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A lower bound on λ0 for geometrically
finite hyperbolic w-manifolds

By Marc Burger at Lausanne and Richard D. Canary*) at Ann Arbor

1. Introduction

Let 7V be a complete hyperbolic w-manifold and C(N) its convex core. The manifold
N is said to be geometrically finite if the metric neighborhood Q (7V) of radius one about
C(7V) is of finite volume (see Bowditch [2] for equivalent definitions). The Laplace-Beltrami
operator Δ of N acts on the space of C°°-functions with compact support and admits a
unique extension to an unbounded self-adjoint operator on L2(N). Let λ0(Ν) denote the
bottom of the L2-spectrum of — Δ. (Notice that λ0 (N) ^ 0.) When N is geometrically finite,
λ0 (N) = 0 if and only if 7V has finite volume. Here we are interested in infinite volume
geometrically finite hyperbolic manifolds and our main result is a lower bound on λ0(Ν) in
terms of the volume of Q (7V), provided n ̂  3.

Main Theorem. For all n ^ 3, there exists a constant Kn > 0 (depending only on n)
such that if N is an infinite volume, geometrically finite hyperbolic n-manifold, then

where vol (Cl (7V)) denotes the volume ofthe neighborhood Cl (7V) of radius one ofthe convex
core.

Observe that in dimension 2 the above inequality does not hold. Indeed by pinching all
boundary geodesics ofthe convex core C(7V) one can make A0(7V) arbitrarily small, while
vol (Q (7V)) remains bounded. We add that in dimension 2, the dependence of A0 (7V) on the
geometry of 7V is well-understood (see Dodziuk-Pignataro-Randol-Sullivan [l 1] or Burger [4]).

Let 7V = Hn\T be a geometrically finite hyperbolic «-manifold and let D denote the
Hausdorff dimension of the limit set Lr of Γ's action on the sphere at infinity of W.
Sullivan (see Theorem 2.17 in [20]) proved that either

fl-l)2/4 and D^(n
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38 Burger and Canary, Geometrically finite hyperbolic n-manifolds

ΟΓ

Α0(ΛΟ = D((n-\}- D).

Combining Sullivan's result with our main theorem, we see that the volume of Cl(N)
provides an upper bound on the Hausdorff dimension of the limit set.

Corollary A. Lei Nbea geometrically finite, infinite volume hyperbolic n-manifold and
let D denote the Hausdorff dimension of Lr. Then

where K is the constant in the main theorem.n

When n — 3, the main result should be contrasted with Theorem A from Canary [5],
which asserts that there exists a constant A such that if 7V is a geometrically finite hyperbolic
3-manifold, then

vol(C(AT))

where x(dC(N)) denotes the Euler characteristic of the boundary dC(N) of the convex
core. (In fact, A may be taken to be 4 π.) Thus, if N is a hyperbolic 3-manifold, the volume of
the convex core provides bounds from above and below for λ0(Ν) and the Hausdorff
dimension of the limit set.

Coro ary B. Let N be a geometrically finite, infinite volume hyperbolic 3-manifold
and let D denote the Hausdorff dimension of Lr. If λ0(Ν) Φ l, then

4n\X(dC(N))\ K
vol(C(7V)) = = volC

where K is the constant K3 obtained in the main theorem.

The condition λ0 (N) Φ l is not very restrictive. For example, if N is geometrically
finite and A0 (N) = l , then N is either homeomorphic to the interior of a handlebody or to an

?-bundle over a closed surface (see Canary-Taylor [8], see also Sullivan [18] and Braam [3]).

Let N be a geometrically finite hyperbolic 3-manifold. We will see (Lemma 7.3) that
given a, there exists L such that if dC(N) contains no compressible curves with length ^ a,
then

vol(C(N)) + 2n\x(dC(N))\^vol(Ci(N)) £ vol(C(N)) + L\x(dC(N))\ .

(A curve in dC(N) is called compressible if it is homotopically trivial in N9 but homo-
topically non-trivial in C(JV)·) So we obtain the following corollary of the main result:

Corollary C. Given a > 0, there exists L>0 such that if N is an infinite volume,
geometrically finite hyperbolic 3-manifold and dC(N) contains no compressible curves with
length ^a, then
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where K is the constant K3 obtained in the main theorem.

Corollary C may be phrased much more simply when every component of dC(N) is
incompressible. We recall that if N has no cusps, this is equivalent to Γ being freely decom-
posable. More generally, it is equivalent to Γ satisfying Bonahon's condition (B) (see Pro-
position 1.2 in Bonahon [1]). Recall that Γ is said to satisfy Bonahon's condition (B) if for
every non-trivial free decomposition A * B of Γ, there exists a parabolic element of Γ which
is not conjugate into either A or B.

Corollary D. There exists a constant M > 0 such that if N = H3/ Γ is an infinite
volume, geometrically finite hyperbolic 3-manifold and Γ satisfies Bonahon's condition (B),
then

where K is the constant K3 obtained in the main theorem.

Our main result is an analogue of results of Schoen [17], for closed hyperbolic n-
manifolds, and Dodziuk-Randol [12], for finite volume hyperbolic «-manifolds. (In both
cases n ̂  3.) They proved, in these cases, that

for some constant Bn, depending only on n. Our proof will follow the outline of Dodziuk
and Randol's proof, although it seems likely that a variant of Schoen's argument could also
be made to work.

The extra element needed in our extension of Dodziuk and Randol's argument to the
infinite volume setting is an analysis of the behavior of the eigenfunction corresponding to
λ0 on the complement of the convex core. The biggest technical difficulties are presented
by the possibility that components of the thin part may intersect the complement of the
convex core. In section 6 we note that one may prove that K3 > ΚΓ11.

Acknowledgements. The second author would like to thank J. Dodziuk and
Y. Minsky for helpful and enjoyable conversations on the subject matter of this paper.

2. Patterson-Sullivan measure and the spectral theory
of geometrically finite hyperbolic manifolds

We recall that any complete hyperbolic «-manifold N may be written s the quotient
of hyperbolic «-space by a group Γ of isometries. Let Lr denote the limit set for Γ's action
on the sphere at infinity S£~l for W. A hyperbolic «-manifold is said to be elementary if

contains an abelian subgroup of finite index. If W is elementary, then
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40 Burger and Canary, Geometrically finite hyperbolic n-manifolds

and Lr contains at most two points.

The convex core C(N) of a (non-elementary) hyperbolic 3-manifold N is defined to
the quotient by Γ of the convex h ll CH(Lr) of Lr. There exists a retraction R : N -> C(N)9
called the nearestpoint retraction, such that R(x) is the (unique) point on C(N) nearest to x.

A (non-elementary) hyperbolic w-manifold is said to be geometrically finite if the
neighborhood C1 (N) of radius one of the convex core has finite volume.

A conformal density of exponent δ for N is a measure μ supported on Lr such that

where £*is any Borel subset of the sphere and γ is any element of Γ. Given a conformal density
μ of exponent δ we may define a function φμ on H" where

and <xx is a hyperbolic isometry taking χ to 0. Explicitly,

i -ui2
|2 '

φμ then descends to a function on JV. Moreover, φμ is a positive eigenfunction of the
Laplacian with eigenvalue δ (δ — (« — !)).

Patterson [15], [16] and Sullivan [18], [19], [20] showed how to construct a con-
formal density of exponent δ (N) where δ (N) is the exponent of convergence of the Poincare
series. The Situation is particularly satisfactory if N is geometrically finite.

Theorem 2.1 (Patterson-Sullivan). Lei N = Ηη/Γ be a geometrically finite hyperbolic
n-manifold.

a) The exponent of convergence δ (N) of the Poincare series equals the Hausdorff di-
mension D of the limit sei Lr and there is, supported on Lr, a conformal density μ of expo-
nent δ (N) which is unique up to scaling.

( n Ί \ 2 n Ίl if and only if δ > —-— in which case λ0 is an L2-eigenvalue of

— Δ. The corresponding eigenspace has dimension l and is spanned by φμ. Otherwise9
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We will call the unique conformal density μ obtained in Theorem 2.1 the Patterson-

Sullivan measure and refer to φμ s the Patterson-Sullivan function. If A0(7V) <
2

we will always normalize so that J φ*άν = l where dv is the volume element on N. In this
N

normalization, J |νφ μ\2dv =
N

3. The thick-thin decomposition and a key lemma of Dodziuk and Randol

In this section we will recall the thick-thin decomposition of a hyperbolic manifold.
We will then recall a lemma of Dodziuk and Randol which asserts that if T is a compo-
nent of the thin part such that the L2-norm of a function / is "big" on Tand the L2-norms
of / and V/ are "small" on a neighborhood of δ Γ then the L2-norm of V/ is "big" on T.
This lemma is a relative version of the fact that the first Dirichlet eigenvalue of T is "big."

We recall that the injectivity radius injN(jt) of a point χ e N is defined to be half the
length of the shortest homotopically non-trivial closed curve passing through x. We define

^thick(e) = (xeN\mjN(x) ^ ε}
and

*) ^ ε} .

There exists a constant Jln9 called the Margulis constant (see p. 64 in Morgan [14] or
section 5.10 of Thurston [21]) which depends only on n, such that if ε < Jin and 7V is a
hyperbolic π-manifold, then every component of Wthin(£) is either

(a) a tubular neighborhood of a closed geodesic, or

(b) homeomorphic to FX [0, oo) where F is a, possibly noncompact, flat manifold.

Notice that if n ̂  3, this guarantees that Nthick(e} is connected if ε < Jin. We recall
(see Bowditch [2]) that N is geometrically finite if and only if C(7V)n7Vthick(£) is compact
for all ε > 0.

If Γ is a component of Wthin(£), we define 7"s shell to be

One immediate consequence of the thick-thin decomposition is a lower bound on the
volume of Q (N). In the remainder of the paper we will use Vr

n to denote the volume of a
ball of radius r in Hn.

Lemma 3.1. Lei N be an infinite volume, geometrically finite, non-elementary hyper-
bolic n-manifold. Then

where r = min {l,J(n}.
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42 Burger and Canary, Geometrically finite hyperbolic n-manifolds

ProofoflA. We need only show that there exists a point xeC(N) such that
injN(x) ^ Jin. Then the ball B(x9 r) of radius r about χ is contained in C^(N) and isometric
to a ball of radius r in H".

If ε < Jin, then either there exists a point χε e C(W) such that

> ε or C(7V) c #thin(£) .

If C(JV) is contained in a component of Wthin(£), then T^C/V) = n1(C(N)) has an abelian
subgroup of finite index, which contradicts our assumption that N is non-elementary.
Therefore, for all ε < Mn, there exists χε e C(N) such that injN(xg) > ε. Since

is compact and injectivity radius is a continuous function, we see that there must exist
χ e C(N) such that injN(;c) ;> Mn. α

It will also be useful to notice that there is a lower bound on the volume of

if

Lemma 3.2. Lei N = H3/F be a non-elementary hyperbolic n-manifold and ε
IfTisa component ofNihin(e) such that Γ φ ^(Γ), then

, . j 1.where s = min ^ -, - .

Proofof 3.2. Let Γ be a component of Nthin(e) and let

We first prove that TsnC(N) is non-empty. If Γ is a compact component of Nthin(e), then
Ts contains a closed geodesic and this closed geodesic is contained entirely within the convex
core. If T is non-compact, and fs is a lift of Γ5, then Ts is a horoball based at some point
p e S£~ i left invariant by some parabolic subgroup Γρ of Γ. Let Z be a geodesic ray joining
some point χ e CH(Lr) to p, then Z is contained within CH(Lr). Thus, in either case,
C(N) n Ts is non-empty.

Since Tsr\C(N} is non-empty and C(N) is not contained entirely within Ts, we see
p

that there exists a point χ € dTsnC(N). One may check that injN(x) ^ ε — 5 ̂  -. Thus

B(x, s) is contained entirely within Γη Cl (N) and isometric to a ball of radius s in Hn. α

We will make key use of Lemma 2 from Dodziuk and Randol's paper [12]:
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Lemma 3.3 (Dodziuk-Randol). Lei N be a hyperbolic n-manifold and let z<J(n.
There exists a constant d0>0 (depending only on n} such that if T is a component of
Nthinw ™ith T* ̂ (T\ andfe Cl(N}nL2(T} such that

2. f \Vf\2dv^d0c, and

3. f f2dv^d0c.
S(T)

Then

The proof in Dodziuk-Randol [12] does not explicitly deal with the case where F is
non-compact, however the argument carries over directly. One may notice from their proof

that if n ̂  3 then one may choose d0 = — .
16

4. Exponential decay on the complement of the convex core

In this section we will explore the behavior of the Patterson-Sullivan function on the
complement of the convex core.

Proposition 4.1. Let N = Ηη/ Γ be a hyperbolic n-manifold and let μ be a Γ-invariant
conformal density with exponent δ. Then there exists a constant di > 0, such that if

), then

Here dl may be taken to be (e2 — l)/(e2 H- 1).

Proof of 4.1 . Again we will be working in the ball model for Wn. We may normalize
so that χ = 0 and that R(x) lies on the positive portion of the *„-axis. (Here R : N -> C(N)
denotes the nearest point retraction defined in section 2.) In this normalization
R(z) = (0, . . . , Rn(x)) where

This implies that every point in Lr is contained in the portion of S" ~ x enclosed by the
geodesic hemisphere passing through R(x) and perpendicular to the x„-axis. Let

+ 1)} .

In particular, we see that Lr c X\
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Let S be the cone of vectors v in T0(lHln) whose associated geodesics yv have endpoints
in X. Then there exists a constant di9 such that if v is a vector in T0(IHIn) and u is a unit
vector in the direction of the positive x„-axis, then u- v^d±\v\. Here d± may be taken to

l — l;cl2

Let /ζ = - - i-yj, then <£(*)= f //(χ) </μ. We now notice that V// 6 S if ξ e JT andI * - " C I χ
that | V/*5 1 = <5/^. We then see, by elementary calculus, that

= I J V(//)(0) άμ\ ^ d, f |V//(0)|4u = d, f //rf|i = <W„(0) . D
1 X ' X X

We will not actually make use of this fact, but it is interesting to observe that φ
decays exponentially s one moves away from C(N). Let SiN-tC^N) denote the
nearest-point retraction from N to C^N). Notice that S(x) is the intersection of the
geodesic joining χ and R(x) with dCi(N).

Proposition 4.2. Let N be a hyperbolic n-manifold and μ be a conformal density of
exponent δ. If χ e N — Q (N), then

where di is the constant in Proposition 4.1.

Proof of 4.2. Let γ be a unit-speed geodesic arc joining χ to S(x). Then the proof of
Proposition 4.1 implies that νφμ - γ ' ̂  dv δφμ. One may now integrate along y to obtain the
result. D

We now observe that if N is geometrically finite and A0 (N) is "small" then J φμάν
is close to 1. (Recall that we have normalized so that J φμάν = 1.) Ci(N)

N

Lemma 4.3. Let N be a geometrically finite hyperbolic n-manifold such that

andlet φμ be the Patterson-Sullivan function for N. Then,

2λ0(Ν)

where d1 is the constant obtained in Proposition 4.1.

Proof of 4.3. We first notice that

ί
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We recall, from Lemma 4. l , that | V φμ (χ) \ ̂  ̂  δ φμ (x)ifxeN- Q (N). Combining these
two facts we see that

2άν^ά,δ f φ2άν.

The proof is completed by simply noticing that δ > (n — l)/ 2 and that

J #A = 1- f φ2άν. D
Ci(N) N-d(N)

We will need to make use of the following consequence of Yau's Harnack inequality
for positive eigenfunctions of the Laplacian (see [22]). We will give a quick proof which uses
the definition of φμ directly.

Lemma 4.4. Lei N = Ηη/ Γ be a hyperbolic n-manifold and let φμ be its Patterson-
Sullivan function. Then

f φ2άν^β-2ε(η-^φ2(χ}νο\(Β(χ,ε)).
Β(χ,ε)

In particular, there exists a constant d2, depending only on ε and n, such that whenever
*e7Vthick(£), then

J φ2
μάυ^ά2φ2

μ(χ).
Β(χ,ε)

d2 may be taken to be e~2*(n-v v» where V" denotes the volume of a ball ofradius ε in Hn.

Proof of 4.4. It follows from the explicit formula for φμ that

for all y eN. Therefore, if y €Α(χ,ε), then φμ(γ) ^ €~ε(η~1}φμ(χ). Thus we see that

ε) . D

We next observe that if N is geometrically finite and λ0(Ν) is "small", then φμ is
"small" on the thick part of the complement of the convex core.

Lemma 4.5. Let N be a geometrically finite hyperbolic n-manifold with

and let μ be its Patterson-Sullivan measure. There exists a constant d3, depending only on ε
and n, such that if xe Wthick(e) — C(7V), then

4 Journal f r Mathematik. Band 454
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46 Burger and Canary, Geometrically finite hyperbolic n-manifolds

Here d3 may be taken to be e<>|-1>
g

Proofof4.5. First suppose that χ e Nthick(li) and d(x, C(N)) ^ l + -. Lemma 4.4
implies that

J φ2
μάν^ά2φϊ(χ).

B(*,«/2)

We may then apply Lemma 4.1 to see that ||V$J|2jB(JCte/2) ^ ^ι |/^2Φμ(*)· But

which implies that

ΦΜ £

Now let χ be a point in Nthick(fi) - C(N), such that d(x, C(N)) = d < l + -. Let Z

be the geodesic ray beginning at R(x) and passing through x. Notice that Z is orthogonal to

dC(N). Let y be the (unique) point on Z such that </(>>, C(N)) = l + |.

We recall that the neighborhood of radius d, ^Vd(C(N)\ of C(N) is strictly convex
(see Corollary 2.4.11 in [7]). Thus, the nearest-point projection Rd: N^^Vd(C(N)} is
distance-decreasing. Since Rd(y) = x9 we see that injN(7) > injN(x) ^ ε. By the above argu-
ment, φμ(γ) ^ ]/̂  W)/^i Ι/βζ. But since | νφμ\ ^ (« — 1) | φμ\ on all of 7V we may conclude,
by integrating along Z, that

?(η-1)(1 + !)ΐ/Γ

Remark. Another, perhaps slightly more general, way to obtain the Information
needed about the behavior of φμ on the complement of the convex core, is to prove that
there is a lower bound for the first Neumann eigenvalue of each component of N — C1 (N),
depending only on n.

S. The thick part of die convex core

In this section we will obtain pointwise bounds on φμ on the thick part of the convex
core. We will first need the following result from elliptic theory. This result may be ob-
tained s a direct consequence of G rding's inequality. However, in order to obtain ex-
plicit constants we will give a more concrete proof in an appendix.

Lemma 5.1. Let N be a hyperbolic n-manifold and let φ be an eigenfunction of — Δ
/ / 2 \

mth eigenvalue (n — 1)2 /4^λϊ£θ. If ε^ 2arcsinh f l/ l, then there exists a constant

i/4, depending only on ε and n, such that if xe Wthick(f)> then
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If n ̂  3, then d4 may be taken t o be

where !;„_! denotes the volume ofthe Euclidean (n — \\sphere.

We now see that vol^O/V)) and λ0(Ν) provide a bound on the size of φμ in the
thick part.

Lemma 5.2. Lei N be an infinite volume, geometrically finite hyperbolic n-manifold

with n ̂  3 and λ0(Ν) Φ — - — and let μ be its Patterson-Sullivan measure. Suppose that
c / l 2

ε < min \ l, Jln, 2arcsinh ( ]/ - - ) >. There exists d5, depending only on ε and n, such that
l

ifxeNihick(E)9 then

φμ(χ) £ *5|/

Here d5 may be taken to be (J3 /]fv*) + (zd4]/V?/ F|).

Proof of 5.2. Let {xj be a maximal collection of points in C(N) n Arthick(£) such that
c

d ( x i 9 X j ) * £ - . There are at most vol(Ci(N))/Vl such points, and Nihlck(e)r^C(N) is
g

covered by the collection of balls {B(xi,e/2)}k
i = l of radius - centered at {xj. Moreover,

atmost V^jLJVl of the associated ε-balls intersect at any point.

Thus,
X J \V<t>,\2dv.

4 4

We may apply Cauchy-Schwartz and Lemma 5.1 to see that

:<Σ ί
= d^

Therefore,

So if χ and y are in the same component of Nthick(e)n C(N) we see that
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Recall that if y e dC(AOn7V,hick(e) then, by Lemmas 4.5 and 3.1

Φ,ΟΟ^ί -Λ.
''V^r

We also notice that every component of C(N) n Wthick(c) contains a point of dC(N)9 since,
if n 3£ 3 and ε < Mn, then ATthick(e) is connected and contains points of N— C(N).

Combining these two observations we obtain

. D

It will also be useful to have an extension of Lemma 5.2 to the shell of a component

Lemma 5.3. Lei N be an infinite volume, geometrically finite hyperbolic n-manifold
(n __ i)2

with λ0(Ν) Φ —-—, and let μ be its Patterson-Sullivan measure. Lei

( ( l 2 \]ε < min < l, Jln, 2arcsinh 11/ j >

and T be a component of Nihin(s). If xe ̂ (Γ), then

where d6 = e(n 1)rf5.

Proof of 5.3. This follows immediately from Lemma 5.2 and the fact that

Remark. Lemmas 5.2 and 5.3 are false if n = 2. This is a result of the fact that
maY be disconnected if N is a hyperbolic surface.

6. Proof of Main Theorem

In this section we will give the proof of our main theorem.

Main Theorem. For all n 2> 3 there exists a constant Kn>Q such that if N is an
infinite volume, geometrically finite hyperbolic n-manifold, then

Proof of Main Theorem. We first recall that νο!(0\(Λθ) ̂  Fr" (see Lemma 3.1). So
if we take K„ £ ((n - 1)2/4)(F;)2, then we may assume that λ0(Ν) Φ (« - l)2/4.
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We will use the shorthand λ = A0(7V). Let φ denote the Patterson-Sullivan function for
N. Then φ e L2 (N), Δφ = -λφ and J φ2άν = l (see Theorem 2.1). We will also choose a

N

fixed ε < min \ l,Jf„, 2arcsinh ( ]/ - - ) 1. So F," > K? and Fs" > Kl.t Vp-i /J 2

We will give a short outline of the proof, s the presence of actual constants can obscure
the relatively simple line of argument. If λ is small enough, in comparison with vol (C1 (N))2,
then we see, using Lemmas 5.2 and 5.3, that φ has at least half its support on the thin part.
We may then find a component T of the thin part, such that the L2 norm of φ on Tis large
with respect to vol (Q (7V)). However, both the L2 norms of φ and V φ are small, in com-
parison to vol (Q (7V)), on the shell of T. Therefore Lemma 3.3 implies that the L2-norm
of V φ on Tis large with respect to vol (Q (7V)). Combining these observations, we see that
λ cannot be too small, in comparison with vol (Q (7V))2.

Let {7i, ..., Tn] denote the components of 7Vthin(e). Let TVf denote
One immediate consequence of Lemma 5.2 and 5.3 is that

Combining this with Lemma 4.3 we see that

J <t>2dv^ l - ( + dl vol (Q
(w-w-)nc,w V(»

Soif

λ<
4 + 2</|νο1(^(Λθ)2

we have

,,-„i
Therefore, there exists a component T of Ntbin(f} such that Γ Φ «^(Γ) and

2 volCrnQCAT))
TJi(JV/ = 2νο1(^(^)) '

If

Λ= 2νοΐ(^(Λ^))

then,
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To be able to invoke Lemma 3.3 it only remains to guarantee that

J

Unfortunately, this must be done in two Steps. First we handle the portion of ̂ (Γ) which
is "near" C(N) and then we handle the portion which is far from C(N).

Lemma 5.3 guarantees that

J φ2άν £

g dl λ vol (d (N)) vol (Γη d (N))

^ 2 dl λ vol (d (N))2 J φ2 dv .
TnCi(N)

Therefore, if λ ̂  d0/(4d^vol(Cl(N))2)9 then

A

3>(T

Moreover, by Lemma 4.3,

J φ2άυ^ 2λ

J Φ2αν g f φ2άν .
2 T

Hence if

</nA < min

;1(^))* ' 4

then, by Lemma 3.3,

2vol(C1(JV))
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Thus, if we let A = νο^Γη^Λ^νοΙ^ΛΟ), then

8 ' 2 '

l (n-l)2 A]

1dl

We now recall, from Lemma 3.2, that vo^rnCjC/V)) ^ Vl and, from Lemma 3.1,
that vol (C\ (W)) ^ V". We also recall that we assumed at the beginning of the proof that
K„ ̂  ((n - l)2/ 4) (Fr")2. Therefore, if we set

K - min ° »i (vg ™ o (v» ™
" ~ 4d' 8 ( i c }' T ( 2 K« } '

then

Remark. In order to find a lower bound for Kn it is only necessary to choose

ε ^ min < l,Jtn, 2arcsinh ( ]/ - ) > and then explicitly bound all the constants used in the
l \p-l/J

paper. It is a consequence of the work of Culler and Shalen [10] that if n = 3, then we may

choose ε = —=— . In this case, .75 > F£
3 > .7. We may then obtain the following estimates,

when n = 3, in a straightforward manner d0 = — , d± > .75, d2 > .04, d3 < 86, d4 < 72,
lo

d5 < 4528, and d6 < 33,458. Thus, plugging into the above formula for K3, we see that
K3 > 10"11. Given a choice of ε for n ̂  4, similar bounds can be obtained for all Kn.

7. The boundary of the convex core of a hyperbolic 3-manifold

In this section we will derive the inequality (Lemma 7.3) used in the derivation of
Corollaries C and D. Much of the necessary Information about 8C(N) is summarized by
the fact that the boundary of the convex core of a hyperbolic 3-manifold is (the image of)
a pleated surface (see Theorem 1.12.1 in Epstein-Marden [13]).

A geodesic lamination on a finite area hyperbolic surface S is a closed, disjoint union
of simple geodesics. Any geodesic lamination on a surface of finite area has measure zero
(see Theorem 4.9 in Casson-Bleiler [9]). A pleated surface fiS^Nisa proper pathwise

Bereitgestellt von | ETH-Bibliothek Zürich
Angemeldet

Heruntergeladen am | 10.09.15 16:58



52 Burger and Canary, Geometrically finite hyperbolic n-manifolds

isometry of a finite area hyperbolic surface S into N such that there exists a geodesic
lamination a, called the pleating locus, on S such that / is totally geodesic on S — α and /
takes each geodesic in α to a geodesic in N. Moreover, if ge πχ(5), then f+(g) is a para-
bolic element of n^N) if g is a parabolic element of n1(S). (See [7] for an extensive dis-
cussion of pleated surfaces.)

Let α denote the pleating locus of dC(N). Since dC(N) — α is totally geodesic, we
observe that if A is any subset of dC(N) — a, then

vol (Q (N) n R'1 (A)) ^ area (A) .

Since α has measure zero we may conclude that:

Lemma 7.1. Let N be a hyperbolic 3-manifold. If A is a measurable subset of dC(N\
then

vol (Q (N) n R " x (A)) ^ area (A) .

In particular,

^ area( CCY)) ^ 2 π .

We also need a bound from above on the volume of C^(N) — C(N). This may be
obtained from Lemma 8.12.1 in [21], whose proof is the same s that of Lemma 8.2 in [6].
Recall that if /: S -» N is a pleated surface, then a homotopically non-trivial curve y on S
is said to be compressible if /(y) is homotopically trivial in N.

Lemma 7.2 (Thurston). Lei f : S -* N be a pleated surface such that every compress-
ible curve in S has length ^ a. Then there exists a constant L (depending only on a) such
that the volume of Jfv (/(S)) is less than L \ χ (S) \ (where Λ[ (/(*S)) denotes the neighborhood
ofradius one off (S)).

We may now combine Lemma 7.1 and 7.2 to obtain the inequality which was used in
the introduction to derive Corollaries C and D.

Lemma 7.3. Given a > 0, there exists L > 0 such that if N is an infinite volume,
geometrically finite hyperbolic 3-manifold such that dC(N) contains no compressible curves
with length ^ a, then

vol(C(JV)) + 2n\X(dC(N))\ £ vo^C^N)) ^ vol(C(N)) 4- L\x(dC(N))\ .

8. Appendix: Proof of Lemma 5.1

Lemma 5.1 is easily seen to follow from the following pointwise result in H".

Lemma 8.1. Let F: Hn -*· R be an eigenfunction of — Δ with eigenvalue
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If s ̂  arcsinh i l/—— J and χ E Hn, then

| |VXF||2< C^l^s f \\VF\\2dv~ s2n
 B(*)S)

where c(h) = ifn^.3, c(2) = and vn_1 denotes the volume ofthe Euclidean
(n — \)-sphere. n-1

Proofof 8.1. We first pull back the Riemannian metric on Hn via the exponential
map to obtain polar coordinates. In these coordinates the metric takes the form

where da2 is the Standard metric on S"1"1. Here the volume form takes the form

dv= sinh"-1^)^^

where άξ is the volume form on S"1"1. For a function F we have

, - r - - -ρ? 8ΐη1ι2ρ

so || J F ^ I I ^ ||VF||. Finally the Laplacian is

Now, let P be an eigenfunction of As„ - 1 on Sn ~ 1 and consider

(1) cp(e)= J Ρ(ΰ,σ)Ρ(σ)άξ(σ).
Sn-l

If AF= — λΡ and A s„- iP= — μΡ, μ > 0, then cp satisfies the ordinary differential
equation:

(2) 4'(ρ) + (n - l)coth(e)4( ) + λ - - CP(Q) = 0

and
cp(0)= J

S n- l

Taking the Taylor expansion to second order at 0 of F:

Ρ(ρ,σ) = F(0) + E^^F(O) + 0(ρ2)

Bereitgestellt von | ETH-Bibliothek Zürich
Angemeldet

Heruntergeladen am | 10.09.15 16:58



54 Burger and Canary, Geometrically finite hyperbolic n-manifolds

(where σ = (σΐ9..., σΛ)) and plugging into (1), we get:

4(0)= Σ WO) ί σίΡ(σ)άξ(σ).
S n-l

Set
VP = ( ί σιΡ(σ)αξ(σ)9...9 f

$n- l S"-

Hence if >> denotes the unique solution of the ordinary differential equation (2) with initial
conditions

y(Q) = 0, /(0) = 1

we get CP(Q) = <V0/% vpyy(o) and therefore

(3) <V0F,i;P>/fe) = 4fe) = f
Sn-l

Multiplying by sinh" ~ l (ρ), integrating from 0 to r, and expanding using equation (3) we
see that,

>p> f urAf-i(Q)y'(Q)dQ = J Ff (ρ,
0 0 S"-1

Then after applying Cauchy-Schwartz and recalling that \\F\\ ^ \\ VF\\, we see that

(4)

that

Vn-l \B(x,r)

We now specialize to Ρ^σ) = aj9 which satisfies As„ -1 ̂ · = — (n — 1) /^· and we observe

(5) Γ

S n-l

Also notice that since j> depends only of Fand μ it is unaffected by the choice ofj. Using
(5), squaring (4) and summing overy, we get:

(6)
Vn-n-l

; f \\vp\\2dv.

We now give a lower bound for J sinh" l(Q)y'(p)dq. Recall that y satisfies
o
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and that j>(0) = 0 and /(O) = 1. This can also be written s

(7)

Lei r0 be the smallest zero of y'9 if there is any. Hence y' ^ 0 on [0, r0] and therefore
7 ^ 0 and is increasing on [0, r0]. By definition of r0 we have

and therefore, . 2 — A ̂  0, since sinh" l(o)y(o)>Q on (0, r0]. Observing that
AI- lV smh (r°}

λ ^ ( —-— l , we get the bound

r0 ^ arcsinh l .

Now write the differential equation in the following manner:

Notice that ( coth(o)yf -- . 2 ) = (οοΛίρ)^)' and integrate from 0 to r, to obtain\ smh ρ/

or
/ r \W + A ί Χρ)ί/ρ + (Λ - l)coth(r)j;(r) =
\o /

For r <^r0, y is positive and increasing. Hence,

/(r) + Arj;(r) + (n - l)coth(r)^(r) ^ π ,

i.e.

(8) y'(r)+y(r)&r + (n- l)coth(r)) ^ n .

Observe that for all r ̂  arcsinh M — γ J one has

Ar -h (n - l)coth(r) ^ f ^ + (" ~ l)coth(r)
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The second inequality is established by first observing that the function

is increasing on the interval l 0, arcsinh 11/ J , and then noting that f(r) ^
/ / *> \ \ \V n — lj J

when r = arcsinh l

Now, since arcsinh i l / l < arcsinh ( / ) <i r0, we have from (8) that

/ , / 2 \ 3n-l
for all r ̂  arcsinh l / - - 1. Multiplying by r 2 , we get

\y Λ — l/
3n-l 3n-l

(r 2 ^) '^«r 2

and hence by integrating that

(9)

for all r ̂  arcsinh l ] - - . From equation (7) we see that

(10) sinh^W/Cr)^

Now observe that for ρ < arcsinh ( ]"~

(11)

- ,n-l

n-1 „-l
sinh2ρ "" 8ΐη1ι2ρ \ 2 / "" 28ΐη1ι2ρ

Combining (9), (10) and (11), we see that if s ̂  arcsinh I ] - - l, then

0 0

When n ̂  3 we may use the fact that 8ΐη1ιρ ^ ρ to observe that
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One may use this inequality and (6) to complete the proof of the theorem when n ̂  3. To
complete the proof when n = 2, use the fact that sinhfe) ^ |/3ρ if ρ ̂  arcsinh Q/2). α
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