INTERSECTION, THE MANHATTAN CURVE, AND PATTERSON-SULLIVAN THEORY IN RANK 2

MARC BURGER

Let Γ be a nonvirtually abelian, finitely generated group and let $\operatorname{Rep}_{c c}(\Gamma)$ denote the set of injective homomorphisms $\pi: \Gamma \rightarrow G$, of Γ into the group of isometries G of a symmetric space X of rank one such that
(1) $\pi(\Gamma)$ is torsion-free
(2) the $\pi(\Gamma)$-action on X is properly discontinuous and convex cocompact.

Our aim is to describe invariants attached to pairs π_{1}, π_{2} of convex cocompact realizations of Γ which will lead to criteria when the isomorphism

$$
\pi_{2} \pi_{1}^{-1}: \Gamma_{1} \rightarrow \Gamma_{2}
$$

extends to an isomorphism $G_{1} \rightarrow G_{2}$ of the ambient Lie groups.
Examples. (1) The free group on two generators $\Gamma=\mathbb{F}_{\sim 2}$ has nonhomeomorphic convex cocompact realizations in dimension 2, e.g., a thrice-punctured sphere with three expanding ends and a once-punctured torus with one expanding end.
(2) Let $\Gamma<S O(n, 1)$ be a cocompact lattice and assume that $\Gamma \backslash \mathbb{H}_{\mathbb{R}}^{n}$ contains at least one totally geodesic embedded codimension-one submanifold with trivial normal bundle. Then Γ admits nontrivial convex cocompact deformations into $S O(n+1,1)[\mathrm{JM}]$.

At the end of $\S 2$ we indicate how our results generalize to arbitrary negative curvature.

Acknowledgments. I thank S. Mozes for very helpful discussions, in particular for providing Lemma 3. I thank MSRI for its hospitality where this work was completed.

1. Intersection and the Manhattan curve. For notation and definitions we refer to $\S 3$.

The set \mathscr{C} of Γ-conjugacy classes in $\Gamma-\{e\}$ parametrizes the set of closed geodesics of any convex cocompact realization of Γ. Therefore two convex cocompact realizations $\pi_{i}: \Gamma \xrightarrow{\sim} \Gamma_{i} \subset G_{i}, i=1,2$, give rise to two length functions

$$
\ell_{i}: \mathscr{C} \rightarrow \mathbb{R}^{+}
$$

which we now use to define the following basic invariants attached to $\left(\pi_{1}, \pi_{2}\right)$:
Received 5 May 1993.
Communicated by Peter Sarnak.
(a) Geodesic stretch.

$$
\operatorname{dil}_{+}\left(\pi_{1}, \pi_{2}\right):=\sup _{\mathscr{\&}} \frac{\ell_{2}(c)}{\ell_{1}(c)}, \quad \quad \operatorname{dil}_{-}\left(\pi_{1}, \pi_{2}\right):=\inf _{\mathscr{6}} \frac{\ell_{2}(c)}{\ell_{1}(c)}
$$

For Γ, a fundamental group of a compact surface, and $G=\operatorname{PSL}(2, \mathbb{R})$, these invariants pertain to the minimal stretch map point of view of Teichmüller theory, as developed by W. Thurston [T].
(b) Intersection. Let μ_{1} be the Patterson-Sullivan measure on the set $\Omega_{1} \subset$ $T_{1}\left(\Gamma_{1} \backslash X_{1}\right)$ of recurrent points of the geodesic flow and let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a sequence of \mathscr{C} such that the corresponding sequence of closed geodesics in Ω_{1} is equidistributed with respect to μ_{1}. The intersection $i\left(\pi_{1}, \pi_{2}\right)$ is defined as

$$
i\left(\pi_{1}, \pi_{2}\right):=\lim _{n \rightarrow \infty} \frac{\ell_{2}\left(c_{n}\right)}{\ell_{1}\left(c_{n}\right)} .
$$

It measures the distortion under Morse correspondence of the length of a typical geodesic in Ω_{1}.

In the case of compact surfaces, W . Thurston proved, using the convexity along earthquake paths of the geodesic length function, that $i\left(\pi_{1}, \pi_{2}\right) \geqslant 1$ with equality if and only if π_{1}, π_{2} represent the same point in Teichmüller space. The corollary of Theorem 1 below generalizes this result.
(c) The Manhattan curve. This is the continuous convex curve $\mathscr{C}_{M}\left(\pi_{1}, \pi_{2}\right)$ bounding the following convex subset of \mathbb{R}^{2} :

$$
\left\{(a, b) \in \mathbb{R}^{2}: \sum_{c \in \mathbb{\&}} e^{-\left[a 1_{1}(c)+b /_{2}(c)\right]}<+\infty\right\}
$$

Observe that the points $\left(\delta_{1}, 0\right)$ and $\left(0, \delta_{2}\right)$ where $\delta_{i}:=$ critical exponent of Γ_{i}, always belong to $\mathscr{C}_{M}\left(\pi_{1}, \pi_{2}\right)$.

Now let $\operatorname{Rep}_{c c}^{Z}(\Gamma)$ denote the set of $\pi \in \operatorname{Rep}_{c c}(\Gamma)$ such that $\pi(\Gamma)$ is Zariski-dense in G. Equivalently, $\pi(\Gamma)$ does not preserve any proper totally geodesic subspace of X.

Theorem 1. (a) For $\pi_{1}, \pi_{2} \in \operatorname{Rep}_{c c}^{Z}(\Gamma)$, the Manhattan curve is the straight line connecting $\left(\delta_{1}, 0\right)$ to $\left(0, \delta_{2}\right)$ if and only if $\pi_{2} \pi_{1}^{-1}: \Gamma_{1} \rightarrow \Gamma_{2}$ extends to an isomorphism $G_{1} \rightarrow G_{2}$ of the ambient Lie groups, in which case $\Gamma_{1} \backslash X_{1}, \Gamma_{2} \backslash X_{2}$ are isometric and $\delta_{1}=\delta_{2}$.
(b) The Manhattan curve is C^{1}. It has two asymptotes whose normals have slope dil_ $\left(\pi_{1}, \pi_{2}\right)$ at $-\infty$ and $\operatorname{dil}_{+}\left(\pi_{1}, \pi_{2}\right)$ at $+\infty$. Moreover, the slope of the normal to $\mathscr{C}_{M}\left(\pi_{1}, \pi_{2}\right)$ at $\left(\delta_{1}, 0\right)$ is the intersection $i\left(\pi_{1}, \pi_{2}\right)$.

Corollary. Under the hypothesis of Theorem 1, we have

$$
i\left(\pi_{1}, \pi_{2}\right) \geqslant \frac{\delta_{1}}{\delta_{2}}
$$

with equality if and only if $\pi_{2} \pi_{1}^{-1}: \Gamma_{1} \rightarrow \Gamma_{2}$ extends.
Remark. The definition of the Manhattan curve was motivated by [BS], and Theorem 1(a) generalizes Theorem 1 of [BS].

The following fact is used in the proof of Theorem 1(a).
Proposition 1. Let $G_{i}, i=1,2$ be rank-one connected adjoint Lie groups, $\Gamma_{i} \subset G_{i}$ Zariski-dense subgroups consisting of hyperbolic elements, and $\Theta: \Gamma_{1} \rightarrow \Gamma_{2}$ an isomorphism such that $L(\Theta(\gamma))=c \cdot L(\gamma), \forall \gamma \in \Gamma_{1}$, where $c>0$ is a constant and $L()$ denotes the translation length of a hyperbolic element. Then $c=1$ and Θ extends to an isomorphism $\Theta_{\mathrm{ext}}: G_{1} \rightarrow G_{2}$ of the corresponding Lie groups.
2. The Manhattan curve and Patterson theory in rank 2. The properties of the Manhattan curve, stated in $\S 1$, are intimately connected with recurrence properties of the geodesic flow on a rank-2 manifold, which we now define. To $\pi_{1}, \pi_{2} \in$ $\operatorname{Rep}_{c c}(\Gamma)$, we associate the diagonal action of Γ on $\mathrm{X}:=X_{1} \times X_{2}$:

$$
\gamma_{*}\left(x_{1}, x_{2}\right):=\left(\pi_{1}(\gamma) x_{1}, \pi_{2}(\gamma) x_{2}\right), \quad \gamma \in \Gamma
$$

and the (infinite volume) quotient manifold $M:=\Gamma \backslash X$. This manifold fibers over $\Gamma_{1} \backslash X_{1}$ with fiber X_{2}, and over $\Gamma_{2} \backslash X_{2}$ with fiber X_{1}. In order to study the set of recurrent points of the geodesic flow on $T_{1}(M)$, we first describe the limit set $\Lambda \subset X(\infty)$ of Γ in the ideal boundary $X(\infty)$ of X.

Recall that $X(\infty)$ is the set of equivalence classes of parametrized geodesic rays in X, two such rays being equivalent if they stay at bounded distance. We have $X(\infty)=X(\infty)_{\text {sing }} \bigsqcup X(\infty)_{\text {reg }}$, where $X(\infty)_{\text {reg }}$ is the set of rays which are contained in a unique maximal flat subspace of X. Furthermore, for every $\lambda \in(0, \infty)$, the set $X(\infty)_{\lambda}$ consisting of all rays of slope λ w.r.t. the canonical splitting $X=X_{1} \times X_{2}$ is a closed $\left(G_{1} \times G_{2}\right)$-orbit in $X(\infty)$ and

$$
X(\infty)_{\mathrm{reg}}=\bigsqcup_{\lambda \in(0, \infty)} X(\infty)_{\lambda} .
$$

Observe that there is a $\left(G_{1} \times G_{2}\right)$-equivariant identification $X(\infty) \underset{\sim}{\sim} X_{1}(\infty) \times$ $X_{2}(\infty)$, and let $(\text { Graph } \varphi)_{\lambda}$ be the image in $X(\infty)_{\lambda}$ of the graph of the Mostow map $\varphi: \Lambda_{1} \rightarrow \Lambda_{2}$ under this identification (see $\S 3.2$).

The limit set $\Lambda \subset X(\infty)$ of Γ has the following description:
Proposition 2.

$$
\Lambda=\bigsqcup_{\lambda \in F}(\operatorname{Graph} \varphi)_{\lambda}, \quad \text { where } F:=\left[\operatorname{dil}_{-}\left(\pi_{1}, \pi_{2}\right), \operatorname{dil}_{+}\left(\pi_{1}, \pi_{2}\right)\right] .
$$

For every $\lambda \in[0, \infty]$, the subbundle $T_{1}^{\lambda}(M) \subset T_{1}(M)$ consisting of all unit vectors of slope λ is a closed subset of $T_{1}(M)$, invariant under the action of the geodesic flow. Denote by $R_{\lambda} \subset(\operatorname{Graph} \varphi)_{\lambda}$ the set of geodesic rays of slope λ which project to recurrent rays in $T_{1}^{\lambda}(M)$.

THEOREM 2. (a) The map $\mathscr{C}_{M}\left(\pi_{1}, \pi_{2}\right) \rightarrow\left(\operatorname{dil}_{-}\left(\pi_{1}, \pi_{2}\right)\right.$, $\left.\operatorname{dil}_{+}\left(\pi_{1}, \pi_{2}\right)\right)$ which to each $(a, b) \in \mathscr{C}_{M}$ associates the slope λ of the normal at (a, b) is a homeomorphism.
(b) For $\lambda \in\left(\operatorname{dil}_{-}\left(\pi_{1}, \pi_{2}\right), \operatorname{dil}_{+}\left(\pi_{1}, \pi_{2}\right)\right)$ the Hausdorff dimension of R_{λ} is given by

$$
(a+\lambda b) \cdot \max \left(1, \lambda^{-1}\right)
$$

where $(a, b) \in \mathscr{C}_{M}$ corresponds to λ under the above homeomorphism.
The proofs of Theorems 1 and 2 use mainly the following version of PattersonSullivan theory:
let $\mathscr{C}_{R}:=\left\{(\alpha, \beta) \in \mathbb{R}^{2}\right.$: such that the critical exponent of the Poincaré series

$$
\left.Q_{\alpha, \beta}(s):=\sum_{\gamma \in \Gamma} e^{-s \cdot \sqrt{\alpha d^{2}\left(\pi_{1}(\gamma) x_{1}, x_{1}\right)+\beta d^{2}\left(\pi_{2}(\gamma) x_{2}, x_{2}\right)}} \text { is at } s=1\right\} .
$$

For every $(\alpha, \beta) \in \mathscr{C}_{R}$ we get from $Q_{\alpha, \beta}(s)$, using Patterson's construction, a positive measure $\Pi_{\alpha, \beta}$ supported on $\Lambda=\bigsqcup_{\lambda \in F}(\operatorname{Graph} \varphi)_{\lambda}$.

Theorem 3. (a) For every $(\alpha, \beta) \in \mathscr{C}_{\boldsymbol{R}}$ there is a unique $\lambda \in F$ such that $\Pi_{\alpha, \beta}$ has $(\text { Graph } \varphi)_{\lambda}$ as its support. This λ is characterized as the unique one for which

$$
\left(\frac{\alpha}{\sqrt{\alpha+\beta \lambda^{2}}}, \frac{\beta \lambda}{\sqrt{\alpha+\beta \lambda^{2}}}\right) \in \mathscr{C}_{M}\left(\pi_{1}, \pi_{2}\right)
$$

(b) $\Pi_{\alpha, \beta}$ gives full measure to R_{λ}.

Remark. The assertions of Theorems 2 and 3 hold in pinched-variable negative curvature. In this setting the conclusion of Theorem 1 and the corollary is that the length functions ℓ_{1}, ℓ_{2} are proportional. This generalizes Theorem 1 of [La].

3. Preliminaries.

3.1. Let X be a symmetric space of rank one, G its group of isometries, and $\Pi \subset G$ a torsion-free nonelementary convex cocompact subgroup. Let $\Lambda \subset X(\infty)$ be the limit set of Π and $C(\Lambda) \subset X$ its convex hull. In particular $\Pi \backslash C(\Lambda)$ is compact. Fix $o \in X$ a base point and define $d(\xi, \eta):=e^{-(\xi \cdot \eta)_{0}}, \xi, \eta \in X(\infty)$, where $(\xi \cdot \eta)_{0}$ is the Gromov scalar product relative to the base point $o([\mathrm{Gr}],[\mathrm{Gh}, \mathrm{H}])$. Although d is not in general a distance, there exists $C>0$, depending only on X, such that $d(\xi, \eta) \leqslant C \cdot \max (d(\xi, \alpha), d(\alpha, \eta)) \forall \xi, \eta, \alpha \in X(\infty)$. Set $B(\xi, r):=\{\eta \in X(\infty): d(\xi, \eta) \leqslant$
$r\}$. Using these balls, we have the notion of Hausdorff dimension and Hausdorff measure on $X(\infty)$. For instance, $H D(X(\infty))=2 \rho$ where $\rho=$ half-sum of positive roots of G. The Patterson measure m is the unique (up to scaling) positive bounded measure on Λ such that $d\left(\pi_{*} m\right)(\xi)=e^{-\delta \beta_{\xi}(\pi \cdot 0)} d m(\xi) \forall \pi \in \Pi$, where $\delta=$ the critical exponent of Π and $\beta_{\xi}(x)$ is the Busemann functon on $X(\infty) \times X$ normalized by $\beta_{\xi}(o)=0$. The Patterson measure class coincides with the Hausdorff measure class of dimension δ on Λ, and $H D(\Lambda)=\delta$. Let $\Omega \subset T_{1}(\Pi \backslash X)$ be the set of points which are recurrent, for positive and negative time, under the action of the geodesic flow. This set is compact and carries a unique invariant ergodic probability measure μ (Patterson-Sullivan measure) of maximal entropy δ. This measure μ is gotten from the Π-invariant measure

$$
\frac{d m(\xi) d m(\eta)}{e^{2 \delta(\xi \cdot \eta)_{0}}} \quad \text { on } \Lambda \times \Lambda
$$

3.2. Given $\pi_{i}: \Gamma \stackrel{\sim}{\rightarrow} \Gamma_{i} \subset G_{i}, i=1,2$, convex cocompact realizations of Γ, and $\Lambda_{i} \subset X_{i}(\infty)$ their respective limit sets, we have the Mostow map $\varphi: \Lambda_{1} \rightarrow \Lambda_{2}$ which is the unique $\pi_{2} \pi_{1}^{-1}: \Gamma_{1} \rightarrow \Gamma_{2}$ equivariant homeomorphism from Λ_{1} to Λ_{2}. It has the following property:

Lemma 1. φ is quasi-conformal: for all $\xi \in \Lambda_{1}$ and $r>0$ there is $r^{\prime}>0$ such that

$$
B_{2}\left(\varphi(\xi), C^{-1} r^{\prime}\right) \subseteq \varphi\left(B_{1}(\xi, r)\right) \subset B_{2}\left(\varphi(\xi), C r^{\prime}\right)
$$

where $C>0$ is an absolute constant and $B_{i}(\xi, r):=B(\xi, r) \cap \Lambda_{i}$.
3.3. Let $f: \Gamma_{1} \backslash C\left(\Lambda_{1}\right) \rightarrow \Gamma_{2} \backslash C\left(\Lambda_{2}\right)$ be a homotopy equivalence inducing $\pi_{2} \pi_{1}^{-1}$: $\Gamma_{1} \rightarrow \Gamma_{2}$. For $t \geqslant 0$ and $v \in \Omega_{1}$, let $C_{t, v} \subset \Gamma_{2} \backslash C\left(\Lambda_{2}\right)$ be the curve which is the image by f of the geodesic starting at v and of length t. Let $\varphi_{t}(v)$ be the length of the unique geodesic arc homotopic to $C_{t, v}$. Then $\varphi_{t}(v)$ is a subadditive cocycle (triangle inequality), and there exists $C>0$ such that $\varphi_{t}-C$ is superadditive (quasi-geodesic lemma). It is easy to see that the formula

$$
i\left(\pi_{1}, \pi_{2}\right)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{\Omega_{1}} \varphi_{t}(v) d \mu_{1}(v)
$$

holds.

4. Sketch of proofs.

4.1. Choose base points $x_{i} \in X_{i}$. A slight modification of an argument of Knieper [Kn] shows that the Manhattan curve \mathscr{C}_{M} coincides with the set of $(a, b) \in \mathbb{R}^{2}$ for which the Poincare series

$$
P_{s}(a, b):=\sum_{\gamma \in \Gamma} e^{-s\left[a d\left(\pi_{1}(\gamma) x_{1}, x_{1}\right)+b d\left(\pi_{2}(\gamma) x_{2}, x_{2}\right)\right]}
$$

has critical exponent $s=1$. We compactify $X_{1} \times X_{2}$ by $\bar{X}_{1} \times \bar{X}_{2}$, where $\bar{X}_{i}:=X_{i} \cup$ $X_{i}(\infty)$, and observe that in this compactification the limit set of the diagonal Γ-action on $X_{1} \times X_{2}$ is Graph $\varphi \subset \Lambda_{1} \times \Lambda_{2}$ where φ is the Mostow map. We call a measure μ on $\Lambda_{1} \times \Lambda_{2}(a, b)$-dimensional if
(1) $\operatorname{supp} \mu \subset \operatorname{Graph} \varphi$;
(2) $d\left(\gamma_{*} \mu\right)\left(\xi_{1}, \xi_{2}\right)=e^{-a \beta_{\xi_{1}}\left(\pi\left(\gamma_{1}\right) x_{1}\right)-b \beta_{\xi_{2}}\left(\pi\left(\gamma_{2}\right) x_{2}\right)} d \mu\left(\xi_{1}, \xi_{2}\right)$ for all $\gamma \in \Gamma$.

Theorem 4. \mathscr{C}_{M} is the set of points in \mathbb{R}^{2} for which there exists an (a, b) dimensional measure. Furthermore, for every $(a, b) \in \mathscr{C}_{M}$ this measure is unique up to scaling and is therefore ergodic.

The existence follows from Patterson's construction using the Poincaré series $P_{s}(a, b)$. The uniqueness follows in a standard way from the local behavior of (a, b)-dimensional measures:

Lemma 2. Let μ be an (a, b)-dimensional measure. Then there are constants $0<c_{1} \leqslant c_{2}<+\infty$ such that

$$
c_{1} r^{a} r^{\prime b} \leqslant \mu_{a, b}(B(\xi, r) \times \varphi(B(\xi, r))) \leqslant c_{2} r^{a} r^{\prime b}
$$

$\forall \xi \in \Lambda_{1}, r>0$, and r^{\prime} is given by Lemma 1.
Proof. Use Sullivan's shadowing technique.
Denote by $\mu_{a, b}$ the unique (a, b)-dimensional probability measure.
Proof of Theorem $1(a)$. Assume that \mathscr{C}_{M} is a straight line and pick $(a, b)=$ $\left(\delta_{1} / 2, \delta_{2} / 2\right) \in \mathscr{C}_{M}$. Let v_{i} be the projection of $\mu_{a, b}$ on Λ_{i}, and hence $\varphi_{*} v_{1}=v_{2}$. Vitali's covering lemma, Cauchy Schwarz, and Lemma 2 imply then that v_{i} is equivalent to Patterson measure m_{i} on Λ_{i}. Hence if $d \alpha_{i}:=d m_{i}(\xi) d m_{i}(\eta) / e^{2 \delta_{i}(\xi, \eta) x_{i}}$, we have $(\varphi \times \varphi)_{*} \alpha_{1}=c \alpha_{2}$ for some constant $c>0$. From this it follows easily that there are constants $0<c_{1} \leqslant c_{2}<+\infty$ such that

$$
c_{1} \leqslant \frac{d(\varphi(\xi), \varphi(\eta))^{\delta_{2}}}{d(\xi, \eta)^{\delta_{1}}} \leqslant c_{2} \quad \forall \xi, \eta \in \Lambda_{1}
$$

and hence

$$
\frac{\ell_{2}(c) \delta_{2}}{\ell_{1}(c) \delta_{1}}=1 \quad \forall c \in \mathscr{C}
$$

Theorem 1(a) follows then from Proposition 1.
4.2. Proof of Theorem 3(a). For every $(\alpha, \beta) \in \mathscr{C}_{R}$, Patterson's construction using the Poincaré series $Q_{\alpha, \beta}(s)$ produces a measure $\Pi_{\alpha, \beta}$ supported on $\Lambda=$ $\bigsqcup_{\lambda \in F}(\operatorname{Graph} \varphi)_{\lambda}$. Desintegrating $\Pi_{\alpha, \beta}$ along F, we get measures $\mu_{\alpha, \beta}(\lambda)$ on Graph φ and a computation shows that they are $\left(a_{\lambda}, b_{\lambda}\right):=\left(\alpha / \sqrt{\alpha+\beta \lambda^{2}}, \beta \lambda / \sqrt{\alpha+\beta \lambda^{2}}\right)$ dimensional. Hence $\left(a_{\lambda}, b_{\lambda}\right)$ lies on the intersection of the conic $x^{2} / \alpha+y^{2} / \beta=1$ and the Manhattan curve \mathscr{C}_{M} (Theorem 4).

Assume for simplicity $\alpha>0, \beta>0$. Then the above ellipse cannot meet the interior of

$$
\left\{(a, b) \in \mathbb{R}^{2}: \sum_{\gamma \in \Gamma} e^{-\left[a d\left(\pi_{1}(\gamma) x_{1}, x_{1}\right)+b d\left(\pi_{2}(\gamma) x_{2}, x_{2}\right)\right]}<+\infty\right\} .
$$

Indeed, $(\alpha, \beta) \in \mathscr{C}_{R}$ and for any point (a, b) on this ellipse, we have $a d_{1}+b d_{2} \leqslant$ $\sqrt{\alpha d_{1}^{2}+\beta d_{2}^{2}}$, where $d_{i}=d\left(\pi_{i}(\gamma) x_{i}, x_{i}\right)$. This proves Theorem 3(a).
4.3. Recall that for $(a, b) \in \mathscr{C}_{M}, \mu_{a, b}$ denotes the unique (a, b)-dimensional probability measure on Graph φ. The uniqueness statement in Theorem 4 implies that the map

$$
\begin{aligned}
\mathscr{C}_{M} & \rightarrow M^{1}(\operatorname{Graph} \varphi) \\
(a, b) & \mapsto \mu_{a, b}
\end{aligned}
$$

is continuous. Let $\mu_{a, b}^{(1)}$ be the projection of $\mu_{a, b}$ on Λ_{1}. From the Γ_{1}-invariant measure on $\Lambda_{1} \times \Lambda_{1}$

$$
\frac{d \mu_{a, b}^{(1)}(\xi) d \mu_{a, b}^{(1)}(\eta)}{e^{2 a(\xi \cdot \eta) x_{1}} e^{2 b\left(\varphi(\xi) \cdot \varphi(\eta) x_{2}\right.}},
$$

we deduce a probability measure $v_{a, b}$ on $\Omega_{1} \subset T_{1}\left(\Gamma_{1} \backslash X_{1}\right)$ which is invariant under the geodesic flow and, by Hopf's argument, ergodic since $\mu_{a, b}$ is. Moreover

$$
\begin{aligned}
\mathscr{C}_{M} & \rightarrow M^{1}\left(\Omega_{1}\right) \\
(a, b) & \mapsto v_{a, b}
\end{aligned}
$$

is continuous. Let

$$
\lambda_{a, b}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{\Omega_{1}} \varphi_{t}(v) d v_{a, b}(v)
$$

where $\varphi_{t}(v)$ is the cocycle defined in $\S 3.3$. From the properties of $\varphi_{t}(v)$ stated in $\S 3.3$, we deduce easily that the map $(a, b) \rightarrow \lambda_{a, b}$ is continuous as well. Observe that for $(a, b)=\left(\delta_{1}, 0\right)$ we have $\mu_{a, b}=\mu_{1}$ and $\lambda_{a, b}=i\left(\pi_{1}, \pi_{2}\right)$.

The following lemma was provided by S. Mozes:
Lemma 3. Let α be a geodesic flow-invariant ergodic probability measure on Ω_{1} and

$$
\lambda:=\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{\Omega_{1}} \varphi_{t}(v) d \alpha(v)
$$

For almost every $v \in \Omega_{1}$, there exists a sequence $t_{n} \rightarrow+\infty$ and a constant $K>0$ such that

$$
\left|\varphi_{t_{n}}(v)-\lambda t_{n}\right| \leqslant K \quad \forall n \in \mathbb{N}
$$

Proof of Theorem 1(b). In the proof of Theorem 3(a) we constructed a continuous map $\mathscr{C}_{R} \rightarrow \mathscr{C}_{M}$. Theorem 1(b) amounts essentially to showing that this map has a continuous inverse.

Let $(a, b) \in \mathscr{C}_{M}$ and assume for simplicity that $a>0, b>0$. From the local behavior of $\mu_{a, b}^{(1)}$ (Lemma 2) and Lemma 3, it follows that there is a constant $c>0$ such that

$$
\sum_{\gamma \in \mathscr{S}} e^{-\left[a d\left(\pi_{1}(\gamma) x_{1}, x_{1}\right)+b d\left(\pi_{2}(\gamma) x_{2}, x_{2}\right)\right]}=+\infty
$$

where

$$
\mathscr{S}=\left\{\gamma \in \Gamma:\left|d\left(\pi_{2}(\gamma) x_{2}, x_{2}\right)-\lambda_{a, b} d\left(\pi_{1}(\gamma) x_{1}, x_{1}\right)\right| \leqslant c\right\} .
$$

Let $\alpha>0, \beta>0$ be the unique solution of

$$
a=\frac{\alpha}{\sqrt{\alpha+\beta \lambda^{2}}}, \quad b=\frac{\beta \lambda}{\sqrt{\alpha+\beta \lambda^{2}}}, \quad \text { where } \lambda=\lambda_{a, b}
$$

Then there is $K>0$ such that for all $\gamma \in \mathscr{S}$

$$
\sqrt{\alpha d_{1}^{2}+\beta d_{2}^{2}} \leqslant a d_{1}+b d_{2}+K
$$

where $d_{i}=d\left(\pi_{i}(\gamma) x_{i}, x_{i}\right)$, whereas the inequality

$$
a d_{1}+b d_{2} \leqslant \sqrt{\alpha d_{1}^{2}+\beta d_{2}^{2}}
$$

always holds. This shows that $(\alpha, \beta) \in \mathscr{C}_{R}$, and $\lambda=\lambda_{a, b}$ is the number associated to (α, β) by Theorem 3(a). In particular, at smooth points of $\mathscr{C}_{M}, \lambda_{a, b}$ is the slope of the normal at (a, b). Since $(a, b) \rightarrow \lambda_{a, b}$ is continuous, \mathscr{C}_{M} is C^{1}. We already observed that $\lambda_{\delta_{1}, 0}=i\left(\pi_{1}, \pi_{2}\right)$.

The remaining assertions in Theorem 1(b) are easy.
Details of the proofs of Theorem 2 and Theorem 3(b) will be published later on.

References

[BS] C. Bishop and T. Steger, Three rigidity criteria for $\operatorname{PSL}(2, \mathbb{R})$, Bull. Amer. Math. Soc. (N.S.) 24 (1991), 117-123.
[GhH] E. Ghys and P. de la Harpe, eds., Sur les groupes hyperboliques d'après Mikhael Gromov, Progr. Math. 83, Birkhäuser, Boston, 1990.
[Gr] M. Gromov, "Hyperbolic groups" in Essays in Group Theory, edited by S. M. Gersten, Math. Sci. Res. Inst. Publ. 8, Math. Sci. Res. Inst., Berkeley, Calif., 1987, 75-263.
[JM] D. Johnson and J. J. Millson, "Deformation spaces associated to compact hyperbolic manifolds" in Discrete Groups in Geometry and Analysis, edited by R. Howe, Progr. Math. 67, Birkhäuser, Boston, 1987, 48-106.
[Kn] G. Knieper, Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Mannigfaltigkeiten, Arch. Math. (Basel) 40 (1983), 559-568.
[La] S. P. Lalley, Mostow rigidity and the Bishop-Steger dichotomy for surfaces of variable negative curvature, Duke Math. J. 68 (1992), 237-269.
[T] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint.
Institut de Mathématiques, Université de Lausanne, CH-1015 Lausanne-Dorigny, SwitzerLAND; marc.burger@ima.unil.ch

