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INTERSECTION, THE MANHATTAN CURVE, AND
PATTERSON-SULLIVAN THEORY IN RANK 2

MARC BURGER

Let F be a nonvirtually abelian, finitely generated group and let Repcc(F) denote
the set of injective homomorphisms r: F G, of F into the group of isometries G
of a symmetric space X of rank one such that

(1) rt(F) is torsion-free
(2) the r(F)-action on X s properly discontinuous and convex cocompact.
Our aim is to describe invariants attached to pairs r, r2 of convex cocompact

realizations of F which will lead to criteria when the isomorphism

-. F F221

extends to an isomorphism G1 --* G2 of the ambient Lie groups.

Examples. (1) The free group on two generators F IF.. 2 has nonhomeomorphic
convex cocompact realizations in dimension 2, e.g., a thrice-punctured sphere with
three expanding ends and a once-punctured torus with one expanding end.

(2) Let F < SO(n, 1) be a cocompact lattice and assume that F\IH. contains at
least one totally geodesic embedded codimension-one submanifold with trivial
normal bundle. Then F admits nontrivial convex cocompact deformations into
SO(n + 1, 1)[JM].

At the end of {}2 we indicate how our results generalize to arbitrary negative
curvature.

Acknowledgments. I thank S. Mozes for very helpful discussions, in particular
for providing Lemma 3. I thank MSRI for its hospitality where this work was
completed.

1. Intersection and the Manhattan curve. For notation and definitions we refer
to 3.
The set of F-conjugacy classes in F- {e} parametrizes the set of closed

geodesics of any convex cocompact realization of F. Therefore two convex
cocompact realizations rq" F & F c Gi, !, 2, give rise to two length functions

which we now use to define the following basic invariants attached to (nl,
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218 MARC BURGER

(a) Geodesic stretch.

2(c)
dil+(n, ha)"= sup dil_(n, n2):= inf’(c)’ e ’(c)

For F, a fundamental group of a compact surface, and G PSL(2, IR), these
invariants pertain to the minimal stretch map point of view of Teichmiiller theory,
as developed by W. Thurston IT].

(b) Intersection. Let #i be the Patterson-Sullivan measure on the set l c

T(F\X) of recurrent points of the geodesic flow and let (c,), be a sequence of
cg such that the corresponding sequence of closed geodesics in is equidistributed
with respect to #l. The intersection i(n, n2) is defined as

i(n,, n):= lira
.-oo (c.)

It measures the distortion under Morse correspondence of the length of a typical
geodesic in

In the case of compact surfaces, W. Thurston proved, using the convexity along
earthquake paths of the geodesic length function, that i(n, n2) > with equality if
and only if n, n2 represent the same point in Teichmtiller space. The corollary of
Theorem below generalizes this result.

(c) The Manhattan curve. This is the continuous convex curve cu(n
bounding the following convex subset of IR2:

(a, b)e 11t2:

Observe that the points (6, 0) and (0, t2) where 6 := critical exponent of F, always
belong to cgu(n, n2).

Now let Rep-c(F) denote the set of n e Repcc(F) such that n(F) is Zariski-dense
in G. Equivalently, n(F) does not preserve any proper totally geodesic subspace
of X.

THEOREM 1. (a) For n x, Z2 E RepZcc(F), the Manhattan curve is the straight line
connectin9 (6x, 0) to (0, 62) if and only if 27: F - F2 extends to an isomorphism
G -* G2 of the ambient Lie 9roups, in which case Ft\X, FE\X2 are isometric and
i =62.

(b) The Manhattan curve is C. It has two asymptotes whose normals have slope
dil_(n, n2) at -oz and dil+(l, hE) at +c. Moreover, the slope of the normal to
cgt(nl, hE) at (61, 0) is the intersection i(1, 2).
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INTERSECTION, THE MANHATTAN CURVE, 219

COROLLARY. Under the hypothesis of Theorem 1, we have

i(Zl, 2) >/

with equality if and only if rc2 rc-l: F1 F2 extends.

Remark. The definition of the Manhattan curve was motivated by [BS], and
Theorem (a) generalizes Theorem of [BS].

The following fact is used in the proof of Theorem 1 (a).

PROPOSITION 1. Let G, 1, 2 be rank-one connected adjoint Lie 9roups, F G
Zariski-dense subgroups consistin9 of hyperbolic elements, and (R): Fx-} I"2 an
isomorphism such that L((R)(7)) c" L(y), Vy F, where c > 0 is a constant and L(
denotes the translation length of a hyperbolic element. Then c 1 and (R) extends to
an isomorphism (R)ext: Gx --} G2 of the correspondin9 Lie 9roups.

2. The Manhattan curve and Patterson theory in rank 2. The properties of the
Manhattan curve, stated in 1, are intimately connected with recurrence properties
of the geodesic flow on a rank-2 manifold, which we now define. To r, zr2
Repcc(F), we associate the diagonal action of F on X :- Xx x X2:

,(xi, x2):= (l(y)xx, r2()x2),

and the (infinite volume) quotient manifold M := F\X. This manifold fibers over
FI\X with fiber X2, and over Fz\X2 with fiber X1. In order to study the set of
recurrent points of the geodesic flow on T(M), we first describe the limit set
A X(oe) of F in the ideal boundary X(oe) of X.

Recall that X(oe) is the set of equivalence classes of parametrized geodesic rays
in X, two such rays being equivalent if they stay at bounded distance. We have
X(oo) X(oC))sing U X(())reg, where X(o())reg is the set of rays which are contained
in a unique maximal flat subspace of X. Furthermore, for every 2 (0, ), the set
X() consisting of all rays of slope 2 w.r.t, the canonical splitting X X X2
is a closed (G G2)-orbit in X() and

X(OO)reg U X(GC)X, (0,)

Observe that there is a (G X G2)-equivariant identification X(c) & X(o) x
X2(oe), and let (Graph (p) be the image in X(o) of the graph of the Mostow map
(p: A --* A2 under this identification (see 3.2).
The limit set A c X(oc) of F has the following description:

PROPOSITION 2.

A [_] (Graph q)x, where F := [dil_(nl, rt2), dil+(rtl,/1;2)]
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220 MARC BURGER

For every 2 [0, oe], the subbundle T(M) c TI(M) consisting of all unit vectors
of slope 2 is a closed subset of TI(M), invariant under the action of the geodesic
flow. Denote by Rx c (Graph (p)x the set of geodesic rays of slope 2 which project
to recurrent rays in T(M).
THEOREM 2. (a) The map cgt(n1, z2)- (dil_(:zl, n2), dil+(nx, n2)) which to each

(a, b) t associates the slope 2 of the normal at (a, b) is a homeomorphism.
(b) For 2 6 (dil_(zx, z2), dil+(z, hE)) the Hausdorff dimension of Rz is 9iven by

(a + 2b). max(l,/-1)

where (a, b) rgt corresponds to 2 under the above homeomorphism.

The proofs of Theorems and 2 use mainly the following version of Patterson-
Sullivan theory:

let cg
R := {(0, fl) ]R2" such that the critical exponent of the Poincar6 series

Q,.t(s) "= e x//-dZ(’(Y)x"x’)+fldZ(2(Y)xz’x2) is at s 1t.
For every (a, fl) cg

R we get from Q,,(s), using Patterson’s construction, a positive
measure II,,t supported on A v(Graph

THEOREM 3. (a) For every (, fl) R there is a unique 2 F such that I-I,a has
(Graph q) as its support. This 2 is characterized as the unique one for which

(b) II,, 9ires full measure to Rx.
Remark. The assertions of Theorems 2 and 3 hold in pinched-variable negative

curvature. In this setting the conclusion of Theorem 1 and the corollary is that the
length functions ’, P2 are proportional. This generalizes Theorem 1 of [La].

3. Preliminaries.

3.1. Let X be a symmetric space of rank one, G its group of isometries, and
rI c G a torsion-free nonelementary convex cocompact subgroup. Let A c X(oe)
be the limit set ofH and C(A) X its convex hull. In particular H\C(A) is compact.
Fix o e X a base point and define d(, q) := e-te’"), , q e X(oe), where (" q)o is the
Gromov scalar product relative to the base point o ([Gr], [Gh, HI). Although d is
not in general a distance, there exists C > 0, depending only on X, such that
d(, /) < C" max(d(, a), d(a, q)) V, r/, a e X(oo). Set B(, r) := {q e X(oe): d(, q) <

 at E
T

H
 Z

Ã
¼

rich on M
arch 29, 2012

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


INTERSECTION, THE MANHATTAN CURVE, 221

r}. Using these balls, we have the notion of Hausdorff dimension and Hausdorff
measure on X(). For instance, HD(X()) 2p where p half-sum of positive
roots of G. The Patterson measure rn is the unique (up to scaling) positive bounded
measure on A such that d(n.m)() e-ott’) dm( Vn e H, where 6 the critical
exponent of H and fie(x) is the Busemann functon on X(oe) x X normalized by
fie(o) 0. The Patterson measure class coincides with the Hausdorff measure class
of dimension 6 on A, and HD(A) 6. Let f c Tt (H\X) be the set of points which
are recurrent, for positive and negative time, under the action of the geodesic flow.
This set is compact and carries a unique invariant ergodic probability measure p
(Patterson-Sullivan measure) of maximal entropy 6. This measure/z is gotten from
the H-invariant measure

dm() am(q)
e2,(- rt)o

onAxA.

3.2. Given rci" F & Fi c Gi, 1, 2, convex cocompact realizations of F, and
A c X(oe) their respective limit sets, we have the Mostow map q: At A2 which
is the unique rc2rc]-t: F1 F2 equivariant homeomorphism from At to A2. It has
the following property:

LEMMA 1. (p is quasi-conformal: for all A and r > 0 there is r’ > 0 such that

B2(o(), C-lr’) p(B1(, r)) c B2(cp() Cr’)

where C > 0 is an absolute constant and Bi(, r) := B(, r) Ai.
3.3. Let f: Ft\C(At) 1-’2\C(A2) be a homotopy equivalence inducing g2g-l:

F -- F2. For > 0 and v e Or, let C,.v F2\C(A2) be the curve which is the image
by f of the geodesic starting at v and of length t. Let qt(v) be the length of the unique
geodesic arc homotopic to C,.v. Then q(v) is a subadditive cocycle (triangle inequal-
ity), and there exists C > 0 such that q, C is superadditive (quasi-geodesic lemma).
It is easy to see that the formula

i(rt, g2)-- lim fn
holds.

4. Sketch of proofs.

4.1. Choose base points xg X. A slight modification ofan argument ofKnieper
[Kn] shows that the Manhattan curve M coincides with the set of (a, b) IRg for
which the Poincar6 series

Ps(a, b):= e
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222 MARC BURGER

has critical exponents 1. We compactify X1 x X2 by
X(oe), and observe that in this compactification the limit set of the diagonal
F-action on X1 x X2 is Graph q c A1 x A2 where (p is the Mostow map. We call
a measure/ on A1 x A2 (a, b)-dimensional if

(1) supp/ c Graph
(2) d(’e,/t)(l, 2) e-aa’(t’)x’)-ba2(tx dl(l, 2) for all F.

THEOREM 4. cM is the set of points in IR2 for which there exists an (a, b)-
dimensional measure. Furthermore, for every (a, b) cgt this measure is unique up to
scaling and is therefore ergodic.

The existence follows from Patterson’s construction using the Poincar6 series
P(a, b). The uniqueness follows in a standard way from the local behavior of
(a, b)-dimensional measures:

LEMMA 2. Let # be an (a, b)-dimensional measure. Then there are constants
0 < cl < c2 < +oo such that

cxrar’b < la,b(B(, r) x q)(B(, r))) < cErar’b

V A1, r > O, and r’ is given by Lemma 1.

Proof. Use Sullivan’s shadowing technique.

Denote by #a, the unique (a, b)-dimensional probability measure.

Proof of Theorem 1 (a). Assume that cgt is a straight line and pick (a, b)=
(61/2, 62/2) 6 M. Let v be the projection of, on A, and hence tp.vl v2. Vitali’s
covering lemma, Cauchy Schwarz, and Lemma 2 imply then that v is equivalent to
Patterson measure m on Ai. Hence if do :--dmi()dmi(q)/eZ’t’")x, we have
((p x q),l c2 for some constant c > 0. From this it follows easily that there are
constants 0 < ca < c2 < +oe such that

and hence

d(0(),

2(C)2

Theorem (a) follows then from Proposition 1.

4.2. Proof of Theorem 3(a). For every (e, fl)e cgR, Patterson’s construction
using the Poincar6 series Q,,(s) produces a measure H,, supported on A
L_JxF (Graph o)x. Desintegrating 1-I,, along F, we get measures/,,(2) on Graph
q) and a computation shows that they are (ax, bx):= (o(v/e +/322, fl2/x//- +//22)
dimensional. Hence (ax, bx) lies on the intersection of the conic x2/e + y2/fl 1 and
the Manhattan curve cg (Theorem 4).
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INTERSECTION, THE MANHATTAN CURVE, 223

Assume for simplicity > 0, fl > 0. Then the above ellipse cannot meet the
interior of

(a, b) IR2" e-[aa<{’)x’x)+’a{n2{’)x2’x2)] < +03}.
Indeed, (a, fl) e cg

R and for any point (a, b) on this ellipse, we have adt + bd2 <
x//adZ + fld, where d d(1ti(Y)xi, xi). This proves Theorem 3(a). El

4.3. Recall that for (a, b) e cgu, #a,b denotes the unique (a, b)-dimensional proba-
bility measure on Graph 99. The uniqueness statement in Theorem 4 implies that
the map

cg
_
Ml(Graph q)

(a, b)

is continuous. Let /2(1) be the projection of #,,b on At. From the Ft-invarianta,

measure on A x A1
(1) () Ao.(1) (r/)/a, b t/a, b

e2a( rt)x e2b(() "q)(t/))x2

we deduce a probability measure v.. on "1 C TI(Fl\xl) which is invariant under
the geodesic flow and, by Hopf’s argument, ergodic since #a.b is. Moreover

(a, b) - Va, b

is continuous. Let

2a, b := lim fnt--,oo -[ t(V) dVa’b(V)’

where qg,(v) is the cocycle defined in 3.3. From the properties of qt(v) stated in 3.3,
we deduce easily that the map (a, b) 2a, b is continuous as well. Observe that for
(a, b) (6t, 0) we have #a, /t and 2,, i(rtt, r2).
The following lemma was provided by S. Mozes:

LEMMA 3. Let be a 9eodesic flow-invariant ergodic probability measure on ft
and

2 := lim -1[
,-,+oo j.

q,(v) d(v).
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224 MARC BURGER

For almost every v fl, there exists a sequence tn +v and a constant K > 0 such
that

Proof of Theorem 1 (b). In the proof ofTheorem 3(a)we constructed a continu-
ous map fig fit- Theorem (b) amounts essentially to showing that this map has
a continuous inverse.

Let (a, b)e fiM and assume for simplicity that a > 0, b > 0. From the local
behavior of ,,t l) (Lemma 2) and Lemma 3, it follows that there is a constant c > 0/a, b

such that

e-[ad(g1()xl’xl)/bd(rc2()Ox2’x2)]

where

{ e F" Id(2(Y)x2, x2) &a,bd((Y)X, X)l C}.

Let e > 0, > 0 be the unique solution of

a
x//e + f122

b
N//(Z -l- fl,.2

where ’a,b"

Then there is K > 0 such that for all y e 6e

x//od + fld < ad + bd2 + K

where di d(rci(’)xi, xi), whereas the inequality

adt + bd2 < x//ad2t + fld

always holds. This shows that (e, fl) e fig, and 2 "a,b is the number associated to
(e, fl) by Theorem 3(a). In particular, at smooth points of ffM, 2a, b is the slope of
the normal at (a, b). Since (a, b) 2,,b is continuous,f is C. We already observed
that 2a,o i(rc, r2).
The remaining assertions in Theorem 1 (b) are easy. 121

Details of the proofs ofTheorem 2 and Theorem 3(b) will be published later on.
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