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1 Introduction 

This is a cont inuat ion of our paper  (joint with J.S. Li) " R a m a n u j a n  duals and 
au tomorph ic  spectrum", which we will refer to as I. For  the convenience of the 
reader as well as making this note self contained, we review the key definitions from 
I. Let G be a semisimple linear algebraic group defined over Q. Then G(g)  is 
a lattice in G(IR) and we denote by F(N) the principal congruence subgroup  of 
G(2g): 

F(N)= {7~G(;g):7 = l m o d N } .  

Let (~(1R) be the unitary dual of G(IR) endowed with the Fell topology (see [D, 
18.1 ]) and (~ 1 (lR) the subset of d(IR) consisting of all class one representat ions_We 
are interested in the spectrum a(F(N)\G(IR)), that is the set of all geG( lR)  
occurring weakly in the regular representat ion of G(IR) in L2(F(N)\ G(IR)) (see [D, 
18.1.4]). We let crl(F(N)\G(IR))denote the class one part  of c~(F(N)\G(IR)). We 
recall f rom I the definitions of GAut and GR .. . . .  �9 

(~Aut= ~ a(F(N)'\G(IR)) 
N = I  

dR ....... = (~Aut c~ (~1 (IR) . (1.1) 

The closure in (1.1) is taken w.r.t, the Fell topology of (~(IR). Identifying (~R . . . . . .  may  
be viewed as the general Ramanu jan  conjecttyes. The main result in I is the 
following: let H be a Q-subgroup  of G and rc~ HAut, then any n' weakly contained 

~r ~G(~)  
in moll!ran lies in (~Aut. Symbolically: 

i , , l~ l  , '; dA,, (1.2) notf(~R) K/Au t C 

(lnd always denotes unitary induction.) 
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The inclusion (1.2) gives nontrivial lower bounds on dmt  and in particular 
yields a new method to construct automorphic forms and spectrum. Such applica- 
tions are described in I. Our main result here is to establish two other very useful 
functorial properties of the sets  GAu t. 

Theorem 1.1 Let G be a semisimple linear algebraic connected group defined over q). 
Let  H < G be a semisimple ff)-subgroup. Then 
(a) ReSHi~,)daut c HAut: for  ~ G A u t ,  any ~' weakly contained in Resuiet~ lies in 
HAut- 
(b) GAu t (~) GAu t C G Aut: for  It, O) E dAm an), ~' weakly contained in ~ | o) lies in dA~t. 

Part (a)^ of the Theorem may be used to prove  nontrivial upper bounds on 
dA,t and GR . . . .  via "lifting" such bounds from HA,t to GAut. This, of course, 
requires that we can find such suitable Q-subgroups. These upper bounds give 
partial results towards the general Ramanujan conjectures. We illustrate this 
technique for certain orthogonal groups. Let k/q) be a totally real field, I its ring of 
integers and q a quadratic form over k such that: 
1. q has signature (n, 1) over 1R 
2. q* is definite at each archimedean place a 4: id. 

Let G be the special orthogonal group of q. We consider G as a Q-group via 
restriction of scalars so that 

G(IR) = SO(n, 1)• HSO(n + 1) 

Let G(IR) = KAN be an Iwasawa decomposition, o.I = Lie(A), p = �89 - sum of 
positive roots and g = keUlgln. The theory of spherical functions identifies 01 (lR) 
with a subset of 9.1*/W, where W is the Weyl group. If 2e~kt* /W corresponds to 
~ e  dl(IR), the spherical function (p associated to ~ is given by: 

~p(g) = ~ e ~x-p){n~,qk~) dk . 
K 

Incidentally, this formula shows that the Fell topology on (~ ~(IR) coincides with the 
topology on dl(lR) viewed as a subset of 9Jg/W. Now we identify ~ to IR by 

n - 1  
sending p to ~ .  With this normalization d I(IR) is identified with 

ilR u f -  p ,p]  c ~ 

modulo {___ 1}. (See [Ko,  Prop. 6, Th. 103). We choose to parametrize (~I(IR) by 
s~ ilR § ~ [0, pl and denote the corresponding representation by ~s. 

For these groups G we showed in I (using 1.2 with the trivial representation on 
H,, ~ SO(m, 1)) that 

GR . . . .  ~ tiP-, + w {p, p - 1 . . . .  p - [ p ] } .  (1.3) 

Recall that if ~ is an automorphic representation of GL(2, Av), F a number 
field, such that ~ is spherical and 7z not one dimensional it is conjectured that ~z~ is 
tempered. We will refer to this conjecture as the Ramanujan conjecture at ~ for 
GL(2, F). 

Theorem 1.2 For n >= 3, and G = SO(q) as above 
(a) d R . . . .  = i]R + k.) [0, p - 21-3 LA {p}. 



Ramanujan duals II 3 

(b) Assuming that the Ramanujan conjectures at ~ Jor GL(2, F), where F is 
a number field, are true then 

GR . . . . .  C iIR + tj [0, p -- l]  ~ {p} . 

One can formulate (a) and (b) in terms of the first eigenvalue 21 of the Laplacian 
acting on LZ(F\IH"), where IH" is the hyperbolic n-space. 

Corollary 1.3 
(a) Let F be a congruence subgroup of  SO(q, I) then 

2n - 3 
)-1 (F  ~, IH") > - - ,  n > 3 . (1.4) 

4 

(b) Assuming the Ramanujan conjectures at ~ .fin" GL(2): 

2 1 ( F ' , , l H " ) > n - 2 ,  n > 3 .  (1.5) 

Remarks 1.4 {1) The Ramanujan  conjectures for GLt2)  together with (1.3) show 
that (1.5) is the precise sharp lower bound for 2~(F",. lit") for all n > 3. 

(2) In the special case k = Q and n > 4, G(Q) is isotropic and Corol lary 1.3(a) 
was established independently by Els t rodt-Grunewatd-Mennicke [ E - G - M ]  and 
Li-Piatetsky Shapiro-Sarnak [L-P-S] .  The methods employed in those papers, 
which make use of Kloosterman sums, are restricted to the isotropic cases as well as 
to rank I. (Essential use is made of the cusp in defining Poincar6 series). 

(3) Corol lary 1.3(b) gives strong support  to our conjecture that 

dR . . . . .  = iIR + u {p, p - 1 . . . .  } : G , u b g  , (see I ) .  (1.6) 

In this case conjecture (1.6) apparently agrees with Arthur 's  conjectures [A] at 
the infinite place. In fact, (1.3) establishes the "easier" half of  these conjectures. 

"~ dR,m,~, for some 0 < s < p then (4) It follows from Theorem 1.1(b) that if ~sj 
{ k ( s -  p) + p: keN,  k ( s - p ) + p > O }  = d R  ..... . 

The proof of Theorem 1.1 makes use of the equidistr ibut ion of a certain 
sequence of points in F \ G (1R). In Sect. 2 we construct these sequences and establish 
their equidistribution using Hecke operators. In Sect. 3 we prove Theorem 1.1 
while in Sect. 4 we establish Theorem 1.2. Various comments  and extensions are 
described in Sect. 5. 

Acknowledgements. We thank M. Borovoi for clarifying discussions concerning weak approxima- 
tion and J. Schwermer for general comments. 

Let G and F = F(N) be as in Theorem 1.1. Let M c F\G(IR) be a finite subset 
which is invariant under right F-action. Then 

TMf(g) = ~ .((my) (2.1) 
m e M  

is a bounded operator  on Lz(F\G(]R))  of norm 

II TM II = IMI �9 (2.2) 
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The basic example of such an invariant set comes from h~Comm(F),  the 
commensurator of F. Namely, let M be the F-orbit of Fh in F\G(~). Then M is 
finite and we set Th:= Tu. It is easy to check that 

II T,,II -- l h - ' r h n r \ r l  

and 

Th* = Th , .  (2.3) 

Now let Py = {2, 3, 5 , . . . }  denote the set of finite primes. IfS c Py is a finite subset, 
7Z.~s) denotes the ring of S-integers. Under the assumptions on G we have: 

G(;g(s)) is finitely generated. (2.4) 

(See [BS, Th. 6.20)]). 

Lemma 2.1 Under the assumptions on G, there exists S ~ Py finite such that G(7l(s)) 
is dense in G(IR). 

Proof Assume first that G is simply connected. Then one is easily reduced to the 
case where G is Q-almost simple in which case Lemma 2.1 follows from the strong 
approximation theorem. ([K, P, Th. 4.2]). 

In general, let p: G 'c --* G be the simply connected covering of G and let S c Py 
be such that G'C(Z~s)) is dense in G'C(IR). Enlarging S if necessary we may assume 
that p(G~C(Z~s)))cG(7Z~s)). Since p(G~C(IR))=G(N) ~ we conclude that 

0 O G(TZ~s)) c~ G(IR) is dense in G(~,,) . On the other hand, it follows from the weak 
approximation theorem for G (see [San, Coroll. 3.5]) that G(Q) is dense in G(IR). 
Enlarging S if necessary we conclude that G(TZts~) meets every connected compon- 
ent of G(IR) and therefore is dense in G(IR). Q.E.D. 

Let {el . . . . .  e,} be a finite set of generators of G(Z(s)) and set 

T = i T~, + T~,-, (2.5) 
i = 1  

then T is self-adjoint by (2.3). Let 

IITII = ~ IIT~,II + IIT~c,II = k .  (2.6) 
i = 1  

In view of (2.2), the averaging operator T "  may be written in the following way: 
k m 

T"f(g) = 2 f(b~") g) (2.7) 
j = l  

Here the 5 (') are in G(Z(s)) and products in the ejs and ~-1. Remark that any 
element of G(7I(s)) appears as a 5} ") for m big enough. 

Our aim is to prove that these 6~ ") become equidistributed in F\G(]R) as 
m --* ~ .  Precisely let 

Tm= (T1)" �9 (2.8) 

Lemma 2.2 (a) For allfl,fz~LZ(F\G(IR)): 

lim ( T , , f ~ , f 2 ) =  ~ f~(g)dg S f2(g)dg 
m - .  + oo r \ a t R )  r \ o ( R )  
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where dg is the G(F,) - invariant probability measure on F \ G(IR). 
(b) For all f ~  Co(F\G(IR)) 

lim Tin f =  S f(g)dg 
m~oo F~,G(R) 

uniformly on compact sets. 

Proof. From (2.6) we have [I T~ II = 1 and i~ 1 is selfadjoint. Thus the spect rum of 
Ta is contained in [ -  1, 1]. F rom the spectral theorem applied to Tt it follows 
easily that  (a) of Lemma 2.2 will follow on showing that - 1 is not  an eigenvalue of 
Ta and that 1 is a simple eigenvalue of T1 (with corresponding eigenfunctions the 
constants.) That  is we must  show that if 

1 } ~ = { f : T ~ f = f ,  ~ f d g = O }  (2.9) 
F~\G(~.) 

v-1 = { f :  T l f  = - f }  

then 6~ = v-1 = {0}. Now 6~ and v_~ are invariant under G(lR)-action. Hence, 

(;~ ~ C(F\  G(IR)) and v-1 ~ C(F\  G(lR)) 

are dense in 6~ and v_ ~ respectively. Observe that  these spaces are invariant under 
complex conjugation. So it suffices to show that if f is continuous, real valued, 

[I/llz = 1, ~ f (g)dg = 0 
r\G(~) 

and [ ( T l f f ) ]  = 1 then f =  0. Under  the above clearly (2Pllfl, I f [ )  = 1 and hence 
Tll f l  = Ifl. 

Moreover  If l  (g) = 0 for some 9, s incef i s  of mean value 0. F rom the definition 
of Ti it follows that 

[ f [ ( e ~ l ' O ) = 0  for j =  1,2 . . . .  r .  

Since Tmlf[ = If l  for all m > 1 we get 

i f l  (e j+ 1 + 1 . . .  ~j~- g ) = 0  

for any choice of k, jx . . . . .  jk. It follows now from Lemma 2.1 that  If l  is zero on 
a dense set and hence f = 0. 

To prove (b) we note that f ~  Co(F \ G(IR)) is uniformly continuous. Hence for 
a > 0 and all gt eF\G(IR)  there is a ne ighborhood U~(gl) of g~ such that for all 
m_>_ 1 and geU,(9a). 

I T ~ f ( g ) -  T.,f(ga)[ < ~. (2.10) 

Now take OeCo(F\G(1R)), sup~k = U~(91), ~k > 0 and of integral 1. For  m big 
enough (a) implies: 

<Tmf ql> - ~ f(g)dg < ~. (2.11) 
r\G(~) 

On the other hand, (2.10) implies that 

1<7~,,f, 4'> - T, ,f(gl) l  < a 
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therefore Tmf converges pointwise to 

f(g)dg 
F\G(R) 

and in fact uniformly on compact sets. Q.E.D. 

Now let H < G be a semisimple Q-subgroup. If F is a congruence subgroup of 
G(Z) then A = F c~ H ( ~ )  is a congruence subgroup of H(7Z). Identifying A \H(IR) 
with the H(lR)-orbit of Fe in F\G(N)  we can think of A \H(IR) as a "cycle" or as 
a positive measure/~ in F \  G(R) by defining 

( # , f ) =  ~ f(h)dh (2.12) 
d\n(~) 

forf~ Co (F \ G (IR)). An averaging operator Tra as defined before, operates on cycles 
by 

( TM(IO, f ) = (1~, T ' f )  . 

Lemma 2.3 For f e  Co(F\ G(IR)) and I~ as above 

lim (T,,(/~),f) = Vol(A\H(IR)) ~ f(g)ag. 
m--* oo F \ G ( ~ . )  

Proof. This is immediate from Lemma 2.2 since Tin f is uniformly bounded and 
converges uniformly on compacta. Q.E.D. 

Before closing this section we express (TMfl ,f2 ) and (TM(#),f) in forms to be 
used later. We will only need to consider the case where TM is self adjoint. Let 

M = U M I  
i = l  

be the decomposition of M into F-orbits, M~ = FhiF where hi e Comm(F). Now let 

Bi = {~ ~ F: Fhiy = Fhi} �9 

One checks that 

(TMf~,f2) = ~ ~ f~(h~g)f2(g)dg. (2.13) 
j =  1 BAG(R) 

Of course if hj e G(ff~), which is the case for us, then Bj is a congruence subgroup of 
G(Z). 

Similarly, if A\H(IR) is a cycle as above, M decomposes into A-orbits: 

[_] FhiA. 
i = 1  

M 

Let Ai = {h~A: Fhih = Fhi} then: 

2 

(TM(#),f) = ~ I f(hjh)dh. 
j = 1 ,J j \H(~)  

Again for our H and TM, Aj c H(7I) is a congruence subgroup. 

(2.14) 
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3 P r o o f  o f  T h e o r e m  1.1 

We begin with part (a). Let F <  G(2g) be a congruence subgroup and 
f e  Co(FkG(IR)). Correspondingly, we have the diagonal matrix coefficient 

O(h)= f f(g)f(gh)dg. (3.1) 
r\G(~) 

TO prove (a) it suffices to show that ~(h) is a limit (uniform on compacta of 
H(~) )  of diagonal matrix coefficients of representations of H(lR) whose spectra lie 
in HAu t ([D, 18.1]). By Lemma 2.3 we can write 

~(h) = lim (Tm(#),R) (3.2) 

where 

1 
R (g) - Vol(A \ H (IR) ) f (g) f (gh ) " 

From (2.14) this means that 

1 ,tcm~ 
O(h) = lira ,.~ ~ f f(hJm~hl)f(h~m)hlh)dhl " (3.3) 

In as much as the A~ m~ above are congruence subgroups of H(TZ), it follows that each 
term in the sum in (3.3) is a diagonal matrix coefficient of a representation of H(IR) 
whose spectrum is in Hgut. Thus the same is true for the sum. Therefore 
Resn(~)pr c HAut. F being an arbitrary congruence subgroup of G(7Z), part (a) is 
established. 

We turn to the proof of part (b). From Lemma 2.2(a) and (2.14) we have that for 
u, veL2(F\G(N))  

lim 1 X(m~ 
)=E~ Bt"\I,~) v(h}~, = rxmm $ r\o,ml v(gl )u(g2)dgt dg2 . k m - - *  oD 

Hence it follows that for he Co(FkG(IR)x FkG(IR)) 

1 21m) 
lira k~ ~ ~ h(h~m~g,g)dg = ~ h(g~,g2)dg~dg2. 

m~oo j=1 B}:'\G(R) F\GfP.)xF\GtP.I 

Let 

~ (g )=  S S F(gl,g2)F(glg ,g2g)dgldg2 
r\  o(~) r\o(~) 

with F e Co(F\G(N.)x F \G(~)) ,  be a diagonal matrix coefficient of Pr | Pr. 
From the above 

1 X(m) 
0(g) = lim k-~ ~ I F(h}m)h, h)F(h}m)hg, hg)dh. 

m-~oo j=l Bye\ G(R) 

The terms of this sum are diagonal matrix coefficients of Pr' for suitable 
congruence subgroups F '  of G(TZ). Part (b) now follows as before. Q.E.D. 
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For notational simplicity we begin by assuming k = Q. Let el . . . . .  e, be an 
orthogonal basis of Q" such that 

q(el) > O 1 < i < n - 1  

q(e,) < 0 (4.1) 

and define 

H = {ge SO(q): g(e~) = ei, 1 <_ i < n - 4}. (4.2) 

H is a Q-subgroup of G = SO(q) and H(Z) is a lattice in H(IR). Note that 
H(IR) -~ SO(3, 1). 

Lemma 4.1 Let  H be the special orthogonal group of  a quadratic form over Q in 
4 variables such that H ( N )  ~- S0(3, 1). Then 
(a) HR . . . .  C iN + u l-0, 1] u {1}. 
(b) I f  the Ramanujan conjectures at oo hold for GL(2, E) where E is an imaginary 
quadratic extension o f  Q then 

~-IRaman C2 i ] R  + k.) {1} . 

Proof. This may be deduced from well known results as follows: Let Spin(q) be the 
spinor group associated to the quadratic form q, (see [Ca, p. 181]). Under the 
assumptions, Spin(q) may be identified (over Q) with the elements of reduced norm 
1 in a quaternion algebra A over E, where E is an imaginary quadratic extension of 
Q. Moreover, the inverse image under the covering Spin(q) ~ SO(q) of a congru- 
ence subgroup of SO(q)(7/) is a congruence subgroup of Spin(q). (See for example 
[E-G-M, Prop. 3.1]). Thus to establish (a) and (b), it suffices to do so for the group 
of reduced norm 1 elements in a quaternion algebra over E. By using the Jacquet- 
Langlands correspondence [J-L], see also I-V], we may reduce the problem to 
showing that (a) and (b) hold for F\SL(2,  C) where F is a congruence subgroup of 
SL(2, J) and J is the ring of integers of E. That (b) holds is now a tautology since 
this is precisely the assumption made. On the other hand, (a) has been established 
by Gelbart-Jacquet ([G-J, Th. 9.3(4)]), using the GL(2)-GL(3) lifting and by 
Sarnak IS] using Kloosterman sums. Q.E.D. 

To complete the proof of Theorem 1.2,we use Theorem 1.1 (a) and Lemma 4.1. 
.Let G = SO(q), H as in (4.2) and r~e GRama,, lr :# 1. Then: 

ReSH(R)Zr c / ~ A u t  �9 (4.3) 

Let K be a maximal compact subgroup of G(N) such that Ko = K c~ H(N) is 
maximal compact in H(N). We may choose A c H(N) a maximal R-split torus 
such that G(N) = K A K ,  H(IR) = K o A K o .  For the proof we may assume that 
n = ns with 0 < s < p. Let ~0s be the associated spherical function. Then q~ is 
bi-Ko-invariant of positive type and therefore 

~s(h) = S q~;(h)d#(r) (4.4) 
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where/~ is a probability measure on H(IR) 1 and ~0', is the spherical function of H(N) 
corresponding to the parameter r e  ilR + w [0, 1]. It follows from (4.3) and Lemma 
4.1 (a) that: 

support p c HR . . . .  C iN + u [0,�89 u {1} . 

Notice that #({1}) = 0 since rr has no H(N)-invariant vectors. Therefore 

support p c ilR + u [0, �89 (4.5) 

Let X e Lie(A), X of norm 1 w.r.t, the Killing form of Lie G(N). It  is well known (see 
[G-V, 5.1]) that 
(a) [tp',(exp tX)[ < ~0~(exp tX), r e i n  +, t > O. 
(b) qr < C(1 + t)e tr-a)t, 0 < r < 1, t > O, and C is an absolute constant. 
From this follows that for all t > 0: 

~os(ex p tX)  = ~qCr(exp tX)d#(r) < C(1 + t)e -'/2 . (4.6) 

Observe that if s e [0, p], q~s is positive. On the other hand, q~s as a spherical 
function on G(N) has the following behavior as t -~ + oo (see [G-V, 5.1]): 

q~s(exptX) --, Cse t~-p)t, 0 < s < p .  

This together with (4.6) imply s < p - �89 which proves (a). In the same way, if the 
Ramanujan conjecture holds for GL(2, E), then we conclude s < p - 1. 

The proof of Theorem 1.2 for q a quadratic form over an arbitrary number field 
k is similar. The only comment  that need be made is that Spin(q) will be identified 
with a quaternion algebra over a quadratic extension Elk. The Gelbart-Jacquet 
result mentioned earlier then may be used to deduce (a) in this case. For (b), 
assuming the Ramanujan conjectures for GL(2, E), E an arbitrary number field, 
will suffice. 

This section is devoted to a discussion of Hecke operators and uniform distribution 
of Hecke points in the light of recent results of M. Ratner, ([R]). It is also meant to 
illustrate the connection between the methods of Sect. 2 and certain questions of 
ergodic theory. For  this reason we did not include proofs, therefore we are writing 
"Theorem 5.2" instead of Theorem 5.2. 

First, we fix some notations. If X is a locally compact topological space with 
a continuous group action X x G ~ X we let M ( X )  denote the space of bounded 
measures with weak topology, M 1 (X) the space of probability measures, C0(X) the 
space of continuous functions vanishing at infinity, M ( X )  G, M I(X) G the space of 
G-invariant vectors in M ( X )  resp MS(x) .  Let G be a simple connected Lie group. 
We are interested in the classification of F-invariant ergodic probability measures 
on F \ G .  To relate this problem to the classification theorem of M. Ratner I-R] we 
make the following observation: 

Let ve  M I ( F \  G) ~, for f e C o ( F \  G x F \  G) define 

O(f) = S dg ~ dv(h)f(g, hg) 
rka r \~ 
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where dg is the G-invariant probability measure on F\G. Clearly ~ is a A(G) 
invariant probability measure on F \ G  x F\G. Here A(G) denotes the diagonal 
subgroup of G x G. 

The following lemma is straightforward. 

Lemma 5.1 

MI(Fk G) r ~ MI(Fk G x F \  G) 'J~~ 

v ~  

is a homeomorphism. 

Now it follows from Ratner's classification theorem and the fact that A(G) is 
maximal connected in G x G that any A (G)-invariant probability measure is of the 
form 

(1) do x dg 
or  

(2) A(G)-invariant probability measure supported on the closed orbit (z, e)A(G) 
where z e Comm(F). 

Via Lemma 5.1 we deduce that any F-invariant ergodic probability measure on 
F\  G is: 
(1) do 
or  

1 
(2) I~M, #M(f) = ~ ,,~uf(m), where m = F \  G is a finite F-orbit. 

This classification has an interesting consequence for intertwining operators. 
Namely, let p be the regular representation of G in Co(F\ G) and Int Co(F\ G) the 
space of continuous intertwining operators with strong topology. It is plain that 
the map 

M(F\  G) r ~ Int Co(F\ G) 

defined by Tu(f)(g) = #(p(g)f) is a homeomorphism of topological vector spaces. 
Remark that if # = do then T u = P the projection onto the space of constant 
functions. Also, if # = #u  where M = F orbit of Fy, y ~ Comm F then Tu = Tr the 
normalized Hecke operator. It follows now from the above classification theorem 
that any intertwining operator is limit of linear combinations of Hecke operators 
and the projection onto the constants. 

Concerning the uniform distribution of Hecke points one may obtain the 
following theorem using the results and methods of M. Ratner: 

"Theorem 5.2" Let (xn).% l c F k C o m m F  and assume that 

lim Xn = x ~ F \ Comm F .  
n ---~ o o  

Then for f e Co(F\ G), 1"x.f ~ ~r\ o f (g)dg uniformly on compact sets. 
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