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Introduction

Let M be a connected surface of finite topological type (g, p, f) i.e. M is obtained
by removing p points and f topological discs from a compact surface of genus
2=0. We denote by .# (g, p, f) the space of isometry classes of complete metrics
of curvature —1 on M.

The Laplace operator 4 of a surface Se.# (g, p,f) acts on C&,(S) the space
of C*-functions with compact support and has a unique extension to an
unbounded self-adjoint operator on I?(S). The essential spectrum of 4 is con-
tained in [1/4, + o) so that Spec 4 [0, 1/4) consists only of eigenvalues (see
[DPRS] and 1.2). Moreover there are at most 4g+2p+3f--2 eigenvalues of
4 in [0,1/4) and there exists a positive constant § only depending on (g, p,f)
such that the number of eigenvalues in [0, #] is at most 2g+p+f—2.

The aim of this work is to determine the behaviour of Spec 45 near 0 in
function of Se.# (g, p,f). For this we cover the infinite part of .#(g, p,f) by
a finite number of “cusp neighborhoods”. Each neighborhood is canonicaly
associated to a finite graph. Then we show that the first order behaviour of
Spec 43 [0, €] for S in such a neighborhood is given by the spectrum of a
combinatorial Laplacian (see Theor. 1.1 and Theor. 1.2). Partial results in this
direction were obtained by B. Colbois [B.C.], P. Gall [P.G.] and myself [B].
Such results were used by B. Colbois and Y. Colin de Verdiére [C, CdV] to
construct examples of surfaces whose second eigenvalue A, has large multiplicity.
They obtain for all g=2 examples of compact surfaces with genus g and multi-

plicity of 4, of size ]/@/2. Known bounds on the multiplicity of 4, (for small
4,) are deduced from the fact that there are at most 2g—2+p+f small eigen-
values [DPRS]. It follows also from the work of G. Besson [G.B.] that if §
is of signature (g, p, f) then 4g +3 is a bound for the multiplicity of 4,.

We will apply our result on the behaviour of small eigenvalues to reduce
the problem of bounding the multiplicity of 4, (for 4, small) to the problem
of bounding the multiplicity of the second eigenvalue of a weighted graph. The
later problem will be discussed in part 2 of our paper.
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The output of this method is that we can bound the number of eigenvalues
in very small intervals around 4,(S) by 2[2g—2+p+/]+2 (see Coroll. 1.1,
1.2). In particular this gives a non-trivial bound on the multiplicity of 4,(S)
for 4, smaller than a constant only depending on (g, p, f ).

1 Behaviour of small eigenvalues
1.1 Statement of the results

Let S be a Riemann surface of signature (g, p,f) with 2g—2+p+f=1. Denote
by

LSp(S)={l,<l,< ..}

the length spectrum of S ie. the set of lengths of closed geodesics counted
according to their multiplicity. Let r(S)=1[,(S). The statement of the behaviour
of small eigenvalues of S depends on a description of the set of surfaces S
in (g, p,f) for which r(S) is small. To do this we now define the cusp neighbor-
hoods in .# (g, p, f).

Cusp neighborhood: given a Riemann surface S we call partition of S any subset
A< S which is the union of simple closed pairwise non-intersecting geodesics.
To such a partition A< S we associate a pair (%, w) consisting of a graph
%=(V,E) and a function w: V- IN3 defined in the following way: the set of
vertices V is the set of connected components of S\A. Each geodesic y< A
is represented by an edge ecE connecting the vertices corresponding to the
components of S\ A4 joined by 7.

The function w: V- IN? associates to a vertex ve V the signature (g,, p,, f,)
of the component represented by v.

Given (g,p, f) with 2g—2+p+f =1 it is easily verified that the pairs (%, w)
arising in this way are completely characterised by the following properties:

1.) ¥=(V, E) is a connected graph

2) w:V-—N? is a map such that w(v)=(g,, p,, f,) verifies 2g,—2+p,+f,=0
with equality if and only if (g,, p,, £,)=(0,0, 2).

3) Ypo=p, 2 L=2|E|+f

4) Let d: V- N be the degree function of ¥ where 100ps are counted twice.
Then d(v) < f, for all ve V.
5) Y g,+ B, (%) =g where §,(%) is the first Betti number of 4.

Two pairs (%4, w), (Z, o) are called isomorphic if the graphs 4 ~ % are isomorphic

and the functions w, a correspond one to another under this isomorphism. Let

us denote by € (g, p,f) the (finite) set of isomorphism classes of such pairs.
Given a Riemann surface S and a partition 4 =S we let:

[(A)=max {I(y): y simple closed, y = A}
L{A)=min {2 arcsh 1, 1(y): n closed geodesic n n A =0}

For [4,w]e¥(g, p,f) and £>0 we define V,[¥4, o] < .#(g, p,f) as the set of Rie-
mann surfaces S such that there exists a partition A< S with associated pair
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isomorphic to (¢, w) and I(A)/L(A) < ¢, modulo the relation identifying isometric
surfaces.

The fact that there are at most 3g—3+p+2f simple closed geodesics of
length smaller than 2 arcsh 1 (see 1.2) has the following easy consequence:

{Set(g,p, [):r(S)<s} cU W[4, w]

where e<1, 68 3*P*2/=¢/2 arcsh 1 and the union is taken over all cusps
[9,w]€¥€(g, p, f). In particular if f=0 the complement of the union of all cusp
neighborhoods is compact in .# (g, p, 0).

Behaviour of small eigenvalues: Let Se #(g,p, f). We denote by 4, <A, < ... <A,
the eigenvalues of Ag in [0, 1/4). For later purpose we also define:

Ay +1=1nf{1: AeSpec A5 (4, 0)}.

Suppose that S is a surface representing an element in V,[¥, w]. Then S defines
on the edge set E of ¥ an obvious length function I: E—~R™" and a function
m: V— N defined by m(v)=2g,—2+p,+/f, if v corresponds to a component
of finite volume and m(v)=1 otherwise.

In this way we obtain a weighted graph G=(%, m, ) (see Chap. 2 for defini-
tions) and a distinguished subset

P={veV:id(v)<f,}
representing the set of unbounded components. Let:
MG <I(G)=... SA3(G),  N=|V\P|

be the spectrum of (G, P) as defined in 2.1.

Theorem 1.1. For all SeV,[9, w] and all e <o, we have:

1 LS 1
520~ Vé)gﬂ,EG))gﬁ(Hasglne)

where G is the weighted graph attached to S, | Si< N, N=|V\P| and o;,a;, 03
are positive constants only depending on (g, p, f).

In order to prove Theorem 1.1 we will prove a slightly stronger result whose
statement needs some preliminary remarks.

It is a fundamental result due to [SWY] in the compact case and [DPRS]
in the general case that the size of eigenvalues of A in [0, 1/4) is controlled
by the lengths of small closed geodesics. More precisely:

(a) There exists a positive constant = f(g, p, /) such that the number of eigen-
values of 4 in [0, f] is at most 2g+p+f—2.
Fix O<p=<2arcsh 1. Let L;(S) be the minimum sum of lengths of simple
closed geodesics of length <pu separating S into j+1 components where
we regard the union of all pieces of infinite volume as a single component.

(b) If A;<1/4 then B, L}(S)< 4, B, L;(S)

() If B, L;(S)<1/4 then 4 has at least j eigenvalues in [0, 1/4) and (b) holds.
Here B,, B, are positive constants which depend only on (g, p, f, u).
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Let us draw a consequence of this Theorem. Define for 1<j<2g—2+p+f
and §>0:

My o= {SeM(g.p,f):7{(S)<Ps and 11 <5}
where
Bs=min (B, [48,(3g—=3+p+2 /)] ", B 1, 1/4)

and for a surface S:

Geod(e)= {y: closed geodesic in S of length I(y) <&}
then we have:
Lemma 0.
(a) Let <4, and Se.#; ;. Then Geod(4;/B,) cuts S into j+1 pieces exactly.

t
(b) Let e<p and 6=/(¢/B)28+p+/=2 then

{Se.#(g,p, [): As has at least k eigenvalues in (0, £]}

2g—2+pt+f
is contained in | ) M, ;.

Proof. (a) That Geod(4,;/f;) cuts S into at least j+ 1 pieces follows from L;(S)
<2;/B,. Suppose that there are more than j+1 pieces. Then f, J+1(S)<(3g
+p+2f—3) B, 2;/B, <1/4 since there are at most 3g+p+2 f—3 closed geodes-
ics of length smaller than u (cf. 1.2). Thus A;,,;<1/4and 4;,,<B,L;,(S)=(3g
—3+p+2f)B, /B, which contradicts the assumption that ;/4;,  S5<4f;.

(b) Let SpecAN[0,1/4)={A; <A, < ... SA4AS4h .. 240 If r22g-1
+p+f then:
A, \2&g-2+p+S 2g=24p+Sy 4.
min{( 1 ) :k§j§2g—2+p+f}§ Il ( L )
Ajsi j=k Ajrt
A

Azg~ 1+p+2f
s¢/p
which shows that Se.#; ; for some jz k.

If r<2g—2+p-+f an analogous argument shows that Se.#; ; for some j=k
and 628 2Pt <4.<e/B. Q.E.D.

This being said we will prove

Theorem 1.2. Let j, 1< j<2g—2+p+f and Se.M; 5. Let G be the weighted graph
associated to the partition Geod(4;/8,). Then:

1
52 (l-a 1/5)</1”Ei})) 57 (l+a;6In0)

for all 3<a, and 1Li<j. Here ay, ay, a3 are positive constants only depending
on (g, p, f).
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Remark. 1.) In general Se.#; ; does not imply that S belongs to the cusp neigh-
borhood defined by the partition Geod(4;/8,).

2) Let Se#,[9%,w] and let A be the corresponding partition. Let j be the
number of bounded components of S\A. Then it is clear that for & small
Ac=Geod(4;/B,). Moreover it is also easily checked that A;/4;,,Zc-¢ where
¢ is some constant depending only on (g, p, f). This shows that .# .[4, w]c 4, ;
where §=c-¢. Since Geod(4;/8;) cuts S into j bounded components as does
A, both associated weighted graphs have the same spectrum. This shows that
Theor. 1.2 implies Theor. 1.1.

3.) Lemma 0b.) and Theorem 1.2 show that for ¢ sufficiently small the first
order behaviour of Spec Agn [0, €] is given by the spectrum of a weighted graph
associated to some partition 4 < S.

In Chap. 2 we will obtain upper bounds on the multiplicity of the second eigen-

value of a weighted graph. These bounds together with Theor. 1.2. will imply

the following

Corollary 1.1. Let ¢:[0,1/4]—[0,1/4] be any function such that lim g(x)=0.
x—=+0

There exists a constant c=c(g, p, f, €)>0 such that for all surfaces S for which

4,(S)< ¢ we have:

Spec Asn [y, A, (1 +e()]| S3[2g—2+p+f1+2

In particular the same bound holds for the multiplicity of 1,(S).

Example. There exists a constant K(g)>0 and a sequence of compact surfaces
S, of genus g=2 such that lim A4,(S,)=0 and the number of eigenvalues in

n— o

[)»2,}12(1+K]//172)] is at least g— 1. These surfaces are modelled on a star on
g vertices (see Example 2.1) and all small geodesics have the same length. This
example shows that the estimate of Corollary 1.1 has the true order of magnitude
in g. However for the multiplicity of 1,(S) it is conjectured that it does not
exceed |/ g, at least if S is compact (see [C, CdV]).

The next corollary shows that if the eigenvalues 4;(S), 22i<2g—2+p+f
are all of the same size then one has a bound on the number of eigenvalues
in [4,, 2,(1 +¢(4,))] which depends only on the genus of S.

Corollary 1.2: Let ¢:[0,1/4] - [0, 1/4] be any function such that lim e(x)=0
x—=0

and let K>0. Then there is a constant c=c(g, K, g, p, f)>0 such that if 2,(S)<c
and Ayg— 34 5+ r(S) <K A,(S) we have:

ISpec As N [A;, A, (1 +e(A2)]|<g+3.

1.2 Preliminaries

Here we collect some well-known facts about the geometry and the spectrum
of geometrically finite Riemann surfaces.
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1.2.1 Let Se.#(g, p, f). Then according to [Bu] any closed geodesic of length
I£2 arcsh 1 is simple and there are at most 3g—3+p+ 2 f simple closed geodes-
ics of length £2 arcsh 1.

Collar theorem (see [R, Bu]). Let y be a simple closed geodesic on S of length
I=1(y) and let d(p, y) denote the distance of a point peS to y. Then:

Cyz{peS: shd(y, p) sh%§ 1}
is a topological cylinder isometric to
[—d,,d,JxR/Z withmetric dx*>+1*ch’xd6* where shd,=1/sh é

Moreover if y, n are (simple) closed geodesics of length I<2 arcsh 1 then
C,nC,=0.

For more detailed information about the geometry of such surfaces we refer
the reader to [DPRS] §. 4, [Be, Bu].

1.2.2 Let Se.#(g,p,f) and Sy< S be a connected surface with smooth compact
boundary. The Laplacian 4 acts in the space of C-functions on S, which are
with compact support and with vanishing normal derivative on éS,. It has
an extension to a self-adjoint operator 4, on I?(Sg). Then one proves exactly
as in ([DPRS] Lemma 3.2) that the essential spectrum of A, is contained in
[1/4, + o0). Suppose that each boundary component y < 8§, has a neighborhood
which is isometric to

[a,b] x R/Z with metric dx?+[2ch?x d§?

for some [<2arcsh1 and b—a=>1, b>a=0. Then, along the same lines that
in [DPRS] one can show that the small eigenvalues of 4, are controlled in
terms of the small simple closed geodesics contained in S,.

We introduce one further notation:

U1 (S) is the infimum of the I2-spectrum of 4,. If Vol(Sy) < + oo then p,(S,)=0
and u,(S,) denotes the infimum of the [?-spectrum of the operator 4, acting
in the space of [*-functions of mean zero.

1.3 Proof of Theorem 1.2: the upper bound

The upper bound of Theor. 1.2 follows essentially from work of B. Colbois
and Y. Colin de Verdi¢re. (see [C, CdV]). Our treatment differs from theirs
in that it gives an improvement of a In e-factor in the final result. We recall
the main facts for the convenience of the reader.

1.3.1 Let ¢e<2 arcsh1 and G,=(V, E, m,]) be the weighted graph associated to
Geod (g). We identify R, [ V] with a subspace of

HY(S)={f:S=>R, | fl,+|Vf],<+ a0}
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in the following way:

Let a> 0 be such that sh ash §= 1 and for ye Geod(e) define:

C,(a)={peS:d(p,y)<a}cC,.

Recall that if S,U...UUS, is the decomposition of S\ Geod(e) into connected
components then:

V={S;:1Zi<k}.

We denote by §; the complement in §; of all cylinders C, , meeting S;. Given
FelR,[V] we define fe H'(S) as follows:

® f(x)=F(S,) forall xeSi, 1ZiZk

Then f is already defined on 6C, , and we define f on C, , to be the unique
harmonic extension of this function.
This defines a subspace of H'(S) denoted by H,(S). It is associated in a
canonical way to Geod(g).
Using the map
Rp[V] - H.(S)

Fef

we want to compare Q(F) with |Ff||2 and | F} with || f|,. In order to do
this we have to establish some elementary estimates about harmonic functions
on cylinders C,(a).

1.3.2 Let a>0, >0 and consider the cylinder C=[ —a, a] x R/Z endowed with
the metric d x?+1? ch?x d 2. The volume element is dv(x, #)=Ichxdx d6 and
the Laplacian A=02+1"2¢h™?xd3 +thxd,.

It is easy to verify that the harmonic function f on C with boundary values
c. on{~a} xR/Z and ¢, on {a} x R/Z is given by:

_{cy+c)  (cy—c_ ) arcsinthx
B 2 2 arcsintha’

f(x,0)

Lemma 1. (compare with [C, CdV] Prop. 111.3).
Let C, =[0,a] xIR/Z and C_ =[—a,0] xR/Z. Then we have:

@ [ flz<ck Vol(C,)+c? Vol(C.)
(b)
laey —c )

2 2 2
[f13>¢3 Vol(Cy)+e2 Vol(Co)———=

(c)
{c,—c )l

2 arcsintha’

Ifiz=
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Proof (c) is obtained by explicit integration.
We prove (a) and (b):
_ 2
IfI3=2shat- (455
21 c,—c_\*?¢ . 5
+ (arcsinth a)? ( 5 ) Of dx ch x(arcsinth x)
we have
| dx chx(arcsinth x)* <sh a(arcsinth a)?
4]
which proves (a).
f dx chx(arcsinth x)* = sh a(arcsinth a)* - 2 | d x thx arcsinth x
4] [¢]

> sh a(arcsinth a)? —2a arcsinth a
which proves (b). Q.E.D.

1.3.3 Let:
Rp[V] — H,(S)

Ff

be the map defined in 1.3.1. Then we have:

Lemma 2.

1
@ QRS ITf 135 O(F)(L+c-0)
(®) /13522 F)?
© 17132 2n ] FI*(—c-¢ln)

Here ¢> 0 is some universal constant.

Proof. (a) and (b) follows immediately from Lemma 1 and the fact that
=1. To prove (c) we remark that Lemma 1 implies:

a

If12z27| FII>—Q(F)

arcsintha’
Now we have to bound Q(F):

Clearly:
Q(F)£2e 3, (F(x)*+F(y))

x,yeV

=4¢ ) F(x)*d(x)

xeV

M. Burger

4

shash2
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where d(x) is the degree of the vertex x. Let S, be the surface of finite volume
corresponding to x. Let g, be its genus, p, the number of cusps and f, the
number of boundary geodesics. Then:

d(x):fx

and we have by Gauss-Bonnet:
1
m(x):E Vol(sx): 2gx—2+px +fx

This quantity is always bigger or equal to f,/3 as is easily verified.

Thus:
Q(F) <126 FII*

On the other hand a/arcsinth a < ¢-1n ¢ where ¢ >0 is some constant. This proves
(). Q.E.D.

1.3.4 The upper bound in Theor. 1.2 is now an immediate consequence of Lem-
ma 2.

1.4 Proof of Theorem 1.2: the lower bound

1.4.1 The case of one separating geodesic. Let Se.# (g, p, /) and F<S a surface
with smooth compact boundary. We assume that there is a simple closed geodes-
ic yoF of length /<2 arcsh 1 separating F into two components Fi, F,. We
assume also that the cylinder C,(a) is contained in F for some a<d,. (cf. 1.2.1)

Using a method introduced by Y. Colin de Verdiere (cf. [C, CdV] Lemma
PVP) we prove the following

Lemma 3. a.) Suppose Vol(F)< + oo and p,(F)<%. Then:

Vol(F) I(y)

Vol(F,) Vol(F,) [(I—cly+n""]

1
>
UZ(F)_—. -

where n=min(u,(F,), 4 (F,)).
b.) Suppose Vol(F)= + wo, Vol(F))< + o and u,(F)<%. Then:

1 i@y _
p( )2"7;‘\'70—1(71)[1“01(?)(1+V 8l

where v=min(u, (F), g1 (F2)).
In both cases c is a constant only depending on a lower bound for Vol(C,).

Proof. We prove a.) since the proof of b.) is the same.
Let he H'(F) such that h is constant=c; on F\C,(a) and harmonic inside
C,(a). Set:

¢, =[Vol(F,)/Vol(F) Vol(F)J}, ¢, = —[Vol(F,)/Vol(F) Vol(F,)]*.
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In particular we have using Lemma 1:

{h(x)dv(x)=0 and [h],=<1

F
Let h=¢+ ¢, where ¢ is the orthogonal projection of h on the eigenspace

of 4, (cf. 1.2.2) corresponding to the eigenvalue u,(F) (recall that u,(F)<%)

and <@, 9> =0.
Let C=C,(a). Then

FIVh)IPdo)=|Vhiz=p,llel3+ [V e, x)*dv(x).
C F

Now:
fIV o, x)*do(x)= I V@i (x), Vhi(x)) do(x)
F
= [ (V@ (x), Vh(x)) dv(x)
C

le,—

’mfd@ f dxd,0,,(x,6) where [=1()

1

=2 {41y, (0,0~ (a0}

2 arcsinth a j

An integration by parts of | 0, f(x,0)dx where f is any C'-function gives the
formula: °

1

1 a 1 a
Ishaf f(a,0)d0=1{d0 [chx f(x,0)dx+1]db [shxd, f(x,0)dx
0 o 0 0o 0
using that shx <chx and applying Cauchy-Schwarz we obtain:

1 .
lIsha | f(a,0)d0|<(Usha)"*{|| f | L2cnrp+ VS lacnrn}-
0

Similarly

1
[Isha j f(—a,0)doj<(l Sha)”z{ll f ’|L2(CnF1)+ f Vf“Lz(Can}-
0

Applying this to f=¢,, we obtain:

llc, |
§17 6, P9 2 e 10 +17 0.l
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Now: [V @ 132 us(F)ll9, |13 and p;(F) 2 min(u, (F,), p,(F,))=n. Thus:

lie,—c|1/2 _
ll7(’)""Hgéarcsintzha\llol{C)‘/z 1V @ula(l+n"12)

or
2P (c;—¢y)?
(arcsinth a)? Vol(C)

IVoulzs (I+n~ 122

From this follows that:

212(c, —c,)?

—1/2y2
(arcsinth a)? Vol(C) (L+n7 75

[ IR dv() < (F) +
C

On the other hand, Lemma 1 shows that:

SN Gl IVl
6( Vhx)I"dv(x) =5~ o

Putting everything together we obtain a.). Q.E.D.

Remark. For later applications it is crucial that the error term in Lemma 3
is of the form I()/n. This means that the estimate is optimal as long as u,(F)
is small when compared to min(u,(F;), u,(F,)). A similar statement holds for
b.).

14.2 A modified graph. In order to prove Theorem 1.2 it is convenient to modify
the graph G, associated to Geod(e), keeping its spectrum fixed. This is done
in the following way:

Let Geod'(g) < Geod(g) be the subset of those geodesics which connect two
distinct components of S\Geod(e) one of which at least is of finite volume.
Let

{S,:0eV’}

be the set of connected components of S\Geod’(¢). Then V' is the vertex set
of our new graph. We have a distinguished subset

P ={veV':Vol(S,)= + 0}
and a weight function m: V' — N defined by:

m(v)=% Vol(S,) if Vol(S,)< +wx

m()=1 1if veP.

The edge set E' is identified with Geod'(¢) and we get an obvious length function
I'onE'.

Let G,=(V', E',m,I'). It is clear that the spectrum of (G,, P’) is the same
than the spectrum of the pair (G,, P).
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Letd<4fBsande=1y/B,,1<j<2g—2+p+fand let Se.#; ;. Then we know
by Lemma 0 that Geod(e) cuts S into j+ 1 pieces exactly where the union
of all components of infinite volume is seen as one piece.

Let T be a connected component of S\ Geod'(¢). About each boundary geo-
desic y= 0 T there is a half cylinder

C)a={peT:d(p,y)Sa} O<a<d,.

Lemma 4. There are positive constants o, o' depending only on (g, p, ) such
that if 6=<a and T’ is the surface obtained from T by removing half-cylinders
C, (a),05a=<d, —1 then:

(@) If Vol(T")= + o0: py (T") 2 o' 411 (S)
(b) If VOl(T') < + 00: po(T) Z & 4541 (S)-

Proof. (a) Vol(T')= + 0. From the discussion in 1.2.2 it follows that
u (T2 By Ly(T).
But:
Li(T)+LyS)ZL;+ 1(S)ZB7" 4j+1(S)

in virtue of ((DPRS]).
On the other hand L;(S)< 7' A;(S)<B7 ' 64;.,(S). Thus:
w(THz B, Ll(T/)glﬂ(BEI “Bl_l d) '{j+1(S)

which proves (a) for sufficiently small 4.
(b) same proof. Q.E.D.

143 Fix j, 1£j<2g—2+p+f. Let Se#;; where §<4; and consider the
graph G, , defined in 1.4.2.
We define a map

H'(S) » Rp.[V']
S F

F(v)=ﬁs{ f(x}du(x) if Vol(S,)< + oo

F()=0 if veP"

Let E; be the subspace of H'(S) spanned by all eigenfunctions of 4 of eigenvalue

Lemma 5. There are constants o, >0 only depending on (g,p, f) such that if
SeM; s and 0 < <a we have:

2rlFIPA+ad)z| fl53z2n|F|?
for all feE;.

Proof. Let ve V', and Vol(S,) < + 0. Then we have:
FIVf@IPdo(x)Zp,(S,) | Lf (x)—F @)1 do(x)
s, 5,
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and if Vol(S,)= + co:
fIVf(X)Izdv )Z 11(S,) § f(x)?dou(x).

Sy

By Lemma 4:
pa(S)z o' 2,41 (S) and  py(S)=a' ;. ((S)

Summing over ve V'’ we obtain:

AN éf!Vf(x o)z Ay (IS 13 -2 01 F 2}
which proves the upper bound for || f{/2. The lower bound follows from Cauchy-
Schwarz. Q.E.D.
1.4.4 A lower bound for |Vf||2. Let S be a geometrically finite surface and

feL}(S). For each subset 4 < S of positive volume we define:

f(4)= § f(x)do(x),

VlA)

in particular f(4)=0 if Vol(A)= + co. Then we have:

Lemma 6. Let A, B be surfaces with smooth boundary, A, B< S such that Vol(An
B)=0.Set D=AuUB

a) If Vol(D)< + oo then we have for all fe H'(S):

s Vol(4) Vol(B) R
13[ Vf dv(x)zuz(D)W(f (A)—f(B)

b.) If Vol{4) < + oo and Vol(B)= + oo then we have for all fe H*(S):
F1IV £ (x)I? do(x) = py (D) Vol(A) f (4)>.

Proof. a.) By definition of y,(D) we have:
g IVf(X)IZdv(X)z#z(D)g [f () ~f(D)]*dv(x)
=uz(D){£f(X)2dv(X)+ §f(x)* dx—Vol(D) f (D)*}
2 pp (D) {Vol(4) f(4)* +BVol(B)f (B)*—Vol(D) f(D)*}

_ 12(D) Vol(4) Vol(B) .
= o] (f (4)—f (B)~.

b.) Is obvious. Q.E.D.

14.5 A combinatorial Lemma. Let Se.#, ;, 6 small and G,W;l (V',E,m,1).
In order to apply Lemma 6 we want to cover S using surfaces §,, eeFE’
such that

(1) Vol(S,nS,)=0if e+e’
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(2) Let y,€Geod'(4;/B,) be the geodesic labelled by eeE’. Then 7, cuts §,
into two pieces exactly and the cylinder C,{a) is contained in S, where a

=arcsh <l/sh ili/i&)— 1.

To do this we need the following Lemma:

Lemma 7. Let 4=(W, E) be a finite connected graph and voe W a fixed vertex.
Then there exists an injective map

¢: W—{vo} > E

such that for all v+v,, v is an extremity of ¢(v).
Proof. Straightforward induction on the number of vertices of 4. Q.E.D.

For veV’ we let K, be the complement in S, of the union of all cylinders
C,(a) meeting S, where yeGeod'(1;/,}.

We fix voeV’ and let ¢: V' —{vy} - E' be the map given by Lemma 7. In
order to define the surfaces S, we have to distinguish two cases:

1) Im ¢ does not contain any edge whose extremity is v,. Then we extend
¢ to V' by ¢(vy)= e where e is some edge issued from v,.
® if e¢Im ¢ we define S,=C, (a) where yeGeod'(4;/8,) corresponds to
e.
® if ecIm ¢, then e=¢(v) for a unique ve V' and we set S,=K,uC,(a)
where y corresponds to e.

2.) Im ¢ contains edges issued from v,. Let e; = ¢(v,) be one of these edges.

@ if e¢Im ¢ we set §,=C,(a) as before.
® if e=¢(v) and v#v, we set S,=K,u C,(a).
o if e=e;, weset S,=K,, vC,(a)UK,,.

In each case we obtain a family of surfaces {S,:ecE’} satisfying properties
1.) and 2.).

1.4.6 End of the proof. Let S=U,.. S,=U,p S..
According to Lemma 5 it suffices to prove that if o e H!(S) then:

(17 o2 dox) 2~ (1-a]/ H)Z’ N (Sy)— 0 (S)?

this last sum being over all yeGeod'(1,/8,), y=Sy NSy
Each surface S, is cut by y=v, into two surfaces A, and B,. We apply
Lemma 6 to S,= A, B, and obtain:

a) If Vol(S,)< +:

1
117009 40092 a(89 G P (4 (B
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b.) If Vol{4,) < + oo and Vol(S,)= +co:

F IV o) dv(x) 2 ui(S.) Vol(A,) (¢ (4.) — @(B.)?

Se

since @(B,)=0.
From Lemma 3 it follows that

l

"D (40 (B)? (1 e ;)

T

J 17 ()2 dv(x)=
Se

where n=2a'Z;, 1(S) using Lemma 4 and [<4,/f,. Here c,o’ constants which
only depend on (g, p, f). This shows that:

1) i |Vw(x)|2dv(x)zf(y—’(1"c’ 4 )((p(A;—(p(Be))z.
Se

n Aj+1

Let v, weV’ such that A, S, and B,<S,,. We can assume that Vol(4,)< + 0.
Now we estimate:

(@ (4)—@(B) —(0(S,)— @ (S £ [e(A) — (S, + 9 (B) — @S]
Ue(4)— (Sl +1o(B)— (S,
Let A'=S,\A,, then a simple computation shows that:

1 ’
D)= 0(5)=yois | (@(4)—0(A)

Now Lemma 4 and 6 imply:

(2) (@A) —o(S)* =

= [ IV o) dv(x)

j+1S,

where a=a(g, p, f). Remark that the inequality is trivialy satisfied if Vol(A4,) = 0.
Consider the surfaces A,uS,, and B,uS,. Then the same arguments as
in the proof of inequality (1) show that:

3) lp(4)—@S)ISal()™ 2L | Vex)l*do(x)]""?
SouSw

4) lp(B)— @SN =al()™'2[ | IFeMx)I*dv(x)]'"
SyuSw

Putting the inequalities (2), (3) and (4) together we obtain that

I N(@(Ae) — (B> —(@(S,)— @(S,)|
is bounded by:

a.(ﬂ)‘”_ i lV(p(x)lZdv(x)éa,'(

A‘j"'l S,uU8w

2. \1/2
) L] P e)PRdo).
S

}‘J"*‘l v 8w
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This together with inequality (1) shows that:

[ 7o dv(x)>””( ¢

Se

A
~—L) (@(S,)— 0(S,)?

Froa

1.
—a /57 | IPePdue

J+t18,08.,

here a=u(g, p, f) always denotes some constant depending only on (g, p, f). Sum-
ming over ee E' we obtain the desired estimate. Q.E.D.

1.5 Proof of the corollaries

We prove Corollary 1.1. The proof of Corollary 1.2 is completely analogous,
and uses Coroll. 2 of Theor. 2.1.

Suppose that the corollary is false. Then there exists a sequence of Riemann
surfaces {S,}. such that:

(a) lim 4,(S,)=0

(b) ISpec A5, N[ 42, 22 (1 +8(2))]| Zq where g=3[2g—2+p+f]+3.
Take i minimal such that ¢<i<2g~2+p+f and lim A8/ 4+ 1(S,)=0.

By passing to a subsequence of {S,};~; we can assume that the graph with
weight function associated to Geod(/4;(S,)/f,) is isomorphic to a fixed one (%4, m),
% =(V, E). From the definition of i it follows that there exists ¢>0 such that
A (Sy)=cAi(S,) for all n=>1. If I, is the length function on E defined by S, then
we have for all ee E:

(&)= A:i(S)/B1 = 4,(8,)/B: c.

Thus we can assume that the sequence [,/1,(S,), converges to a function [: E
—-R*U{0}. Let E'={ecE:l(e)+0}. Then it follows from Theor. 1.2 and the
hypotheses of Corollary 1.1 that the second eigenvalue 15(G’) of the weighted
graph:

G=(V,E,m,

is equal to 2n? and has multiplicity at least q. Moreover this graph satisfies
the hypothesis of Theor. 2.2. Indeed let S, be the component corresponding
to ve V\ P and let d(v) be the degree of the vertex v. The d(v)=f, and:

dv)—2=f,—2=52g,—2+p,+f,=m(v).

In this way we obtain a contradiction with Theor. 2.2. Q.E.D.

2 Weighted graphs

A weighted graph G=(V,E,m,l) is a graph 9=(V, E) together with a weight
function

m:V-R*
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defined on the set of vertices and a length function
LE-R*

defined on the set of edges. We assume that these two functions take strictly
positive values. Given a distinguished subset PV we define the spectrum of
the pair (G, P) in the following way:

On R[V] we have a quadratic form

Q(F)=) 0F(e)*lle)y FeR[V]

eckE

where
OF(e)=F()—Fw)eR/{£+1}, e={v,w}

and a scalar product:

<F1’F2>=ZF1(U)F2(U)» F,FeR[V]

veV

Let R [ V] be the subspace of functions feR{ V] that vanishes on P.
The restriction of F — Q(F) to R,[V] defines a symmetric operator Mp:

(MpF,F>=0Q(F), FeR[V].

The spectrum of (G, P) is the set of eigenvalues of M, listed according to their
multiplicities:

(G5 (6)s ... 23(6)

where N =|V|—|P|. If P= this is simply the spectrum of G.

Let 9'=(V, E’) be the graph obtained from ¥ by replacing all multiple edges
by one edge and by deleting all loops. Up to a obvious modification I': E' >R *
of our length function ! we obtain a weighted graph G'=(V, E’, m, ') such that
the spectrum of (G', P) is identical with the spectrum of (G, P).

This being said we will assume throughout this chapter that the graph
% =(V, E) is finite without loops and without multiple edges.

We will see that if ¥\ P generates a connected graph A¥(G) is of multiplicity
one. Our first estimate of the multiplicity of A5(G) involves the following invariant
of a graph ¥=(V, E):

Let d: V— N be the degree function of % and dy=maxd(v) the maximal degree

veV
of a vertex veV. If A<V we denote by G(A4) the graph generated by A. Then
we define:

(%)= min (d.+]Q|)
QcV

where the minimum is taken over all subsets Q < V such that 7 =G(V\Q) is
a connected tree.

Theorem 2.1. Let G=(V,E,m,l) be a weighted graph and P<V a distinguished
subset such that G(V\P) is connected. Then the multiplicity of A5(G) is at most
o(%) where 9= G(V\P).
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Examples. 1. K, is the complete graph on n vertices. We set the edge and length
function to be identically 1. Then A4,(K,)=n is of multiplicity n—1 and it is
easily seen that a(K,)=n—1.

2. §, is the star with n vertices. As before edge and length function are
identically 1. Then 4,(S,)=1 is of multiplicity n—2 and «(S,)=n-—1.

Corollary 1. Let T=(7, m, |} be a weighted connected tree. Then:
mult 1,(T)<d,.

In 2.2 we will prove that if ¢ is a connected graph and f,(%) its first Betti
number then:

a(G)<dg+ B, (%)
From this follows:

Corollary 2. Let G=(V, E,m,]) be a weighted graph and P<V a distinguished
subset such that % = G(V\P) is connected. Suppose that d, <3 then:

mult A2(G)<}|V\P|+4.

In 2.3 we will show another approach to the problem of bounding the multi-
plicity of 4,. This will lead us to the following result which is well suited for
applications to Riemann surfaces:

Theorem 2.2. Let G=(V, E, m, ) be a weighted graph and P <V such that G(V\P)
is connected. Assume that m is integer valued and that d(v)—2=<m(v) for all
veV\P. Then:

mult 25(G) < 2m(V\P)+2.

Here we set for A<V, m(A)= ) m(v). Essential use of Theor. 2.2 will be made
veAd

in the proof of Corollary 1.2.

2.1 The first method

Let G=(V,E,m,]) be a weighted graph and P<V a subset such that G(V\P)
is connected. One verifies that M, acts on functions feRp[ V] as follows:

1
xeV\P Mpf(x)zm Z 1{x, y}(f () —f ()

xeP M f(x)=0.

Here {x, y} is the edge joining x and y, the symbol x=y means that x, y are
adjacent vertices.
We have the following easy

Lemma 1. If G(V\P) is connected A¥(G) is of multiplicity one and any nonzero
eigenfunction of Mp of eigenvalue 2%(G) is everywhere nonzero on V\P.
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Proof. For all feR[V] we have Q(| f)<Q(f) with equality if and only if for
all x, y such that x=y we have f(x)- f(y)= 0. Since

pen_ . Q)
A1(G)=min 2

where the minimum is taken over feRp[ V], the inequality Q(|f]) < Q(f) shows
that if /' is an eigenfunction of eigenvalue A¥(G) then | f] has also this property.
Let f be an eigenfunction such that for some xeV\P f(x)=0. Since ¢=|f]|
is also eigenfunction we have:

Y l{x 3D 0()=0

from which follows ¢(y)=0 for all y=x. Since G(V'\ P) is connected this implies
¢ =0 and hence f=0. This shows that Af(G) is of multiplicity one. Q.E.D.

Let 4 =(V, E) be a graph. For 4 < V we define the boundary of A:
0A={aeA: ais adjacent to some point in V\ A}.

Given a weighted graph G=(V,E,m,[) and a subset P<V we take two pairs
of subsets (P, V}), (B, V,) with the following properties:

(1) BeV,ecV i=1,2

(2) G;=G(V;\P) is a nonvoid connected graph for i=1,2

Q) inV,e ANk

4) bLnPoP

(5) PoaV, for i=1,2

(6) VANPEP fori=1,2.

Lemma 2. Assume that G(V\ P) is connected, then
max (A]*(Gy), 41(G,)) 2 45(G)
with equality if and only if:
271G =AT4(Gy) = 13(G).

Proof. Let F,eRp [V/] be a positive eigenfunction corresponding to the eigen-
value A§(G,). We extend F; to V by setting £,=0 on V\V,. Let F=%0 be an
eigenfunction of M, of eigenvalue A%(G). Property (6) and Lemma 1 implies
that (F, E)> =0 for i=1, 2. From this follows that there exist ¢; %0, ¢, +0 such
that f=c, F; +¢, F,eIRp[V] is orthogonal to F.

Property (3) implies that || f|2=c?|| F, |2+ c3 | F, ||*.

Properties (1) to (6) imply Q(f)=c? Q(F,)+c3 Q(F,).

Thus

Q(N)=ct A (G)IF|I*+c A7(Gy) | B |12
2B f1*=25(G (I F P+ IR

From this follows max(A§1(G,), 282(G,))= 15(G). Q.E.D.

Here is a immediate consequence of Lemma 2.
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Corollary. Let (P, Vy), ..., (B, V,) be pairs of subsets of V such that for all i+ j,
(B, V), (B, V) verify propertles (1) to (6) above.

Then either (1.) there is a unique i, 1<i<n such that A5:<J% and i%i> 15
for all j*ior

(2) ATz 28 forallj, 1£j<n.

Proof of Theorem 2.1. Let Q< V\P such that G(V')=T is a connected tree
where V'=V\(Pu Q).

1. If dy(p)=1 for all pe V"’ then |V’|=2. Choose pe V' and let f be an eigen-
function of Mp such that f=0 on Qu Pu{p}. Then it is easily seen that f=0
onV.

2. T={peV':d;(p)=2} is non void.

To each peT we associate dy(p)=I pairs of subsets (P, V), ...,(R, V) in
the following way:
Let V' —{p}=w,U...UW, where G(W) are the connected components of
—{p}).
Deﬁne ={peV:p is adjacent to a point of W;} U P and P=V\W,.
We claun that for all i#j(P, V), (F, V) verify properties (1) to (6). Let us
verify (3) and (5):

(3) iFj, VinV,cPnF: Let xeV;n V. If xe P then xe Fn F; by construction.
If x¢ P there exist x;e W, and x;eW, such that x=x; and x=x;. If x were in
W, or W, then G(Wu W) would be connected. This is a contradlctlon Thus
xerP

5 E:@V,-: by definition V,\JoV,o> W,.

Remark that a similar argument than in (3) shows that for all i: {p} =P V".
Let us say that a point peT has property (*) if there exists 1 £i <! such that:

T(GI<E(G),  Gi=G(V),

and thus 1{7(G;)> A5(G) for all j#*i.
[Recall that B, V;, 1 depend on p].
We distinguish two cases:

1. There is a point peT not having property (*).
2. All points in T have property ().

First case. Take peT not having property (x). The corollary of Lemma 2 implies
that

A(G)2A5(G)  foralli, 1<i<l.

Let A,={qeV’, g=p} and choose a point qu Suppose feRy[V] is an
elgenfunctlon of M, of eigenvalue 15(G) and S is zero on Qu{p}u(4,—{q})
Then we have 0=1, f(p)= Y I({p, x} (f (p)— f(x)) which implies that f(q)=

xX=p
Remark also that since BnV'={p}, f=0o0n B and f|, eRp [V/]is an eigenfunc-
tion of Mp, of eigenvalue 15(G)< i1*(G)). Moreover 4, (V\P)#(b and f|, =0
together with Lemma 1 1mp11es that f=0 on V for all i. Thus f is identically
0. This shows that

mult A5(G) 10| +dr(p).
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Second case. All points in T have property (). To each peT we associate a
unique point p'eV’ in the following way: since p has property () there is a
unique component G(W) of G(V'—{p}) such that i¥4(G)<Ai5(G). In W, there
is a unique point p’ =p. Now given peT we construct a maximal path in V'

Po=D:P1>D2s -5 Dy

with the following properties: p;=p; ;, 1 Zi=<r all p; are distinct and p,eT for
alli, 0<i<r.

Now we make the following remark: let peT and f be an eigenfunction
of Mp of cigenvalue A5(G). If f is zero on Qu {p} then flp,=0 for all j and
/ is eigenfunction of Mp . Thus f], =0 for all j for which %i(G)> 15(G). By
definition of p’ this implies that f is zero on all components of G(V'—{p})
which do not contain p’. In particular f(q)=0 for all g=p, g=+p'. Since f(p)=0
this implies that f(p')=0.

The maximality of the path has the following consequence. There are two
cases:

1. p;¢T: This means that the component of ¥'—{p,} containing p; is {p;}.
From the preceeding discussion it follows that if f is zero on Qu{p,} then
S 1s identically zero.

2. py=p,—: If fis zero on Qu{p,_,} then f is zero on all components
of G(V'—{p,-}) not containing p, and f(p,)=0. But then f is zero on all compo-
nents of G(V\{p,}) not containing p,_,. Since G(V’) is a tree this implies that
S is zero on V' hence f is identically zero.

In both cases we obtain mult A£(G)<|Q|+1. Q.E.D.

Let ¥=(V,E) be a connected graph. We show now how to construct a
set Q < V such that G(V'\ Q) is a connected tree. Doing this we prove:

Lemma 3. a(%)<dy+ f,(%).

Proof. Let T=(V, E') be a maximal tree in ¥ and d: V— N the degree function
of 4. Let W,={veV:d;(v)=1, d(v)>1} and W, a maximal subset of points
in W, that are pairwise non-adjacent in 4. Let V;=V\W/, %, =G(V,) the sub-
graph of % generated by V, and T, the subtree of T generated by V,. Then

T, is connected and is a maximal tree in %,. Let E, resp. E| be the edge
set of %, resp. T,. Then:

E, =E\{all edges issued from points in W;}

E} =FE'\{all edges in E'issued from W;}.
Thus

ﬂ1(g1)=|E1|_|E'1|
=B:(%)— ¥ (d®)-1)
veWy
In particular (%)< B,(%)— | W;|.
We can apply the same procedure to (%4, T;) and so on to get after a finite

number of steps a pair (%,, T,) such that 4 =T, and such that if V, <V is the
vertex set of 4, we have:

0=B1(Z)ZB.(H—IV\V,I.

Then Q=V\YV, satisfies obviously the property that G(V'\Q) is a connected
tree. Moreover |Q|=f,(%). Q.E.D.
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2.2 The second method
Let G=(V, E, m, ) be a weighted graph and P = V such that G(V\ P) is connected.

Let feR,[V] be an eigenfunction of M, of eigenvalue i. For geV we denote
by A, the set of peV adjacent to g. If f is zero on A, then:

Al @=——=f Z I({p,q})

( =»

which implies f(q)=0 unless:

m(q Z I{p, q}).

From this follows that if
B={ee\P: (G =i 3L l({p,q}}

and if S is a subset of V\(P v B) of pairwise non-adjacent points then
mult 2£(G)<|V\P|—|S|+|B|.

Here is an application of this inequality in the case of ordinary graphs.

Proposition 2.1. Let ¥=(V, E) be a connected regular graph of degree r on N
vertices and

0=i <Ay<..<ly

be the eigenvalues of r1 — A where A is the adjacency matrix of 9. Then

mult /12§N(1~1)+1.
r] r

N .

Proof. If B+ then A,=r. But Y 4,;=N-r thus 4;=r for all 1<i<N. From
i=0

this follows that ¢ is the complete graph on r+ 1= N vertices and the inequality

mult 1, <N (1 ——}) +% holds.

If B={ then it follows from the discussion above and Lemma 6 (see below)
that:

mult 1, < |V:-1$|<|V:(1——)+l Q.E.D.

To obtain a better estimate we study the structure of B:
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Lemma 4. Let B be as defined above. B is of diameter at most 2 and there
are two cases: (1) G(B) is connected. Fix x,,x,€B with x,=x,. Then there are
3 types of vertices:

Ay ={xeB:x=x,X#X;, X %X,}

A, ={xeBix=Xx,,X#X, XX}

A;={xeB:x=x; and x=x,}

and AUA,UAL{x,,x,} =B, for all xeA,,ye A, we have x=y, for all xe A,
and ye AU A, we have x=y.

(2) G(B)is not connected: for all x, ye B dist(x, y)=2 and any ze V\ P adjacent
to some point in B is adjacent to all of them.

Proof. 1.) If for all, x, ye Bx=y then B is of the form (1) with 4, =A4,=0.

2.) Suppose that there exist x, ye B such that dist(x, y) = 2. Let F be a nonzero
eigenfunction of M, of eigenvalue A7(G) and let f=c, 8,+¢c,6,¢, %0, c,+0
such that f is orthogonal to F. Then Q(f)=15(G)|| f||* as one verifies easily.
From this follows that f is an eigenfunction of M, of cigenvalue A5(G). In
particular if ze V\ P is adjacent to x then

0= 1(6)= 5 YIS

This forces z to be adjacent to y and thus dist(x, y)=2.

This shows that for x, yeB either x=y or dist(x, y)=2 in which case any
ze V\ P adjacent to x is also adjacent to y. (1) and (2) are then immediate
consequences of this property. Q.E.D.

Let @=(V, E) be a connected graph. We want to choose a subset S < V of pairwise
nonadjacent points in an optimal way. Let ScV be any such subset. On S
we put the following graph structure: for s,teS there is a edge between s and
t if and only if A,nA4,+0. We denote st(S) the graph obtained in this way.
A straightforward induction on the number of vertices in % shows the following:

Lemma 5. Let ¥=(V,E) be a connected graph and peV. Then there exists a
maximal set of pairwise non-adjacent vertices S < V such that st(S) is connected.

The following consequence is important for us:

Lemma 6. Let 9=(V,E) be a connected graph and peV. Then there exists a
maximal set of pairwise non-adjacent vertices S < V such that:

2 dp)z|Vi-1

peS

Proof. Let S be the set given by Lemma 5 and e the number of edges of st(S).
Since st(S) is connected we have e=|S|— 1. Thus

Ydp)ze+V|—ISiz|V|-1

peS

since each point geV\S is adjacent to at least one point in S and is counted
twice when it is in A;n A4, for some s, teS. Q.E.D.
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Proof of Theorem 2.2. Let G=(V,E,m,l), P<V,d: V- N satisfy the hypotheses
of Theorem 2.2. Let V= V\ P and B« ¥, such that

B:{ero EG)= é I(x, y}}

Given AcV we set m(A)= Y m(x).
xed

Let Vu,\B=V;U...UV, such that the graphs G(V;), | £i<n, are the connected
components of G(V,\ B).

Let |V)|=2 for 1 i<k and |V)|=1 for k+1=<i<n. For each i, 1 i<k we
choose one point p,eV; such that p; is adjacent to some point in B. We let
S;3p; be the subset of V] given by Lemma 6.

Let now felRp,[V] be an eigenfunction of M, of eigenvalue A5(G) and sup-
pose that f is zero on

By kkj (V\S)

i=1
then it is easily seen that f is identically zero. From this follows that:
k
(%) mult 4, <|B|+ ¥, (Vil—ISi)
i=1

we first estimate |V} —|S;| for 1 ZiZk:
let d; be the degree function of the graph G(V;) and r; the number of points
in B adjacent to p;. Then it follows from Lemma 6 that:

z dip)zr,+ 2 d(p)z|V|+r—1L

pes; pes;

From this and the inequality m(x)2d(x)—2 we obtain:
m(S)z Vil —2(S;|+r,—1

On the other hand we have the obvious inequality:
[Vil=ISi] +m(S)=m(V).

This and the preceeding inequality imply:

(%) 2(VI=18h=m(V) +1Si| —(r;—1).

Now we estimate | B|. According to Lemma 4 we distinguish two cases:
1.) Bis connected: B=A,UA,LA;LH{x,, x,}
then we have:
m(B)2d(x,)—2+d(x,)—2+(|B]—2)
2(| A1 +|As] =D+ (421 +143]| - 1) +(B]-2)
22|B|—-
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hence:
|B|<im(B)+3.

2.} B is not connected: in particular |B|=2. Because of Lemma 4 any point
adjacent to one point in B is adjacent to all of them and this implies that
ry=|B| for 1£i<k and that d(x)=k—2 for all xeB. In particular m(B) = |B|(k
—2).

Now we put (+*) into the inequality () and obtain:

mult 1, <|B|+

X m+g S1si- 3 ()

i=1

N!

In case 1.) we use that r,=1 and |B| £ {m(B)+ 3 to obtain:

1 k
mult izgim(Vo)+3+% YIS

i=1

|B|—i (";1):|B|<1~§>+§.

i=1

In case 2.):

If k22 this is smaller than }|B{(k—2)+1=im(B)+1. If k=1 this equals 181
+4<4m(B)+1. 2
Thus:
1 1 &
mult 7, 5 (V0)+1+ YIS
1 1
In any case we obtain:

1 1 &
mult 1, <= m(Vo)+3+= ) IS
2 2.5
On the other hand it follows immediately from (x) that:
1 k
5 mult 4, < m(V0 Z

Adding this to the preceeding inequality we obtain:
mult 1, <im(Vy)+2. Q.E.D.
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