HOROCYCLE FLOW ON GEOMETRICALLY FINITE SURFACES

MARC BURGER

Let $S = \Gamma \setminus D^2$ be a quotient of the Poincaré disc by a finitely generated discrete group Γ of orientation preserving isometries acting without fixed points on D^2 . Topologically S can be obtained from a compact surface by removing a finite number of closed discs.

The group of orientation preserving isometries of D^2 is $PSL(2, \mathbb{R})$ and the unit tangent bundle $T_1 S$ of S is a homogeneous space of $PSL(2, \mathbb{R})$:

$$T_1S = \Gamma \setminus PSL(2, \mathbb{R}).$$

In particular, the unipotent subgroup of $PSL(2, \mathbb{R})$

$$N = \left\{ n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}$$

acts on T_1S .

It is our main goal to determine all N-invariant Radon measures on T_1S . Our first remark is that if C is the cone of positive N-invariant Radon measures in the space $\mathcal{M}(T_1S)$ of all Radon measures with the vague topology, then C is the closed convex hull of the union of its extremal generators [B, II No. 2]; moreover it is easily seen that a measure is on an extremal generator of C if and only if it is ergodic. This reduces the problem to the classification of all ergodic measures.

To proceed further we consider the following decomposition of T_1S : Let S^1 be the ideal boundary of D^2 and $\Lambda \subset S^1$ be the limit set of Γ . Using the visual map:

Vis:
$$T_1 D^2 \rightarrow S^1$$
,

we obtain first a decomposition of $T_1 D^2$ as a union of two subsets

$$\widetilde{\mathscr{F}}_{c} = \{ p \in T_{1}D^{2} : \operatorname{Vis}(p) \in \Lambda \}$$
$$\widetilde{\mathscr{F}}_{d} = \{ p \in T_{1}D^{2} : \operatorname{Vis}(p) \in S^{1} \setminus \Lambda \}.$$

This gives via the projection $T_1D^2 \rightarrow T_1S$ a decomposition of T_1S into two disjoint subsets

Received January 8, 1990. Revision received March 9, 1990.

$$T_1S=\mathcal{F}_c\cup\mathcal{F}_d,$$

where \mathscr{F}_c is closed, \mathscr{F}_d open and both are invariant under the action of N and the action of the geodesic flow of $T_1 S$.

Recall at this point that the action of the geodesic flow in $T_1 S = \Gamma \setminus PSL(2, \mathbb{R})$ is given by the action of

$$A = \left\{ \begin{pmatrix} e^{t/2} & 0\\ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Now we can describe three families of N-invariant ergodic measures on T_1S .

A. For each $g \in \mathcal{F}_d$ the orbit map:

$$\mathbb{R} \to T_1 S \qquad x \mapsto gn(x)$$

is a homeomorphism onto its image. The direct image of the Lebesgue measure dx on \mathbb{R} under this orbit map gives an N-invariant ergodic measure supported on gN. Since all orbits of N on \mathcal{F}_d are closed, this shows that each N-orbit on \mathcal{F}_d is the support of an ergodic N-invariant measure which is unique up to scaling.

B. To each cusp of S there corresponds an immersed cylinder in $\mathscr{F}_c \subset T_1 S$ consisting of N-periodic points. Each of these periodic orbits carries a unique N-invariant probability measure.

C. Let μ_P be the Patterson measure on the limit set $\Lambda \subset S^1$ and let δ be the Hausdorff dimension of Λ . Using the origin $o \in D^2$ as a reference point we can identify canonically each fiber of the visual map

Vis:
$$T_1 D^2 \rightarrow S^1$$

with the group AN. Via this identification we put on each fiber $\operatorname{Vis}^{-1}(\zeta), \zeta \in S^1$, the measure:

$$e^{\delta t} dt dx$$
,

defined on AN.

Integrating along fibers of the visual map and integrating with respect to μ_P produces a measure on \mathscr{F}_c which projects down to an *N*-invariant measure μ supported on \mathscr{F}_c . Note that if T_t denotes the action of the geodesic flow then $T_{t^*}\mu = e^{i(1-\delta)}\mu$. In particular, if $\delta < 1$ this measure is infinite.

Hopefully any ergodic N-invariant measure is up to scaling a measure in the families listed above. In the case $Vol(S) < +\infty$, the measure constructed in C coincides with the $PSL(2, \mathbb{R})$ -invariant probability measure on T_1S and $\mathscr{F}_d = \emptyset$. In this case the above description of N-invariant ergodic measures is complete as follows from work of Dani [D1], [D2].

If $Vol(S) = +\infty$ it follows from recent results of M. Ratner [R] that the only N-invariant ergodic probability measures are supported on periodic orbits of N. In particular, if S has no cusps there are no invariant probability measures. Here we want to show that if S is geometrically finite without cusps and the Hausdorff dimension δ of the limit set verifies $\delta > 1/2$, then the above description of N-invariant ergodic measures is complete. This follows immediately from the following:

THEOREM 1. Assume S is geometrically finite without cusps and $\delta > 1/2$. Then there is, up to a scalar multiple, a unique N-invariant Radon measure supported on \mathscr{F}_c .

To put the hypothesis on the Hausdorff dimension in the context of our method we recall the following facts about the Laplacian of S. The Laplace-Beltrami operator Δ of S acts in the space of C^{∞} functions with compact support $C_{K}^{\infty}(S)$, and has a unique self-adjoint extension to an unbounded operator on $L^{2}(S)$. The spectrum of Δ in (-1/4, 0] consists only of eigenvalues with finite multiplicity and the essential spectrum of Δ is contained in $(-\infty, -1/4]$ [DPRS]. It follows from work of Patterson [P], [S, Th. 2.17], that $\delta > 1/2$ if and only if Spec $\Delta_{S} \cap$ $(-1/4, 0] \neq \emptyset$ in which case $\lambda_{0} = \delta(\delta - 1)$ is the highest eigenvalue of Δ_{S} . This eigenvalue has multiplicity one and any associated eigenfunction is of constant sign on S. Patterson showed that such an eigenfunction can be obtained in the following way: Let L be the Lebesgue measure of S^{1} and j(g) the Radon-Nikodym derivative of $g_{*}L$ with respect to L, where $g \in PSL(2, \mathbb{R})$. Then

$$\varphi_0(h) = \int_{S^1} d\mu_P(\zeta) j(h,\zeta)^{\delta}$$

is a Γ -invariant eigenfunction on D^2 of eigenvalue $\delta(\delta - 1)$. If $\delta > 1/2$ it is in $L^2(S)$. On the other hand, a straightforward computation shows that the direct image of the measure μ via the map $T_1S \to S$ is the measure

$$\varphi_0(h) dh$$
,

where dh is the area element of S. In particular, the function φ_0 viewed on T_1S is in $L^1(T_1S, \mu)$. Theorem 1 shows now that $\varphi_0(h) dh$ has a topological characterization in terms of the action of N on T_1S . Concerning the proof of Theorem 1 we study how the probability measure on $PSL(2, \mathbb{R})$:

$$m_T(\varphi) = \frac{1}{2T} \int_{-T}^{T} \varphi(n(t)) dt$$

acts in the space of a unitary representation of $PSL(2, \mathbb{R})$. We obtain that m_T acts as a contraction in the space of C^{∞} -vectors when measured in a suitable norm (see Proposition 1). Moreover, the contraction constant tends to zero as $T \to \infty$. This

and a certain conservativity property of the action of N on \mathcal{F}_c enables us to show Theorem 1. As a corollary of Theorem 1 and the method of proof we obtain the following equidistribution result.

COROLLARY. Under the assumptions of Theorem 1 we have for all $\varphi \in C_K(T_1S)$

$$\lim_{x \to \infty} \frac{\int_{1}^{\tau} dx \ x^{-\delta - 1} \int_{-x}^{x} \varphi(gn(t)) \ dt}{\int_{1}^{\tau} dx \ x^{-\delta - 1} \int_{-x}^{x} \varphi_0(gn(t)) \ dt} = \frac{\int_{T_1 S} \varphi(p) \ d\mu(p)}{\|\varphi_0\|_2^2}$$

uniformly on compact sets in \mathcal{F}_c .

In the case where S is compact we have a more precise version of this corollary where we control the rate of uniform distribution of horocycles with respect to the Lebesgue measure on T_1S (see Theorem 2 of §1).

Acknowledgements. I would like to thank Alex Freire, Scot Adams, and Rafe Mazzeo for helpful discussions.

1. Unitary action of a unipotent subgroup of $PSL(2, \mathbb{R})$. In 1.1 and 1.2 we recall some classical facts concerning the representation theory of $PSL(2, \mathbb{R})$. Standard references are [L], [D]. In 1.3 we state the main proposition (Proposition 1) and derive some corollaries for hyperbolic surfaces (Theorem 2). §1.4 is devoted to the proof of Proposition 1.

1.1. Let $G = PSL(2, \mathbb{R})$, g its Lie algebra, $g_{\mathbb{C}}$ the complexification of g and $\mathscr{U}(g_{\mathbb{C}})$ the universal enveloping algebra of $g_{\mathbb{C}}$. To a continuous unitary representation π of G in a separable Hilbert space \mathscr{H} one associates the derived representation $d\pi$ of $\mathscr{U}(g_{\mathbb{C}})$ which acts in the space of C^{∞} -vectors:

$$\mathscr{H}^{\infty} = \{ v \in \mathscr{H} : g \to \pi(g) v \text{ is a } C^{\infty} \text{ map from } G \text{ to } \mathscr{H} \}.$$

The center of $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ is generated by the Casimir element w:

$$w = \frac{1}{4}(2iW - W^2 + E_+E_-)$$

where $W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $E_{+} = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$, $E_{-} = \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix}$, is a basis of $g_{\mathbb{C}}$. If (\mathscr{H}, π) is irreducible, $d\pi(w)$ acts as scalar multiplication on \mathscr{H}^{∞} .

1.2. Let

$$K = \left\{ k(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, 0 \le \theta \le \pi \right\}$$

be a maximal compact subgroup of G. We can state the classification of irreducible unitary representations of $PSL(2, \mathbb{R})$ in the following way [L, p. 123]:

(a) For each $\lambda \in (-\infty, 0]$ there is a unique irreducible unitary representation $(\mathscr{H}_{\lambda}, \pi_{\lambda})$ which has a K-invariant vector and such that the action of the Casimir operator on $\mathscr{H}_{\lambda}^{\infty}$ is $d\pi(w) = \lambda \cdot \mathrm{Id}$. The trivial representation corresponds to $\lambda = 0$.

(b) For each even integer $m \ge 2$ there is a unique irreducible representation $\mathscr{H}(m)$ having a lowest weight vector of weight *m* with respect to *K* and a unique irreducible one $\mathscr{H}(-m)$ having a highest weight vector of weight -m. These are the discrete series of $PSL(2, \mathbb{R})$ and $d\pi(w) = (m/2 - 1)m/2 \cdot Id$ on $\mathscr{H}^{\infty}(m) \oplus \mathscr{H}^{\infty}(-m)$.

This classification enables us to identify the dual space \hat{G} of G with the topological space

$$(-\infty, 0] \cup Z$$
, where $Z = \{\pm m; m \ge 2, \text{even}\}$.

If (\mathcal{H}, π) is a continuous unitary representation of G in a separable Hilbert space \mathcal{H} , then (\mathcal{H}, π) is a direct sum of multiplicity free representations

$$(\mathscr{H}, \pi) = \bigoplus_{n=1}^{\infty} (\mathscr{L}_n, \alpha_n),$$

see [D, 8.6.6]. Moreover, each multiplicity free representation $(\mathcal{L}_n, \alpha_n)$ is defined via a Borel measure μ_n on \hat{G} . We define the support of π , supp $\pi \subset \hat{G}$ by

$$\operatorname{supp} \pi = \bigcup_{n=1}^{\infty} \operatorname{supp} \mu_n.$$

1.3. Let (\mathcal{H}, π) be a continuous unitary representation of $PSL(2, \mathbb{R})$ in a separable Hilbert space \mathcal{H} . We assume that we are given a norm N on the space of C^{∞} vectors \mathcal{H}^{∞} satisfying the following properties:

(a) $N(\pi(g)v) = N(v)$ for all $g \in G, v \in \mathscr{H}^{\infty}$.

(b) There is a finite subset $S \subset \mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ and a constant c > 0 such that

$$N(v) \leqslant c \max_{L \in S} \|d\pi(L)v\|$$

for all $v \in \mathscr{H}^{\infty}$.

Consider the following one parameter family of probability measures on $PSL(2, \mathbb{R})$

$$m_T(f) = \frac{1}{2T} \int_{-T}^{T} f(n(t)) dt, \qquad T > 0.$$

The next proposition shows how the map

$$T \rightarrow N(\pi(m_T)v)$$

vanishes at infinity for $v \in \mathscr{H}^{\infty}$. In order to state the proposition we introduce some notation. Let

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad X_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

If $S \subset \mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ is a finite subset

$$\|v\|_{S} = \max_{L \in S} \|d\pi(L)v\|, \qquad v \in \mathscr{H}^{\infty}.$$

PROPOSITION 1. Let (\mathcal{H}, π) be a continuous unitary representation of $PSL(2, \mathbb{R})$ in a separable Hilbert space \mathcal{H} and let N be a norm on \mathcal{H}^{∞} satisfying properties (a), (b) above.

(1) If (\mathcal{H}, π) has no nonzero fixed vector then

$$\lim_{T\to\infty} N(\pi(m_T)v) = 0$$

for every $v \in \mathscr{H}^{\infty}$.

(2) Let $0 < \alpha \leq 1/2$ and assume that

supp
$$\pi \subset (-\infty, \alpha(\alpha - 1)] \cup Z$$

then we have for all $v \in \mathscr{H}^{\infty}$ and $T \ge 1$

$$N(\pi(m_T)v) \leq c \frac{T^{-\alpha} - T^{\alpha-1}}{1 - 2\alpha} \{ \|v\|_S + \|d\pi(H)v\|_S + \|d\pi(X_-)v\|_S \},\$$

where c > 0 is some positive constant.

Let us show how this result applies in concrete situations: Let $S = \Gamma \setminus D^2$ be any hyperbolic surface. We consider the unitary representation π of $PSL(2, \mathbb{R})$ on $\mathscr{H} = L^2(\Gamma \setminus PSL(2, \mathbb{R}))$ given by right translations. On the space of C^{∞} vectors \mathscr{H}^{∞} we would like to take the norm

$$N(f) = \sup_{x \in T_1S} |f(x)|.$$

The case of surfaces with cusps shows that N is not always defined on \mathscr{H}^{∞} . However, assume that there is a positive lower bound on the injectivity radius of S and choose a left invariant Riemannian metric on $PSL(2, \mathbb{R})$ whose projection on D^2 is the hyperbolic metric. It then follows from [A, 2.10 and 2.2.1] that the Sobolev imbedding theorem holds for the Riemannian manifold $T_1 S = \Gamma \setminus PSL(2, \mathbb{R})$. In particular there is a constant c > 0 and a finite subset $L \subset \mathscr{U}(g)$ of polynomials of degree at most two such that for all $f \in C_K^{\infty}(T_1 S)$ we have

$$\sup_{x} |f(x)| \leq c \cdot \|f\|_{L}.$$

We can furthermore identify \mathscr{H}^{∞} with a subspace of the space of bounded C^{∞} functions on T_1S .

Now we can apply Proposition 1 to the norm $N(f) = \sup_{x} |f(x)|$ defined on \mathscr{H}^{∞} to obtain

THEOREM 2. Let $S = \Gamma \setminus D^2$ be a hyperbolic surface whose injectivity radius has a positive lower bound and let $||f||_{H_3^2}$ be the Sobolev L^2 norm involving all the derivatives of f up to the third order.

(A) For every continuous function f on T_1S vanishing at infinity

$$\lim_{T\to\infty}\sup_{g\in T_1S}\frac{1}{2T}\int_{-T}^Tf(gn(t))\,dt=0.$$

(B) Assume that the spectrum of the Laplacian of S is contained in $(-\infty, \alpha(\alpha - 1)]$, where α is some number satisfying $0 < \alpha \leq 1/2$. Then we have for all $f \in C_{\kappa}^{\infty}(T_1S)$ and $T \geq 1$

$$\sup_{g \in T_1 S} \left| \frac{1}{2T} \int_{-T}^{T} f(gn(t)) dt \right| \leq c \frac{T^{-\alpha} - T^{\alpha - 1}}{1 - 2\alpha} \| f \|_{H^2_3}.$$

(C) Assume that S is compact. Let $\lambda_1 < 0$ be the first nonzero eigenvalue of the Laplacian of S and let $0 < \alpha \leq 1/2$ satisfy $\alpha(\alpha - 1) \geq \lambda_1$. Then we have for all $f \in C_K^{\infty}(T_1S)$ and $T \geq 1$

$$\sup_{g \in T_1S} \left| \frac{1}{2T} \int_{-T}^{T} f(gn(t)) \, dt - \int_{T_1S} f(h) \, dh \right| \leq c \frac{T^{-\alpha} - T^{\alpha-1}}{1 - 2\alpha} \, \|f\|_{H^2_3}.$$

Proof. (A) and (B) are direct consequences of Proposition 1, (1), (2). To obtain (C) we apply Proposition 1, (2) to the restriction of π to the subspace of functions $f \in L^2(\Gamma \setminus PSL(2, \mathbb{R}))$ orthogonal to the constants.

Let us give two examples of surfaces satisfying the hypothesis of Theorem 2 (B): (1) Let $S_0 = \Gamma \setminus D^2$ be a compact surface and $\Gamma' \lhd \Gamma$ be a normal subgroup of Γ such that Γ/Γ' is not amenable. Then $S = \Gamma' \setminus D^2$ satisfies the hypothesis of Theorem 2 (B) (see [Br] for instance).

(2) Any geometrically finite surface of infinite volume and without cusps [DPRS].

1.4. In this section we prove Proposition 1.

Let (\mathcal{H}, π) be a continuous unitary representation of $PSL(2, \mathbb{R})$. We assume that the Casimir operator w acts as scalar multiplication on \mathcal{H}^{∞} : $d\pi(w) = \lambda$ Id and we fix an $\alpha \in \mathbb{C}$ such that $\alpha(\alpha - 1) = \lambda$. We introduce also the subgroups of $PSL(2, \mathbb{R})$

$$K = \left\{ k(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad 0 \le \theta \le \pi \right\}$$
$$A = \left\{ a(y) = \begin{pmatrix} \sqrt{y} & 0 \\ 0 & 1/\sqrt{y} \end{pmatrix}, \quad y > 0 \right\}$$
$$N = \left\{ n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad x \in \mathbb{R} \right\}.$$

Lemma 1.

(A) For all $v \in \mathscr{H}^{\infty}$, $Y \ge 1$, and T > 0 we have

$$\begin{aligned} \pi(m_T)v &= \frac{(1-\alpha)Y^{-\alpha} - \alpha Y^{\alpha-1}}{1-2\alpha} \pi(m_T a(Y))v \\ &- \frac{1}{2} \frac{Y^{-\alpha} - Y^{\alpha-1}}{1-2\alpha} \pi(m_T a(Y)) \, d\pi(H)v \\ &+ \frac{1}{2T} \int_1^Y dy \left(\frac{y^{-\alpha} - y^{\alpha-1}}{1-2\alpha}\right) [\pi(n(-T)) - \pi(n(T))] \pi(a(y)) \, d\pi(X_-)v. \end{aligned}$$

(B) Assume that $\alpha \in \mathbb{R}$, $\alpha - 1 \ge 0$ and that π has no nonzero fixed vector. Then we have for all T > 0, $Y \ge 1$ and $v \in \mathscr{H}^{\infty}$

$$\pi(m_T)v = Y^{-\alpha}\pi(m_T a(Y))v$$

$$-\frac{1}{2T} \int_0^Y dy \ y^{\alpha-1} \left(\frac{Y^{1-2\alpha} - \max(1, y)^{1-2\alpha}}{1-2\alpha}\right) [\pi(n(-T)) - \pi(n(T))] \ d\pi(X_-)v.$$

Proof. We recall that in Iwasawa coordinates n(x), a(y), $k(\theta)$ the left invariant differential operators X_{-} , H, W are given by

$$W = \frac{\partial}{\partial \theta}$$
$$H = -2y \sin 2\theta \frac{\partial}{\partial x} + 2y \cos 2\theta \frac{\partial}{\partial y} + \sin 2\theta \frac{\partial}{\partial \theta}$$
$$X_{-} = y \cos 2\theta \frac{\partial}{\partial x} + y \sin 2\theta \frac{\partial}{\partial y} - \cos^{2} \theta \frac{\partial}{\partial \theta}$$

and the Casimir operator is

$$w = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - y \frac{\partial^2}{\partial x \, \partial \theta} \, .$$

For $v \in \mathscr{H}^{\infty}$ the function

$$(x, y, \theta) \mapsto \pi(m_T n(x) a(y) k(\theta)) v$$

is an eigenfunction of the Casimir operator of eigenvalue λ . In particular

$$y^{2} \frac{\partial^{2}}{\partial y^{2}} \pi(m_{T}a(y))v + y^{2} \frac{\partial^{2}}{\partial x^{2}} \bigg|_{x=0} \pi(m_{T}n(x)a(y))v - y \frac{\partial^{2}}{\partial x \partial \theta} \bigg|_{x=\theta=0} \pi(m_{T}n(x)a(y)k(\theta))v$$
$$= \lambda \pi(m_{T}a(y))v.$$

Now we have

$$y^{2} \frac{\partial^{2}}{\partial x^{2}}\Big|_{x=0} \pi(m_{T}n(x)a(y))v = y^{2} \frac{\partial^{2}}{\partial x^{2}}\Big|_{x=0} \frac{1}{2T} \int_{-T}^{T} \pi(n(t+x)a(y))v \, dt$$
$$= \frac{y^{2}}{2T} \frac{\partial}{\partial x}\Big|_{x=0} \left[\pi(n(T+x)a(y))v - \pi(n(-T+x)a(y))v\right]$$

and

$$\left. y \frac{\partial^2}{\partial x \ \partial \theta} \right|_{x=\theta=0} \pi(m_T n(x) a(y) k(\theta)) v = \frac{y}{2T} \frac{\partial}{\partial \theta} \right|_{\theta=0} \left[\pi(n(T)) - \pi(n(-T)) \right] \pi(a(y) k(\theta)) v.$$

Putting everything together and using the fact that

$$X_{-}|_{x=\theta=0} = y \frac{\partial}{\partial x} \bigg|_{x=0} - \frac{\partial}{\partial \theta} \bigg|_{\theta=0}$$

we obtain

$$y^{2} \frac{\partial^{2}}{\partial y^{2}} \pi(m_{T}a(y))v - \lambda \pi(m_{T}(a(y)))v = \frac{y}{2T} [\pi(n(-T)) - \pi(n(T))] \pi(a(y)) d\pi(X_{-})v.$$

Define the following functions

$$g(y) = y^{-\alpha} \pi(m_T a(y)) v$$
$$D(y) = [\pi(n(-T)) - \pi(n(T))] \pi(a(y)) d\pi(X_-) v.$$

With this notation the above relation becomes

$$\frac{\partial}{\partial y} y^{2\alpha} \frac{\partial}{\partial y} g(y) = \frac{y^{\alpha-1}}{2T} D(y).$$

Let 0 < a < b. Integrating this equality from a to b with respect to y we obtain

(*)
$$b^{2\alpha}g'(b) - a^{2\alpha}g'(a) = \frac{1}{2T}\int_a^b y^{\alpha-1}D(y)\,dy.$$

Proof of (A). Multiplying (*) by $a^{-2\alpha}$ and integrating from 1 to b with respect to a we obtain

(**)
$$g(1) = g(b) - \left(\frac{b - b^{2\alpha}}{1 - 2\alpha}\right)g'(b) + \frac{1}{2T}\int_{1}^{b} dy \left(\frac{y^{-\alpha} - y^{\alpha-1}}{1 - 2\alpha}\right)D(y).$$

From the definition of g it follows that

$$yg'(y) = -\alpha y^{-\alpha} \pi(m_T a(y))v + y^{-\alpha} \left(y \frac{\partial}{\partial y} \pi(m_T a(y))v \right),$$

but $H|_{\theta=0} = 2y(\partial/\partial y)$ so that

(***)
$$yg'(y) = -\alpha y^{-\alpha} \pi(m_T a(y))v + \frac{1}{2} y^{-\alpha} \pi(m_T a(y)) d\pi(H)v.$$

Substituting (***) in (**) and using $g(y) = y^{-\alpha} \pi(m_T a(y))v$ and setting b = Y we obtain (A).

Proof of (B). We write (***) in the following form

$$y^{2\alpha}g'(y) = y^{\alpha-1} \left[-\alpha \pi(m_T a(y))v + \frac{1}{2}\pi(m_T a(y)) d\pi(H)v \right].$$

(1) $\alpha - 1 > 0$: then $\lim_{y \to 0} y^{2\alpha} g'(y) = 0$ in \mathscr{H} .

(2) $\alpha - 1 = 0$: since π has no nonzero invariant vectors it follows from [H-M] that for every $w \in \mathscr{H} \lim_{y \to 0} \pi(a(y))w = 0$ weakly in \mathscr{H} . In particular $\lim_{y \to 0} y^2 g'(y) = 0$ weakly in \mathscr{H} .

In both cases equation (*) implies that

$$b^{2\alpha}g'(b) = \frac{1}{2T}\int_0^b y^{\alpha-1}D(y)\,dy.$$

Multiplying both sides with $b^{-2\alpha}$ and integrating from 1 to Y with respect to b we obtain

$$g(Y) - g(1) = \frac{1}{2T} \int_0^Y dy \ D(y) y^{\alpha - 1} \left[\frac{Y^{1 - 2\alpha} - \max(1, y)^{1 - 2\alpha}}{1 - 2\alpha} \right]$$

which proves (B).

Proof of Proposition 1. Let (\mathcal{H}, π) be a continuous unitary representation of $PSL(2, \mathbb{R})$ in a separable Hilbert space \mathcal{H} . Let

$$(\mathscr{H},\pi)=\bigoplus_{n=1}^{\infty}(\mathscr{L}_n,\beta_n)$$

be its decomposition in a direct sum of multiplicity free representations (\mathscr{L}_n, β_n) . For each *n* there is a bounded Borel measure μ_n on \hat{G} such that

$$\beta_n = \int_{\hat{G}}^{\oplus} \beta \ d\mu_n(\beta)$$

(see [D, 8.6.5]).

We are going to use the following elementary fact: any bounded Borel function $F: \hat{G} \to \mathbb{C}$ defines via the direct integral decomposition a bounded intertwining operator of π

$$T_F: \mathscr{H} \to \mathscr{H}$$

whose operator norm satisfies $||T_F|| \leq \sup_{\alpha \in \text{supp }\pi} |F(\alpha)|$. Remark also that any intertwining operator acts in the space of C^{∞} vectors \mathscr{H}^{∞} .

We show now how to deduce Proposition 1 (1) from Proposition 1 (2). Assume that (\mathcal{H}, π) does not contain the trivial representation. Take $\varepsilon < 0$ and let P_{ε} be the orthogonal projection in \mathcal{H} corresponding to the characteristic function of the set

$$(-\infty, \varepsilon] \cup Z \subset \widehat{G}.$$

Then it follows from the fact that π has no fixed vector that $\lim_{\varepsilon \to 0} ||P_{\varepsilon}v - v|| = 0$ for every $v \in \mathcal{H}$. Assume that we are given a norm N on \mathcal{H}^{∞} satisfying the conditions (a), (b) of §1.3. Let $-1/4 < \varepsilon < 0$, $\varepsilon = \alpha(\alpha - 1)$, $0 < \alpha < 1/2$ and define $\mathcal{H}_{\varepsilon} = P_{\varepsilon}\mathcal{H}$. Then $P_{\varepsilon}\mathcal{H}^{\infty} = \mathcal{H}^{\infty}_{\varepsilon}$ and we can apply Proposition 1 (2) to the restriction of π to $\mathcal{H}_{\varepsilon}$ and the restriction of N to $\mathcal{H}^{\infty}_{\varepsilon}$. Namely if $F = S \cup \{X_{-}, H\}$ then there is a constant c > 0 such that for all $v \in \mathcal{H}^{\infty}$

$$N(\pi(m_T)P_{\varepsilon}v) \leq cT^{-\alpha} \|P_{\varepsilon}v\|_F.$$

Let $v \in \mathscr{H}^{\infty}$, $\delta > 0$ and choose $\varepsilon > 0$ such that

$$\max_{L\in S} \|P_{\varepsilon} d\pi(L)v - d\pi(L)v\| \leq \delta/c.$$

Writing $v = P_{\varepsilon}v + (v - P_{\varepsilon}v)$ we have

$$N(\pi(m_T)v) \leq N(\pi(m_T)P_{\varepsilon}v) + N(\pi(m_T)(v - P_{\varepsilon}v))$$

and now

$$N(\pi(m_T)(v-P_{\varepsilon}v)) \leq N(v-P_{\varepsilon}v) \leq c \max_{L \in S} \|d\pi(L)(v-P_{\varepsilon}v)\| \leq \delta.$$

Hence

$$N(\pi(m_T)v) \leq c T^{-\alpha} \|P_{\varepsilon}v\|_F + \delta$$

from which it follows that $\limsup_{T\to\infty} N(\pi(m_T)v) \leq \delta$ for each $\delta > 0$. This proves Proposition 1 (1).

Proof of Proposition 1 (2). We begin by defining certain functions on \hat{G} . (1) The function β

(a) on
$$(-\infty, 0]$$
: $-1/4 \le \lambda \le 0$, $\lambda = \beta(\beta - 1)$ and $0 \le \beta \le 1/2$
 $\lambda < -1/4$, $\lambda = \beta(\beta - 1)$ and $\operatorname{Im} \beta \ge 0$
(b) on $Z: \beta(\pm m) = \frac{m}{2}$.

(2) The function $f_y, y \ge 1$

$$f_{y}(\lambda) = \frac{(1-\beta)y^{-\beta} - \beta y^{\beta-1}}{1-2\beta}, \qquad \lambda \leq 0$$

$$f_{y}(\pm m)=y^{-\beta}, \qquad m \ge 2.$$

(3) The function $s_y, y \ge 1$

$$s_{y}(\lambda) = rac{y^{-eta} - y^{eta - 1}}{1 - 2eta}, \qquad \lambda \leqslant 0,$$

$$s_{\mathbf{v}}(\pm m) = 0, \qquad m \ge 2.$$

(4) The function t_y , Y > y > 0, $Y \ge 1$

$$t_y = s_y \quad \text{on} (-\infty, 0] \quad \text{for } y \ge 1,$$

$$t_y = 0 \quad \text{on} \quad (-\infty, 0] \quad \text{for } 0 < y < 1,$$

$$t_y(\pm m) = y^{\beta-1} \left[\frac{\max(1, y)^{1-2\beta} - Y^{1-2\beta}}{1-2\beta} \right] \quad \text{for } y > 0.$$

If F_y , S_y , T_y denote the corresponding intertwining operators on \mathcal{H} it follows from Lemma 1 that for all $v \in \mathcal{H}^{\infty}$, T > 0, Y > 1

$$\pi(m_T)v = F_Y \pi(m_T a(Y))v - \frac{1}{2} S_Y \pi(m_T a(Y)) \, d\pi(H)v + \frac{1}{2T} \int_0^Y dy \, T_y [\pi(n(-T)) - \pi(n(T))] \pi(a(y)) \, d\pi(X_-)v.$$

From this and the properties of N it follows that

$$N(\pi(m_T)v) \leq N(F_Yv) + \frac{1}{2}N(S_Y \, d\pi(H)v) + \frac{1}{T} \int_0^Y dy \, N(T_y \, d\pi(X_-)v)$$
$$\leq c \left[\|F_Yv\|_S + \|S_Y \, d\pi(H)v\|_S + \frac{1}{T} \int_0^Y \|T_y \, d\pi(X_-)v\|_S \, dy \right].$$

Moreover,

$$\|F_{Y}v\|_{S} \leq \|f_{Y}\|_{\infty} \|v\|_{S}, \qquad \|S_{Y} d\pi(H)v\|_{S} \leq \|s_{Y}\|_{\infty} \|d\pi(H)v\|_{S},$$
$$\|T_{y} d\pi(X_{-})v\|_{S} \leq \|t_{y}\|_{\infty} \|d\pi(X_{-})v\|_{S},$$

where the supremum $\| \|_{\infty}$ is taken over $(-\infty, \alpha(\alpha - 1)] \cup Z$. It is now easy to verify from the definitions that

$$\begin{split} \|f_y\|_{\infty} &\leqslant C \frac{(1-\alpha)y^{-\alpha} - \alpha y^{\alpha-1}}{1-2\alpha} \quad y \ge 1, \\ \|s_y\|_{\infty} &\leqslant C \frac{y^{-\alpha} - y^{\alpha-1}}{1-2\alpha} \quad y \ge 1, \\ \|t_y\|_{\infty} &\leqslant C \frac{y^{-\alpha} - y^{\alpha-1}}{1-2\alpha} \quad y \ge 1, \\ \|t_y\|_{\infty} &\leqslant 1, \quad 0 < y < 1, \end{split}$$

where C > 0 is some absolute constant. From this it follows that

$$\|F_{Y}v\|_{S} \leq C \frac{(1-\alpha)Y^{-\alpha} - \alpha Y^{\alpha-1}}{1-2\alpha} \|v\|_{S}$$
$$\|S_{Y} d\pi(H)v\|_{S} \leq C \frac{Y^{-\alpha} - Y^{\alpha-1}}{1-2\alpha} \|d\pi(H)v\|_{S}$$
$$\frac{1}{T} \int_{0}^{Y} dy \|T_{y} d\pi(X_{-})v\|_{S} \leq \frac{1}{T} \|d\pi(X_{-})v\|_{S} + \frac{1}{T} \int_{1}^{Y} dy \left(\frac{y^{-\alpha} - y^{\alpha-1}}{1-2\alpha}\right) \|d\pi(X_{-})v\|_{S}$$

Putting T = Y we obtain Proposition 1 (2).

2.1. Let $S = \Gamma \setminus D^2$ be any hyperbolic surface. A positive measure λ on $\Gamma \setminus PSL(2, \mathbb{R})$ is P = AN quasi invariant if

$$p_*\lambda = \chi(p)\lambda$$
 for all $p \in P$,

where $\chi: P \to \mathbb{R}^+$ is a character of P and $g_*\lambda$ denotes the action of $g \in PSL(2, \mathbb{R})$ on measures. Let $d\theta$ be the Lebesgue measure on $S^1 = \{e^{i\theta}: 0 \le \theta < 2\pi\}$ viewed as the boundary of D^2 . A finite measure v on S^1 is α conformal for Γ if

$$\gamma_* v = j(\gamma)^{\alpha} v \quad \text{for all } \gamma \in \Gamma,$$

where $j(\gamma)$ is the Radon-Nikodym derivative of $\gamma_* d\theta$ with respect to $d\theta$. Here α is a real number (see [S1] for an intrinsic definition).

We show now that there is a natural bijection between the set of *P*-quasi invariant positive measures on $\Gamma \setminus PSL(2, \mathbb{R})$ and the set of positive Γ conformal measures on S^1 . Let λ be a *P*-quasi invariant positive measure on $\Gamma \setminus PSL(2, \mathbb{R})$ and consider its lift $\tilde{\lambda}$ to $PSL(2, \mathbb{R})$. This measure is left Γ invariant and satisfies

(*)
$$\begin{cases} a(y)_*\lambda = y^\beta\lambda & \text{ for all } y > 0\\ n(x)_*\lambda = \lambda & \text{ for all } x \in \mathbb{R}, \end{cases}$$

where g_* denotes the right action of $g \in PSL(2, \mathbb{R})$ on measures on $PSL(2, \mathbb{R})$. Using Iwasawa coordinates on $PSL(2, \mathbb{R})$

$$PSL(2, \mathbb{R}) = K \times A \times N,$$
$$g = k(\theta)a(y)n(x)$$

we obtain a projection $PSL(2, \mathbb{R}) \to A \times N$ with compact fibers. It follows from properties (*) that the direct image of $\tilde{\lambda}$ on $A \times N$ via this projection is the measure

$$c dy y^{-\beta} dx$$
,

where c > 0 is some constant. Therefore there exists for almost all $(y, x) \in \mathbb{R}^+ \times \mathbb{R}$ a probability measure

$$d\mu_{(y,x)}(\theta)$$

on K such that for all continuous functions f on $PSL(2, \mathbb{R})$ with compact support we have

$$\tilde{\lambda}(f) = c \int_0^\infty dy \ y^{-\beta} \int_{-\infty}^\infty dx \int_0^\pi d\mu_{(y,x)}(\theta) f(k(\theta)a(y)n(x)).$$

Using properties (*) again we see that the map

$$(y, x) \rightarrow \mu_{(y, x)}$$

is essentially constant. Let μ be its essential value. It is a probability measure supported on K. In Iwasawa coordinates the visual map is given by

Vis:
$$PSL(2, \mathbb{R}) = T_1 D^2 \to S^1$$

 $k(\theta)a(y)n(x) \mapsto e^{2\pi i \theta}.$

Denote again by μ the direct image of μ on S^1 via Vis. It follows from the left Γ invariance of $\tilde{\lambda}$ that μ is $1 - \beta$ conformal, i.e.,

$$\gamma_* \mu = j(\gamma)^{1-\beta} \mu$$
 for all $\gamma \in \Gamma$.

The inverse of the map $\lambda \rightarrow \mu$ was already considered in the Introduction. It follows also from our description that

supp λ = projection on $T_1 S$ of Vis⁻¹ (supp μ).

2.2. We remark now that in order to show Theorem 1 it suffices to prove

PROPOSITION 2. Let S be a geometrically finite surface without cusps and assume $\delta > 1/2$. If λ is a positive N-invariant ergodic measure supported on \mathscr{F}_c then λ is P-quasi invariant.

Indeed, assume that Proposition 2 is true. Then λ is obtained from an α conformal probability measure on S^1 supported on the limit set $\Lambda \subset S^1$. Then it follows from Sullivan's characterization of Patterson's measure that $\alpha = \delta$ and $v = \mu_P$ [S1, Theorem 8]. In other words, λ is a multiple of the measure μ constructed in the Introduction (C).

2.3. The rest of §2 is devoted to the proof of Proposition 2. We assume from now on that S is geometrically finite without cusps and $\delta > 1/2$. Let $\lambda_k \leq \lambda_{k-1} \leq \cdots \leq \lambda_1 < \lambda_0 = \delta(\delta-1)$ be the eigenvalues of the Laplacian of S in (-1/4, 0]. Consider the unitary representation π of $PSL(2, \mathbb{R})$ in $\mathcal{H} = L^2(\Gamma \setminus PSL(2, \mathbb{R}))$. Then we have the direct sum decomposition

$$(\mathcal{H}, \pi) = \bigoplus_{i=0}^{k} (\mathcal{H}_{\lambda_{i}}, \pi_{\lambda_{i}}) \oplus (\mathcal{H}', \pi')$$

(cf. §1.2 for the definition of $\mathscr{H}_{\lambda}, \pi_{\lambda}$) and

$$\operatorname{supp} \pi' \subset (-\infty, -1/4] \cup Z$$

In particular, the function

$$\varphi_0(h) = \int_{S^1} d\mu_P(\zeta) \left(\frac{1 - |h \cdot o|^2}{|h \cdot o - \zeta|^2} \right)^{\delta}, \qquad o \text{ being the origin of } D^2,$$

is up to scalar multiple the unique K invariant vector in \mathscr{H}_{λ_0} . Viewed as a function on T_1S , φ_0 is also in $L^1(T_1S, \mu)$ where μ is the P-quasi invariant measure associated to the Patterson measure μ_P .

2.4. Before we go into the proof of Proposition 2 we make a preliminary remark. If $\delta = 1$ then φ_0 is an L^2 harmonic function on S which is not identically zero. It follows from [Y] that φ_0 is constant and hence $Vol(S) < +\infty$. Since S is without cusps this implies that S is compact. In this case Theorem 2 (C) shows that all N orbits in T_1S are uniformly distributed with respect to the $PSL(2, \mathbb{R})$ invariant measure on T_1S . This implies that the action of N on T_1S is uniquely ergodic, a result due to H. Furstenberg [F]. We therefore make the further assumption that $\delta < 1$ throughout the rest of the paper.

2.5. We first need to show a certain conservativity property of the action of N on \mathcal{F}_c .

LEMMA 2. Let $F \subset \mathscr{F}_c$ be any compact set. There is a constant $c = c_F > 0$ such that for all $g \in F$ and $\tau \ge 2$

$$\int_1^\tau dx \ x^{-\delta-1} \int_{-x}^x dt \ \varphi_0(gn(t)) \ge c(1+\ln \tau).$$

Proof. (a) It follows from Proposition 1 (2) that for all x > 0 and all $g \in T_1S$

$$\int_{-x}^{x} \varphi_0(gn(t)) \, dt \leqslant c x^{\delta},$$

where c > 0 is some positive constant. In particular

$$\int_1^\infty dx \ x^{s-1} \int_{-x}^x \varphi_0(gn(t)) \ dt$$

converges for all $s < -\delta$.

(b) We show now that there is a constant $c = c_F > 0$ such that for all $g \in F$ and $-1 < s < -\delta$

$$\int_1^\infty x^s [\varphi_0(gn(x)) + \varphi_0(gn(-x))] \, dx \ge \frac{c}{|s+\delta|} \, .$$

We use the following representation of φ_0 :

$$\varphi_0(h) = \int_{S^1} d\mu_P(\zeta) j(h, \zeta)^{\delta}$$

where

$$j(h, \zeta) = \frac{1 - |h \cdot o|^2}{|h \cdot o - \zeta|^2}$$

hence

$$\varphi_0(gn(x)) = \int_{S^1} d\mu_P(\zeta) j(g, \zeta)^{\delta} j(n(x), g^{-1}\zeta)^{\delta}.$$

We can assume g to be in a fixed compact set \tilde{F} in $PSL(2, \mathbb{R})$. Then $j(g, \zeta)^{\delta}, \zeta \in S^1$, is between two positive constants so that we are reduced to consider

$$\int_{S^{1}} d\mu_{P}(\zeta) \int_{1}^{\infty} dx \, x^{s} \{ j(n(x), g^{-1}\zeta)^{\delta} + j(n(-x), g^{-1}\zeta)^{\delta} \}$$
$$= \int_{S^{1}} d\mu_{P}(\zeta) \{ u(g^{-1}\zeta) + u(\overline{g^{-1}\zeta}) \}$$

where

$$u(e^{i\theta}) = 4^{\delta} \int_{1}^{\infty} \frac{x^{s} dx}{[2x^{2}(1 - \cos\theta) - 4x \sin\theta + 4]^{\delta}}$$
$$= (\sin^{2}(\theta/2))^{-\delta} \int_{1}^{\infty} \frac{x^{s} dx}{[(x - \operatorname{ctg}(\theta/2))^{2} + 1]^{\delta}}$$

(recall that $n(x) \cdot o = x/(2i + x)$).

A few computations show that there is a constant c > 0 such that

(*)
$$u(e^{i\theta}) + u(e^{-i\theta}) \ge c|\theta|^{-s-2\delta}, \quad |\theta| \le \pi.$$

Let d be the K invariant metric on S^1 . There is a constant c > 0 such that for all $g \in \tilde{F}$ and $\zeta, \zeta' \in S^1$

$$c^{-1} d(\zeta, \zeta') \leqslant d(g\zeta, g\zeta') \leqslant cd(\zeta, \zeta')$$

Therefore, it follows from (*) that for all $\zeta \in S^1$

$$u(g^{-1}\zeta) + u(\overline{g^{-1}\zeta}) \ge cd(\zeta, \xi)^{-s-2\delta}, \qquad \xi = g \cdot 1.$$

From this it follows that there is a constant c > 0 such that for all $g \in F$ and $-1 < s < -\delta$

$$\int_{1}^{\infty} x^{s} [\varphi_{0}(gn(x)) + \varphi_{0}(gn(-x))] dx \ge c \int_{S^{1}} d\mu_{P}(\zeta) d(\zeta, \zeta)^{-s-2\delta}$$

Now if $I(\xi, r)$ is the interval of radius r about ξ an integration by parts shows that

(***)
$$\int_{S^1} d\mu_P(\zeta) \, d(\zeta,\,\zeta)^{-s-2\delta} \ge (s+2\delta) \int_0^{\pi} t^{-s-2\delta-1} \mu_P(I(\zeta,\,t)) \, dt \, .$$

Note that $g \in \mathscr{F}_c$ is equivalent to $g \cdot 1 = \xi \in \Lambda$. From [S2, §7] and the fact that S is convex cocompact we deduce that there is a constant c > 0 such that for all $\xi \in \Lambda$ and $0 \leq r \leq \pi$

$$c^{-1}r^{\delta} \leq \mu_P(I(\xi, r)) \leq cr^{\delta}.$$

Putting this into (***) and using (**) we obtain the claim (b).

(c) Now we prove the Lemma. Let $-1 < s < -\delta$ and $\tau \ge 2$:

$$\int_{1}^{\tau} dx \ x^{-\delta-1} \int_{-x}^{x} \varphi_{0}(gn(t)) \ dt$$

$$\geqslant \int_{1}^{\tau} dx \ x^{s-1} \int_{-x}^{x} \varphi_{0}(gn(t)) \ dt$$

$$= \int_{1}^{\infty} dx \ x^{s-1} \int_{-x}^{x} \varphi_{0}(gn(t)) \ dt - \int_{\tau}^{\infty} dx \ x^{s-1} \int_{-x}^{x} \varphi_{0}(gn(t)) \ dt$$

using (a) we obtain

$$\int_{\tau}^{\infty} dx \ x^{s-1} \int_{-x}^{x} \varphi_0(gn(t)) \ dt \leq \frac{c\tau^{s+\delta}}{|s+\delta|} \ .$$

On the other hand

$$\int_{1}^{\infty} dx \ x^{s-1} \int_{-x}^{x} \ \varphi_{0}(gn(t)) \ dt = (-s^{-1}) \int_{-1}^{1} \ \varphi_{0}(gn(t)) \ dt$$
$$+ (-s^{-1}) \int_{1}^{\infty} x^{s} [\varphi_{0}(gn(x)) + \varphi_{0}(gn(-x))] \ dx$$
$$\geqslant \frac{c|s|}{|s+\delta|} \qquad \text{using (b)}.$$

Hence

$$\int_1^\tau dx \ x^{-\delta-1} \int_{-x}^x \varphi_0(gn(t)) \ dt \ge \frac{c_1 - c_2 \tau^{s+\delta}}{|s+\delta|} \, .$$

Choosing $|s + \delta|$ of size $1/\ln \tau$, we obtain the Lemma.

LEMMA 3. Let $\varphi \in C_K^{\infty}(S)$ and consider it as a function on T_1S . Then we have

$$\lim_{\tau \to \infty} \frac{\int_{1}^{\tau} dx \, x^{-\delta - 1} \int_{-x}^{x} \varphi(gn(t)) \, dt}{\int_{1}^{\tau} dx \, x^{-\delta - 1} \int_{-x}^{x} \varphi_0(gn(t)) \, dt} = \frac{\langle \varphi, \varphi_0 \rangle}{\|\varphi_0\|^2}$$

uniformly on compact sets in \mathcal{F}_c .

Proof. Let $\varphi = \langle \varphi, \varphi_0 \rangle (\varphi_0 / \|\varphi_0\|_2^2) + \varphi_{\perp}$, where φ_{\perp} is orthogonal to \mathscr{H}_{λ_0} . It follows from Proposition 1 (2) applied to φ_{\perp} and the orthogonal of \mathscr{H}_{λ_0} in $L^2(\Gamma \setminus PSL(2, \mathbb{R}))$ that

$$\sup_{g \in T_1S} \left| \frac{1}{x} \int_{-x}^x \varphi_{\perp}(gn(t)) dt \right| \leq c(S, \varphi_{\perp}) \frac{x^{-\alpha_1} - x^{1-\alpha_1}}{1 - 2\alpha_1},$$

where $0 < \alpha_1 \leq 1/2$, $\alpha_1(\alpha_1 - 1) = \lambda_1(S)$ if $\lambda_1(S) > -1/4$ and $\alpha_1 = 1/2$ if Spec $\Delta_S \cap (-1/4, 0] = \{\lambda_0\}$. In any case we have $\delta + \alpha_1 > 1$ and hence for $\tau \to \infty$

$$\int_{1}^{\tau} dx \, x^{-\delta-1} \int_{-x}^{x} \varphi(gn(t)) \, dt = \frac{\langle \varphi, \varphi_0 \rangle}{\|\varphi_0\|^2} \int_{1}^{\tau} dx \, x^{-\delta-1} \int_{-x}^{x} \varphi_0(gn(t)) \, dt + O(1).$$

Dividing by $\int_{1}^{t} dx \ x^{-\delta-1} \int_{-x}^{x} \varphi_0(gn(t)) dt$ and using Lemma 2 enable us to conclude the proof.

Remark. It follows from the proof of Lemma 3 that if $\varphi \in C_K^{\infty}(S)$, $\varphi \ge 0$, $\varphi \ne 0$, then there is a constant c > 0 such that for all $\tau \ge 2$ and $g \in \mathscr{F}_c$

$$\int_{1}^{\tau} dx \ x^{-\delta-1} \int_{-x}^{x} \varphi(gn(t)) \ dt \ge c(1+\ln \tau)$$

from which it follows easily that

$$\limsup_{\tau\to\infty}\frac{1}{\tau^{\delta}}\int_{-\tau}^{\tau}\varphi(gn(t))\,dt>0.$$

On the other hand we know from Proposition 1 (2) that this last quantity is bounded, so that one may ask if

$$\frac{1}{\tau^{\delta}}\int_{-\tau}^{\tau}\varphi(gn(t))\,dt>0$$

has a limit as $\tau \to \infty$. The following example shows that this is not always the case.

Let S be geometrically finite with one expanding end and without cusps. Let $g \subset S$ be a closed geodesic distinct from the closed geodesic bounding the expanding end. We represent $S = \Gamma \setminus \mathbb{H}^2$ as the quotient of the upper half plane \mathbb{H}^2 in such a way that the geodesic x = 0 is a lift of g. Let $\Lambda \subset \mathbb{R} \cup \{\infty\}$ be the limit set of Γ . By construction $\infty \in \Lambda$. Let $C(\Lambda)$ be the convex hull of Λ and $S_0 = \Gamma \setminus C(\Lambda)$. In our example we take $g = e, \varphi \in C_K^\infty(S), \varphi$ nonnegative and with support in S_0 . We can assume that

$$\limsup_{\tau\to\infty}\frac{1}{\tau^{\delta}}\int_0^{\tau}\varphi(gn(t))\,dt>0.$$

Consider $t \to \Gamma en(t)$, the N orbit of Γe in $\Gamma \setminus PSL(2, \mathbb{R})$ and let c(t) be its projection on S. We denote by $t_1 < t'_1 < t_2 < t'_2 < \cdots$ the sequence of times t, t > 0, at which c(t) crosses the boundary of S_0 , so that c(t) leaves S_0 at t_n for all $n \ge 1$. By construction we have

(*)
$$\frac{1}{t_n^{\prime\delta}} \int_0^{t_n^\prime} \varphi(gn(t)) dt = \left(\frac{t_n}{t_n^\prime}\right)^{\delta} \frac{1}{t_n^{\delta}} \int_0^{t_n} \varphi(gn(t)) dt.$$

Let h be the geodesic bounding S_0 and let \tilde{h} be some lift of h contained in $\{z \in \mathbb{H}^2 : x > 0\}$. Let $\langle \gamma \rangle$ be the subgroup of Γ of elements with axis x = 0. Then $\gamma^n(\tilde{h})$ is a sequence of lifts of h and for $n \ge n_0$, $\gamma^n(\tilde{h})$ intersects the horocycle

$$\{i+t:t>0\}\subset \mathbb{H}^2.$$

Let $i + s_n$, $i + s'_n$, $s_n < s'_n$ be the two intersection points. An explicit computation shows that $\lim_{n\to\infty} (s'_n|s_n) = b|a$ where a < b are the end points of \tilde{h} . On the other hand, $(s_n, s'_n)_{n=1}^{\infty}$ is a subsequence of $(t_n, t'_n)_1^{\infty}$. Using this and (*) we conclude that

$$\liminf_{\tau\to\infty}\frac{1}{\tau^{\delta}}\int_0^{\tau}\varphi(gn(t))\,dt<\limsup_{\tau\to\infty}\frac{1}{\tau^{\delta}}\int_0^{\tau}\varphi(gn(t))\,dt\,.$$

In the sequel we will need the following version of Hopf's ergodic theorem: Given a locally compact, σ -compact topological space X with a continuous \mathbb{R} action

$$\mathbb{R} \times X \to X$$
$$(t, x) \mapsto xn(t),$$

let v be a positive N invariant ergodic Radon measure on X and assume that there exists an everywhere positive function $g \in L^1(X, v)$ such that for v almost all $x \in X$

$$\int_{-\infty}^{\infty} g(xn(t)) \, dt = +\infty \, ,$$

then:

THEOREM. (Hopf [H]) For all $f \in L^1(X, v)$ we have for v almost all $x \in X$

$$\lim_{t\to\infty}\frac{\int_{-\tau}^{\tau}f(xn(t))\,dt}{\int_{-\tau}^{\tau}g(xn(t))\,dt}=\frac{\int f(x)\,d\nu(x)}{\int g(x)\,d\nu(x)}\,.$$

Using this ratio ergodic theorem we can prove

LEMMA 4. Let v be an N invariant positive ergodic measure on \mathscr{F}_c . Then v is an eigenmeasure of the Casimir operator of eigenvalue λ_0 : for all $f \in C_K^{\infty}(T_1S)$ we have

$$\int_{T_1S} d\pi(w)f(g) \, d\nu(g) = \lambda_0 \int_{T_1S} f(g) \, d\nu(g).$$

Proof. It is sufficient to show that if $f \in C_K^{\infty}(T_1S)$ is orthogonal to \mathscr{H}_{λ_0} then

$$\int_{T_1S} f(g) \, d\nu(g) = 0.$$

Choose an everywhere positive continuous function $\psi \in L^1(T_1S, v)$. Fix some nonnegative function $\varphi \in C_K^{\infty}(S)$, $\varphi \neq 0$ and consider it as a function on T_1S . Then $\psi \ge c\varphi$ for some positive constant c. It follows from Lemma 3 that for all $g \in \mathscr{F}_c$

(*)
$$\int_{1}^{\infty} dx \, x^{-\delta-1} \int_{-x}^{x} \psi(gn(t)) \, dt = +\infty \, .$$

In particular $\int_{-\infty}^{\infty} \psi(gn(t)) dt = +\infty$.

Now it follows from Hopf's ergodic theorem and (*) that for v almost all $g \in \mathscr{F}_c$

$$\lim_{\tau \to \infty} \frac{\int_{1}^{\tau} dx \, x^{-\delta - 1} \int_{-x}^{x} f(gn(t)) \, dt}{\int_{1}^{\tau} dx \, x^{-\delta - 1} \int_{-x}^{x} \psi(gn(t)) \, dt} = \lim_{\tau \to \infty} \frac{\int_{1}^{\tau} dx \, x^{-\delta - 1} h(x) \int_{-x}^{x} \psi(gn(t)) \, dt}{\int_{1}^{\tau} dx \, x^{-\delta - 1} \int_{-x}^{x} \psi(gn(t)) \, dt},$$

where

$$h(x) = \frac{\int_{-x}^{x} f(gn(t)) dt}{\int_{-x}^{x} \psi(gn(t)) dt},$$

and this last limit equals

(**)
$$\lim_{x \to \infty} h(x) = \frac{\int f(g) \, d\nu(g)}{\int \psi(g) \, d\nu(g)}.$$

If $f \in C^{\infty}_{K}(T_1S)$ and is orthogonal to \mathscr{H}_{λ_0} we apply Proposition 1 (2) to find that for all $g \in T_1S$

$$\left|x^{-\delta-1}\int_{-x}^{x}f(gn(t))\,dt\right|\leqslant cx^{-(\delta+\alpha_1)},$$

where $\delta + \alpha_1 > 1$ and hence

$$\int_1^\infty dx \, x^{-\delta-1} \int_{-x}^x f(gn(t)) \, dt < +\infty \, .$$

It follows now from (**) that $\int f(g) dv(g) = 0$.

800

2.5.

Proof of Proposition 2. Let v be an N invariant positive ergodic measure on \mathscr{F}_c . Let $f \in C_K^{\infty}(T_1S)$ and consider

$$u(n(x)a(y)k(\theta)) = \int_{T_1S} \pi(n(x)a(y)k(\theta))f(g) \, d\nu(g).$$

It follows from Lemma 4 that u satisfies

$$y^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-y\frac{\partial^{2} u}{\partial x \partial \theta}=\lambda_{0}u.$$

But u is also left N invariant hence

$$y^2 \frac{\partial^2 u}{\partial y^2} = \lambda_0 u$$

in particular there are constant $c_1(f)$, $c_2(f)$ such that for all y > 0

(*)
$$\int_{T_1S} \pi(a(y))f(g) \, dv(g) = c_1(f)y^{\delta} + c_2(f)y^{1-\delta}.$$

From this equality we deduce that $f \to c_1(f)$, $f \to c_2(f)$ are positive N invariant Radon measures and $v = c_1 + c_2$. Since v is ergodic there are numbers α , $\beta \ge 0$, $|\alpha| + |\beta| > 0$ such that

(**)
$$\alpha c_1(f) = \beta c_2(f)$$
 for all $f \in C_K(T_1S)$.

On the other hand it follows from (*) that

$$c_1(\pi(a(y))f) = y^{\delta}c_1(f)$$

$$c_2(\pi(a(y))f) = y^{1-\delta}c_2(f).$$

Hence (**) is only possible if $\alpha = 0$ or $\beta = 0$, so $c_1 = 0$ or $c_2 = 0$. This proves Proposition 2.

2.6.

Proof of the Corollary. Consider the following family of measures

$$V_{g,T}(\varphi) = \frac{\int_1^T dx \ x^{-\delta-1} \int_{-x}^x \varphi(gn(t)) \ dt}{\int_1^T dx \ x^{-\delta-1} \int_{-x}^x \varphi_0(gn(t)) \ dt}, \qquad g \in \mathscr{F}_c, \qquad T \ge 2.$$

Since φ_0 has a positive lower bound on each compact set of T_1S , it follows that the set

$$\{V_{q,T}: g \in \mathscr{F}_c, T \ge 2\}$$

is relatively compact in the vague topology of $\mathcal{M}(T_1S)$. Suppose that the Corollary is false. Then there exists a compact set $F \subset \mathscr{F}_c$, sequences $(g_n)_{n=0}^{\infty} \subset F$, $T_n \to \infty$, a function $\varphi \in C_K^{\infty}(T_1S)$ and $\varepsilon > 0$ such that for all $n \ge 0$

(*)
$$|V_{g_n,T_n}(\varphi) - \mu(\varphi)/||\varphi_0||^2| \ge \varepsilon.$$

Let v be an accumulation point of the sequence $(V_{q_n,T_n})_{n=1}^{\infty}$. From the fact that

$$\lim_{\tau\to\infty}\int_1^\tau dx\;x^{-\delta-1}\int_{-x}^x\varphi_0(gn(t))\;dt=+\infty$$

uniformly on compact sets in \mathscr{F}_c (Lemma 2) it follows easily that v is N invariant and supported on \mathscr{F}_c . Hence $v = \lambda \mu$, where $\lambda \ge 0$ is some constant. From Lemma 3 it follows that for all $\psi \in C_K^{\infty}(S)$

$$\int \psi(g) \, d\nu(g) = \frac{\langle \psi, \varphi_0 \rangle}{\|\varphi_0\|^2} = \frac{\mu(\varphi)}{\|\varphi_0\|^2} \, .$$

Hence $\lambda = 1/\|\varphi_0\|^2$ which contradicts (*).

REFERENCES

- [A] THIERRY AUBIN, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Grundlehren 252, Springer-Verlag, New York, 1982.
- [B] N. BOURBAKI, Topological Vector Spaces, Chapters 1–5, Springer-Verlag, Berlin; New York, 1987.
- [Br] R. BROOKS, The bottom of the spectrum of a Riemannian covering, J. für die Reine und Angew. Math. 357 (1985), 101–114.
- [D1] S. G. DANI, Invariant measures of horospherical flows on noncompact homogeneous spaces, Invent. Math. 47 (1978), 101–138.
- [D2] ——, On invariant measures, minimal sets, and a lemma of Margulis, Invent. Math. 51 (1979), 239–260.
- [DPRS] J. DODZIUK, T. PIGNATARO, B. RANDOL, AND D. SULLIVAN, Estimating small eigenvalues of Riemann surfaces, Contemp. Math. 64 (1987), 93-121.
- [D] J. DIXMIER, C*-Algebras, North Holland, New York, 1982.
- [F] H. FURSTENBERG, "The unique ergodicity of the horocycle flow", in Recent Advances in Topological Dynamics, Springer Lecture Notes 318, Springer-Verlag, New York, 1973.
- [H] E. HOPF, Ergodentheorie, Springer, Berlin, 1937.
- [H-M] R. HOWE AND C. C. MOORE, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72–96.
- [L] S. LANG, SL(2, R), Addison-Wesley, Reading, Mass., 1975.
- [P] S. J. PATTERSON, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.

802

- [R] M. RATNER, Invariant measures of unipotent translations on homogeneous spaces, Preprint, 1989.
- [S1] D. SULLIVAN, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math 50 (1979), 171–209.
- [S2] ——, Entropy, Hausdorff dimension old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259–277.
- [S3] ——, Related aspects of positivity in Riemannian geometry, J. Diff. Geom. 25 (1987), 327–351.
- [Y] S. T. YAU, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305 CURRENT ADDRESS: INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540