Constructing irreducible representations of discrete groups

MARC BURGER and PIERRE DE LA HARPE*
Institut de Mathématiques, Université de Lausanne, Dorigny, CH-1015 Lausanne, Suisse e-mail:Marc.Burger@ima.unil.ch
*Section de Mathématiques, Université de Genève, C.P. 240, CH-1211 Genève 24, Suisse
e-mail:Pierre.delaHarpe@math.unige.ch

MS received 11 October 1996

Abstract

The decomposition of unitary representations of a discrete group obtained by induction from a subgroup involves commensurators. In particular Mackey has shown that quasi-regular representations are irreducible if and only if the corresponding subgroups are self-commensurizing. The purpose of this work is to describe general constructions of pairs of groups $\Gamma_{0}<\Gamma$ with Γ_{0} its own commensurator in Γ. These constructions are then applied to groups of isometries of hyperbolic spaces and to lattices in algebraic groups.

Keywords. Commensurator subgroups; unitary representations; quasi-regular representations; Gromov hyperbolic groups; arithmetic lattices.

1. Introduction

Let G be a separable locally compact group. The unitary dual \widehat{G} of G is the set of equivalence classes of irreducible representations of G, together with its Mackey Borel structure. In this paper, "representation" means "continuous unitary representation in a separable Hilbert space".
Let us recall the definition of this structure [Dix, 18.5]. For each $n \in\{1,2, \ldots, \infty\}$, let $\operatorname{Irr}_{n}(G)$ denote the space of all irreducible representations of G in a given Hilbert space of dimension n. The set $\operatorname{Irr}_{n}(G)$ is endowed with the topology of the weak simple convergence on G (making the functions $\pi \mapsto\langle\pi(g) \xi \mid \eta\rangle$ continuous for all $g \in G$ and ξ, η in the Hilbert space of dimension n), and with the corresponding Borel structure. The dual \hat{G} is the quotient of $\bigsqcup_{1 \leq n \leq \infty} \operatorname{Irr}_{n}(G)$ by unitary equivalence, and the Mackey Borel structure on \hat{G} is the quotient of the previously defined Borel structure.
In case of a countable group Γ, it follows from results of Glimm and Thoma that $\hat{\Gamma}$ is a standard Borel space if and only if Γ is virtually abelian (see [Dix], numbers 9.1, 9.5.6 and 13.11.12, or [Ped, 6.8.7]); in this case the representation theory of Γ is well understood. In all other cases there is no natural Borel coding of $\hat{\Gamma}$, i.e. $\hat{\Gamma}$ is not countably separated; for lack of a systematic procedure of constructing all irreducible representations of Γ, a natural problem is to construct large classes of irreducible representations.

Recall that two subgroups G_{0} and G_{1} of a group G are commensurable if $G_{0} \cap G_{1}$ is of finite index in both G_{0} and G_{1}. The commensurator of G_{0} in G is defined to be

$$
\operatorname{Com}_{G}\left(G_{0}\right)=\left\{g \in G!G_{0} \text { and } g G_{0} g^{-1} \text { are commensurable }\right\} .
$$

Let $\left(\Gamma_{i}\right)_{t \in I}$ be a family of pairwise non conjugate subgroups of a countable group Γ such that $\operatorname{Com}_{\Gamma}\left(\Gamma_{:}\right)=\Gamma_{1}$ for all $t \in I$. It follows from work of Mackey (see e.g. [Mac], and $\S 2$
below) that unitary induction provides a well defined and injective map

$$
\bigcup_{i \in I} \widehat{\Gamma_{i}^{d t}} \leftrightarrows \hat{\Gamma},
$$

where $\widehat{\Gamma_{i}^{J d}}$ denotes the subset of $\hat{\Gamma}_{t}$ consisting of finite dimensional representations.
Our aim in this paper is to construct actions with noncommensurable stabilizers and pairs of groups $\Gamma_{0}<\Gamma$ such that $\operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)=\Gamma_{0}$. More generally, we construct also pairs $\Gamma_{0}<\Gamma$ such that Γ_{0} is a subgroup of finite index in $\operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)$; in this case, the quasiregular representation of Γ in $l^{2}\left(\Gamma / \Gamma_{0}\right)$ is a finite direct sum of irreducible representations.

In § 2, we recall some classical results on unitary representations. Section 3 provides elementary examples of pairs of groups $\Gamma_{0}<\Gamma$ with Γ_{0} its own commensurator in Γ. We consider groups of isometries of Gromov hyperbolic spaces in $\S 4$. Then, for a lattice Γ in the group of real points of a linear algebraic group \mathbb{G} defined over \mathbb{R}, we consider actions of Γ on appropriate sets of maximal tori in $\S 5$ and on other sets of subgroups of \mathbb{G} in $\S 6$; in each case, we find classes of irreducible quasi-regular representations of Γ.

Note on terminology. Commensurators have been known under various names, such as quasinormalizers [Cor], commensurizers [KrR] and commensurability subgroups [Mar]. We follow the terminology of [Shi, Chapter 3] and [A'B].

2. Commensurators and induced representations

Let Γ be a discrete group, $\Gamma_{0}<\Gamma$ a subgroup and $\lambda_{\Gamma / \Gamma_{0}}$ the left regular representation of Γ in $l^{2}\left(\Gamma / \Gamma_{0}\right)$.

A double class $\dot{x} \in \Gamma_{0} \backslash \operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right) / \Gamma_{0}$ represented by some $x \in \operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)$ corresponds to a finite Γ_{0}-orbit $\Gamma_{0} x \Gamma_{0}$ in Γ / Γ_{0}, and the mapping $\Gamma_{0} \rightarrow \Gamma / \Gamma_{0}$ applying z to $z x \Gamma_{0}$ induces a bijection of $\Gamma_{0} /\left(\Gamma_{0} \cap x \Gamma_{0} x^{-1}\right)$ onto $\Gamma_{0} x \Gamma_{0}$. Consequently, \dot{x} gives rise to a bounded intertwining operator $T_{\dot{x}}$ of $\lambda_{\Gamma / \Gamma_{0}}$, which is defined by

$$
\left(T_{\dot{x}} f\right)\left(y \Gamma_{0}\right)=\sum_{\zeta \in \Gamma_{0} /\left(\Gamma_{0} \cap x \Gamma_{0} x^{-1}\right)} f\left(y \zeta x \Gamma_{0}\right)
$$

for all $f \in l^{2}\left(\Gamma / \Gamma_{0}\right)$ and for all $y \Gamma_{0} \in \Gamma / \Gamma_{0}$.
It is then a fact (see [Bin], Theorem 2.2) that the linear space generated by

$$
\left\{T_{\dot{x}}: l^{2}\left(\Gamma / \Gamma_{0}\right) \rightarrow l^{2}\left(\Gamma / \Gamma_{0}\right) \mid \dot{x} \in \Gamma_{0} \backslash \operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right) / \Gamma_{0}\right\}
$$

is weakly dense in the space $\operatorname{Int}\left(\lambda_{\Gamma / \Gamma_{0}}\right)$ of bounded intertwining operators of $\lambda_{\Gamma / \Gamma_{0}}$. Hence, if $\Gamma_{0} \backslash \operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)$ is finite, we have

$$
\operatorname{dim} \operatorname{Int}\left(\lambda_{\Gamma / /_{0}}\right)=\operatorname{Card}\left(\Gamma_{0} \backslash \operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right) / \Gamma_{0}\right)
$$

and $\lambda_{\Gamma / \Gamma_{0}}$ is a finite direct sum of irreducible representations. In particular $\lambda_{\Gamma / \Gamma_{0}}$ is irreducible if and only if $\operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)=\Gamma_{0}$.

The above considerations then lead to the following theorem. Here and in the sequel we call two subgroups Γ_{0}, Γ_{1} of Γ quasiconjugate if there exists $\gamma \in \Gamma$ such that Γ_{0} and $\gamma \Gamma_{1} \gamma^{-1}$ are commensurable.

Theorem 2.1 [Mackey]. Let Γ be a discrete group and let Γ_{0}, Γ_{1} be subgroups of Γ. (1) The representation $\lambda_{\Gamma / \Gamma_{0}}$ is irreducible if and only if $\operatorname{Com}_{\Gamma}\left(\Gamma_{0}\right)=\Gamma_{0}$, in which case $\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}(\pi)$ is irreducible for any $\pi \in \Gamma_{0}^{\int d d}$, and unitary induction

$$
\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}: \widehat{\Gamma_{0}^{f d}} \longrightarrow \hat{\Gamma}
$$

is an injective map.
(2) If $\operatorname{Com}_{\Gamma}\left(\Gamma_{i}\right)=\Gamma_{i}, i=0,1$, then $\lambda_{\Gamma / \Gamma_{0}}$ and $\lambda_{\Gamma / \Gamma_{1}}$ are unitarilyequivalent if and only if Γ_{0} and Γ_{1} are quasiconjugate in Γ.

In case Γ_{0} and Γ_{1} are not quasiconjugate in Γ, if π_{0}, respectively π_{1}, are finite dimensional irreducible unitary representations of Γ_{0}, respectively Γ_{1}, then $\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}\left(\pi_{0}\right)$ and $\operatorname{Ind}_{\Gamma_{1}}^{\Gamma}\left(\pi_{1}\right)$ are not equivalent.

Remark. We do not know whether the condition $\pi \in \widehat{\Gamma_{0}^{j d}}$ in (1) can be replaced by $\pi \in \hat{\Gamma}_{0}$.
Let us restate the previous Theorem in a slightly different way. Let Γ be a discrete group acting on a set A, and denote by

$$
\mathscr{Z}_{\Gamma}(a) \doteqdot\{\gamma \in \Gamma \mid \gamma a=a\}
$$

the stabilizer of a point $a \in A$; if more precision is needed, we write $\mathscr{X}_{\Gamma, A}(a)$ for $\mathscr{X}_{\mathrm{T}}(a)$.

DEFINITION

The action $\Gamma \times A \longrightarrow A$ has noncommensurable stabilizers (N.C.S.) if any two points a_{1}, $a_{2} \in A$ with commensurable stabilizers coincide.

The following lemma is an easy observation.
Lemma 2.2. (1) Let $\Gamma \times A \longrightarrow A$ be a N.C.S. action. For $a_{1}, a_{2} \in A$ and $\gamma \in \Gamma$, we have $\gamma a_{1}=a_{2}$ if and only if $\gamma \mathscr{Z}_{\Gamma}\left(a_{1}\right) \gamma^{-1}=\mathscr{Z}_{\Gamma}\left(a_{2}\right)$, if and only if $\gamma \mathscr{Z}_{\Gamma}\left(a_{1}\right) \gamma^{-1}$ and $\mathscr{Z}_{\Gamma}\left(a_{2}\right)$ are commensurable.

In particular $\left(\mathscr{Z}_{\Gamma}(a)\right)_{a \in A}$ is a set of self-commensurizing subgroups of Γ, two subgroups $Z_{\Gamma}\left(a_{1}\right), Z_{\Gamma}\left(a_{2}\right)$ of the set being quasiconjugate if and only if a_{1}, a_{2} are in the same Γ-orbit. (2) Let \mathscr{G} be a set of self-commensurizing subgroups of Γ which is stable under conjugation. Then the action of Γ on \mathscr{G} by conjugation is N.C.S.

It follows from Theorem 2.1 and Lemma 2.2. that, for a N.C.S. action $\Gamma \times A \rightarrow A$, unitary induction

$$
\text { Ind: } \varliminf_{a \in \Gamma \backslash A} \overline{\mathscr{P}_{\Gamma}(a)^{f d} \longrightarrow \hat{\Gamma}}
$$

is an injective map.
For later use we record the following general fact. Let π, ρ be unitary representations of a group Γ. We write $\pi<\rho$ to express that π is weakly contained in ρ [Dix, 18.1.3], and $\pi \sim \rho$ to express that π and ρ are weakly equivalent [namely that $\pi<\rho$ and $\rho<\pi$].

Lemma 2.3. Let Γ_{0} be a subgroup of Γ. Then $\lambda_{\Gamma / \Gamma_{0}}<\lambda_{\Gamma}$ if and only if Γ_{0} is amenable.
Proof. If Γ_{0} is amenable, $1_{\Gamma_{0}}<\lambda_{\Gamma_{0}}$ and hence $\lambda_{\Gamma / \Gamma_{0}}=\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}\left(1_{\Gamma_{0}}\right)<\operatorname{Ind}_{\Gamma_{0}}^{\Gamma}\left(\lambda_{\Gamma_{0}}\right)=\lambda_{\Gamma^{2}}$.
Conversely, since $1_{\Gamma_{0}}$ is contained in $\operatorname{Res}_{\Gamma_{0}}\left(\lambda_{\Gamma / \Gamma_{0}}\right)$ and since $\operatorname{Res}_{\Gamma_{0}}\left(\lambda_{\Gamma}\right)$ is a multiple of $\lambda_{\Gamma_{0}}$, the assumption $\lambda_{\Gamma / \Gamma_{0}}<\lambda_{\Gamma}$ implies

$$
1_{\Gamma_{0}}<\operatorname{Res}_{\Gamma_{0}}\left(\lambda_{\Gamma / \Gamma_{0}}\right)<\operatorname{Res}_{\Gamma_{0}}\left(\lambda_{\Gamma}\right) \sim \lambda_{\Gamma_{0}}
$$

and hence Γ_{0} is amenable.

3. Elementary examples of N.C.S. actions

Define a group action $G \times A \rightarrow A$ to be large if, for all $a \in A$, all $\mathscr{Z}_{G}(a)$-orbits in $A \backslash\{a\}$ are infinite. The next lemma is a convenient tool for constructing N.C.S. actions.

Lemma 3.1. (1) A large action is N.C.S.
(2) Let $G \times A \rightarrow A$ be a large transitive action and let $\Gamma<G$ be a subgroup such that $\operatorname{Com}_{G} \Gamma=G$. Assume that there exists a point $a_{0} \in A$ such that all $\mathscr{Z}_{\Gamma, A}\left(a_{0}\right)$-orbits in $A \backslash\left\{a_{0}\right\}$ are infinite. Then the restricted action $\Gamma \times A \rightarrow A$ is large.

Proof. (1) For a large action $G \times A \rightarrow A$ and for two points $a_{1}, a_{2} \in A$ with $\mathscr{Z}_{G}\left(a_{1}\right)$ and $\mathscr{Z}_{G}\left(a_{2}\right)$ commensurable, the $\mathscr{X}_{6}\left(a_{1}\right)$-orbit of a_{2} is finite and hence $a_{1}=a_{2}$.
(2) For $a \in A$ and $g \in G$ such that $g a_{0}=a$, the $\mathscr{P}_{\Gamma, A}(a)$-orbits in $A \backslash\{a\}$ are infinite if and only if the $\left(g^{-1} \mathscr{Z}_{T, A}(a) g\right)$-orbits in $A \backslash\left\{a_{0}\right\}$ are infinite. Since

$$
g^{-1} \mathscr{Z}_{\Gamma, A}(a) g=g^{-1} \Gamma g \cap \mathscr{Z}_{G, A}\left(a_{0}\right)
$$

and $G=\operatorname{Com}_{G} \Gamma$, the subgroup

$$
\Delta_{0} \doteqdot \mathscr{Z}_{\Gamma, A}\left(a_{0}\right) \cap g^{-1} \mathscr{Z}_{\Gamma, A}(a) g=Z_{\Gamma, A}\left(a_{0}\right) \cap g^{-1} \Gamma g
$$

is of finite index in $\mathscr{Z}_{\Gamma, A}\left(a_{0}\right)$. In particular all Δ_{0}-orbits in $A \backslash\left\{a_{0}\right\}$ are infinite and the same holds therefore for $g^{-1} Z_{\Gamma, A}(a) g$.
(Claim (1) of Lemma 3.1 is a straightforward generalization of Theorem 4 in [Oba], which delas with doubly transitive actions on infinite sets.)

Example 1. Let \mathbb{K} be an infinite field and let $\mathrm{Gr}_{\boldsymbol{k}}\left(\mathbb{K}^{n}\right)$ denote the Grassmannian of k-dimensional subspaces of \mathbb{K}^{n}, where n, k are integers with $n \geqslant 2$ and $1 \leqslant k \leqslant n-1$.

The natural action of $G L(n, \mathbb{K})$ on $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$ is N.C.S.
If \mathbb{K} is a number field and if \mathcal{O}_{K} denotes its ring of integers, the action of $G L\left(n, \mathcal{O}_{K}\right)$ on $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$ is N.C.S.

Proof. For two distinct points y_{1}, y_{2} in $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$, the maximal parabolic subgroup

$$
P_{y_{t}} \doteqdot\left\{g \in G L(n, \mathbb{K}) \mid g y_{1}=y_{1}\right\}
$$

acts transitively on the infinite subset

$$
\left\{y \in \operatorname{Gr}_{k}\left(\mathbb{K}^{n}\right) \mid \operatorname{dim}_{\kappa}\left(y \cap y_{1}\right)=\operatorname{dim}_{\kappa}\left(y_{2} \cap y_{1}\right)\right\}
$$

of the Grassmannian. Hence the transitive action of $G L(n, \mathbb{K})$ on $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$ is large; in particular P_{y} is its own commensurator in $G L(n, \mathbb{K})$ for all $y \in G_{k}\left(\mathbb{K}^{n}\right)$.

Let \mathbb{K} be now a number field. If $y_{0} \in \mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$ denote the subspace spanned by the first k vectors of the canonical basis of \mathbb{K}^{n} and if $\Gamma=G L\left(n, \mathcal{O}_{K}\right)$, one has

$$
\mathscr{R}_{5}\left(y_{0}\right)=\left\{\begin{array}{c}
* \\
\ldots
\end{array}\right)\left(\left.\begin{array}{ccccc}
* & * & * & \ldots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline & \ldots & * & * & \ldots \\
* \\
0 & \cdots & 0 & * & \ldots \\
* \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & * & \ldots \\
*
\end{array} \right\rvert\,\right)
$$

(with the block of zeros having $n-k$ rows and k columns). Let $y_{1} \in \operatorname{Gr}_{k}\left(\mathbb{K}^{n}\right) \backslash\left\{y_{0}\right\}$; set $l=k-\operatorname{dim}_{k}\left(y_{0} \cap y_{1}\right)$. We identify \mathbb{K}^{n} / y_{0} with the vector space \mathbb{K}^{n-k}. The actions of $P_{y_{o}}$ on \mathbb{K}^{n} and on $\left\{g \in \operatorname{Gr}_{k}\left(\mathbb{K}^{n}\right) \mid \operatorname{dim}\left(y \cap y_{0}\right)=\operatorname{dim}\left(y_{1} \cap y_{0}\right)\right\}$ factor as actions of $G L(n-k, \mathbb{K})$ on \mathbb{K}^{n-k} and $\operatorname{Gr}_{l}\left(\mathbb{K}^{n-k}\right)$ respectively, so that the action of $\mathscr{Z}_{\Gamma}\left(y_{0}\right)$ on $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right) \backslash\left\{y_{0}\right\}$ factors as an action of $G L\left(n-k, \mathcal{O}_{k}\right)$ on $\mathrm{Gr}_{l}\left(\mathbb{K}^{n-k}\right)$. The latter action has clearly all its orbits infinite, since the Zariski closure of $G L\left(n-k, \mathcal{O}_{K}\right)$ contains that of $G L(n-k, \mathbb{Z})$ and thus contains $S L(n-k, \mathbb{C})$. It follows first that all orbits of $\mathscr{P}_{r}\left(y_{0}\right)$ on $\mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right) \backslash\left\{y_{0}\right\}$ are infinite, and second that $\mathscr{B}_{\Gamma}(y)=\Gamma \cap P_{y}$ is its own commensurator in $\Gamma=G L\left(n, \mathcal{O}_{\kappa}\right)$ for all $y \in \mathrm{Gr}_{k}\left(\mathbb{K}^{n}\right)$.

We observe the following consequence of Example 1.

PROPOSITION 3.2

The unitary representation π of $S L(n, \mathbb{Z})$ in $L^{2}\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)$ is an orthogonal direct sum of irreducible representations.

Proof. By Fourier transform, π is equivalent to the permutation representation of $S L(n, \mathbb{Z})$ in $l^{2}\left(\mathbb{Z}^{n}\right)$; the latter is a direct sum of quasi-regular representations $\pi_{k} \doteqdot \lambda_{S L\left(n, \mathbb{Z} / \Gamma_{k}\right.}$, where Γ_{k} denotes the stabilizer of $(k, 0, \ldots, 0) \in \mathbb{Z}^{n}$ in $S L(n, \mathbb{Z})$, for all $k \geqslant 0$. The one-dimensional representation π_{0} is irreducible. For $k \geqslant 1$, and Γ_{k}^{\prime} the stabilizer of $(k: 0: \cdots: 0) \in \mathbb{P}^{n-1}(\mathbb{Q})$, Mackey's result and Example 1 imply that $\lambda_{S L(n, \mathbb{Z}) / \Gamma_{k}^{\prime}}$ is irreducible. As Γ_{k} is of index 2 in Γ_{k}^{\prime}, the representation π_{k} is either irreducible or sum of 2 irreducibles.

For a group action $G \times A \rightarrow A$ and subsets $B \subset A, S \subset G$ we set

$$
\begin{aligned}
& \mathscr{X}_{G, A}(B) \doteqdot \bigcap_{b \in B} \mathscr{Z}_{G, A}(b) \\
& \mathscr{N}_{G . A}(B) \doteqdot\{g \in G \mid g(B)=B\}
\end{aligned}
$$

and $\mathscr{F}_{A}(S)$ the set of common fixed points of elements in S. Observe that

$$
\mathscr{N}_{G, A}(B)=\mathscr{Z}_{G, \mathscr{P} A)}(B),
$$

where $\mathscr{P}(A)$ denotes the power set of A.
Lemma 3.3. Let $G \times A \rightarrow A$ be an action and let $S \subset G$ be a union of conjugacy classes of G such that

$$
\mathscr{F}_{A}(g)=\mathscr{F}_{A}\left(g^{n}\right) \text { and }\left|\mathscr{F}_{A}(g)\right|<\infty
$$

for all $g \in S$ and for all $n>1$. Then the action of G on the set

$$
\left\{F \in \mathscr{P}(A) \mid F=\mathscr{F}_{A}(g) \text { for some } g \in S\right\}
$$

is N.C.S.
Proof. Let $g, h \in S$ be such that the subgroups $\mathscr{N}_{G, A}\left(\mathscr{F}_{A}(g)\right)$ and $\mathscr{N}_{G, A}\left(\mathscr{F}_{A}(h)\right)$ are commensurable in G. Since $\mathscr{F}_{A}(g)$ and $\mathscr{F}_{A}(h)$ are both finite subsets of A, the subgroup

$$
K \doteqdot \mathscr{Z}_{G, A}\left(\mathscr{F}_{A}(g)\right) \cap \mathscr{Z}_{G, A}\left(\mathscr{F}_{A}(h)\right)
$$

is of finite index in $\mathscr{X}_{G, A}\left(\mathscr{F}_{A}(g)\right)$ and $\mathscr{X}_{G, A}\left(\mathscr{F}_{A}(h)\right)$.

Hence there exists an integer $N \geqslant 1$ such that g^{N} and h^{N} are in K. One has

$$
\mathscr{F}_{A}(g)=\mathscr{F}_{A}\left(g^{N}\right) \supset \mathscr{F}_{A}(K) \supset \mathscr{F}_{A}\left(\mathscr{P}_{G, A}\left(\mathscr{F}_{A}(h)\right)\right)=\mathscr{F}_{A}(h)
$$

and similarly $\mathscr{F}_{A}(h) \supset \mathscr{F}_{A}(g)$, so that $\mathscr{F}_{A}(h)=\mathscr{F}_{A}(g)$.
Example 2. Consider a subgroup Γ of $S L(n, \mathbb{C})$ and an element $\gamma \in \Gamma$ which is diagonalizable with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and which is regular in the following sense: one has $\lambda_{j}^{N} \neq \lambda_{k}^{N}$ for each integer $N \geqslant 1$ whenever j, k are distinct in $\{1, \ldots, n\}$; in other words, the fixed point set $\mathscr{F}(\gamma)$ of γ in $\mathbb{P}^{n-1}(\mathbb{C})$ has cardinality n and $\mathscr{F}\left(\gamma^{N}\right)=\mathscr{F}(\gamma)$ for all integers $N \in \mathbb{Z}, N \neq 0$. Then the subgroup

$$
\mathscr{N}_{\Gamma, \mathbb{P}^{-1}(\mathbb{C})}(\mathscr{F}(\gamma))=\left\{\gamma^{\prime} \in \Gamma \mid \gamma^{\prime} \text { permutes the eigen-directions of } \gamma\right\}
$$

of Γ is its own commensurator in Γ by Lemma 3.3. (This subgroup of Γ is distinct from Γ itself as soon as Γ is not virtually abelian.)

Observe that the group

$$
\mathbb{T} \doteqdot \mathscr{X}_{S L\left(n, \mathrm{C}, \mathbf{P}^{--1}(\mathbb{C})\right.}(\mathscr{F}(\gamma))
$$

is a maximal torus in $S L(n, \mathbb{C})$ and that $\mathcal{N}_{\Gamma, \mathbf{P}^{n-1}(\mathcal{C})}(\mathscr{F}(\gamma))$ is the intersection with Γ of the normalizer of \mathbb{T} in $S L(n, \mathbb{C})$. More on this in $\S 5$ below.

Example 3. Consider an integer $n \geq 2$, the group $\Gamma=S L(n, \mathbb{Z})$ and the subgroup Γ_{0} of upper triangular matrices in Γ (with diagonal entries ± 1).

Then Γ_{0} is its own commensurator in Γ.
Proof. Let Flag $\left(\mathbb{C}^{n}\right)$ be the set of complete flags in \mathbb{C}^{n}. Let S be the subset of Γ consisting of matrices which have precisely one Jordan block. Then, for the action of Γ on Flag $\left(\mathbb{C}^{n}\right)$, one has $\mathscr{F}(\gamma)=\mathscr{F}\left(\gamma^{n}\right)$ and $|\mathscr{F}(\gamma)|=1$ for all $\gamma \in S$. This ends the proof because Γ_{0} is the stabilizer of the flag $\mathbb{C} \subset \mathbb{C}^{2} \subset \cdots \subset \mathbb{C}^{n-1}$ associated to the canonical basis of \mathbb{C}^{n}.

Consider the group $\Gamma=S L(3, \mathbb{Z})$. For a subgroup $\Gamma_{0}=\Gamma \cap P_{y}$ as in Example 1, it follows from Lemma 2.3 that the irreducible representation $\lambda_{\Gamma / \Gamma_{0}}$ is not weakly contained in λ_{Γ}. But for a subgroup $\Gamma_{0}=\mathscr{N}_{\Gamma, p^{n-1}(\mathbb{C})}(\mathscr{F}(\gamma))$ as in Example 2 or for the triangular subgroup Γ_{0} of Example 3, one has $\lambda_{\Gamma / \Gamma_{0}}<\lambda_{\mathrm{T}}$ by Lemma 2.3, and consequently $\lambda_{\Gamma / \Gamma_{0}} \sim \lambda_{\Gamma}$ by [BCH].

There are examples of self-commensurizing subgroups of braid groups and of related groups in [FRZ] and in [Par].

4. Groups of isometries of hyperbolic spaces

4.1. Let X be a Gromov hyperbolic space; let $X(\infty)$ be its Gromov boundary and Is (X) its group of isometries. Then $\operatorname{Is}(X)$ acts on $X(\infty)$ and on $S^{2} X(\infty)$, the set of unordered pairs of points in $X(\infty)$.

Let Γ be a subgroup of $\operatorname{Is}(X)$. Denote by $X(\infty)_{p} \subset X(\infty)$ the set of fixed points of parabolic elements in Γ and by $S^{2} X(\infty)_{h} \subset S^{2} X(\infty)$ the set of fixed point sets of hyperbolic elements in Γ.

PROPOSITION 4.1

The action of Γ on

$$
X(\infty)_{p} \bigsqcup S^{2} X(\infty)_{h}
$$

has noncommensurable stabilizers.
Proof. Let Γ_{ne} denote the set of non elliptic elements in Γ. For the Γ-action on $X(\infty)$ and for each $\gamma \in \Gamma_{\text {ne }}$, one has

$$
\mathscr{F}_{X(\infty)}(\gamma)=\mathscr{F}_{X(\infty)}\left(\gamma^{n}\right) \text { for all } n \geq 1
$$

and $\mathscr{F}_{X(\infty)}(\gamma)$ is of cardinality 1 or 2 depending on whether γ is parabolic or hyperbolic. Thus Proposition 4.1 follows from Lemma 3.3.

Remark. For each hyperbolic element $\gamma \in \Gamma$, recall that the cyclic group $\gamma^{\mathbb{Z}}$ is of finite index in the group $\mathscr{Z}=\mathscr{Z}_{\Gamma, S^{2} X(\infty)}\left(\mathscr{F}_{X(\infty)}(\gamma)\right)$; see e.g. [GhH, chap. 8, $\left.\mathrm{n}^{0} 33\right]$; in particular, the group \mathscr{Z} is amenable. By Lemma 2.3, the quasi-regular representation $\lambda_{\Gamma / \mathscr{\mathscr { C }}}$ is weakly contained in the regular representation λ_{Γ}.

Assume moreover that X is a discrete space which has at most exponential growth and that $\Gamma \subset \operatorname{Is}(X)$ is a discrete subgroup. For each parabolic element $\gamma \in \Gamma$, the group $\mathscr{Z}=\mathscr{Z}_{\Gamma, X(\infty)}\left(\mathscr{F}_{\dot{X}(\infty)}(\gamma)\right)$ is amenable (see Proposition 1.6 in [BuM]), so that one has also $\lambda_{\Gamma / \mathscr{X}}<\lambda_{\Gamma}$. Indeed, the set

$$
\left.\left\{\mathscr{Z}_{\Gamma, X(\infty)}(\omega) \mid \omega \in X(\infty)_{p}\right\rfloor S^{2} X(\infty)_{h}\right\}
$$

coincides with the set of all maximal amenable infinite subgroups of Γ [Ada].
In case Γ is a Gromov hyperbolic group, the set $X(\infty)_{p}$ is empty because there is no parabolic. If Γ is moreover torsion free, then $\mathscr{Z}_{\Gamma}(\omega)$ is infinite cyclic for all $\omega \in S^{2} X(\infty)_{h}$.
It is known that the reduced C^{*}-algebra of a torsion free Gromov hyperbolic group Γ is simple [Har]. From this and Lemma 2.3, it follows that the quasi-regular representation $\lambda_{\Gamma / \mathscr{F}_{\Gamma}(\omega)}$ is quasi-equivalent to the regular representation λ_{Γ} for each $\omega \in S^{2} X(\infty)_{h}$.

For a nonabelian free group, this is Proposition 1 of [Boz], itself a paper strongly motivated by [Yos].

4.2. Let now X be a proper CAT(-1)-space and let

$$
\mathscr{G} X=\{c: \mathbb{R} \longrightarrow X \mid c \text { is isometric }\}
$$

be the space of parametrized geodesics in X with the topology of uniform convergence on compactas. The action of \mathbb{R} on $\mathscr{G} X$ via reparametrizations

$$
g_{t} c(s)=c(s+t), \quad c \in \mathscr{G} X, \quad s, t \in \mathbb{R}
$$

commutes with that of $\operatorname{Is}(X)$ and defines for any discrete subgroup $\Gamma<\operatorname{Is}(X)$ a flow on $\Gamma \backslash \mathscr{G} X$, called the geodesic flow. We recall that, for a discrete divergence group $\Gamma<\mathrm{Is}(X)$, there is a canonical Patterson-Sullivan measure m_{ps} on $\Gamma \backslash \mathscr{G} X$ which is invariant and ergodic for the geodesic flow. The notion of a divergence group is borrowed from Patterson-Sullivan theory of Kleinian groups ([Pat], [Sul]; see also [Bou], [Coo], [CoP] which is generalized to CAT(-1)-spaces in [BuM]).

PROPOSITION 4.2

Let $\Lambda<\operatorname{Is}(X)$ be a discrete subgroup. Let

$$
\mathscr{P}(\Lambda)=\left\{\Gamma<\Lambda \mid \Gamma \text { is a divergence group with } m_{\mathrm{PS}}(\Gamma \backslash \mathscr{G} X)<\infty\right\}
$$

be endowed with the ordering given by inclusion and let $\mathscr{C} \subset \mathscr{S}(\Lambda)$ be a commensurability class.

Then \mathscr{C} has a unique maximal element $\Gamma_{\mathscr{G}}$, and this subgroup $\Gamma_{\mathscr{G}}$ satisfies $\operatorname{Com}_{\Lambda} \Gamma_{\mathscr{8}}=\Gamma_{ళ}$. Moreover, if \sim denotes the relation of commensurability on $\mathscr{S}(\Lambda)$, the action of Λ on $\mathscr{S}(\Lambda) / \sim$ by conjugation is N.C.S.
In particular, for each $\Gamma<\mathscr{S}(\Lambda)$, the quasi-regular representation $\lambda_{\lambda / \Gamma}$ is a finite sum of irreducible representations, if $\Gamma_{+}=\operatorname{Com}_{\Lambda}(\Gamma)$, then Γ is of finite index in Γ_{+}and $\lambda_{\Lambda / \Gamma_{+}}$is irreducible.

Remarks. (i) Let $\Gamma<\mathrm{Is}(X)$ be a non-elementary discrete subgroup, $\mathscr{L}_{\Gamma} \subset X(\infty)$ its limit set and $Q_{\Gamma}=\operatorname{Co}\left(\mathscr{L}_{\Gamma}\right) \subset X$ the convex hull of the latter. If $\Gamma \backslash Q_{\Gamma}$ is compact (that is, if Γ is convex-cocompact) then Γ is a divergence group with $m_{\mathrm{ps}}(\Gamma \backslash \mathscr{G} X)<\infty$; see [Bou].
(ii) Let X be a symmetric space of rank 1 and $\Gamma<\operatorname{Is}(X)$ a geometrically finite subgroup (see [Bow]). Then Γ is a divergence group with $m_{\mathrm{PS}}(\Gamma \backslash \mathscr{G} X)<\infty$.

Example. Let $\Lambda<\operatorname{PSL}(2, \mathbb{R})$ be a discrete subgroup. Then $\mathscr{S}(\Lambda)$ contains all finitely generated non virtually cyclic subgroups of Λ. Indeed, such subgroups are nonelementary and geometrically finite.
Thus, for a finitely generated infinite subgroup Γ of Λ, the quasi-regular representation $\lambda_{\Lambda / \Gamma}$ is a finite sum of irreducible representations: this follows from Proposition 4.1 if Γ is virtually cyclic, in which case $\lambda_{\lambda / \Gamma}<\lambda_{\Lambda}$, and from Proposition 4.2 in other cases, for which $\lambda_{A / \Gamma} \nless \lambda_{\Lambda}$.

Proof of Proposition 4.2. It suffices to show that, given a discrete divergence group $\Gamma_{0}<\operatorname{Is}(X)$ with $m_{\mathrm{PS}}\left(\Gamma_{0} \backslash \mathscr{G} X\right)<\infty$ and a discrete subgroup $\Gamma<\operatorname{Is}(X)$ with $\Gamma_{0}<\Gamma<\operatorname{Com}_{\mathrm{Is}(X)}\left(\Gamma_{0}\right)$, the subgroup Γ_{0} is of finite index in Γ.

Indeed, assuming this is true, consider the commensurability class \mathscr{C} of a subgroup Γ_{0} of Λ which is in $\mathscr{S}(\Lambda)$. Setting $\Gamma_{\mathscr{C}}=\operatorname{Com}_{\Lambda}\left(\Gamma_{0}\right)$ one has Γ_{0} of finite index in $\Gamma_{\varphi} ;$ one has therefore $\Gamma_{\mathscr{Y}} \in \mathscr{S}(\Lambda)$ and $\operatorname{Com}_{\Lambda} \Gamma_{\mathscr{C}}=\Gamma_{\mathscr{Y}}$. As any group commensurable with Γ_{0} is in $\Gamma_{\mathscr{Y}}$, the latter group is clearly the unique maximal element of \mathscr{C}. The last claim of the proposition is now obvious.
For the convenience of the reader we recall the construction of m_{PS} (see $\S 1.3$ in [BuM]). Let δ be the critical exponent of Γ_{0}, let $\mu: X \rightarrow M^{+}(X(\infty))$ be the δ-dimensional Patterson-Sullivan density for Γ_{0} and let $(\xi \mid \eta)_{x}$ denote the Gromov scalar product of ξ, $\eta \in X(\infty)$. Using the Γ-invariant measure

$$
\frac{\mathrm{d} \mu_{x}(\xi) \times \mathrm{d} \mu_{y}(\xi)}{\left.\mathrm{e}^{-2\left(\xi \left(\xi m^{2}\right.\right.}\right)}
$$

on $X(\infty) \times X(\infty) \backslash\{$ diagonal\}, one obtains a Γ-invariant and geodesic-flow invariant measure \tilde{m}_{μ} on $\mathscr{G} X$; the Patterson-Sullivan measure m_{pS} is then the corresponding geodesic-flow invariant measure on $\Gamma \backslash \mathscr{G} X$.

We recall furthermore that $\gamma_{*} \mu_{x}=\mu_{\gamma x}$ for all $\gamma \in \Gamma_{0}, x \in X$, and that there exists a homomorphism $\chi: \operatorname{Com}_{\mathrm{Is}(X)}\left(\Gamma_{0}\right) \rightarrow \mathbb{R}_{+}^{*}$ such that $\gamma_{*} \mu_{x}=\chi(\gamma) \mu_{x}$ for all $\gamma \in \operatorname{Com}_{\mathrm{Is}(X)}\left(\Gamma_{0}\right)$, $x \in X$. From this follows $\gamma_{*} \tilde{m}_{\mu}=\chi(\gamma)^{2} \tilde{m}_{\mu}$ for all $\gamma \in \operatorname{Com}_{\mathrm{Is}(X)}\left(\Gamma_{0}\right)$ (see [BuM], Corollary 6.5.3).

Since Γ acts properly discontinuously on $\mathscr{G} X$, there exists a compact set $K \subset \mathscr{G} X$ of positive \tilde{m}_{μ}-measure such that $\gamma K \cap K=\emptyset$ for all $\gamma \in \Gamma$ with $\gamma \neq e$. (We argue as if Γ was acting effectively on $\mathscr{G} X$; when it is not the case, we leave the minor appropriate changes to the reader.) For a set $\mathscr{T} \subset \Gamma$ of representatives of $\Gamma_{0} \backslash \Gamma$, the set $\bigsqcup_{\tau \in \mathscr{F}} \tau K$ injects into $\Gamma_{0} \backslash \mathscr{G} X$ and therefore

$$
\left(\sum_{\tau \in \mathscr{F}} \chi(\tau)^{2}\right) \tilde{m}_{\mu}(K)=\hat{m}_{\mu}\left(\bigcup_{\tau \in \mathscr{G}} \tau K\right) \leqslant m_{\mathrm{PS}}\left(\Gamma_{0} \backslash \mathscr{G} X\right)<\infty .
$$

Hence, since $\chi \mid \Gamma_{0}=1$, we obtain.

$$
\sum_{\tau \in \Gamma_{0} \backslash \Gamma} \chi(\tau)^{2}<\infty .
$$

For every $\gamma \in \Gamma$, we have thus

$$
\left(\sum_{\tau \in \Gamma_{0} \backslash \Gamma} \chi(\tau)^{2}\right) \chi(\gamma)^{2}=\sum_{\sigma \in \Gamma_{0} \backslash \Gamma} \chi(\sigma)^{2}
$$

which shows first that $\chi(\gamma)^{2}=1$ for all $\gamma \in \Gamma$ and second that $\left|\Gamma_{0} \backslash \Gamma\right|<\infty$.

5. Maximal tori and actions of lattices with noncommensurable stabilizers

Let \mathbb{G} be a linear algebraic group defined over \mathbb{R}, let $\Gamma<\mathbb{G}(\mathbb{R})$ be a discrete subgroup and set
$\mathscr{T}(\Gamma)=\{\mathbb{T} \subset \mathbb{G} \mid \mathbb{T}$ is a maximal \mathbb{R}-split torus such that $\mathbb{T}(\mathbb{R}) /(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is compact $\}$.

PROPOSITION 5.1

The Γ-action by conjugation on $\mathscr{T}(\Gamma)$ is N.C.S.
Here and in the sequel, we will use the following simple lemma.
Lemma 5.2. Let \mathbb{G} be a linear algebraic group and let A_{0}, A_{1} be two commensurable subgroups of \mathbb{G}. Then $\left({\overline{A_{0}}}^{0}\right)^{0}=\left(\overline{A_{1}}\right)^{0}$.

Proof of Proposition 5.1. We have to show that, given $\mathbb{T}, \mathbb{T}^{\prime} \in \mathscr{T}(\Gamma)$ such that $\mathscr{N}_{G}(\mathbb{T}) \cap \Gamma$ and $\mathscr{N}_{G}\left(\mathbb{T}^{\prime}\right) \cap \Gamma$ are quasiconjugate in Γ, then T and \mathbb{T}^{\prime} are Γ-conjugate.

First we observe that, for $\mathbb{T} \in \mathscr{T}(\Gamma)$, the group $\left(\mathscr{N}_{G}(\mathbb{T})(\mathbb{R}) \cap \Gamma\right) /(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is finite. Indeed, since $\mathbb{T}(\mathbb{R}) /(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is compact, the canonical map

$$
\mathcal{N}_{G}(\mathbb{T})(\mathbb{R}) /(\mathbb{T}(\mathbb{R}) \cap \Gamma) \longrightarrow \mathscr{N}_{G}(\mathbb{T})(\mathbb{R}) / \mathbb{T}(\mathbb{R})
$$

is proper and therefore $\left(\mathcal{N}_{G}(\mathbb{T})(\mathbb{R}) \cap \Gamma\right) /(\mathbb{T}(\mathbb{R}) \cap \Gamma)$ is a discrete subgroup of the compact group $\mathscr{N}_{G}(\mathbb{T})(\mathbb{R}) / \mathbb{T}(\mathbb{R})$.

If now $\mathscr{N}_{G}(\mathbb{T}) \cap \Gamma$ and $\mathscr{V}_{G}\left(\mathbb{T}^{\prime}\right) \cap \Gamma$ are quasiconjugate in Γ, there exist $\Delta<\mathbb{T}(\mathbb{R}) \cap \Gamma$ of finite index and $\gamma \in \Gamma$ such that $\gamma \Delta \gamma^{-1}$ is of finite index in $\Gamma \cap \mathbb{J}^{\prime}(\mathbb{R})$. Passing to Zariski closure, we obtain $\mathbb{T}^{\prime}=\gamma \bar{\Delta} \gamma^{-1}=\gamma \mathbb{J} \gamma^{-1}$.

Examples. (1) Let \mathbb{G} be a semisimple \mathbb{R}-group and $\Gamma<\mathbb{G}(\mathbb{R})$ a lattice. Then $\mathscr{T}(\Gamma) \neq \emptyset$; this follows from the existence of \mathbb{R}-hyper-regular elements in $\Gamma[\operatorname{PrR}]$. Indeed, for such a $\gamma \in \Gamma$, the centralizer $\mathscr{X}_{\mathbf{G}}(\gamma)$ contains an \mathbb{R}-split torus \mathbb{T} which is maximal in \mathbb{G} and such that $\mathbb{T}(\mathbb{R}) /(\Gamma \cap \mathbb{T}(\mathbb{R}))$ is compact.
(2) Let \mathscr{P} be the set of primitive indefinite integral binary forms

$$
Q(X, Y)=a X^{2}+b X Y+c Y^{2}
$$

with $a>0$. Then the map which to every $Q \in \mathscr{P}$ associates $S O(Q)^{0}$ gives a bijection between \mathscr{P} and the set of \mathbb{R}-split tori $\mathbb{T} \subset S L(2)$ for which $S L(2, \mathbb{Z}) \cap \mathbb{T}(\mathbb{R})$ is a lattice in $\mathbb{T}(\mathbb{R})$:

$$
\mathscr{P} \cong \mathscr{T}(S L(2, \mathbb{Z})) .
$$

(3) It is a general fact due to Ono [Ono] that, for a \mathbb{Q}-torus \mathbb{T} with $X_{\mathbf{Q}}(\mathbb{T})=1$, the group $\mathbb{T}(\mathbb{R}) / \mathbb{T}(\mathbb{Z})$ is compact. Hence, given a semisimple \mathbb{Q}-group \mathbb{G}, the set $\mathscr{T}(\mathbb{G}(\mathbb{Z}))$ contains all \mathbb{Q}-torii \mathbb{T} which are maximal \mathbb{R}-split and such that $X_{Q}(\mathbb{T})=1$. As examples of such torii in $S L(n)$, let \mathbb{K} / \mathbb{Q} be a totally real number field or degree n, let $\mathbb{H} \doteqdot \operatorname{Res}_{\kappa / \mathbb{Q}} \mathbb{G} L_{1} \subset \mathbb{G} L_{n}$ and $\mathbb{T} \doteqdot \mathbb{H} \cap \mathbb{S} L(n)$. The group \mathscr{U}_{κ} of units of \mathbb{K} is abelian of rank $n-1$ and isomorphic to $\mathbb{H}(\mathbb{Z})$. As $\mathbb{T}(\mathbb{Z})$ is of index at most two in $\mathbb{H}(\mathbb{Z})$, the torus $\mathbb{T}(\mathbb{Z})$ is of rank $n-1$ and hence $\mathbb{T}(\mathbb{R}) / \mathbb{T}(\mathbb{Z})$ is compact.

6. Algebraic subgroups and actions of arithmetic lattices with noncommensurable stabilizers

In this section \mathbb{G} denotes a connected linear algebraic \mathbb{Q}-group; let

$$
\mathscr{S}_{G}=\left\{\mathbb{H} \mid \mathbb{H} \text { is a connected } \mathbb{Q} \text {-subgroup of } \mathbb{G} \text {, of finite index in } \mathscr{N}_{G}\left(\overline{\mathbb{H}(\mathbb{Z})^{0}}\right)\right\} \text {. }
$$

We will show below that if \mathbb{H} is a connected \mathbb{Q}-subgroup of \mathbb{G}, one always has the inclusion

$$
\mathbb{H}<\mathscr{N}_{G}\left(\overline{\mathbb{H}(\mathbb{Z})^{0}}\right) .
$$

PROPOSITION 6.1

The action by conjugation of $\mathbb{G}(\mathbb{Z})$ on $\mathscr{S}_{\mathbb{G}}$ is N.C.S. and \mathscr{S}_{G} contains all parabolic \mathbb{Q}-subgroups of \mathbb{G}.

Lemma 6.2. Let \mathbb{H} be $a \mathbb{Q}$-subgroup of \mathbb{G}.
(1) $\mathscr{N}_{G}(\mathbb{H})(\mathbb{Q})<\operatorname{Com}_{G}(\mathbb{H}(\mathbb{Z}))$
(2) $\mathscr{N}_{\mathbf{G}}(\mathbb{H})^{0}<\mathscr{N}_{G}\left(\overline{\mathbb{H}(\mathbb{Z})}^{0}\right)$.

Proof of Lemma 6.2. Let us first show the implication $(1) \Longrightarrow(2)$. As $\mathcal{N}_{G}(\mathbb{H})$ is defined over \mathbb{Q}, one has

$$
\mathscr{N}_{\mathbb{G}}(\mathbb{W})^{0}<\overline{\mathscr{N}_{G}(\mathbb{H})(\mathbb{Q})}
$$

by a theorem of Rosenlicht [Bor, 18.3]. On the other hand Lemma 5.2 implies

$$
\overline{\operatorname{Com}_{G}(\mathbb{H}(\mathbb{Z}))}<\mathscr{N}_{G}\left(\overline{\mathbb{H}}(\mathbb{Z})^{0}\right)
$$

and hence (1) implies (2).

In order to prove (1) we may assume that H is connected. Let $X_{Q}(\mathbb{H})$ be the set of Q-characters of H and set

$$
\mathbb{H}_{0} \doteqdot \bigcap_{\chi \in X_{\mathbf{Q}}(\mathbf{H})} \operatorname{Ker} \chi
$$

Clearly, $\mathbb{H}_{0}(\mathbb{Z})$ is a subgroup of finite index in $\mathbb{H}(\mathbb{Z})$ and it follows from [BHC] that $\mathbb{H}_{0}(\mathbb{Z})$ is a lattice in $\mathbb{H}_{0}(\mathbb{R})$. Observe also that $\mathscr{N}_{G}(\mathbb{H})(\mathbb{Q})$ acts on $X_{Q}(\mathbb{H})$ and hence normalizes \mathbb{H}_{0}.

Let $\mathbb{G}<G L(n, \mathbb{C})$ for some n, fix $g \in \mathscr{N}_{G}(\mathbb{H})(\mathbb{Q})$ and choose an integer $m \geq 1$ such that $m g$ and $m g^{-1}$ are in $M_{n}(\mathbb{Z})$. For the subgroup

$$
\Gamma \doteqdot\left\{\gamma \in \mathbb{H}_{0}(\mathbb{Z}) \mid \gamma \equiv \mathrm{id} \bmod m^{2}\right\}
$$

we have $g \Gamma g^{-1} \subset M_{n}(\mathbb{Z})$ and $\operatorname{det}\left(g \Gamma g^{-1}\right) \subset\{1,-1\}$; hence $g \Gamma g^{-1}<\mathcal{H}_{0}(\mathbb{Z})$. Furthermore, Γ is of finite index in $\mathbb{H}_{0}(\mathbb{Z})$ and since $H_{0}(\mathbb{Z})$ is a lattice in $\mathbb{H}_{0}(\mathbb{R})$, the conjugate $g \Gamma g^{-1}$ is of finite index in $\mathbb{H}_{0}(\mathbb{Z})$ as well. Hence

$$
g \in \operatorname{Com}_{G}\left(\mathbb{H}_{\mathbf{0}}(\mathbb{Z})\right)=\operatorname{Com}_{\mathfrak{G}}(\mathbb{H}(\mathbb{Z})) .
$$

Proof of Proposition 6.1. For the first assertion, take $\mathbb{H}_{1}, \mathbb{H}_{2} \in \mathscr{S}_{G}$ such that $\mathscr{N}_{G}\left(\mathbb{H}_{1}\right)(\mathbb{Z})$ and $\mathscr{N}_{G}\left(\mathbb{H}_{2}\right)(\mathbb{Z})$ are commensurable, hence $\mathscr{N}_{G}\left(\mathbb{H}_{1}\right)^{0}(\mathbb{Z})$ and $\mathscr{N}_{G}\left(\mathbb{H}_{2}\right)^{0}(\mathbb{Z})$ are also commensurable. Since \mathbb{H}_{i} is connected, we have $\mathbb{H}_{i}<\mathscr{N}_{G}\left(\mathbb{H}_{i}\right)^{0}$ and since $\mathscr{H}_{i} \in \mathscr{S}_{G}$, Lemma 6.2.2 implies that \mathbb{H}_{i} is of finite index in $\mathscr{N}_{G}\left(\mathbb{H}_{i}\right)^{0}$, in particular $\mathbb{H}_{1}(\mathbb{Z})$ and $\mathbb{H}_{2}(\mathbb{Z})$ are commensurable. This implies ${\overline{\mathbb{H}_{1}(\mathbb{Z})}}^{0}={\overline{H_{2}(\mathbb{Z})}}^{0}$, and hence

$$
\mathbb{H}_{1}=\mathscr{N}_{G}\left(\overline{(\mathbb{H}} 1(\mathbb{Z})^{0}\right)^{0}=\mathcal{N}_{G}\left(\left({\overline{\left(\mathbb{H}_{2}(\mathbb{Z})\right.}}^{0}\right)^{0}=\mathbb{H}_{2} .\right.
$$

For the second assertion, let \mathbb{P} be a parabolic \mathbb{Q}-subgroup of \mathbb{G}. Since $\mathbb{P} \subset \mathscr{N}_{G}\left(\overline{\mathbb{P}}(\mathbb{Z})^{0}\right)$, the subgroup $\mathbb{P}^{\prime} \doteqdot \mathscr{N}_{G}\left(\overline{\mathbb{P}(\mathbb{Z})}{ }^{0}\right)$ is \mathbb{Q}-parabolic and hence $\mathscr{R}_{u}\left(\mathbb{P}^{\prime}\right) \subset \mathscr{R}_{u}(\mathbb{P})$. Since $\overline{\mathbb{P}(\mathbb{Z})}{ }^{0}$ is normal in \mathbb{P}^{\prime} we have

$$
\mathscr{R}_{u}\left(\overline{\mathbb{P}(\mathbb{Z})}{ }^{0}\right) \subset \mathscr{R}_{u}\left(\mathbb{P}^{\prime}\right) .
$$

On the other hand, $\overline{\mathscr{R}_{u}(\mathbb{P})(\mathbb{Z})}=\mathscr{R}_{u}(\mathbb{P})$ and hence $\mathscr{R}_{u}(\mathbb{P})$ is a (normal) subgroup of $\overline{\mathbb{P}(\mathbb{Z})}$, which implies $\mathscr{R}_{u}\left(\mathbb{P}(\mathbb{Z})^{0}\right) \supset \mathscr{R}_{u}(\mathbb{P})$. This finally shows that $\mathscr{R}_{u}(\mathbb{P})=\mathscr{R}_{u}\left(\mathbb{P}^{\prime}\right)$ and hence $\mathbb{P}=\mathbb{P}^{\prime}$.

Examples. Assume \mathbb{G} to be a semi-simple, defined over \mathbb{Q} and \mathbb{Q}-simple. Let \mathbb{H} be a connected semi-simple \mathbb{Q}-subgroup of \mathbb{G} which is maximal as a \mathbb{Q}-subgroup. Then $\mathbb{H}=\mathcal{N}_{\mathbf{G}}(\mathbb{H})$, and hence $\mathbb{H}=\operatorname{Com}_{G}(\mathbb{H})$ by Lemma 5.2. Observe that $\mathbb{G}(\mathbb{Z})$ is a lattice in $\mathbb{G}(\mathbb{R})$ and that $\mathbb{H}(\mathbb{Z})$ is a lattice in $\mathbb{H}(\mathbb{R})$, by [BHC].

Maximal subgroups of the classical groups have been classified by Dynkin [Dyn]. In case \mathbb{G} is $S L(n, \mathbb{C})$ with its standard \mathbb{Q}-structure, examples of subgroups \mathbb{H} as above include (to quote but a few):
(i) orthogonal groups $S O(q) \subset S L(n, \mathbb{C})$ for a non degenerate quadratic form q over \mathbb{Q}.
(ii) the symplectic group $S p(n, \mathbb{C}) \subset S L(n, \mathbb{C})(n$ even $)$,
(iii) the images of the fundamental representations $\left.S L(m, \mathbb{C}) \rightarrow S L\binom{m}{p}, \mathbb{C}\right)$.

References

[A ' B] A'Campo N and Burger M , Réseaux arithmétiques et commensurateurs d'après G A Margulis, Invent. Math. 116 (1994) 1-25
[Ada] Adams S, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology 33 (1994) 765-783
[$B C H$] Bekka M, Cowling M and de la Harpe P, Some groups whose reduced C^{*}-algebra is simple, Publ. Math. IHES 80 (1994) 117-134
[Bin] Binder M W, On induced representations of discrete groups, Proc. Am. Math. Soc. 118 (1993) 301-309
[Bor] Borel A, Linear algebraic groups, second enlarged edition, Springer, 1991
[BHC] Borel A and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962) 485-535
[Bou] Bourdon M, Structure conforme au bord et flot géodésique d'un CAT (-1)-espace, l'Enseignement math. 41 (1995) 63-102
[Bow] Bowditch B H, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245-317
[Boz] Bozejko M, Some aspects of harmonic analysis on free groups. Colloquium Math. 41 (1979) 265-271
[BuM] Burger M and Mozes S, CAT (-1)-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9 (1996) 57-93
[Coo] Coornaert M, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241-270
[CoP] Coornaert M and Papadopoulos A, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométrie des arbres, Trans. Am. Math. Soc. 343 (1994) 883-898
[Cor] Corwin L, Induced representation of discrete groups, Proc. Am. Math. Soc. 47 (1975) 279-287
[Dix] Dixmier J, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969
[Dyn] Dynkin E B, The maximal subgroups of the classical groups (1952), Transl. Am. Math. Soc. Serie 2, 6(1957) 254-378
[FRZ] Fenn R, Rolfsen D and Zhu J. Centralisers in the braid group and singular braid monoid, Enseignement Math. (to appear)
[Gli] Glimm J, Type I C*-algebras, Ann. Math. 73 (1961) 572-612
[GhH] Ghys E and de la Harpe P, Sur les groupes hyperboliques d'après M Gromov, Birkhäuser, 1990
[Har] de la Harpe P , Groupes hyperboliques, algèbres dopérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris, Série I 307 (1988) 771-774
[KrR] Kropholler P H and Roller M A, Relative ends and duality groups, J. Pure Appl. Algebra 61 (1989) 197-210
[Mac] Mackey G W, The theory of unitary group representations, The University of Chicago Press, 1976
[Mar] Margulis G A, Discrete subgroups of semisimple Lie groups, Springer, 1991
[Oba] Obata N, Some remarks on induced representations of infinite discrete groups, Math. Ann. 284 (1989) 91-102
[Ono] Ono T, Sur une propriété arithmétique des groupes commutatifs, Bull. Soc. Math. France 85 (1957) 307-323
[Par] Paris L, Parabolic subgroups of Artin groups, preprint, Dijon (1995)
[Pat] Patterson S J, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241-273
[Ped] Pedersen G K, C*-algebras and their automorphism groups, Academic Press, 1979
[PrR] Prasad G and Raghunathan M S, Cartan subgroups and lattices in semi-simple groups, Ann. Math. 96 (1972) 296-317
[Shi] Shimura G. Introduction to the arithmetic theory of automorphic functions (1971) (Iwanami Shoten and Princeton Univ. Press)
[Sul] Sullivan D, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259-277
[Tho] Thoma E, Ueber unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964) 111-138
[Yos] Yoshizawa H, Some remarks on unitary representations of the free group, Osaka Math. J. 3 (1951) 55-63

