS
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Writing v P,v + (v P,v) we have

N(n(mr)v) < N(n(mr)P,v) + N(r(mr)(v Pv))

and now

N(n(mr)(v- Pv)) < N(v- P,v) < c max Ildn(L)(v- ev)ll
LeS

Hence

N(r(mr)v) < cT-llevll +

from which it follows that lim supr-oo N(r(mr)v) < 6 for each 5 > 0. This proves
Proposition 1 (1).

Proof of Proposition 1 (2). We begin by defining certain functions on d.
(1) The function fl

(a) on (-,0]:-1/4<2<0, 2=fl(fl-1) and 0<fl<1/2

2<-1/4, 2=fl(fl-1) and Imfl>0

m
(b) on Z" fl(-4- m) .

(2) The function fr, Y > 1

(1 fl)y-ti-
,t<0f,(2) 1 2fl

fy( + m) y-tJ, m > 2.

(3) The function sr, y > 1

y-# y#-i
1 2fl

s(+ m) O, rn > 2.

(4) The function r, Y > y > O, Y > 1

r sr on (-, 0] for y > 1,

tr=O on (-03,0] forO<y<l,
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tr(+m)=- Yg-11max(l’ Y)l-2g y1-2/112fl
fory > O.

IfFr, Sr, Tr denote the corresponding intertwining operators on f it follows from
Lemma 1 that for all v e ,oo, T > 0, Y > 1

1
r(mr)v Frrc(mra(Y))v - Srn(mra(Y)) d,(H)v

+ dy T[n(n(- T)) rc(n(T))]n(a(y)) drc(X_)v.

From this and the properties of N it follows that

N(n(mr)v) < N(Frv) + - N(Sr drc(H)v) + - dy N(T drc(X_)v)

< c IIFrvlls + list dc(H)vll + - T drc(X_)vlls dy

Moreover,

IIFvlls < IIAIlollvlls, list d(H)vlls < Ilsrlloolld(H)vlls,

T d(X_)vlls < IItlloolld(X-)vlls,

where the supremum Iloo is taken over (-, ( 1)] w Z.
It is now easy to verify from the definitions that

(1 )y- y-I
IIf < c

1 2 Y > 1,

y-a ya-1
IIsll(R) < c

1 2 Y > 1,

tr Iloo c y- y-
1--2e

y> 1,

Iltylloo 1, 0 < y < 1,

where C > 0 is some absolute constant. From this it follows that
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(1 )Y- Y-t
IIfyvlls < C

1 2 Ilvlls

list d(H)vlls < C Ildrc(H)vlls

1
dyll T d(X_)vlls < - Ildzc(X_)vlls + - dy y Ildzc(X_)vlls

T 1 2cz

Putting T Y we obtain Proposition 1 (2).

2. Geometrically finite surfaces

2.1. Let S--1-’\D2 be any hyperbolic surface. A positive measure 2 on
F\PSL(2, t) is P AN quasi invariant if

p,2 Z(p)2 for all p e P,

where Z" P R+ is a character of P and g,2 denotes the action of g e PSL(2, ) on
measures. Let dO be the Lebesgue measure on S {e: 0 < 0 < 2} viewed as the
boundary of D2. A finite measure v on S is conformal for F if

,,v j()’v for all , e F,

where j(y) is the Radon-Nikodym derivative of ,, dO with respect to dO. Here is
a real number (see IS1] for an intrinsic definition).
We show now that there is a natural bijection between the set ofP-quasi invariant

positive measures on F\PSL(2, ) and the set of positive F conformal measures on
St. Let 2 be a P-quasi invariant positive measure on F\PSL(2, ) and consider its
lift 2 to PSL(2, ). This measure is left F invariant and satisfies

ya2 for all y > 0
(*)

In(x),2 2 for all x e ,
where 9, denotes the right action of9 e PSL(2, ) on measures on PSL(2, ). Using
Iwasawa coordinates on PSL(2, )

PSL(2,)=K x A x N,

9 k(O)a(y)n(x)

we obtain a projection PSL(2,)A x N with comtact fibers. It follows from
properties (,) that the direct image of 2 on A x N via this projection is the measure
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c dy y-a dx,

where c > 0 is some constant. Therefore there exists for almost all (y, x) e R+ x R
a probability measure

d#(y,x)(O)

on K such that for all continuous functions f on PSL(2, g) with compact support
we have

Using properties (,) again we see that the map

(y, x)

is essentially constant. Let / be its essential value. It is a probability measure
supported on K. In Iwasawa coordinates the visual map is given by

Vis: PSL(2, ) T1D2 -’ S

k(O)a(y)n(x)- e2’

Denote again by # the direct image of # on S via Vis. It follows from the left F
invariance of , that # is 1 fl conformal, i.e.,

7,# j(/)-a/ for all ] e F.

The inverse of the map 2 # was already considered in the Introduction. It follows
also from our description that

supp 2 projection on Ta S of Vis- (supp #).

2.2. We remark now that in order to show Theorem 1 it suffices to prove

PROPOSITION 2. Let S be a geometrically finite surface without cusps and assume
i > 1/2. If 2 is a positive N-invariant ergodic measure supported on then 2 is
P-quasi invariant.

Indeed, assume that Proposition 2 is true. Then 2 is obtained from an t conformal
probability measure on S supported on the limit set A c S:. Then it follows
from Sullivan’s characterization of Patterson’s measure that 0 and v #,
IS1, Theorem 8]. In other words, 2 is a multiple of the measure/ constructed in
the Introduction (C).
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2.3. The rest of 2 is devoted to the proof of Proposition 2. We assume
from now on that S is geometrically finite without cusps and > 1/2. Let 2k <
2k-1 < < 21 < 20 (-- 1)be the eigenvalues ofthe Laplacian ofSin(- 1/4, 0].
Consider the unitary representation n of PSL(2, R) in dot L2(F\PSL(2, R)). Then
we have the direct sum decomposition

k

(, ) q) (,, ,) (e’, ’)
i=0

(cf. 1.2 for the definition of, n) and

supp n’ c (-, 1/4] w Z.

In particular, the function

tpo(h)=fs dlte(()(h?-olh’12) o being the origin of D2

is up to scalar multiple the unique K invariant vector in o" Viewed as a function
on T S, tpo is also in L1(T1 S,/) where # is the P-quasi invariant measure associated
to the Patterson measure

2.4. Before we go into the proofof Proposition 2 we make a preliminary remark.
If 6 1 then tpo is an L2 harmonic function on S which is not identically zero. It
follows from [Y] that 0o is constant and hence Vol(S) < +o. Since S is without
cusps this implies that S is compact. In this case Theorem 2 (C) shows that all N
orbits in T1S are uniformly distributed with respect to the PSL(2, ) invariant
measure on T1S. This implies that the action of N on T1S is uniquely ergodic, a
result due to H. Furstenberg IF]. We therefore make the further assumption that
di < 1 throughout the rest of the paper.

2.5. We first need to show a certain conservativity property of the action of N

LEMMA 2. Let F be any compact set. There is a constant c cr > 0 such
that for all 9 F and z > 2

dt tpo(#n(t)) > c(1 + In z).

Proof. (a) It follows from Proposition 1 (2) that for all x > 0 and all # T1S

ffx tpo(gn(t)) dt < cx,
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where c > 0 is some positive constant. In particular

f dx x- f_x q)o(On(t)) dt

converges for all s < -6.
(b) We show now that there is a constant c cr > 0 such that for all 9 s F and

-l<s<-6

xS[qo(On(x)) + qo(On(-x))] dx > Is + 1"

We use the following representation of

where

hence

qo(h) fs, dlh,(()j(h, )

j(h, )
1 -Ih.ol2

Ih.o- (I 2

qg(gn(x)) fsx dla’()J(g’ )J(n(x)’ g-l)a"

We can assume 9 to be in a fixed compact set/r in PSL(2, ). Then J(o, ), ( $1,
is between two positive constants so that we are reduced to consider

d#,(() f; dx xS{j(n(x), 9-) + j(n(-x), O-a()}

where

+

u(eiO) 4 I x dx
[2x2(1 cos O) 4x sin 0 + 4]a

dl

x dx
(sin(O/2))-

[(x ctg(O/2)) + 1]

(recall that n(x)’o x/(2i + x)).
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A few computations show that there is a constant c > 0 such that

(*) u(e) + u(e-) cl01--2, 101 ,

Let d be the K invariant metric on S1. There is a constant c > 0 such that for all
g e ff and (, (’ e S

c- d(, ’) < d(g, g’) < cd(, ’).

Therefore, it follows from (,) that for all ( S

u(a-’) + u(a) > cd(, )--’, =g’l.

From this it follows that there is a constant c > 0 such that for all g F and

x[qgo(gn(x)) + qgo(gn(- x))] dx > c fs d#v() d(, )--.

Now if I(, r) is the interval of radius r about an integration by parts shows that

d#e() d((, )-s-2/> (s + 26) f t-s-2-lpe(I(, t)) at.

Note that g c is equivalent to g" 1 A. From [$2, 7] and the fact that S is
convex cocompact we deduce that there is a constant c > 0 such that for all A
and 0 < r < n

c-r < #e(I(, r)) < cr.
Putting this into (***) and using (**) we obtain the claim (b).

(c) Now we prove the Lemma. Let 1 < s < -5 and z > 2:

fl dx x-O- ffx q)o(gn(t)) dt

>;dxx-lf]xq)o(gn(t))dt
dx x-1 (po(gn(t)) dt dx x-x q)o(gn(t)) dt

using (a) we obtain
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dx xs-1 (po(0n(t)) dt < CTs+6

Is + al

On the other hand

dx xs-1 qgo(On(t)) dt= (- s -1)
-1

po(#n(t)) dt

+ (-s-) ; x[Oo(an(x)) + Oo(an(-x))] ax

cisl> using (b).Is + dil

Hence

dx x -a-1 x (po(gn(t))dt > C C2T,
s+a

Is + 1

Choosing Is + iS1 of size l/In z, we obtain the Lemma.

LEMMA 3. Let q e C(S) and consider it as a function on T1S. Then we have

dx x -a-1 q)(#n(t)) dt
lim

(q’ qo )
"(R) f dx x-- f: po(Vn(t)) d I’o 112

uniformly on compact sets in .
Proof. Let o <0, Oo)(oo/llqoll)+ o+/-, where qg.L is orthogonal to o"

It follows from Proposition 1 (2) applied to P.L and the orthogonal of do in
L2(F\PSL(2, )) that

supo < c(S,
X--Il xl-at

1 21

where 0 < el < 1/2, el(el-l) 21(S) if21(S) > -1/4 and el 1/2 if
Spec As ca (- 1/4, 0! {20 }. In any case we have + el > 1 and hence for z --* oo

;i f (q, qo) ; --dx x-a-’ q(on(t)) dt i)i, dx x f= q)o(gn(t)) dt + 0(1).



798 MARC BURGER

Dividing by [ dx x--_ goo(gn(t)) dt and using Lemma 2 enable us to conclude
the proof.

Remark. It follows from the proof of Lemma 3 that if go e C(S), go > 0, go 0,
then there is a constant c > 0 such that for all z > 2 and O e

fl dx x--1 f] go(gn(t)) dt > c(1 + In z)

from which it follows easily that

1;lim sup go(#n(t)) dt > O.

On the other hand we know from Proposition 1 (2) that this last quantity is bounded,
so that one may ask if

go(on(t)) dt > 0

has a limit as z oe. The following example shows that this is not always the case.
Let S be geometrically finite with one expanding end and without cusps. Let g c $

be a closed geodesic distinct from the closed geodesic bounding the expanding end.
We represent S F\H2 as the quotient of the upper half plane H2 in such a way
that the geodesic x 0 is a lift of g. Let A c R w (o } be the limit set of F. By
construction oe e A. Let C(A) be the convex hull of A and So F\ C(A). In our
example we take g e, go C(S), go nonnegative and with support in So. We can
assume that

1;lim sup - go(gn(t)) dt > O.

Consider F en(t), the N orbit of F e in F\PSL(2, ) and let c(t) be its projection
on S. We denote by tl < t < tz < t < the sequence of times t, > 0, at which
c(t) crosses the boundary of So, so that c(t) leaves So at t, for all n > 1. By
construction we have

(,)
t,’--- go(gn(t)) dt

\t, ,]
go(gn(t)) dt

Let h be the geodesic bounding So and let h be some lift of h contained in
{z e H2"x > 0}. Let (y) be the subgroup of F of elements with axis x 0. Then
n(/) is a sequence of lifts of h and for n > no, 7n() intersects the horocycle
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{i + t:t >0} .2.

Let + s., + s,, s. < s’. be the two intersection points. An explicit computation
shows that lim._.oo (s’.ls.) bla where a < b are the end points of . On the other
hand, (s., s’.).Z is a subsequence of (t., t’.)]. Using this and (.) we conclude that

liinf tp(gn(t)) dt < lim_,SooUp tp(gn(t)) dr.

In the sequel we will need the following version of Hopf’s ergodic theorem: Given
a locally compact, a-compact topological space X with a continuous R action

RxXX

(t, x)- xn(t),

let v be a positive N invariant ergodic Radon measure on X and assume that there
exists an everywhere positive function O L1 (X, v) such that for v almost all x X

9(xn(t)) dt +,

then:

THEOREM. (Hopf [H]) For all f LI(X, v) we have for v almost all x X

f(xn(t)) dt If(x) dv(x)
dlira

9(xn(t)) dt I 9(x) dr(x)
d

Using this ratio ergodic theorem we can prove

LEMMn 4. Let v be an N invariant positive ergodic measure on . Then v is an
eigenmeasure of the Casimir operator of eigenvalue 20: for all f C(T: S) we have

dr(w)f(g) dv(g) 20 a f(g) dv(g).
8 S

Proof. It is sufficient to show that iff C(TS) is orthogonal to go then

f(9) dv(9) O.
s
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Choose an everywhere positive continuous function e LI(T1 S, v). Fix some non-
negative function (p C(S), q). 0 and consider it as a function on T1S. Then, > cq9 for some positive constant c. It follows from Lemma 3 that for all 9

(,) dx x-- O(gn(t)) dt +.

In particular
Now it follows from Hopf’s ergodic theorem and (,) that for v almost all

dx x-- f(gn(t)) dt

dx x-- O(gn(t)) dt
-.oo

dx x-- qt(gn(t)) dt

where

h(x) ff f(gn(t)) dt

and this last limit equals

f(g) dv(g)
lira h(x)=
x-.oo (g) dv(g)

Iff e Cff (T1 S) and is orthogonal to o we apply Proposition 1 (2) to find that for
all 9 e T S

--1 f]x f(gn(t)) dt < CX

where + a > 1 and hence

f dx x--1 f[x f(gn(t)) dt < +c.

It follows now from (**) that f(g) dv(g) O. El
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Proof of Proposition 2. Let v be an N invariant positive ergodic measure on.
Let f e C T1 S) and consider

u(n(x)a(y)k(O)) 7(n(x)a(y)k(O))f(g) dr(g).
s

It follows from Lemma 4 that u satisfies

\Ox2 + OyZJ Y Ox O0

But u is also left N invariant hence

in particular there are constant cl (f), c2(f) such that for all y > 0

(,) x(a(y))f(9) dr(g)= c(f)y + c2(f)yx-o.

From this equality we deduce that f--, c:(f), f c2(f) are positive N invariant
Radon measures and v c: + 2. Since v is ergodic there are numbers , > 0,
I[ + I//[ > 0 such that

(**) cl (f) flc2(f) for all f CK(T S).

On the other hand it follows from (,) that

c(n(a(y))f) yOcx (f)

c2(n(a(y))f) Yi-c2(f).

Hence (**) is only possible if 0 or fl 0, so cl 0 or C2 "-0. This proves
Proposition 2. El

2.6.

Proof of the Corollary. Consider the following family of measures

v., (0)
dx x-- f]x q)(on(t)) dt

dx x --x fx q)o(On(t)) dt
ge,, T>2.
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Since q9o has a positive lower bound on each compact set of T1 S, it follows that the
set

(,r: 9 , T > 2}

is relatively compact in the vague topology of g(T1S). Suppose that the Corollary
is false. Then there exists a compact set F c , sequences (g,)-o C F, T , a
function o Cff(T S) and e > 0 such that for all n > 0

(,)

Let v be an accumulation point of the sequence (Vo,,T,)n_-i From the fact that

lim f( dx x--l fX_x gOo(gn(t)) dt

uniformly on compact sets in (Lemma 2) it follows easily that v is N invariant
and supported on . Hence v 2#, where 2 > 0 is some constant. From Lemma
3 it follows that for all ff e Cff (S)

go______) /(qg_____)
I100112 I100112"

Hence 2 1/11ooll 2 which contradicts (,).
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