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Introduction 

Let M be a connected surface of finite topological type (g, p, f )  i.e. M is obtained 
by removing p points and f topological discs from a compact surface of genus 
g>0.  We denote by J l (g ,  p, f )  the space of isometry classes of complete metrics 
of curvature - 1 on M. 

The Laplace operator A of a surface Ss~ ' ( g ,  p, f )  acts on Cgo(S) the space 
of C~-functions with compact support and has a unique extension to an 
unbounded self-adjoint operator on L2(S). The essential spectrum of A is con- 
tained in [1/4, + oo) so that Spec A n [0, 1/4) consists only of eigenvalues (see 
[DPRS] and 1.2). Moreover there are at most 4 g + 2 p + 3 f - 2  eigenvalues of 
A in [0, 1/4) and there exists a positive constant /~ only depending on (g, p, f)  
such that the number of eigenvalues in [0,/~] is at most 2 g + p + f - 2 .  

The aim of this work is to determine the behaviour of Spec A s near 0 in 
function of S e ~ ' ( g , p , f ) .  For  this we cover the infinite part of J / / (g ,p , f )  by 
a finite number of "cusp neighborhoods". Each neighborhood is canonicaly 
associated to a finite graph. Then we show that the first order behaviour of 
Spec As~ [-0, e] for S in such a neighborhood is given by the spectrum of a 
combinatorial Laplacian (see Theor. 1.1 and Theor. 1.2). Partial results in this 
direction were obtained by B. Colbois [B.C.], P. Gall [P.G.] and myself [B]. 
Such results were used by B. Colbois and Y. Colin de Verdi6re [-C, CdV] to 
construct examples of surfaces whose second eigenvalue 22 has large multiplicity. 
They obtain for all g > 2 examples of compact surfaces with genus g and multi- 

plicity of 21 of size ] / /~/2.  Known bounds on the multiplicity of 22 (for small 
22) are deduced from the fact that there are at most 2 g - 2 + p + f  small eigen- 
values [DPRS].  It follows also from the work of G. Besson [G.B.] that if S 
is of signature (g, p , f )  then 4g + 3 is a bound for the multiplicity of 22. 

We will apply our result on the behaviour of small eigenvalues to reduce 
the problem of bounding the multiplicity of 22 (for 21 small) to the problem 
of bounding the multiplicity of the second eigenvalue of a weighted graph. The 
later problem will be discussed in part 2 of our paper. 
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The output of this method is that we can bound the number of eigenvalues 
in very small intervals around 22(S) by } [ 2 g - 2 + p + f ] + 2  (see Coroll. 1.1, 
1.2). In particular this gives a non-trivial bound on the multiplicity of 22(S) 
for 22 smaller than a constant only depending on (g, p,f). 

1 Behaviour of small eigenvalues 

I.I Statement of the results 

Let S be a Riemann surface of signature (g,p,f)  with 2 g - 2 + p + f >  1. Denote 
by 

LSp(S)={I~ <=I2 <: ...} 

the length spectrum of S i.e. the set of lengths of closed geodesics counted 
according to their multiplicity. Let r(S)= ll (S). The statement of the behaviour 
of small eigenvalues of S depends on a description of the set of surfaces S 
in Jg(g, p,f) for which r(S) is small. To do this we now define the cusp neighbor- 
hoods in JC/(g, p, f) .  

Cusp neighborhood: given a Riemann surface S we call partition of S any subset 
A c S  which is the union of simple closed pairwise non-intersecting geodesics. 
To such a partition A c S  we associate a pair (if, co) consisting of a graph 
N=(V,E)  and a function co: V ~ N  a defined in the following way: the set of 
vertices V is the set of connected components of S\A.  Each geodesic 7 c A  
is represented by an edge eeE connecting the vertices corresponding to the 
components of S \A  joined by 7. 

The function co: V - , N  3 associates to a vertex v~V the signature (g~,Pv,fv) 
of the component represented by v. 

Given (g, p, f )  with 2 g - 2  + p + f  =>1 it is easily verified that the pairs (if, co) 
arising in this way are completely characterised by the following properties: 

1.) ~q =(V, E) is a connected graph 
2.) co: V ~ N  3 is a map such that co(v)=(gv, pv,f~) verifies 2 g ~ - 2 + p v + f v > 0  

with equality if and only if (gv, Pv, f~) = (0, 0, 2). 
3.) ~po=p, Y',f~=21El+f 
4.) Let d: V ~ N  be the degree function of f# where loops are counted twice. 

Then d(v)<f~ for all v~ V. 
5.) ~ g v +  fl~ (f#)= g where fl~ (f#) is the first Betti number of N. 

Two pairs (f#, co), (~e ct) are called isomorphic if the graphs f# ~ ~e are isomorphic 
and the functions co, ct correspond one to another under this isomorphism. Let 
us denote by C~(g, p,f) the (finite) set of isomorphism classes of such pairs. 

Given a Riemann surface S and a partition A c S we let: 

l(A) = max {l(~,): 7 simple closed, ~. c A} 

L(A) = min {2 arcsh 1, l(t/): q closed geodesic t/c~ A = 0} 

For  [ff , col e Cg(g, p,f) and e > 0 we define V, [ff , col c JtZ (g, p, f )  as the set of Rie- 
mann surfaces S such that there exists a partition A c S with associated pair 
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isomorphic to (if, ~o) and l (A)/L(A)< 8, modulo the relation identifying isometric 
surfaces. 

The fact that there are at most 3 g - 3  + p + 2 f  simple closed geodesics of 
length smaller than 2 arcsh 1 (see 1.2) has the following easy consequence: 

{ S ~ [ ( g ,  p , f ) :  r(S) <8} ~ U V~[ff, ~n] 

where e < l ,  63s-3+p+2S=e/2arcsh 1 and the union is taken over all cusps 
if#, m]eCg(g, p,f) .  In particular if f = 0  the complement of the union of all cusp 
neighborhoods is compact in ~ '  (g, p, 0). 

Behaviour of small eigenvalues: Let S ~ / g  (g, p, f) .  We denote by 21 < 22 < ... _-< 2k 
the eigenvalues of A s in [0, 1/4). For  later purpose we also define: 

"~k+ 1 =inf{2: 2ESpec As~(,~.k, o0)}. 

Suppose that S is a surface representing an element in V~ [ff, ~o]. Then S defines 
on the edge set E of ff an obvious length function l :E-- .~.  + and a function 
m: V~]N defined by m ( v ) = 2 g v - 2 + p v + f v  if v corresponds to a component 
of finite volume and m(v)= 1 otherwise. 

In this way we obtain a weighted graph G =(if,  m,/) (see Chap. 2 for defini- 
tions) and a distinguished subset 

P = {rE V: d(v) <f~} 

representing the set of unbounded components. Let: 

2~(G)<izP(G)< ... <2~(G), N = [ V \ P [  

be the spectrum of (G, P) as defined in 2.1. 

Theorem 1.1. For all Se V~ [~, c~] and all e < ~t 1 we have: 

1 ( 1 - - ~ 2 1 , / - e ) < ~ <  l ~ ( l + ~ 3 ~ : l n c  ) 
2n2 v -  = 2 i ( G ) - - 2 n  2 

where G is the weighted graph attached to S, 1 < i <  N, N = IV\P] and ~1, ~2, ~3 
are positive constants only depending on (g, p, f) .  

In order to prove Theorem 1.1 we will prove a slightly stronger result whose 
statement needs some preliminary remarks. 

It is a fundamental result due to [SWY] in the compact case and [DPRS] 
in the general case that the size of eigenvalues of A in [-0, 1/4) is controlled 
by the lengths of small closed geodesics. More precisely: 

(a) There exists a positive constant fl=fl(g, p , f )  such that the number of eigen- 
values of A in [0, fl] is at most 2 g + p + f - 2 .  
Fix 0 < p__< 2 arcsh 1. Let L~(S) be the minimum sum of lengths of simple 
closed geodesics of length < #  separating S into j +  1 components where 
we regard the union of all pieces of infinite volume as a single component. 

(b) I f 2 j <  1/4 then fix Lj(S)~2j<fl2 Lj(S) 
(c) If fl~ Lj(S) < 1/4 then A has at least j eigenvalues in 1-0, 1/4) and (b) holds. 

Here fl~, f12 are positive constants which depend only on (g, p, f ,  #). 
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Let us draw a consequence of this Theorem. Define for l < j < 2 g - 2 + p + f  
and 3 > 0 :  

jC/ j ,a={S~j /g(g ,p , f ) :2 j (S)<f l3  and 2 j2 j+~<3} 

where 

f13 = min (fl~ [4 f12 (3 g -  3 + p + 2 f ) ]  - 1, fll/~, 1/4) 

and for a surface S: 

Geod (~:) = {Y: closed geodesic in S of length 1(7) < ~} 

then we have: 

Lemma O. 
(a) Let 3 <4fl3 and SeJ/gj, a. Then Geod()~j/fll ) cuts S into j +  1 pieces exactly. 

1 
(b) Let e<=fl and 3-~'(g,/fl)2g +p+f-2 then 

{ S e ~ l  (g, p, f ) :  A s has at least k eigenvalues in (0, el} 

2 g - 2 + p + f  
is contained in ~ "/r 

j=k 
Proof. (a) That Geod(2jf l l )  cuts S into at least j +  1 pieces follows from L~(S) 
< 2j/fll. Suppose that there are more than j + 1 pieces. Then f12 Lj+ x (S) <(3 g 
+ p + 2 f - -  3) f12 2j i l l  < 1/4 since there are at most 3 g + p + 2 f -  3 closed geodes- 
ics of length smaller than # (cf. 1.2). Thus 2j+ i <  1/4 and 2j+ ~< f12 L j+ 1(S)<(3 g 
-- 3 + p + 2 f )  f12 2j/fl~ which contradicts the assumption that 2j/2j + ~ < 3 < 4 f13. 

(b) Let SpecAc~[0, 1/4)={2~ 1 < 2 2 ~  ... <=2k<)~k+l<= ... ~2,}. If r > 2 g - - 1  
+ p + f  then: 

2j 2g 2 + p + f  pq._f} 2g-~iP+f ( 2j ) 
min { ( 2 ~ +  1 ) - : k < j < e g - 2 +  

= = j=k \'~j+l/ 
2k 

"~2g-- I + p + 2 f  
~/~ 

which shows that S ~ r j , ~  for somej=>k. 
If r =< 2 g - 2 + p + f  an analogous argument shows that S e Jr for some j => k 

and 32g-2+P+f<4g<g/fl. Q.E.D. 

This being said we will prove 

Theorem 1.2. Let j, 1 < j < 2 g - 2 + p + f and S ~ ~j ,~ .  Let  G be the weighted graph 
associated to the partition Geod(2jf l0 .  Then: 

1 (l_~2V~) < Ri(S)< 1_(1+c% 31n6) 
2a "2 = 2/e(G) = 27t 

for  all 3<=oq and 1 <=i6j. Here ~ ,  ~2, ~3 are positive constants only depending 
on (g, p, f ) .  



Riemann surfaces and graphs 399 

Remark. 1.) In general Se~' j ,a  does not imply that S belongs to the cusp neigh- 
borhood defined by the partition Geod(2 j f lO .  

2.) Let Se~'~[N, co] and let A be the corresponding partition. Let j be the 
number of bounded components of S \ A .  Then it is clear that for ~. small 
A c G e o d ( 2 j f l l ) .  Moreover it is also easily checked that 2j/2~+l_<c.e where 
c is some constant depending only on (g, p, f ) .  This shows that J/{~ [(g, co] c J//j,a 
where &=c.e .  Since Geod(2 / f l0  cuts S into j bounded components as does 
A, both associated weighted graphs have the same spectrum. This shows that 
Theor. 1.2 implies Theor. 1.1. 

3.) Lemma 0 b.) and Theorem 1.2 show that for ~ sufficiently small the first 
order behaviour of Spec A s c~ [0, el is given by the spectrum of a weighted graph 
associated to some partition A c S. 

In Chap. 2 we will obtain upper bounds on the multiplicity of the second eigen- 
value of a weighted graph. These bounds together with Theor. 1.2. will imply 
the following 

Corollary 1.1. Let  e: [0, 1/4]--+[0, 1/41 be any function such that lime.(x)=0. 
) c ~ 0  

There exists a constant c = c(g, p, f ,  ~)> 0 such that f o r  all surfaces S for  which 
22(S)<c we have: 

ISpec Asc~ [22, 22(1 + ~(&))]l < 2 1 2 g - 2 + P + f ]  + 2. 

In particular the same bound holds for  the multiplicity of  22 (S). 

Example. There exists a constant K(g)> 0 and a sequence of compact surfaces 
S, of genus g > 2  such that lim 22(S,)=0 and the number of eigenvalues in 

n ~ o o  

[22,22(1+K ]~2)]  is at least g - 1 .  These surfaces are modelled on a star on 
g vertices (see Example 2.1) and all small geodesics have the same length. This 
example shows that the estimate of Corollary 1.1 has the true order of magnitude 
in g. However for the multiplicity of J[2(S) it is conjectured that it does not 

exceed I/g, at least if S is compact (see [C, CdV]). 
The next corollary shows that if the eigenvalues 2i(S), 2 < i < 2 g - 2 + p + f  

are all of the same size then one has a bound on the number of eigenvalues 
in [22,21(1 + e,(22))] which depends only on the genus of S. 

Corollary 1.2: Let e: [0, 1/4] ~ E0, 1/4] be any funct ion such that lim e(x)=0 
x ~ 0  

and let K > O. Then there is a constant c = c (e, K,  g, p, f )  > 0 such that if  22 (S) < c 
and 22~_ 2+p+ s ( S ) < K 2 2 ( S )  we have: 

ISpec Ash [2z, 22(1 + e(22))]1 < g + 3 .  

1.2 Preliminaries 

Here we collect some well-known facts about the geometry and the spectrum 
of geometrically finite Riemann surfaces. 
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1.2.1 Let S~;g (g ,p , f ) .  Then according to [Bu] any closed geodesic of length 
l < 2 arcsh 1 is simple and there are at most 3 g - 3 + p + 2 f simple closed geodes- 
ics of length < 2 arcsh 1. 

Collar theorem (see [R, Bu]). Let y be a simple closed geodesic on S of length 
l=  I(7) and let d(p, y) denote the distance of a point p~S to 7. Then: 

C~ ={pES:  

is a topological cylinder isometric to 

sh d(7, p) s h / <  1} 

1 
[--d,, d~3 • lR/Z withmetric dx2+12ch2xdO 2 where s h d , = l / s h  i .  

Moreover if 7, tl are (simple) closed geodesics of length l ~ 2 arcsh 1 then 

C~c~ C,=0.  

For more detailed information about the geometry of such surfaces we refer 
the reader to [DPRS] w 4, [Be, Bu]. 

1.2.2 Let S e J t ( g , p , f )  and S o c S  be a connected surface with smooth compact 
boundary. The Laplacian A acts in the space of C2-functions on So which are 
with compact support and with vanishing normal derivative on ~So. It has 
an extension to a self-adjoint operator A, on L2(So). Then one proves exactly 
as in ([DPRS] Lemma 3.2) that the essential spectrum of A, is contained in 
[1/4, + ~).  Suppose that each boundary component y ~ OSo has a neighborhood 
which is isometric to 

[a, b] x IR/2~ with metric d x  2 + I  2 ch2x  d0 2 

for some l < 2  arcsh 1 and b - a > 1 ,  b>a>O. Then, along the same lines that 
in [DPRS] one can show that the small eigenvalues of A, are controlled in 
terms of the small simple closed geodesics contained in So. 

We introduce one further notation: 

#1(So) is the infimum of the LE-spectrum of A.. If Vol(So)< + oc then/~1 (So) =0  
and /~2(So) denotes the infimum of the LE-spectrum of the operator A. acting 
in the space of LE-functions of mean zero. 

1.3 Proof of Theorem 1.2: the upper bound 

The upper bound of Theor. 1.2 follows essentially from work of B. Colbois 
and Y. Colin de Verdi6re. (see [C, CdV]). Our treatment differs from theirs 
in that it gives an improvement of a In e-factor in the final result. We recall 
the main facts for the convenience of the reader. 

1.3.1 Let e=<2 arcsh 1 and G~=(V,E, m, 1) be the weighted graph associated to 
Geod(e). We identify R e [ V ]  with a subspace of 

HI(S)={f :S-*]R, H f[12+ li VfHz< + ~ }  
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in the following way: 

Let a > 0  be such that sh a sh  2 = 1 and for ?eGeod(e)  define: 

C~(a) = {peS: d(p, 7)<a} c C~. 

Recall that if S~[3...US k is the decomposition of S \Geod(e)  into connected 
components then: 

V= {S~: l < i < k } .  

We denote by S'i the complement in S~ of all cylinders Cy,, meeting S~. Given 
FelRp[V ] we define f e H  1 (S) as follows: 

�9 f ( x )=F(S i )  for all xeS'i, l<_i<_k. 

Then f is already defined on ~?C~,, and we define f on C~,, to be the unique 
harmonic extension of this function. 

This defines a subspace of H 1(S) denoted by H~(S). It is associated in a 
canonical way to Geod(e). 

Using the map 
1R~,EV ] ~ H~(S) 

F~-~ f 

we want to compare Q(F) with IIV/l[  2 and IIFll with ]lfl12. In order to do 
this we have to establish some elementary estimates about  harmonic functions 
on cylinders C~(a). 

1.3.2 Let a > 0, l > 0 and consider the cylinder C = [ - a, a] x 111/7/endowed with 
the metric d x 2 +  l 2 ch2x d 0 z. The volume element is d v(x, O)= I chx  d x d 0 and 
the Laplacian A --(~x-- 2 jr_ l -  2 c h -  2 X 0 2 -~- th x cx. 

It is easy to verify that the harmonic function f on C with boundary values 
c_ on { - a }  x IR/:~ and c+ on {a} x IR/7/is given by: 

( c + + c _ )  (c+- -c_)  arcsinthx 
f (x, 0 ) -  2 F 2 arcsinth a" 

Lemma 1. (compare with [C, CdV] Prop. III.3). 

Let C + = [0, a] x • / •  and C _ = [ -  a, 0] x IR/7/. Then we have: 

(a) 

(b) 

(c) 

II f IlzZ<c2+ V o l ( C + ) + c  2_ Vol(C_) 

irfrl~>c2+ V o l ( C + ) + c  2_ Vol(C_) 

(C+ --C-)2I 
r/Vf 1 1 2 2 - - ~ a r ~ a  �9 

la(c+ - c _ )  z" 
arcsinth a 
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Proof (c) is obtained by explicit integration. 
We prove (a) and (b): 

Il f ll ~ = 2 sh a. l. ( ~ - : - )  e 

21 ( ~ ) Z f d x c h x ( a r c s i n t h x ) Z  
+ (arcsinth a)  2 o 

we have 

f dx ch x(arcsinth X) 2 < sh a(arcsinth a) 2 
0 

which proves (a). 

which proves (b). 

1.3.3 Let: 

a a 

S d x  chx(arcs in th  X) 2 = sh a(arcsinth a) 2 - 2 S d x  thx  arcsinth x 
0 0 

> sh a(arcsinth a) 2 - 2a  arcsinth a 

Q.E.D. 

IRe[V ] --* H~(S) 

F ~--~f 

be the map defined in 1.3.1. Then  we have: 

Lemma 2. 

(a) 1Q(F)<zc I[ Vf {1~ < 1  Q(F)(1 +c .~)  

(b) llfl]~=<Znl[F][ 2 
(c) [[fH~>2zt[tF[[e(1-c.elne). 

Here c > 0 is some universal constant. 

M. Burger 

a 

II f II 2 > 2 ~ I[ F I12 _ Q (F) arcsinth a '  

Now we have to bound  Q(F): 

Clearly: 
Q ( F ) < 2 e  ~" (F(x)2+F(y) 2) 

x , y 6 V  

= 4 e  ~ F(x)2d(x) 
x ~ V  

F, 
Proof. (a) and (b) follows immediately from L emma  1 and the fact that  sh a s h  
= 1. To  prove (c) we remark  that  Lemma  1 implies: " 
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where d(x) is the degree of the vertex x. Let S~ be the surface of finite volume 
corresponding to x. Let g~ be its genus, Px the number of cusps and fx the 
number of boundary geodesics. Then: 

d(x) =f~ 
and we have by Gauss-Bonnet: 

m(x) = ~  Vol(Sx) = 2 g x - 2  +Px +fx. 

This quantity is always bigger or equal to f , /3 as is easily verified. 

Thus: 
Q(F)< 12e II FII 2. 

On the other hand a/arcsinth a < c. In e where c > 0 is some constant. This proves 
(c). Q.E.D. 

1.3.4 The upper bound in Theor. 1.2 is now an immediate consequence of Lem- 
ma 2. 

1.4 Proof of Theorem 1.2: the lower bound 

1.4.1 The case of one separating geodesic. Let SGJd(g, p, f )  and F ~ S  a surface 
with smooth compact boundary. We assume that there is a simple closed geodes- 
ic ~ c F  of length l < 2  arcsh 1 separating F into two components F1, F2. We 
assume also that the cylinder C,;(a) is contained in F for some a =< d~. (cf. 1.2.1) 

Using a method introduced by Y. Colin de Verdi6re (cf. [C, CdV] Lemma 
PVP) we prove the following 

Lemma 3. a.) Suppose VoI(F)< + oo and #2(F)<�88 Then: 

1 Vol (F) l(?) 
# z (F) > ~ Vol (F,) Vol (F2) 

U-el(y)(1 +,1-')] 

where t/= min (#2 (F1), #2 (/:2)). 
b.) Suppose Vol(F) = + c~, Vol(F1)< + ~ and #I(F)<�88 Then: 

1 ____/_(7) [1 -c / (y)(1  + v-~)] 
#, (F)>=~ Vol(F1 ) 

where v = min (it2 (F1) , #1 (F2))- 
In both cases c is a constant only depending on a lower bound for Vol(Cy). 

Proof. We prove a.) since the proof of b.) is the same. 
Let hcHl (F)  such that h is cons tan t=c  i on Fi\C~(a) and harmonic inside 

C~(a). Set: 

C 1 = [Vol(F2)/Vol(F) Vol(F~)] �89 c2 = - [Vol(FO/Vol(F) Vol(F2)] �89 �9 
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In particular we have using Lemma 1 : 

~h(x)dv(x)=O and ]lh[]2~l. 
F 

Let h=q~+~0~ where @ is the orthogonal projection of h on the eigenspace 
of A. (cf. 1.2.2) corresponding to the eigenvalue p2(F) (recall that pE(F)<�88 
and (q~o~, ~o) =0. 

Let C = C~(a). Then 

j IVh(x)12dv(x) = II Vhll2=~z I1~o 112 + j IVqoo~(x)ladw(x) . 
C F 

Now: 

S lVcpo~(x)lEdv(x)= [. (Vq~(x) ,  gh(x))  dr(x) 
F F 

= ~ (V~ooo(x), Vh(x))dr(x) 
C 

I(c2--cl) f dO 
- -  2 arcsinth a g - -  - ,  ~ d x t?x q)~ (x, 0) where l = I(7) 

l(c2-c,) ~..,. 
- 2 a~rcsi-ff~ a Jo avtq)~(a' O)-(po~(-a, 0)}. 

a 

An integration by parts of fox f (x ,O)dx where f is any Cl-function gives the 
formula: o 

1 1 a I a 

l sha I f(a,O) dO=l I dO ~ chx f (x ,  O) d x + l  I dO I shx~?x f(x,O) dx 
0 0 0 0 0 

using that sh x < ch x and applying Cauchy-Schwarz we obtain: 

Similarly 

1 

II sha ~ f(a, O) d0l =< (l sha) x/2 {]l f [[L2(C~V2)+ 1[ Vf [IL2tc~,v~)}. 
0 

1 

[l sha ~ f ( - a ,  O) dO[ =<(l sha) 1/2 {/[ f [[L2tC~V0 + [I Vf IIL2tc~&)}. 
0 

Applying this to f =  ~o~ we obtain: 

llc2-c~] 1 
S [Vq )~o(x)12dv(x)<= arcsinth a (lsha) 1/2 {H r 112 AV H V ~ o o v t ] 2 } ,  

F 
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Now: 1[ Vtp~ I12 >#3 (F)I[ q~  H 2 and/z3 (F)_-> min(#/(Fl), #2(F2)) = r/. Thus: 

or  

iiV~o~l12< 11c2-c11V2 
= arcsinth a VoI(C) 1/2 II 17~0~ II 2(1 + r/- 1/2) 

ii 17q~o~1122~, 212(Cz-Cl) 2 
- tarcsinth a) 2 VoI(C) 

(1+q-1/2)2. 

From this follows that: 

2/2(C2 --Cl)2 (1 -~-~- 1/2)2. 
117 h (x)12 d v (x) </~2 (F) -t (arcsinth a) z Vol(C) 

C 

On the other hand, Lemma 1 shows that: 

(c2-- c0  2 l 
117h(x)lZdv(x)= 2 arcsinth a" 

C 

Putting everything together we obtain a.). Q.E.D. 

Remark. For  later applications it is crucial that the error term in Lemma 3 
is of the form l(7)/q. This means that the estimate is optimal as long as/~2(F) 
is small when compared to min(PE(F1), ~2(F2)). A similar statement holds for 
b.). 

1.4.2 A modified graph. In order to prove Theorem 1.2 it is convenient to modify 
the graph G~ associated to Geod(~), keeping its spectrum fixed. This is done 
in the following way: 

Let Geod ' (e)cGeod(e)  be the subset of those geodesics which connect two 
distinct components of S \Geod(e)  one of which at least is of finite volume. 
Let 

{So : w v'} 

be the set of connected components of S\Geod'(e).  Then V' is the vertex set 
of our new graph. We have a distinguished subset 

P ' =  {re V': Vol(Sv)= + oo} 

and a weight function m: V' ~ N defined by: 

1 

m ( v ) = ~  Vol(S~) if Vol(So)< + c~ 

m(v)= l if vEP'. 

The edge set E' is identified with Geod'(e,) and we get an obvious length function 
l 'onE'. 

Let G'~=(V',E',m,I'). It is clear that the spectrum of (G'~,P') is the same 
than the spectrum of the pair (G~, P). 



406 M. Burger 

Let 6<=4fl3 and e=23/fll, 1 <=j<=2g-2+p+fand  let SeJ//j.b. Then we know 
by Lemma 0 that Geod(e) cuts S into j +  1 pieces exactly where the union 
of all components of infinite volume is seen as one piece. 

Let T be a connected component of S\Geod'(e).  About each boundary geo- 
desic 7 c ~ T there is a half cylinder 

C~-(a)={peT:d(p,  7)<=a} O<a<=d~. 

Lemma 4. There are positive constants ~, ~' depending only on (g,p, f )  such 
that if b <=~ and T' is the surface obtained from T by removing half-cylinders 
C~ (a), 0 <-_ a <= d~ - 1 then: 

(a) I f  Vol (T') = + 0o : /q (T') > ct' 2; +1 (S) 
(b) I f  Vol ( r ' )  < + oo. 122 ( r  ) = ~ 2j + 1 (S). 

Proof�9 (a) Vol (T ' )=  + oo. From the discussion in 1.2�9 it follows that 

~l(r'l>__fll Cl(T'). 
But: 

LI (T ' )+  Lj(S)>=Lj+ t(S)>=fl; 1 2j+ 1(S) 

in virtue of ([DPRS]). 
On the other hand Lj(S) < fl~ 1 ).j(S) <= fl~ 1 t5 2j+ 1 (S). Thus: 

#1 (r')>=fll Ll ( r ' )~> f l l ( f l2  1 _ f l ;  l 6) '~'.i+I (S) 

which proves (a) for sufficiently small di. 
(b) same proof�9 Q.E.D. 

i�9149 Fix j, l N j < _ _ 2 g - 2 + p + f .  Let Se~ j ,~  where 6__<4fl3 and consider the 
graph G'~j/~, defined in 1�9149149 

We define a map 

H 1 (S) -~ N. e, [ V'] 

f~--* F 
by 

1 
j f ( x ) d v ( x )  if Vol(Sv)< + ~  

F ( v ) -  Vol(Sv) so 

F(v)--0 if veP' .  

Let Ej be the subspace of H 1 (S) spanned by all eigenfunctions of A s of eigenvalue 
).<__2j. 

Lemma 5. There are constants a, ~' > 0  only depending on (g, p, f )  such that if 
Se,/r and 0<5__<ct we have: 

2n I]fll2(X + ~'~)> I[ f II 2 > 2 n  liEU 2 

for au feej.  

Proof. Let v e V', and Vol(Sv) < + oe. Then we have: 

f IVf(x)12dv(x)>=#2(Sv)I [ f ( x ) - f ( v ) ]  2 dr(x)  
St, So 
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and if Vol(Sv) = + oo : 

I Vf(x)l 2 dv(x)>=~q(Sv) ~ f(x)2dv(x) .  
S .  Sv 

By Lem ma  4: 

t~2(Sv)>=a'2j+l(S) and /~I(S~)=>e').~+x(S ). 

Summing over ve V' we obtain:  

2i [I f [I 2 > ~]Vf(x)12dv(x)~og2j+l {11 f ]12-2n I[ F [12 } 
S 

which proves the upper  bound  for I[ f [I 22. The lower bound  follows from Cauchy-  
Schwarz. Q.E.D. 

1.4.4 A lower bound for [I Vfl[22. Let  S be a geometrically finite surface and 
f e  L 1 (S). Fo r  each subset A c S of positive volume we define: 

1 
f (A) = Vol(A)a ~ f (x) d v(x), 

in part icular  f (A) = 0 if Vol (A) = + oo. Then we have: 

Lemma 6, Let A, B be surfaces with smooth boundary, A, B c  S such that Vol(A c~ 
B)=O. Set D = A w B  

a.) I f  Vol(D)<  + oo then we have for all f ~ H  1 (S): 

( f (A) - - f (B) )  z 
D 

b.) I f  Vol (A) < + oo and Vol (B) = + oo then we have for all f ~  H 1 (S): 

[V f(x)[ 2 d v(x) >= Ul(D) Vol (A) f (A)  z. 
D 

Proof. a.) By definition of ft z (D) we have: 

I V f  (x)[2 d v (x) > #2 (D) ~ I f  ( x ) - f  (D)] 2 d v (x) 
D D 

= #2 (D) { ~f (x)  2 d v (x) + ~f(x)  2 d x - Vol (D) f (D)  2} 
A B 

=>/~2 (D) {Vol (A) f (A) 2 + Vol (B) f (B)  2 -- Vol (D) f (D) 2} 

_ #2 (D) Vol (A) Vol (B) ( f  (A) - - f  (B)) 2. 
Vol(D) 

b.) Is obvious. Q.E.D. 

1.4.5 A combinatorial Lemma. Let S~J/4~.~, 5 small and G~.g~, =(V' ,  E', m, l'). 
In order  to apply Lemma  6 we want to cover S using surfaces Se, e~E' 

such that  

(1) Vol (Sec~Se , ) -0  if e ~ e '  
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(2) Let 7eeGeod ' (2 / f l0  be the geodesic labelled by eeE'. Then 7e cuts Se 
into two pieces exactly and the cylinder Cr(a) is contained in S, where a 

To do this we need the following Lemma:  

Lemma 7. Let ~ = ( W ,  E) be a finite connected graph and roe W a fixed vertex. 
Then there exists an injective map 

q~: W -  {Vo} --,E 

such that for all V+Vo, v is an extremity of (a(v). 

Proof. Straightforward induction on the number  of vertices of ~r Q.E.D. 

For  v e V '  we let Kv be the complement in Sv of the union of all cylinders 
C~ (a) meeting Sv where 7 e Geod '  (2j/fll }. 

We fix voeV' and let ~b: V'-{Vo} ~ E '  be the map given by Lemma 7. In 
order to define the surfaces St we have to distinguish two cases: 

1.) Im ~b does not contain any edge whose extremity is vo. Then we extend 
q~ to V' by ~b(vo)= e where e is some edge issued from vo. 

�9 if er c~ we define Se=C~(a) where 7eGeod'(2/flO corresponds to 
e. 

�9 /f e s I m  ~b, then e=q~(v) for a unique vEV' and we set Se=K, uCr(a) 
where ~ corresponds to e. 

2.) Im ~b contains edges issued from v o. Let el = qS(vl) be one of these edges. 

�9 if e r  ~b we set Se=Cr(a) as before. 
�9 if e = r  and v4:v t we set Se=KvcJC~(a), 
�9 if e = e  1 we set Se=Kv, cJC~(a)uK,o. 

In each case we obtain a family of surfaces {Se:eeE'}  satisfying properties 
1.) and 2.). 

1.4.6 End of the proof. Let S = U~v, S~ = Ue~E, Se. 
According to Lemma 5 it suffices to prove that if r e H 1 (S) then: 

I IVq~(x)12dv(x)>=l ( 1 - ~  El(7)(cp(Sv)-~o(Sw)) 2 
s 

this last sum being over all ~EGeod'(2j/fll), 7 c Sv n Sw. 
Each surface Se is cut by ~=7e into two surfaces Ae and Be. We apply 

Lemma 6 to Se = Ae u B e and obtain: 

a.) If Vol(Se) < + oo : 

Vol(Ae) Vol(B~) 
I I Vq~(x)12dv(x)>l~2(S~) Vol(S~) 

S. 
(,P(Ae)- ~o(Bo)) ~. 
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b.) If Vol(Ae) < + oo and Vol(Se) = + ~ : 

j [ V q~ (x)12 d v (x) >= #, (Se) Vo] (Ae)(~0 (Ae) -- q) (Be)) 2 
s~ 

since ~o (Be) = O. 
From Lemma 3 it follows that  

V x 2 d v x  >I(~ ' ) ,_ ,A , 2( / )  ~1 q~( )1 ( ) = - - t ~ P t  et-~o(Be)) 1--c 
Se 7~ 

where tl>=~'2j+a(S ) using Lemma 4 and l < 2 / f l l .  Here c,a '  constants which 
only depend on (g, p, f ) .  This shows that:  

(1) ~ ,Vqg(x)lZdv(x)> ~ ( 1 - - c '  ~ ) (~p(Ae) - -~p(B~))  2. 
S. 

Let v, w e V '  such that  A e c S v  and BecSw.  We can assume that  Vol(Ae)< + oo. 
Now we estimate: 

[(q) ( A e )  - -  q9 (Be)) 2 --  (~0 ( S v )  - -  (p (Sw))2[ ~ [[ ~ ( A e )  - -  q9 (Sv)[ + 1~9 (Be) - q3 (Sw)l] 

�9 [I r (Ae) - -  r (Sw)[ + I~' ( B e ) -  ~p (So)l].  

Let A ' =  Sv\Ae,  then a simple computat ion shows that:  

Vol(A') 
q9 ( A e )  - -  q9 ( Sv )  = V o l  ( Sv )  (q9 (Ae)-- q~ (A')). 

NOW Lemma 4 and 6 imply: 

(2) (q~(Ae)_q~(Sv))z < a j [Vq~(x)12dv(x) 
m'~2J +1S~ 

where ~--~ (g, p, f).  Remark that the inequality is trivialy satisfied if Vol (Ae)= oo. 
Consider the surfaces AeuSw and Be u S  v. Then the same arguments as 

in the proof of inequality (1) show that:  

(3) lg(Ze)-~p(Sw)[<o~l(?) - ' /2 [ j ]V~p(x)12dv(x)] 1/2 
S~ ~, S~  

(4) [~P(Be)-qg(Sv)l<~zl(7) -~/2 [ j IV~p(x)12dv(x)] '/2. 
S ~ w S ~  

Putting the inequalities (2), (3) and (4) together we obtain that 

l(v ) I((p (Ae) -- q9 (Be)) 2 - (q9 (Sv) - r (Sw))2 I 
is bounded by: 

x~+~] " ~ lV~~ '/~ S lV~9(x)l~dv(x)" 
~ "  S v ~ S  ~ I \~j+ 1 /  S v w S w  
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This together with inequality (1) shows that: 

~ "V q)(x)12 dv(x) > l ~  (1--c'2@. J+~) (~o(Sv)--qo(S~)) 2 

here c~ = c~ (g, p, f )  always denotes some constant depending only on (g, p, f) .  Sum- 
ming over eeE' we obtain the desired estimate. Q.E.D. 

1.5 Proof of the corollaries 

We prove Corollary 1.1. The proof  of Corollary 1.2 is completely analogous, 
and uses Coroll. 2 of Theor. 2.1. 

Suppose that the corollary is false. Then there exists a sequence of Riemann 
S ~ such that: surfaces { ,}.=,  

(a) lira 22 (S,) = 0 

(b) [Spec As,~ [-22, 22(1 +e(22))]1 > q  where q=~[2g-2+p+f]  + 3. 
Take i minimal such that q __< i < 2 g -  2 + p + f  and lira 2i(S,)/21 + 1 (S,) = 0. 

By passing to a subsequence of {S,},% 1 we can assume that the graph with 
weight function associated to Geod(2~(S,)/fll) is isomorphic to a fixed one (N, m), 
N=(V,  E). From the definition of i it follows that there exists c > 0  such that 
22(S,)>c2~(S,) for all n >  1. If l, is the length function on E defined by S, then 
we have for all eeE: 

I, (e) < 2,(S,)/fl~ < 22 (S,)/fll c. 

Thus we can assume that the sequence l,/22(S,), converges to a function h E 
-- ,N+U{0}. Let E'={eeE:l(e)+O}. Then it follows from Theor. 1.2 and the 
hypotheses of Corollary 1.1 that the second eigenvalue 2~(G') of the weighted 
graph: 

G'=(V,E',m,I) 

is equal to 2n z and has multiplicity at least q. Moreover  this graph satisfies 
the hypothesis of Theor. 2.2. Indeed let Sv be the component  corresponding 
to ve V\P and let d(v) be the degree of the vertex v. The d ( v ) = s  and: 

d(v)- 2=f~-2<=2g~- 2 +p~+f~=m(v). 

In this way we obtain a contradiction with Theor. 2.2. Q.E.D. 

2 Weighted graphs 

A weighted graph G=(V,E,m,I) is a graph f f= (V ,E)  together with a weight 
function 

m: V--+ ~: + 
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defined on the set of vertices and a length function 

I : E--. IR + 

defined on the set of edges. We assume that these two functions take strictly 
positive values. Given a distinguished subset P c  V we define the spectrum of 
the pair (G, P) in the following way: 

On N [ V ]  we have a quadratic form 

Q(F)= ~ OF(e)21(e), F ~ I [ V ]  
e ~ E  

where 

OF(e) = F(v)-- F(w)eN./{ +_ 1}, e = {v, w} 

and a scalar product: 

( F  1 , F2} = ~ F 1 (V) F2 (v), 
v E V  

vl, V2e~R[V]. 

Let ~ p  [V] be the subspace of functions fMR [V] that vanishes on P. 
The restriction of F--, Q(F) to Np[V]  defines a symmetric operator Mp: 

(Mp F, F)  = O (F), FelRp IV]. 

The spectrum of (G, P) is the set of eigenvalues of Mp listed according to their 
multiplicities: 

,~(G) =< ,~(C) __<... __< ;of~ (G) 

where N = I V l -  [PI. If P = 0 this is simply the spectrum of G. 
Let ~ ' =  (V, E') be the graph obtained from ~ by replacing all multiple edges 

by one edge and by deleting all loops. Up to a obvious modification l': E' ~ I R  § 
of our length function l we obtain a weighted graph G'=(V, E', m, l') such that 
the spectrum of (G', P) is identical with the spectrum of (G, P). 

This being said we will assume throughout this chapter that the graph 
~=(V,  E) is finite without loops and without multiple edges. 

We will see that if V \ P  generates a connected graph 2~(G) is of multiplicity 
one. Our first estimate of the multiplicity of 2~(G) involves the following invariant 
of a graph ff=(V, E): 

Let d: V~1N be the degree function of cq and d , = m a x d ( v )  the maximal degree 
v ~ V  

of a vertex w V .  If A c  V we denote by G(A) the graph generated by A. Then 
we define: 

~(~)= min (d~+ ]Q]) 
(2cV 

where the minimum is taken over all subsets Q c  v such that J - = G ( V \ Q )  is 
a connected tree. 

Theorem 2.1. Let G=(V, E, m, l) be a weighted graph and P c  V a distinguished 
subset such that G(V\P)  is connected. Then the multiplicity of 2P(G) is at most 
~(~) where ~ = G(V\P) .  
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Examples. 1. K ,  is the complete graph on n vertices. We set the edge and length 
function to be identically 1. Then 22(K, )=n  is of multiplicity n - 1  and it is 
easily seen that ~ (K,) = n - 1. 

2. S, is the star with n vertices. As before edge and length function are 
identically 1. Then 22 (S,)= 1 is of multiplicity n -  2 and ~ (S,)= n -  1. 

Corollary 1. Let T= (Y ,  m, l) be a weighted connected tree. Then: 

mult 2 z (T) < ds~. 

In 2.2 we will prove that if fr is a connected graph and fl~(fr its first Betti 
number  then: 

~(~r =< d~, +/~, (~r 
From this follows: 

Corollary 2. Let G=(V,E,m,  l) be a weighted graph and P c  V a distinguished 
subset such that ~e = G(V\P)  is connected. Suppose that d~, <= 3 then: 

mult 2ze(G)<�89 +4.  

In 2.3 we will show another  approach to the problem of bounding the multi- 
plicity of 22. This will lead us to the following result which is well suited for 
applications to Riemann surfaces: 

Theorem 2.2. Let G = ( V, E, m, l) be a weighted graph and P c V such that G( V \  P) 
is connected. Assume that m is integer valued and that d(v)-2<__m(v) for all 
ve V \ P .  Then: 

mult 2V(G)___< ~m(V\P)  + 2. 

Here we set for A c V, m(A)= ~ m(v). Essential use of Theor. 2.2 will be made 

in the proof  of Corollary 1.2. v~a 

2.1 The first method 

Let G=(V,E,m,I)  be a weighted graph and P c  V a subset such that G ( V \ P )  
is connected. One verifies that Me acts on functions f e l l v [ V ]  as follows: 

x e V \ P  M v f ( x ) = ~  ~ l ( { x , y } ( f ( x ) - f ( y ) )  
x=_y 

x e P  Mvf (x )=O.  

Here {x,y} is the edge joining x and y, the symbol x=-y means that x ,y  are 
adjacent vertices. 

We have the following easy 

Lemma 1. I f  G(V \P)  is connected 2~e(G) is of multiplicity one and any nonzero 
eigenfunction of Mp of eigenvalue 2f(G) is everywhere nonzero on V \  P. 
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Proof. For all f e N [ V ]  we have Q(Ifl)<Q(f)  with equality if and only if for 
all x, y such that x=-y we have f(x).f(y)>O. Since 

21P(G) = min Q(f) 
ILfll 2 

where the minimum is taken over felRe[V], the inequality Q(Ifl) < Q(f) shows 
that if f is an eigenfunction of eigenvalue 2~(G) then Ifl has also this property. 
Let f be an eigenfunction such that for some x e V \ P f ( x ) = O .  Since ~0=lf[ 
is also eigenfunction we have: 

~. l({x, y}) tp(y)=0 
y ~ x  

from which follows q~ (y)= 0 for all y = x. Since G (V\P) is connected this implies 
q~ = 0 and hence f = 0. This shows that 2~ e(G) is of multiplicity one. Q.E.D. 

Let ff = (V, E) be a graph. For A c V we define the boundary of A: 

~?A = {aeA: a is adjacent to some point in V\A}.  

Given a weighted graph G=(V,E,m,I) and a subset P c  V we take two pairs 
of subsets (P~, 1/1), (P2, V2) with the following properties: 

(1) P ~  V ~  V i=1 ,2  
(2) G~ = G(Vi\P~) is a nonvoid connected graph for i = 1, 2 
(3) V, c~ V2 ~ P, c~ P2 
(4) P~ c~P2~P 
(5) P ~ V ~  for i = 1 , 2  
(6) V~\P~r f o r i = l , 2 .  

Lemma 2. Assume that G(V\P) is connected, then 

max(2~' (G,), 2P: (G2)) > 22P(G) 

with equality if and only if: 

,~ ,  (G,) = ,l~2(G2) = ,~  (~). 

Proof. Let F~e~,~p,[VJ be a positive eigenfunction corresponding to the eigen- 
value 2~'(Gi). We extend Fi to V by setting Fi=0 on V\Vi. Let F4=0 be an 
eigenfunction of Mp of eigenvalue 2~(G). Property (6) and Lemma 1 implies 
that (F, F~> 4=0 for i=  1, 2. From this follows that there exist c~ 4=0, Cz4=0 such 
t h a t f = c l  F 1 --~-e 2 F2e~xp[V ] is orthogonal to F. 

Property (3) implies that H f Ib 2 ~ -  C l  2 II/71 [12 + c~ 11 F2 II 2 

Properties (1) to (6) imply Q (f)  -- c~ Q (F1) + c~ Q (F2). 
Thus 

Q(f)=c2 )~e~I(G1) II FI N2 + c2 ).~2(G2) II F2I[ 2 
> 2~(G)[L f[h 2 = 2~(G)(c 2 q[ F~ LI 2 "t- C 21[ F 21[ 2) .  

From this follows max(2f I(G~), 2f2(G2))> 22e(G). Q.E.D. 

Here is a immediate consequence of Lemma 2. 
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CorolLary. Let (P1, I/1) . . . . .  (P,, V,) be pairs of subsets of V such that for all i:# j, 
(Pi, V/), (Pj, Vj) verify properties (1) to (6) above. 

Then either (1.) there is a unique i, 1 < i < n  such that 2e~'<22 e and 2~eJ>22 e 
for all j :# i or 

(2.) 2~J > 22 P for all j, 1 < j < n. 

Proof of Theorem 2.1. Let Q c V \ P  such that G ( V ' ) = T  is a connected tree 
where V' = V \ ( P  w Q). 

1. If dr(p)= 1 for all pe V' then I V'[ =2. Choose pe V' and let f be an eigen- 
function of Me such that f = 0  on Q w P w  {p}. Then it is easily seen that f = 0  
on V. 

2. T = {p~ V' : dr (p) > 2} is non void. 

To each peT  we associate dr(P)= 1 pairs of subsets (P~, 1/11) . . . . .  (P~, Vl) in 
the following way: 

Let V'-{p} = Wil l . . .  [_IW l where G(Wi) are the connected components of 
o(v'-{p}). 

Define V/= {pc V: p is adjacent to a point of Wi} u P and Pi = V~\ W/. 
We claim that for all i,t:j(P~, V~),(Pj, Vii) verify properties (1) to (6). Let us 

verify (3) and (5): 

(3) i~ej, Vic~ Vj=Pic~ Pj: Let xeVic~ Vj. I f x ~ P  then xePic~ P~ by construction. 
If xCP there exist x~W~ and x i e W  J such that x=-x~ and x=-xj. If x were in 
Wi or W~ then G(Wiw Wj) would be connected. This is a contradiction. Thus 

(5) P~=0V~: by definition V~\SV~ W~. 

Remark that a similar argument than in (3) shows that for all i: {p} =Pic~ V'. 
Let us say that a point p~T has property (*) if there exists 1 <i-< l such that: 

and thus 2~J(Gj) > 22P(G) for all j 4: i. 
[Recall that Pi, Vi, l depend on p]. 
We distinguish two cases: 

1. There is a point peT  not having property (*). 
2. All points in T have property (*). 

First case. Take p e t  not having property (,). The corollary of Lemma 2 implies 
that 

2f,(G,)>=2~(G) for all i, l < i < l .  

Let Ap={q6V ' ,  q=-p} and choose a point qcAp. Suppose f e l R v [ V  ] is an 
eigenfunction of M e of eigenvalue 2~(G) and f is zero on Q u {p} u ( A p -  {q}). 
Then we have O=22f (p )=  ~ l ({p ,x}) ( f (p) - - f (x) )  which implies that f (q )=0 .  

x = - p  

Remark also that since Pi c~ V '=  {p}, f =  0 on P/and f ly ,  ~Rp, 1-V/] is an eigenfunc- 
P P tion of Me, of eigenvalue 22 (G) < 21'(Gi). Moreover Ap c~ (V~\PI) + 0 and flap = 0 

together with Lemma 1 implies that f =  0 on V~ for all i. Thus f is identically 
0. This shows that 

mult 2ze(G)< IQ{ + dT(P). 
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Second case. All points in T have property (*). To each p e T  we associate a 
unique point p ' e V '  in the following way: since p has property (*) there is a 
unique component  G(W/) of G(V'-{p})  such that 21"~(G3<2~(G). In Wi there 
is a unique point p ' - p .  Now given p e T  we construct a maximal path in V': 

Po=P, PI,P2, ..., Pr 

with the following properties: P~=P'i-~, 1 <_iN r all Pi are distinct and piET for 
all i, O<_i<_r. 

Now we make the following remark:  let p e t  and f be an eigenfunction 
of M~, of eigenvalue 2~(G). If f is zero on Qw{p} then f i e = 0  for all j and 

�9 i . . . .  JPJ P J s elgenfunctlon of M ,  . Thus f lv  = 0  for all j for whach 21 (G.)>22(G) By 
�9 . . J J J - 

definition of p' this implies that f is zero on all components of G(V'-{p})  
which do not contain p'. In particular f ( q ) = 0  for all q - p ,  q4:p'. Since f ( p ) = 0  
this implies that f(p')= O. 

The maximality of the path has the following consequence. There are two 
cases: 

1. p'rr This means that the component  of V ' -{p r}  containing p'~ is {p'~}. 
From the preceeding discussion it follows that if f is zero on Q w {pr} then 
f is identically zero. 

2. p ; = p , _ l  : If f is zero on Q u  {p~_l} then f is zero on all components 
of G(V ' -  {p,_ 1}) not containing p, and f(p~) = 0. But then f is zero on all compo- 
nents of G(V\{p~}) not containing p,_ 1. Since G(V') is a tree this implies that 
f is zero on V' hence f is identically zero. 

In both cases we obtain mult 22e(G)<lQ[+ 1. Q.E.D. 

Let ~ = ( V , E )  be a connected graph. We show now how to construct a 
set Q ~ V such that G(V\Q) is a connected tree. Doing this we prove: 

Lemma 3. ~(~) <- d~ +/31 (~). 

Proof. Let T=(V, E') be a maximal tree in ~ and d: V-+N the degree function 
of ft. Let Wi={veV:dr(v)=l,  d(v)>l}  and W; a maximal subset of points 
in W1 that are pairwise non-adjacent in ft. Let V 1 = V\W~, ~1 =G(V1) the sub- 
graph of ff generated by V1 and Ti the subtree of T generated by V1. Then 
T 1 is connected and is a maximal tree in ~1- Let E 1 resp. E'I be the edge 
set of ffl resp. T1. Then: 

Et = E\{a l l  edges issued from points in W(} 

E'I = E ' \{a l l  edges in E' issued from W;}. 
Thus 

fl, (~x)= ]E, ] - IE'~ ] 
=flt(c5) - ~ ( d ( v ) - l ) .  

v e  W ~  

In particular/~1 (~1) =< ]~1 (~)--]I411'1. 
We can apply the same procedure to (fr Tt) and so on to get after a finite 

number  of steps a pair (~r T,) such that ~n = T, and such that if V, ~ V is the 
vertex set of ~, we have: 

0 =/~1 (~.)_<-/~1 ( ~ ) -  I V \  V,]. 

Then Q= V\V,  satisfies obviously the property that G(V\Q) is a connected 
tree. Moreover  [Ql-<-fll(~). Q.E.D. 



416 M. Burger 

2.2 The second method 

Let G = (V, E, m,/) be a weighted graph and P c V such that G(V\P) is connected. 
Let felRe[V] be an eigenfunction of Me of eigenvalue 2. For q~V we denote 
by Aq the set of pe V adjacent to q. If f is zero on Aq then: 

1 
2 f(q)=~-(q~f(q) ~ l({p, q}) 

q =-p  

which implies f(q)= 0 unless" 

1 l 2 ({p, q}). 

From this follows that if 

B={q~V\P'2P(G)= 1-1~-c,, ~, l({p,q})} 
mtq) p:q 

and if S is a subset of V\(P u B) of pairwise non-adjacent points then 

mult 2~(G)<IV\PI-ISl + IBI. 

Here is an application of this inequality in the case of ordinary graphs. 

Proposit ion 2.1. Let ~ : ( V , E )  be a connected regular graph of degree r on N 
vertices and 

0=21<22- -  < . . . ~ 2  N 

be the eigenvalues of r l - A  where A is the adjacency matrix of ft. 7hen 

(1 m u l t 2 2 N N \ - r ]  r-" 

N 
Proof. If B # 0  then 22=r.  But ~ 2~=N.r thus 21=r for all l<i<N.  From 

i=0 
this follows that f~ is the complete graph on r + 1 = N vertices and the inequality 

mult 22_<N(l - - l r )+  1 holds. 

If B = 0 then it follows from the discussion above and Lemma 6 (see below) 
that: 

mult22<lVI-JSl<lV[(1-11+ 1 Q.E.D. 
r ]  r"  

To obtain a better estimate we study the structure of B: 
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Lemma 4. Let B be as defined above. B is of diameter at most 2 and there 
are two cases: (1) G(B) is connected. Fix x l , x 2 ~ B  with x l  =-x2. Then there are 
3 types of  vertices: 

A 1 = { x e B : x - x l , x g ~ x z , x + x 2 }  

A 2 = {xeB:  x - x 2 ,  xg~xl ,  x :#x1} 
A 3 = { x e B : x = x l  a n d x = x 2 }  

and AIl IAzl IA311{x l ,xz}=B,  for all x E A I , y e A 2  we have x = y ,  for  all x e A  3 
and y~AI l  IA 2 we have x - y .  

(2) G(B) is not connected: for all x, yEB dist(x, y) = 2 and any zE V \ P  adjacent 
to some point in B is adjacent to all of them. 

Proof. 1.) If for all, x, y e B x - y  then B is of the form (1) with A1 = A 2 = 0 .  
2.) Suppose that there exist x, y e B  such that dist(x, y) > 2. Let F be a nonzero 

eigenfunction of Me of eigenvalue 2~(G) and let f = c l  6x+c26yc1:#O, c2+0 
such that f is orthogonal to F. Then Q(f)=2~(G)Hfl l  2 as one verifies easily. 
From this follows that f is an eigenfunction of M e of eigenvalue 2~(G). In 
particular if ze  V \ P  is adjacent to x then 

1 
0 = 2 ~ f ( z ) =  - m(z) ~" l(t, z})f( t) .  

This forces z to be adjacent to y and thus dist(x, y)=2.  
This shows that for x, y e B  either x - y  or d i s t (x ,y )=2  in which case any 

z e V \ P  adjacent to x is also adjacent to y. (1) and (2) are then immediate 
consequences of this property. Q.E.D. 

Let ff = (V, E) be a connected graph. We want to choose a subset S c V of pairwise 
nonadjacent points in an optimal way. Let S c V be any such subset. On S 
we put the following graph structure: for s, t e S  there is a edge between s and 
t if and only if Asc~A,+O. We denote st(S) the graph obtained in this way. 
A straightforward induction on the number of vertices in ~r shows the following: 

Lemma 5. Let f#=(V,E) be a connected graph and peV.  Then there exists a 
maximal set of pairwise non-adjacent vertices S c V such that st(S) is connected. 

The following consequence is important  for us: 

Lemma 6. Let N= (V,E)  be a connected graph and pe V. Then there exists a 
maximal set of pairwise non-adjacent vertices S ~ V such that: 

d ( p ) > l V [ - 1 .  
peS 

Proof. Let S be the set given by Lemma 5 and e the number  of edges of st(S). 
Since st(S) is connected we have e >  ISI-1. Thus 

d ( p ) ~ e + l V l - l S l ~ l V l - 1  
peS 

since each point q ~ V \ S  is adjacent to at least one point in S and is counted 
twice when it is in As m A, for some s, tES. Q.E.D. 
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Proof of Theorem 2.2. Let G = (V, E, m, l), P c V, d: V ~  N satisfy the hypotheses  
of  Theorem 2.2. Let Vo = V \ P  and B c Vo such that  

mtx) y=_x 

Given A c V we set m(A) = ~ m(x). 
x~A 

Let Vo\B = 1/i U... U Is', such that  the graphs  G (V~), 1 < i < n, are the connected 
componen t s  of  G(Vo\B). 

Let IV~I>2 for l<i<_k and IV/I=I  for k + l < i < n .  For  each i, l < i < k  we 
choose one point  pieV~ such that  Pl is adjacent  to some point  in B. We let 
Siapl be the subset  of  Vii given by L e m m a  6. 

Let  now f e l R  e IV]  be an eigenfunction of M e of eigenvalue 22e(G) and sup- 
pose tha t  f is zero on 

k 

B u  ~ (Vi\Si) 
i = l  

then it is easily seen that  f is identically zero. F r o m  this follows that:  

k 

(,) mult  ;~2 ~ IBI + ~ (I V,I- ISil) 
i = l  

we first es t imate [ V~I- ISil for 1 __< i < k: 
let di be the degree function of the graph  G(V/) and r i the n u m b e r  of points  

in B adjacent  to Pl. Then it follows f rom L e m m a  6 that:  

d(P)>=ri+ ~" di(p)>lV~l+ri-1. 
p~Si pESi 

F r o m  this and the inequali ty re(x)>= d ( x ) - 2  we obtain:  

m(Si) > I V / I -  21Sil + r l -  1. 

On the other  hand  we have the obvious  inequali ty:  

I~1-  ISil + m(Si)<m(Vi). 

This and the preceeding inequali ty imply:  

(**) 2(I V~I- Iail) < re(V/) + I S l l - ( r i -  1). 

N o w  we est imate IB[. Accord ing  to L e m m a  4 we distinguish two cases: 

1.) B is connected:  B=AIUA2UA3U{xI,  x2} 
then we have:  

m(B)> d(Xl)- 2 +d(xz)-- 2 +([BI--2) 
>([AI[ +IA3I--1)+(IA21+IA3I--1)+(IB[-- 2) 
>21BI--6 
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hence: 

iBI_-<�89 

2.) B is not connected:  in par t icular  ]Bl~2 .  Because of L e m m a  4 any  point  
adjacent  to one point  in B is adjacent  to all of  them and this implies that  
rl -- [B[ for 1 _< i ~ k and that  d(x) => k -  2 for all x ~ B. In par t icular  re(B) => ] B l(k 
--2). 

N o w  we put  (**) into the inequality (,) and obtain:  

mul t  2 2 __< IBm + - ~ . ~  rn(V/)+ ~ ~ IS i [ -  
z = l  = i = 1  

In  case 1.) we use that  ri > 1 and [BI < �89 re(B)+ 3 to obtain:  

1 12 k m u l t 2 2 = < ~ m ( V o ) + 3 +  .~ [Si[. 

In case 2.): 

i = l  

If  k > 2  this is smaller  than  � 8 9 1 8 9  If  k =  l this equals - -  
+�89189189 

Thus:  
1 1 k 

mult  22 < ~ m(Vo)+ 1 + 21 ~1~ ]Si[" 

In any case we obtain:  

1 1 k 
mult  22 < ~- m (Vo) + 3 + ~ .~  ]Si L- 

Z = I  

IBI 
2 

On the o ther  hand  it follows immediate ly  from (.) that" 

1 <1_ 12 k 
mult  22 m(Vo)- = 2 .~, ]Si[. 

t = l  

Adding  this to the preceeding inequali ty we obtain:  

mul t  22 < ~-m(Vo)+ 2. Q.E.D. 
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