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RAMANUJAN DUALS AND AUTOMORPHIC SPECTRUM

M. BURGER, J. S. LI, AND P. SARNAK

Abstract. We introduce the notion of the automorphic dual of a matrix alge-

braic group defined over Q . This is the part of the unitary dual that corresponds

to arithmetic spectrum. Basic funcional properties of this set are derived and

used both to deduce arithmetic vanishing theorems of "Ramanujan" type as

well as to give a new construction of automorphic forms.

Let G be a semisimple linear algebraic group defined over Q. In the arith-

metic theory of automorphic forms the lattice Y — G(Z) and its congrunce

subgroups

T(7V) = {y e G(Z): y = I(N)},        N e N

play a central role. A basic problem is to understand the decomposition into ir-

reducibles of the regular representation of G(R) on L2(Y(N)\G(R)). In general

this representation will not be a direct sum of irreducibles, and for our purposes

of defining the spectrum, it is best to use the notions of weak containment and

Fell topology on the unitary dual G(R) of the Lie group G(R). (See [D, 18.1].)
For any closed subgroup H of G(R) we define the spectrum cr(H\G(R)) to

be the subset of G(R) consisting of all n e G(R) that are weakly contained

in L2(H\G(R)). Furthermore, if G{{R) is the set of irreducible spherical rep-

resentations, we set ol(H\G(R)) := a(H\G(R)) n Gl(R). When H = Y(N),

cr(r(N)\G(R)) consists of all n e G(R) occurring as subrepresentations of

L2(Y(N)\G(R)) as well as those n 's that are in wave packets of unitary Eisen-

stein series [La]. The latter occur only when r\C7(R) is not compact. We now
introduce the central object of this note.

Definition. The automorphic (resp. Ramanujan) dual of G is defined by

(i) cAut= (J^rwwO),
N=l

^Raman = LrAut H G (R).

Here closure is taken in the topological space G(R).

Thus, ¿rAut is the smallest closed set containing all the congruence spectrum.

Here is an alternative description of C7Raman. Let C7(R) = KAN be an Iwasawa

decomposition of G(R) ; then the theory of spherical functions identifies C71 (R)

with a subset of VLç/W, where 21 = Lie^4, W = Weyl(C7, A). Moreover, the

Fell topology on Gl(R) coincides with the topology of Gl(R) viewed as a subset

of 2t£/ W. Let D be the ring of invariant differential operators on the associated
symmetric space X. Then the duality theorem [GPS] shows that the spectrum
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of D in L2(Y\X), say Spr(D) c OJ./W is the image of al(T\G(K)) in 21* ¡W

under the above identification. In particular, (jRaman is identified with

(JSpr(JV)(D)c2l*:/^.
N=\

That there should be restrictions on (/Raman and GAut nas its roots in the repre-

sentation theoretic reinterpretation of the classical Ramanujan conjectures due

to Satake [Sa]. Identifying the above sets may be viewed as the general Ra-

manujan conjectures. For example, Selberg's 1/4-conjecture may be stated as

follows: For G = SL2,

(2) GRaman = {1} U G (R)temp ,

where, in general, G(M)temp := c(G(R)) is the set of tempered representations,

and Gl(R)temP = G(R)temp n G'(R). (See [CHH] for equivalent definitions of

temperedness.)

While the individual sets a(Y(N)\G(R)) are intractable, the set GAut (and

ORaman) enjoy certain functorial properties.

Theorem 1. Let G be a connected semisimple linear algebraic group defined over

Q and H < G a Q-subgroup

(Í)  Indtf(R) #Aut c GAut.

(ii) Assume that H is semisimple; then

Restf(R) GAut c HAui.

(iii) GAut <8> GAu, C GAut.

A word about the meaning of these inclusions. Firstly, Ind denotes unitary

induction and Res stands for restriction. By the inclusion, say in (i), we mean

that if n' € //Aut and n is weakly contained in Indulgí n' then n € GAut. (i)

produces (after a local calculation) elements in GAut from ones in 77Aut and

yields a new method for constructing automorphic representations. Observe also

that if n e G(R) is an isolated point then n e GAut implies that n occurs as a

subrepresentation in L2(Y(N)\G(R)) for some N. This fact will be used below

to construct certain automorphic cohomological representations, (ii) allow one

to transfer setwise upper bounds on HAut to C7Aut and for many G's gives

nontrivial approximations to the Ramanujan conjectures, (iii) exhibits a certain

internal structure of the set GAut. We illustrate the use of Theorem 1 with some

examples.

Example A. If H = {e} then (i) implies that

(3) GAut D G(R)temp U {1}.

When G(Z) is cocompact this follows also from de George-Wallach [GW]. In

comparison with (2) one might hope that (3) is an equality. However, using

other H's and (i) one finds typically that GAut contains nontrivial, nontem-

pered spectrum. For G = Sp(4) the failure of the naive Ramanujan conjecture

has been observed by Howe and Piatetski-Shapiro [HP-S] using theta liftings.
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Example B. Let k/Q be a totally real field, q a quadratic form over k such

that q has signature (n, I) over R, and all other conjugates are definite. Let

G = Resfc/QSO(í7). Then G(R) is of R-rank one and the noncompact factor

is SO(n, 1). We identify 2t* with R by sending p to (n - l)/2. With this

normalization G(R)1 is identified with ilu[-p,p] C Cmodulo{±l}. [K]. We

parametrize G'(R) by se z'R+U[0, p] and denote the corresponding represen-

tation by ns. Let (p$, ... , cpn be an orthogonal basis of q such that q(<pî) > 0,

0 < /' < n - 1, and q(tp„) < 0. Define H = Resfc/Q{g e SO(q): g(<P\) = <pi}.

Applying Theorem 1 (i) to the trivial representation 1 e HAut we find that

(T(//(R)\G(R)) c GAut.

Now (Tl(H(R)\G(R)) has been computed ([F]), and we find

(4) GRamnD{/),/)-l,/)-2,...}U¡l+.

In particular, for n > 4 there are nontrivial nontempered spherical automorphic

representations.

To find upper bounds on GRaman one uses Theorem 1 (ii) and

H = Resk/Q{g G SO(q): g(<p¡) = <p¡,  1 < i < n - 4}.

Combining the Jacquet-Langlands correspondence [ JL] with the Gelbart-Jacquet

lift [GJ] one concludes that

«Raman C/R+U[0, £] U {1}.

Applying (ii) it follows that

(5) GRaman C /R+U [0, /> - ±] U {/>}.

In the special case k = Q, n > 4 this result has also been obtained by [EGM]

and [LP-SS] using Poincaré series. Assuming the Ramanujan conjecture at oo
for GL(2) one deduces

(6) GRaman C /R+U [0, /> - 1] U {/>}.

(Compare with (4).) The natural conjecture arising from (4) and (6) is

GRaman = *+U {p, p - 1,...}.

This is apparently consistent with Arthur's conjectures [A].

Example C. Let F4(_2o) be the R-rank one form of F4. Using a method of Borel

[B], one may find Q-groups H < G such that G(R), H(R) both have rank one,

the noncompact simple factors being F4(_2o) and Spin(8, 1) respectively. With

notations similar to Example B, one may identify G'(R) with z'R+ U [0, 5] U

{11}, here p = 11. One may compute ol(H(R)\G(R)) and using Theorem
l(i) find that

GRaman3/R+U{3, 11}.

Example D. Consider now F4^, the split real form of _F4. The corresponding

symmetric space has dimension 28. For any cocompact lattice Y c F^w one
knows from Vogan-Zuckerman [VZ] that the Betti numbers ßm(Y) = 0 for

0 < m < 8 or 20 < m < 28, m ^ 4 or 24, in these latter dimensions all the
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cohomology comes from parallel forms of the symmetric space. Nevertheless

using Theorem 1 (i) we have

Theorem 2. For any cocompact lattice Y in F4^ and N > 0 there exists FcT

affinité index such that ßm(Y')H >N for m = 8, 20.

The proof of Theorem 2 makes use of Matsushima's formula [BW] together

with a recent result of Vogan ensuring that the unitary representation con-

tributing to the above Betti numbers is isolated in the unitary dual of F4(4).

The Q-subgroup that we use in applying Theorem l(i) has real points equal

to Spin(5, 4) up to compact factors. By the well-known result of Oshima-

Matsuki [MO], we conclude that the discrete series of the symmetric space
^4(4)/ Spin(5, 4) contain a unitary representation with nonzero cohomology in

degrees 8 and 20, which is isolated in the unitary dual. The fact that we have

dealt with every lattice in .F4(4) follows from Margulis's arithmeticity theorem
[M], together with the classification of algebraic groups over number fields [T].

This method of constructing cohomology is rather general. If n is isolated in

G(R) and is contained in the automorphic dual of G then it occurs discretely

in L2(r\G(R)) for Y a congruence subgroup of deep enough level. David

Vogan has recently obtained the necessary and sufficient conditions for a unitary

representation with nonzero cohomology to be isolated, which implies that most

of them do. Theorem 1 then allows us to obtain nonvanishing of cohomology

in a large number of cases.

To end, we remark that these ideas extend in a natural way to S-arithmetic

groups. The proof of Theorem l(i) consists of approximating, in a suitable

way, congruence subgroups of H(Z) by congruence subgroups of G(Z) and

then applying criteria of weak containment. For the proofs of Theorem 1 (ii),
(iii) we refer the reader to [BS].
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