Rigidity Properties of Group Actions on CAT(0)-Spaces

MARC BURGER

Institut de mathématiques, Université de Lausanne CH-1015 Lausanne-Dorigny, Switzerland

In this lecture we shall discuss certain aspects of the general rigidity problem of classifying isometric actions of a given group Λ on a CAT(0)-space Y. The CAT(0) property, introduced by Alexandrov [Al], [Wa], generalizes to singular metric spaces the notion of nonpositive curvature. Among such spaces one finds simply connected non-positively curved Riemannian manifolds and Euclidean buildings; in particular, geometric rigidity problems and the linear representation theory of Λ over local fields are put into the same framework. There are various types of additional structures on Λ that lead to different rigidity properties. In this lecture we shall discuss the following three situations.

1. Let Λ be a subgroup of a locally compact group G, satisfying $\Gamma < \Lambda < \operatorname{Com}_G \Gamma$ where Γ is a sufficiently large discrete subgroup of G and $\operatorname{Com}_G \Gamma = \{g \in G : g^{-1}\Gamma g \text{ and } \Gamma \text{ share a subgroup of finite index}\}$ is the commensurator of Γ in G. One expects then that any isometric action of Λ on a $\operatorname{CAT}(0)$ -space, which satisfies a suitable geometric irreducibility property, extends continuously to the closure $\overline{\Lambda} \subset G$. Rigidity properties of this type were already established by Margulis in the early 1970s, in the case where Γ is a lattice in a semisimple Lie group G, and led to his arithmeticity criterion [Ma 1], [Ma 4].

In Section 2, we state two recent results in this direction. The first result, due to Margulis, concerns the case where Γ is a cocompact, finitely generated lattice in a locally compact group G, and is based on his theory of generalized harmonic maps. The second, based on ergodic theoretic methods introduced by Margulis in [Ma 3], treats the case where the discrete subgroup $\Gamma < G$ admits a (Γ, G) boundary (see Section 3 for examples). In Section 5 we apply these results to the study of the commensurator of uniform tree lattices.

2. Let Λ be an irreducible lattice in a group $G = \prod_{\alpha=1}^{n} \mathbb{G}_{\alpha}(k_{\alpha})$, where \mathbb{G}_{α} is a semisimple algebraic group defined over a local field k_{α} . In this lecture, a local field is a locally compact nondiscrete field. Thanks to Margulis' work, one has a fairly complete criterion for the existence of a continuous extension to G of an action by isometries of Λ on a CAT(0)-space Y when $\sum_{\alpha} \operatorname{rank}_{k_{\alpha}} \mathbb{G}_{\alpha} \geq 2$, and either the Λ -action comes from a linear representation over a local field [Ma 4, VII. 5,6] or Y is a tree [Ma 2]. The case of irreducible representations leads to his arithmeticity theorem [Ma 4, IX. Theorem A], whereas the case of actions on trees gives a classification of those lattices Λ that are nontrivial amalgams [Ma 2, Theorem 2].

Proceedings of the International Congress of Mathematicians, Zürich, Switzerland 1994 © Birkhäuser Verlag, Basel, Switzerland 1995 Thus, one would like to understand in general when an isometric action of Λ on Y extends continuously to G. This is understood when Y is a locally compact CAT(-1)-space; see Section 4.

3. Let $\Lambda = \pi_1(M)$ be the fundamental group of a compact manifold M, where M is equipped with a nontrivial action of a semisimple Lie group G of higher rank preserving some geometric structure, for instance an "*H*-structure" [Zi 2] or a finite measure and a connection [Zi 3], [Sp-Zi]. Following Zimmer's program one expects that the higher rank hypothesis on G implies strong restrictions on the class of CAT(0)-spaces that admit $\pi_1(M)$ -actions without fixed points. We illustrate this in Section 4 by a recent result of Adams, generalizing [Sp-Zi, Theorem A].

1 CAT(0)-spaces

A geodesic space is a metric space in which every pair of points x, y is joinable by a geodesic segment, i.e. a continuous curve of length d(x, y). A geodesic triangle is obtained by joining pairwise three points with geodesic segments; it maps sidewise isometrically to a geodesic comparison triangle in the Euclidean plane \mathbb{E}^2 or in the hyperbolic plane \mathbb{H}^2 . A geodesic space is CAT(0) (resp. CAT(-1)) if the comparison maps of its geodesic triangles into \mathbb{E}^2 (resp. \mathbb{H}^2) are not distance decreasing. Observe that a CAT(-1)-space is CAT(0). Many global geometric properties of Cartan-Hadamard manifolds (see [B-G-S]) generalize to CAT(0)-spaces and we refer the reader to [Gr 2], [Bri-Ha], [B] for general expositions. The following basic properties of the distance function of a CAT(0)-space Y hold:

P1. Convexity of distance: for any geodesic segments $c_1, c_2 : I \to Y, I \subset \mathbb{R}$, the function $t \to d(c_1(t), c_2(t))$ is convex;

P2. Uniform convexity of balls: for every R, a > 0, there exists $\varepsilon = \varepsilon(R, a) > 0$ such that given any three points $x, y_1, y_2 \in Y$ with $d(x, y_i) \leq R$ and $d(y_1, y_2) \geq a$, the midpoint m on the geodesic segment $[y_1, y_2]$ satisfies $d(x, m) \leq R - \varepsilon$.

A geodesic space Y is UC (uniformly convex) if it satisfies P1 and P2. Whereas P1 implies that Y is uniquely geodesic, P2 often serves as a substitute to local compactness. Finally we mention that a CAT(0)-space Y has a visual boundary $Y(\infty)$; when Y is locally compact and complete, the space $\overline{Y} := Y \sqcup Y(\infty)$ is an Isom(Y)-equivariant compactification of Y.

EXAMPLE (1). L^p -spaces are UC for $1 . Hilbert spaces are CAT(0); more generally, if S is a finite measure space and X is CAT(0), then <math>L^2(S, X)$ is CAT(0) [Ko-Sc].

EXAMPLE (2). Simply connected Riemannian manifolds of sectional curvature $K \le 0$ (respectively $K \le -1$) and their convex subsets are CAT(0) (respectively CAT(-1)) [B-G-S].

EXAMPLE (3). Euclidean buildings are CAT(0) [Bru-Ti], [Bro, VI. 3].

EXAMPLE (4). For every Coxeter system (W, S), there exists a piecewise Euclidean cell complex Σ which is CAT(0) for the induced length metric and on

which W acts properly discontinuously by isometries with compact quotient. Furthermore, Σ admits a piecewise hyperbolic CAT(-1)-structure if and only if W does not contain \mathbb{Z}^2 . See [Mou] and the expository paper [Da].

EXAMPLE (5). Complexes of groups with a metric of nonpositive curvature are developable and their universal covering is CAT(0) [Ha], [Sp].

EXAMPLE (6). Two dimensional complexes with prescribed link L_v at every 0cell v and whose 2-cells are regular polygons in \mathbb{E}^2 (resp. \mathbb{H}^2). Conditions for their existence and for the induced length metric to be CAT(0) (resp. CAT(-1)) are given in [Hag], [Be 1], [Be 2], [B-Br]. First examples of such polyhedra were constructed by Gromov, see [Gr 1, Section 4. C''].

EXAMPLE (7). Metric trees are CAT(-1)-spaces.

2 Rigidity properties of commensurators

2.1. For a finitely generated group Γ and a homomorphism $\pi : \Gamma \to \text{Isom}(Y)$, where Y is a UC space, we introduce the properties:

HP1. For some (and hence every) finite generating set $S \subset \Gamma$, the sublevels of the function $d_S: Y \to \mathbb{R}_+$, $d_S(y) = \max_{\alpha} d(y, \pi(\gamma)y)$, are bounded subsets of Y.

HP2. For every $y_1 \neq y_2$ in Y, there exists $\gamma \in \Gamma$ such that the geodesic segments $[y_1, \pi(\gamma)y_1], [y_2, \pi(\gamma)y_2]$ are not parallel, meaning that if c parametrizes $[y_1, y_2], t \rightarrow d(c(t), \pi(\gamma)c(t))$ is not constant.

Observe that if Y is CAT(0), locally compact and complete, HP1 is equivalent to the property that $\pi(\Gamma)$ does not have a fixed point in $Y(\infty)$.

THEOREM 1. [Ma 5] Let Γ be a finitely generated, cocompact lattice in a locally compact group G, $\Lambda < G$ with $\Gamma < \Lambda < \operatorname{Com}_G \Gamma$ and $\rho : \Lambda \to \operatorname{Isom}(Y)$ a homomorphism into the group of isometries of a complete UC space Y, such that

(1) Λ acts c-minimally on Y,

(2) any subgroup of finite index in Γ satisfies HP1 and HP2.

Then ρ extends continuously to $\overline{\Lambda}$.

REMARKS: (1) A group action by isometries on a geodesic space is *c*-minimal if it admits no nonvoid proper closed convex invariant subspace.

(2) Theorem 1 applies to the case where Y is the Euclidean building associated to a connected k-simple group \mathbb{H} defined over a local field k, the image $\rho(\Lambda) \subset \mathbb{H}(k)$ is Zariski dense in \mathbb{H} , and $\rho(\Gamma) \subset \mathbb{H}(k)$ is not relatively compact.

The proof of this theorem relies on uniqueness properties of generalized harmonic maps [Ma 5]. By definition such maps are critical points, in the space of Γ -equivariant measurable maps $\varphi: G \to Y$, of an "energy" functional

$$E(\varphi) := \int_{\Delta(\Gamma) \setminus G \times G} d(\varphi(g_1), \varphi(g_2))^p h(g_1^{-1}g_2) dg_1 dg_2$$

where p > 1, $\Delta(\Gamma) := \{(\gamma, \gamma) : \gamma \in \Gamma\}$ and h is a suitable positive continuous function. The basic problem for applying this method to discrete subgroups Γ of locally compact groups G is to find a positive continuous function h and an exponent p > 1 such that there is at least one equivariant map $\varphi : G \to Y$ of finite energy. When Γ is a finitely generated cocompact lattice in G, p > 1, and π satisfies HP1, HP2, there is a unique harmonic map and it is continuous; Theorem 1 follows then from the fact that such a map is automatically Λ -equivariant. These results apply notably when Γ is a cocompact lattice in a connected Lie group, or in $\prod_{\alpha=1}^{n} \mathbb{G}_{\alpha}(k_{\alpha})$ where \mathbb{G}_{α} is a semisimple connected group defined over a local field k_{α} , or in the automorphism group AutT of a uniform tree (see Section 5). Indeed, in all these cases Γ is finitely generated. The above method applies also to irreducible lattices in semisimple connected Lie groups all of whose simple factors are noncompact and not locally isomorphic to $SL(2,\mathbb{R})$. Notice that lattices need not be finitely generated. For example, noncocompact lattices in $G = \mathbb{G}(k)$, where \mathbb{G} is a simple k-group of k-rank one defined over a local field k of positive characteristic, are never finitely generated (see [Lu] for the structure of lattices in $\mathbb{G}(k)$). Also when G is not compactly generated, cocompact lattices are not finitely generated, see 3.3 (b) for an example with dense commensurator.

2.2. Let G be a locally compact group, H < G a closed subgroup, and B a standard Borel space endowed with a Borel action $G \times B \to B$ preserving a σ -finite measure class μ . We call (B, μ) an (H, G)-boundary if it satisfies the properties:

BP1: the *H*-action on (B, μ) is amenable;

BP2: the diagonal *H*-action on $(B \times B, \mu \times \mu)$ is ergodic.

THEOREM 2. Let Γ be a discrete subgroup of a locally compact, second countable group G and $\Lambda < G$ with $\Gamma < \Lambda < \operatorname{Com}_G \Gamma$. We assume that there exists (B, μ) , which is a (Γ', G) -boundary for any subgroup of finite index $\Gamma' < \Gamma$.

A. Let \mathbb{H} be a connected adjoint k-simple group, where k is a local field, and $\pi : \Lambda \to \mathbb{H}(k)$ a homomorphism such that $\pi(\Lambda)$ is Zariski dense in \mathbb{H} and $\pi(\Gamma) \subset \mathbb{H}(k)$ is not relatively compact. Then π extends continuously to $\overline{\Lambda}$.

B. [Bu-Mo] Let Y be a locally compact, complete CAT(-1)-space and $\pi : \Lambda \to Isom(Y)$ a homomorphism such that $\pi(\Lambda)$ acts c-minimally on Y and $\pi(\Gamma)$ is not elementary. Then π extends continuously to $\overline{\Lambda}$.

REMARKS: (1) A group of isometries of a CAT(-1)-space Y is called elementary, if it has an invariant subset $\Delta \subset \overline{Y}$ consisting of one or two points.

(2) In the case where Γ is a lattice in the automorphism group of a *d*-regular tree T_d ($d \geq 3$) and Y is a locally finite tree, Theorem 2B is due to Lubotzky-Mozes-Zimmer [L-M-Z].

(3) Gao has recently (October 94) proved Theorem 2B in the case where Γ is a divergence group (see Section 3.3) in G = Isom(X), X is locally compact complete CAT(-1), and Y is separable complete CAT(-1).

The proof of Theorem 2 relies on uniqueness properties of suitable "boundary" maps. For 2A one shows that, if (B, μ) is a (Γ', G) -boundary for every subgroup of finite index $\Gamma' < \Gamma$, and $\pi : \Gamma \to \mathbb{H}(k)$ is a homomorphism with Zariski dense and unbounded image, there is a proper k-subgroup $\mathbb{L} < \mathbb{H}$ such that for any $\Gamma' < \Gamma$, of finite index, there exists a unique Γ' -equivariant measurable map $\varphi : B \to \mathbb{H}(k)/\mathbb{L}(k)$ (see [Zi 1], [A'C-Bu] for different constructions of boundary maps). In case 2B one shows that, if (B, μ) is a (Γ, G) -boundary and $\pi : \Gamma \to \text{Isom}(Y)$ a homomorphism such that $\pi(\Gamma)$ is not elementary, there is a unique Γ -equivariant measurable map $\varphi : B \to Y(\infty)$ (see [Bu-Mo]).

3 (Γ, G) -boundaries and commensurators

Theorem 2 is of interest when (Γ, G) admits a boundary and $\text{Com}_G \Gamma$ is not discrete. We have the following sources for such groups:

3.1. Arithmetic lattices. Let us consider $G = \prod_{\alpha=1}^{n} \mathbb{G}_{\alpha}(k_{\alpha})$ and $P = \prod \mathbb{P}_{\alpha}(k_{\alpha})$, where \mathbb{G}_{α} is a connected, simply connected k_{α} -almost simple, k_{α} -isotropic group and $\mathbb{P}_{\alpha} < \mathbb{G}_{\alpha}$ a minimal k_{α} -parabolic subgroup of \mathbb{G}_{α} . The homogeneous space B := G/P with its *G*-invariant measure class is a (Γ, G) -boundary for any lattice $\Gamma < G$. When the lattice Γ is arithmetic, its commensurator is dense in *G*. By Margulis' arithmeticity theorem this is always the case when $\sum \operatorname{rank}_{k_{\alpha}} \mathbb{G}_{\alpha} \geq 2$ and Γ is irreducible.

3.2. Regular tree lattices. Consider $G = \operatorname{Aut} T_d$, $d \ge 3$, and P < G the stabilizer of a point in $T_d(\infty)$. Again the homogeneous space B := G/P with its *G*-invariant measure class is a (Γ, G) -boundary for any lattice $\Gamma < G$. Here BP2 follows from the Howe-Moore property of Aut T_d [Lu-Mo]. We remark that cocompact lattices in Aut T_d have dense commensurators, see Section 5.

3.3. Divergence groups. Let X be a locally compact and complete CAT(-1)-space, H < Isom(X) a closed subgroup, and

$$\delta_H = \inf\{s > 0: P_x(s) = \int_H e^{-sd(hx,x)} dh < +\infty\}$$

its critical exponent, which does not depend on the choice of $x \in X$. A nonelementary, discrete subgroup $\Gamma < \text{Isom}(X)$ is called a divergence group if $\delta_{\Gamma} < +\infty$ and $P_x(\delta_{\Gamma}) = +\infty$. Generalizing the Patterson-Sullivan theory of Kleinian groups (see [Pa], [Su], and [Bo] for compact quotients of CAT(-1)-spaces), one constructs a canonical measure class μ_{Γ} on $X(\infty)$ that is invariant under $G := \overline{\text{Com}_{\text{Isom}(X)}\Gamma} <$ Isom(X) and such that $(X(\infty), \mu_{\Gamma})$ is a (Γ', G) -boundary for any subgroup Γ' of finite index in Γ . Hence when Γ is a divergence group, Theorem 2 may be applied to any subgroup $\Lambda < \text{Isom}(X)$ with $\Gamma < \Lambda < \text{Com}_{\text{Isom}(X)}\Gamma$. Concerning property BP1, Adams [Ad] has shown that when X is at most of exponential growth, the action on $X(\infty)$ of any closed subgroup of Isom(X) is universally amenable. We mention the following examples of divergence groups (see [Bu-Mo]):

(a) any lattice in Isom(X) with $Isom(X) \setminus X$ compact, is a divergence group;

(b) let \mathbb{A} be a tree of finite groups with edge indexed graph (see [Ba-Ku] for definitions),

where $b \ge 2$ and not all a_i 's are 1. Let R be the radius of convergence of the power series $P(x) := \sum_{k=1}^{\infty} (a_k - 1)a_{k-1} \dots a_1 x^k$, T the universal covering tree, and Γ the fundamental group of \mathbb{A} . Then Γ is a divergence group if and only if $P(R) \ge \frac{1}{b-1}$. This happens for example if P is rational. When the edge indexed graphs associated respectively to $\operatorname{Aut} T \setminus T$ and \mathbb{A} coincide (e.g. $b \ne a_i + 1$, $\forall i$) then Γ is cocompact in $\operatorname{Aut} T$ and $\operatorname{Aut} T$ is not compactly generated. One can show that no (Γ , $\operatorname{Aut} T$)boundary is a homogeneous space of $\operatorname{Aut} T$. Finally, one can choose the vertex and edge groups of \mathbb{A} in such a way that $\operatorname{Com}_{\operatorname{Aut} T} \Gamma$ is dense in $\operatorname{Aut} T$.

(c) Let $\Gamma < \text{Aut } T_4$ be the fundamental group of the Cayley graph of the free abelian group on two generators. Then Γ is a divergence group whose commensurator is dense in Aut T_4 .

4 Lattices in higher rank groups and CAT(-1)-spaces

THEOREM 3. [Ad], [Bu-Mo] Let Γ be an irreducible lattice in $G = \prod_{\alpha=1}^{n} \mathbb{G}_{\alpha}(k_{\alpha})$, where \mathbb{G}_{α} is a simply connected, k_{α} -almost simple, k_{α} -isotropic group and $\sum_{\alpha=1}^{n} \operatorname{rank}_{k_{\alpha}} \mathbb{G}_{\alpha} \geq 2$. Let Y be a locally compact, complete CAT(-1)-space and $\pi : \Gamma \to \operatorname{Isom}(Y)$ a homomorphism with nonelementary image. Let $X \subset Y$ be the closed convex hull of the limit set of $\pi(\Gamma)$. Then $\pi : \Gamma \to \operatorname{Isom}(X)$ extends to a continuous homomorphism of G, factoring through a proper homomorphism from a rank one factor of G into $\operatorname{Isom}(X)$.

When all the almost simple factors of G have rank at least 2, $\pi(\Gamma)$ must be elementary; when Isom(Y) has finite critical exponent, stabilizers of boundary points are amenable and, as Γ has property T, $\pi(\Gamma)$ is relatively compact and hence fixes a point in Y.

See [Ad, Theorem 11.2] in the case where $G = \mathbb{G}(\mathbb{R})$ (n = 1) and [Bu-Mo] in the general case.

THEOREM 4. [Ad] Let M be a connected, compact real analytic manifold equipped with a nontrivial real analytic action of a simple Lie group G of real rank ≥ 2 . Assume that G preserves a probability measure and a real analytic connection. Then $\pi_1(M)$ cannot act properly discontinuously on a locally compact CAT(-1)space that is at most of exponential growth.

5 Uniform tree lattices

A uniform tree is a locally finite tree X whose automorphism group contains a discrete subgroup Γ such that $\Gamma \setminus X$ is finite. In particular, such a subgroup Γ is a cocompact lattice in Aut X. Uniform trees are characterized by the property that Aut $X \setminus X$ is finite and Aut X is unimodular [Ba-Ku]. It is a remarkable fact that for a uniform tree X, the commensurators of any two cocompact lattices in Aut X are conjugate [Le], [Ba-Ku]. Denoting by C(X) a representative of this conjugacy class of subgroups, we have

THEOREM 5. [Li] C(X) is dense in Aut X.

This was conjectured by Bass and Kulkarni who proved it for regular trees, see [Ba-Ku].

Theorem 1 and 2B are useful in studying the problem of whether C(X) determines X. The analogous problem of whether Aut X determines X was solved by Bass and Lubotzky, see [Ba-Lu]. Concerning the former, we have a complete answer only in the case of regular trees.

COROLLARY 1. [L-M-Z] If $\rho : C(T_d) \to C(T_m)$ is an isomorphism, then d = mand ρ is conjugation by an element of Aut T_d .

In [L-M-Z] it is also shown that $C(T_d)$, $d \ge 3$, is not linear over any field. The proof of this fact used a description of the commensurator of certain cocompact lattices in Aut T_d in terms of "recolorings" of *d*-regular graphs. This was also used there to give a proof, via length functions, of Theorem 2B for the case where $\Lambda = C(T_d)$, Y is an abitrary tree, and the lattice Γ is cocompact.

Applying Theorem 2 one has

COROLLARY 2. [Bu-Mo] Let X be a uniform tree all of whose vertices have degree ≥ 3 . Assume that Aut X acts c-minimally on X and is not discrete. Then C(X) is not linear over any field.

Observe that if Aut X is discrete, the group C(X) = Aut X is virtually free and finitely generated, hence linear. In connection with Corollary 2, the subgroup Aut⁺X generated by all oriented-edge stabilizers plays an important role. It follows from a theorem of Tits [Ti] that if X is uniform and Aut X acts c-minimally, then Aut⁺X is simple. In the proof of Corollary 2 one shows that if π is a linear representation of C(X), the subgroup Ker $\pi \cap \text{Aut}^+X$ is nonamenable. It would therefore be interesting to know whether $C(X) \cap \text{Aut}^+X$ is simple.

Acknowledgments. I thank Norbert A'Campo and Shahar Mozes for sharing their insights with me.

References

[A'C-Bu]	N. A'Campo and M. Burger, Réseaux arithmétiques et commensurateurs
	d'après G. A. Margulis, Invent. Math. 116 (1994), 1–25.
[Ad]	S. Adams, Reduction of cocycles with hyperbolic targets, preprint (1993).
[Al]	A. D. Alexandrov, Über eine Verallgemeinerung der Riemannschen Geome-
	trie, Schriftenreihe des Forschungsinstituts für Mathematik, Berlin, Heft 1
	(1957), 33-84.
[B]	W. Ballmann, Lectures on spaces of non-positive curvature, preprint (1994).
[B-Br]	W. Ballmann and M. Brin, Polygonal complexes and combinatorial group the-
	ory, Geom. Dedicata 50 (1994), 165–191.
[B-G-S]	W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive cur-
	vature, Progr. Math. 61, Birkhäuser, Boston, MA, 1985.
[Ba]	H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89
	(1993), 3-47.
[Ba-Ku]	H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990),

[Ba-Ku] H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), 843–902.

768	Marc Burger
[Ba-Lu]	H. Bass and A. Lubotzky, <i>Rigidity of group actions on locally finite trees</i> , preprint.
[Be 1]	N. Benakli, <i>Polyèdres à géométrie locale donnée</i> , C.R. Acad. Sci. Paris, t. 313, Série I (1991), 561–564.
[Be 2]	N. Benakli, Polyèdres hyperboliques à groupe d'automorphisme non discret, C.R. Acad. Sci. Paris, t. 313, Série I (1991), 667–669.
[Bo]	M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, Thèse, Univ. de Paris–Sud, 1993.
[Bri-Ha]	M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, in preparation.
[Bro]	K. Brown, Buildings, Springer, Berlin and New York, 1993.
[Bru-Ti]	F. Bruhat and J. Tits, Groupes réductifs sur un corps local I. Données radi- cielles valuées, IHES Publ. Math. 41 (1972), 5–251.
[Bu-Mo]	M. Burger and S. Mozes, $CAT(-1)$ -spaces, divergence groups and their commensurators, preprint (1993), revised version (1994).
[Da]	M. W. Davis, <i>Nonpositive curvature and reflection groups</i> , Lectures given at the Eleventh Annual Western Workshop in Geometric Topology, Park City, Utah, June 1994.
[Gr 1]	M. Gromov, <i>Infinite groups as geometric objects</i> , Proc. Internat. Congress Math., Warszawa (1983), 385–392.
[Gr 2]	M. Gromov, <i>Hyperbolic groups</i> , in: Essays in group theory, (S. M. Gersten, ed.), M.S.R.I. Publications 8 , Springer, Berlin and New York (1987), 75–263.
[Ha]	A. Haefliger, <i>Complexes of group and orbihedra</i> , in: Group theory from a geometrical viewpoint, (E. Ghys, A. Haefliger, and A. Verjovsky, eds.) ICTP Trieste, World Scientific, Singapore (1991), 504–540.
[Hag]	F. Haglund, <i>Les polyèdres de Gromov</i> , C.R. Acad. Sci. Paris t. 313, Série I (1991), 603–606.
[Ko-Sc]	N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. and Geom. 1, 4 (1994), 561-659.
[Le]	F. T. Leighton, <i>Finite common coverings of graphs</i> , J. Combin. Theory Ser. B 33 (1982), 231–238.
[Li]	YS. Liu, Density of commensurability groups of uniform tree lattices, J. Algebra 165 (1994), 346–359.
[Lu]	A. Lubotzky, Lattices in rank one Lie groups over local fields, G.A.F.A. 1 no 4 (1991), 405–431.
[Lu-Mo]	A. Lubotzky and S. Mozes, Asymptotic properties of unitary representations of tree automorphisms, in: Harmonic analysis and discrete potential theory (M.A. Picardello, ed.), Plenum Press, New York (1992), 289–298.
[L-M-Z]	A. Lubotzky, S. Mozes, and R. J. Zimmer, <i>Superrigidity of the commensura-</i> <i>bility group of tree lattices</i> , Comm. Math. Helv. 69 (1994), 523–548.
[Ma 1]	G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Transl. 109 (1977), 33-45.
[Ma 2]	G. A. Margulis, On the decomposition of discrete subgroups into amalgams, Selecta Math. Soviet 1 2 (1981), 197–213.
[Ma 3]	G. A. Margulis, Arithmeticity of irreducible lattices in semisimple groups of rank greater than one, Invent. Math. 76 (1984), 93–120.
[Ma 4]	G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebn. 3. Folge 17 , Springer (1991).
[Ma 5]	G. A. Margulis, Superrigidity of commensurability subgroups and generalized harmonic maps, preprint, preliminary version, June 1994.

- [Mou] G. Moussong, *Hyperbolic Coxeter groups*, Ph.D. thesis, Ohio State Univ. (1988).
- [Pa] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.
- [Sp] B. Spieler, *Nonpositively curved orbihedra*, Ph.D. thesis, Ohio State Univ. (1992).
- [Sp-Zi] R. J. Spatzier and R. J. Zimmer, Fundamental groups of negatively curved manifolds and actions of semisimple groups, Topology 30 no. 4 (1991), 591– 601.
- [Su] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259–277.
- [Ti] J. Tits, Sur le groupe des automorphismes d'un arbre, in: Essays on topology and related topics: Mémoire dédié à Georges de Rham (A. Haefliger and R. Narasimhan, eds.), Springer-Verlag, Berlin and New York (1970), 188–211.
- [Wa] A. Wald, Begründung einer Koordinatenlosen Differentialgeometrie der Flächen, Ergebnisse eines mathematischen Koloquiums 7 (1935), 2–46.
- [Zi 1] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Basel and Boston, MA (1984).
- [Zi 2] R. J. Zimmer, Actions of semisimple groups and discrete subgroups, Proc. Internat. Congress Math., Berkeley (1986), 1247–1258.
- [Zi 3] R. J. Zimmer, Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989), 201–213.