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Abstract In order to illustrate some of the machinery of continuous bounded co-
homology, we work out a couple of concrete questions in the particular case of SLa.
First we compute, in degree two, the continuous bounded cohomology of SL2(R)
with unitary irreducible coefficients. Then we explore the connections between dilog-
arithm functions and the continuous bounded cohomology of SLz(R) and SL2(C).
In particular, we obtain that Rogers’ dilogarithm is uniquely determined by the
Spence-Abel functional equation.

1 Introduction

Although the theory of bounded cohomology has recently found many appli-
cations in various fields (see for instance [3] or [13]), for discrete groups it
remains scarcely accessible to computation. As a matter of fact, almost all
known results assert either a complete vanishing or yield intractable infinite
dimensional spaces. On the other hand, the low degree continuous bounded
cohomology H?, of a Lie group (with unitary coefficients) can be described
by means of the rich structure theory of the latter.

Our first result in this paper derives from the investigation, in a particular
case, of the interplay between the infinite dimensionality of the bounded co-
homology groups of surface groups and a concrete description of the bounded
cohomology groups for SLo.

Spectral Distribution

Let ¥ be a compact orientable surface different from the sphere and the
torus. The fundamental group I" = m X is Gromov hyperbolic and, as such,
HZ(T') is infinite dimensional, [7].

Any hyperbolization I < PSLy(R) of X' induces an injection

HE(I') — HZ, (PSL2(R), L*(PSLy(R)/T)), (1)

see [13, 11.1.5]. On the other hand, the PSLy(R)-representation on the space
L?(PSLy(R)/I") decomposes into a direct sum of irreducible representations
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in a way dictated by the topology and spectral theory of the surface X' with
the chosen hyperbolic structure.

In this situation, it is natural to ask how the infinite dimensional space
HZ(I') gets distributed over the spectral decomposition. This is a difficult
question. The first step is of course to understand which irreducible repre-
sentations of PSL2(R) carry bounded cohomology in degree two. Observe
that, since H2, (PSLa(R), L(PSL2(R)/I")) is infinite dimensional (see (1)),
the spectral distribution is bound to be very different from the one concerning
ordinary continuous cohomology, in which case only a finite number of uni-
tary irreducible coefficients result in non-zero, finite dimensional cohomology
groups (see the Table below). In contrast, we have:

Theorem 1.1. (a) Let (m,9) be an irreducible unitary representation of
SLy(R):
(i) dimHZ (SL2(R),H) =1 if the representation (m,$) is spherical;
(i) HZ (SL2(R),$H) =0 in all other cases;

(b) If LPC denotes the series of complementary LP representations, we have
HZ, (SLa(R), LP€) # 0 for all 1 < p < oo.

Except for the Euler class, which corresponds to the trivial representation,
the cohomology classes above are all new — they vanish in usual continuous
cohomology. It is therefore worth mentioning that we can define them with
a very explicit formula (Proposition 4.1).

We summarize below the present state of our knowledge for the list of
all irreducible unitary SLg(R)-representations factoring through PSLa(R);
for the reader’s convenience, we have recalled on the left hand side the well
known situation in ordinary continuous cohomology. We denote the trivial
representation by 1; the discrete series representations $(n) are indexed by
the minimal or maximal weight n € 2Z.

HO|H: [H2|HZ2| |HO, |HY, |H2, [HE, [HE

1 R|{O|R| O R{O|R|O|?
Spherical #1|0|0| 0} O oo | R|? |7
$(2), B(—2)|0|R|0] 0 [[0]0 077
B(n), n# %2/ 0]0]0] 000 077

It would be interesting to investigate the spectral distribution of the
bounded cohomology for rank one locally symmetric spaces of higher dimen-
sion. On the other hand, if X is a compact (or finite volume) locally symmetric
irreducible space of rank at least two, we have shown ([2], [3]) that HE(I"),
I' = m (%), injects into the ordinary cohomology by proving precisely that
there are no new classes in the continuous bounded cohomology, with unitary
coefficients, of the corresponding Lie groups.

* 3k %



Bounded Cohomology of SL2 21

We turn now to bounded cohomology in degree three. We observe first the
connection between this cohomology group for SL»(C) and the Bloch-Wigner
dilogarithm. For SL3(R), we show vanishing of this cohomology group and
relate it to Roger’s dilogarithm.

The Dilogarithm and SL,

Recall that, modulo its finite centre, SL2(C) is (the connected component of)
the group of isometries of Lobachevski’s space H3. It follows, via Dupont’s
isomorphism [6], that the continuous cohomology group H2(SL2(C)) is gener-
ated by the volume form of 3. Since there is an upper bound to the volume
of all geodesic simplices in this space, the volume form defines actually a class
in H3 (SL2(C)). The latter cohomology space can be computed (see Theo-
rem 2.1) using measurable bounded cocycles on the space of ideal simplices,
i.e. on the space of geodesic simplices with all four vertices on the sphere at
infinity 633 = C.

It is well known that the volume of such a simplex is essentially given
by the Bloch~Wigner dilogarithm of the crossratio of the four points in C.
In this realisation, the Spence—Abel functional equation for the dilogarithm
corresponds simply to the cocycle equation for volume. S. Bloch has shown [1]
that the functional equation essentially determines the dilogarithm among
measurable functions; we shall rephrase his result as:

Theorem 1.2. There is a natural isomorphism H3, (SL2(C)) = H3(SL2(C)).

Remark 1.8. Tt is essential for this reformulation that Bloch’s result is valid
in the generality of measurable functions.

Rogers’ dilogarithm is another relative of the classical Euler dilogarithm
(see Sect. 5.1). It appears that Rogers’ dilogarithm is connected to SLz(R),
but in a slightly different way. Using the corresponding version of the Spence-
Abel functional equation and, denoting by A to the natural cup product in
continuous bounded cohomology, we show:

Proposition 1.4. H2 (SL2(R)) A H2, (SL2(R)) = 0.

Further, the methods that we introduce for the spectral distribution allow
us to show:

Theorem 1.5. H3, (SL2(R)) = 0.

This statement contains a uniqueness statement similar to Bloch’s; indeed,
our proof yields as a by-product:

Proposition 1.6. Rogers’ dilogarithm is the only integrable function L :
10, 1]— C satisfying both the Spence—Abel functional equation

L(%)-L(y)+L(x)—L(§)+L(”"(1—_y)> =0 (2

y(1-1x)
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and the symmetry L(1 — z) = ((2) — L(z) for all 0 < z <y < 1, where ¢
denotes the Riemann ( function.

(According to Gelfand and MacPherson [8, 4.1.2], there is no available
reference for the uniqueness of Rogers’ dilogarithm.)

2 Notations and Conventions

Throughout the paper, we write G = SLy(R). We consider the action of G
by fractional linear transformations on the upper half plane H? C C and
denote by K the stabilizer SO(2) of the point i. This action factors through
the double covering G — PSLy(R) and extends to the geometric boundary
892 = R=RU {co}. We denote by P the stabilizer of oo, which is the
subgroup of upper triangular matrices in G; one has G = KP. We shall
repeteadly use that, up to null-sets, the diagonal G-action on the cartesian
product R3 has exactly two orbits.

The matrix (1) conjugates G to SU(1,1) within SLz(C). Under this
conjugation, the inverse of the stereographic projection

z+1

. 1 ™ —
p: 88 CC—R, p(z) ]

intertwines the G-action on R & G/P with the homographic SU(1, 1)-action
on the unit circle in C. To avoid confusion, we use the notation g.s for
the action of ¢ € G on s € S! obtained in this way. QOccasionally, it will
be convenient to use for S! the additive parametrisation R/27Z. With this
notation, one has (ky).s= s + 2u for ky, = ( °%%, Snv ), u € R/27Z.

We shall assume all continuous unitary representations to have separable
range. For the complete classification of the irreducible continuous unitary
representations of G, we refer to [10] or [11] (see also Sect. 3.2). A repre-
sentation is called spherical if it has a (non-zero) K-invariant vector. As
far as bounded cohomology is concerned, it is enough — as we shall recall
below — to consider the representations which factor through the projection
SLy(R) — PSLy(R). Irreducible representations of this kind are either spheri-
cal or belong to the discrete series. In Sect. 4.1, we shall recall the construction
of the spherical representations.

Let g be the Lie algebra of G and gc its complexification. If (m,9) is a
continuous unitary G-representation, we denote by Hx the space of K-finite
vectors. Besides the K-action, §x has also a structure of gc-module (if Hx is
irreducible or more generally admissible, the (gc, K)-structure turns it into
a Harish-Chandra module, see [14]).

If S is a standard measure space and § a separable Hilbert space, L (S, £)
denotes the space of measurable essentially bounded $3-valued function classes;
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observe that weak and strong measurability coincide here. Given a regular
action of a locally compact group H on S (so that H-action on L*(S) is
weak-*-continuous, [3])and a continuous unitary H-representation on £, we
consider the corresponding representation on L™ (S, .6). We borrow Zimmer’s
notion of amenability for H-actions on S, see [15].

For the general theory of continuous bounded cohomology, we refer to [3]
and [13]. We recall the following

Theorem 2.1 ([3], [13]). Let H be a locally compact second countable group,
(7, 9) a continuous unitary H-representation and S an amenable regular H-
space. Then the cohomology of the complez

O—)LOO(S,YJ)HLLOO(SZ,f))Hiz—)LOO(Sa,ﬁ

)H d®
—_—

is canonically isometrically isomorphic to the continuous bounded cohomology
°b(H,$). The same is true for the subcomplex of alternating cochains. [

The above maps d" : L®(S™, %) — L*®(S™*1, §) are the usual Alexander-
Spanier coboundaries d* = Z;‘zo(—l)j d7, wherein d7 omits the j** variable.
We shall mostly use the following particular case of the theorem:

Corollary 2.2. For every continuous unitary G-representation (m,5), the
cohomology of the complez
1 2 3
0 — L2(81,9)% < L=((81)2,9) ¢ < L((81)2,9)° <
is canonically isometrically isomorphic to H3 (G, ). The same is true for
the subcomplex of alternating cochains. a

3 A Differential Group

In this section, we introduce a graded differential group (Ag,, d) into which
we shall translate questions about measurable cocycles on the circle by means
of the Fourier transformation. The structure of Ag, will be well suited to find
obstructions to the existence of cocycles.

We use the multiplicative parametrisation S! = {z € C: |z| = 1}, so that
C[#] is identified with the algebra of trigonometric polynomials. For n > 0,
we denote by u, the normalized Haar measure on (S})"+1. If v € Z"*!, we
denote by X, the character x,(z) = z§° - - - 24 for z € (S!)"+1.

3.1 Fourier Transformation with Coefficients

Let (m,$) be a continuous unii;ary G-representation. Since the inclusion

Clz]®---®Clz]® Hx — L'(S)®---BLM(S")®SH
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is dense and the dual of the right hand side is L> ((8*)"*!, ) by the Dunford-
Pettis theorem [5, V1.8], we deduce by duality that the canonical map to the
algebraic dual of the left hand side is injective. Denoting by $H% the alge-
braic dual of $x and by F(Z"+1, %% ) the space of all maps Z"* — Hf we
conclude that the Fourier transformation

Loo((sl)n+1,ﬁ) - H:(Zn-H,ﬁlK)
Fow = [ FER0() din2)

(where F' € L ((SY)"*1, %), v € Z*!, and v € Hk) is injective.
We define the operators Sy on F(Z"*1, §) by

n

(S (v) = Z v; £ 1)(v £ ¢5) (vez™), (3)

7=0
where (e€;)7_, is the canonical basis of Z™+1. Further, define
8=0":F(Z", Hy) — F(Z".5%)
by ™ = 37_o(~1)/9} and

6;‘1/;(1/) = {Z(VOM'-,I?J‘,...,I/”) if Vj =0, (4)

otherwise.

One checks readily the

Lemma 3.1. For all n > 0, the 8"*1-cocycles, i.e. functions belonging to
Kerd™+1, are supported on the union A™ = {v : [[}_ov; = 0} of the
canonical hyperplanes in Z™t1. O

One can also show that the resulting complex is acyclic, but we shall not
need this information.
The dual ge-structure on F(Z™*+1, %) is given by

(X)) (V) (v) = Y(¥)(—dm(X)v) (¥ € F(@Z"*, 95k), X € gc)

where dr is the differential of © which is well defined since v € $x is smooth.
In order to state the following proposition, we define EFy+ € gc by Ex =
(L %t) and denote by T' the map T': Z™"t! — Z, defined by T'(vo, .- ., n) =
> 7_o ;- We recall that v € Hk is of weight £ € Z if w(ki)v = e’etv The
following proposition will motivate the introduction of our group Agy:

Proposition 3.2. The Fourier transformation L®((S1)*, %) — F(Z°*,H)
has the following properties:
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(a) If F € L®((S')*, %) is G-equivariant, then E:*tﬁ = 2iS;Fﬁ,

(b) If F € L®((SY)*,9) is G-equivariant and v € H is of weight £, then
F(-)(v) is supported on the hyperplane {v : T(v) = —¢ /2}. In particular,
ﬁ()(’u) vanishes if £ is odd;

(c) The Fourier transformation preserves alternation and intertwines the
coboundary d with 0.

Proof. (a) For X € gc and g; = exp(tX),

GF) () = / (F((0r )2 (g7 o) (2) diin(2)

(81)n+1

and thus the equivariance of F' implies by product differentiation

XF@) =D | e l)x(z) dun(2),

where D is a shorthand for % t im0 This becomes further

X P = [ (FEWD (0 M) din ).

Using now
D( gt *Z ) ZV]XV e, gt)*zg)
and
D(d(gt)*un (Z)) _ z":D(d(gt)*uo( '))
ditn part duo )
we have
X*F)e) = Zvj Jop o DD (Vi) O

(F(2)|v)xu(z )D(d(fit—li’;#o(zj)) dun(z). (6)

>,
Now write B = H 4V with H = (§ %) and V = (}). The images of

at = exp(tH) and u; = exp(tV) in SU(1,1) under the conjugation by (}%
introduced in Sect. 4 are respectively ( _%5hf, ¢sinht) and (cosht sinht) Using
this, one computes

D((at)sz;) =i(1+27), and D((ue)ez;) =1—2].

1)ﬂ.+1

Computing the Radon-Nikodym derivatives yields

-1
CON -z
o (2;) = | cosh2t + ¢ 3 sinh 2¢
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and

-1
d(us)« o itz
A0y = h2t+ 21— sinh?2
o (z5) cos + 5 sinh 2t ,

thus one checks that

D (%(zj)) =i(zj—z;'), and D (%(m) =—(z+2 ).

Replacing all this in (5), we find

H*F(v)(v) = iS4 F(v)(v) + iS_F(v)(v)
V*E@w)(v) = S+ F(v)(v) + S-F()(v)

whence the claim.

(b) is a simpler form of this argument since the Radon-Nikodym derivatives
for K are trivial. - R

(¢) The orthogonality relations imply that d} F' = 9} F. O

3.2 The Differential Group Agy,.

A classification of general (gc, K )-modules can be found in [9]. We shall how-
ever only need modules of the form 9 = § g where $ is an irreducible unitary
representation of G factoring through PSL2(R). They yield the following four
types of irreducible (gc, K)-modules:

(a) Spherical: there is an element v € 91 such that 90 is spanned by (E5v)kxo0-
Moreover, there is A € C with E_E v’ = A\’ for all v/ of weight zero;

(b) Positive minimal weight: there is v € 9 such that 9 is spanned by
(Etv)k>o (in fact, since $ factors through PSLy(R), only even weights
occur );

(b’) Negative mazimal weight: there is v € 9 such that 9 is spanned by
(E*v)k>0 (again, only even weights occur);

(c) The trivial module 9t = C is a particular case of (a).

Definition 3.3. Let 9 be a (g¢, K)-module and let n > 0. We define Af,
to be the space of all maps v : Z"+t! — M’ satisfying:

Aj v is alternating;
A E}+ = 2iSzy, where EY act by the natural dual gc-structure and the
operators Sy are defined as in (3);
Anp If v € 90 is of weight £, then ¥(-)(v) is supported on the hyperplane
{v:T(v)=-1£/2}.

The differential 8% : A%, — Ap! is defined as above in (4), and thus
again one checks:
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Ary 8™*1l-cocycles are supported on the union A™ of the canonical hyper-
planes.

Proposition 3.2, together with the injectivity of the Fourier transforma-
tion, implies that the complex of equivariant bounded alternating measurable
$-valued cochains on the circle can be viewed as a subcomplex of Ag, for
M= Hk.

The following finiteness result for general irreducible (gc, K)-modules,
specialized to $x, will be the final ingredient in the proof of Theorem 1.1,
Theorem 1.5 and Proposition 1.6.

Proposition 3.4. Let 9 be an irreducible (gc, K)-module.

(a) If MM is of spherical type, then dimKer 83 < 1;

(b) If M is of positive minimal weight or negative mazimal weight, then non-
zero elements of Ker 83 cannot vanish at infinity;

(c) If M is the trivial (gc, K)-module C, then Ker 8% = 0.

Proof. (a) Since 91 is spherical and irreducible, there is a K-invariant element
v € MK such that 91 is spanned over C by (EX¥v)r>o. Moreover, there is
A € C with E_E,v' = M for all v/ of weight zero. Fixing w € Kerd3,
we shall show that w(-)(v) vanishes if w(1, —1,0)(v) = 0; this will prove the
claim (a) because of Ap and the structure of 9 just described.

We define the map o : Z — C by

a(z) = w(z, —z,0)(v),

so that (1) = 0 by the assumption on w and o(0) = 0 by A;. The prop-
erties Ay, Amp and Apy imply that o determines linearly w(-)(v), so that it
is sufficient to show the vanishing of . Implementing the definition of « in
S¢S_w(z, —z,0)(v) = Nw(z, —z,0)(v), where X' = —\/4 (see Ary), we find

(z+1)%a(z + 1) + (z — 1)%a(z — 1)
=(z - 1)(w(z - 1,~=,1) + w(z, —z + 1, -1)) + (22° — X)a(z)
—(z+ 1) (w(z+1,-2,-1) + w(z, -z - 1,1)).

For z = 1, this reduces (by A; and Arv) to 4a(2) = (2 — X )a(1), hence
a@(2) = 0. For z > 2, the w terms vanish because of Arv, so that we have

(z +1)2a(z +1) = (22° — X)a(z) - (x — 1)?a(z - 1).

This propagates by induction the vanishing from z = 1,2 to all z > 3. The
negative values are handled with the formula a(—z) = —a(z), which follows
from Aj.

(b) We give the proof for an even positive minimal weight 2¢; the case of
negative weights is analogous and the case of odd weights is trivial because
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of Aqyr. Let w be a cocycle w € Ker 852. We fix a v € 9 such that 91 is spanned
by (E%v)k>0 (thus v is of minimal weight) and define the map 8:Z — C by

B(z) = w(z, —£ — z,0)(v).

We suppose that w vanishes at infinity; then so does §. On the other hand,
as for point (a), it is enough to show § = 0.
Now we use E_ (v) = 0: writing out Syw(z, —¢ —z —1,0)(v) = 0, we have

(z+1)8(z+1) = (z+0)pf(z) —w(z,—£—x,1)(v).

Therefore, w being supported on A(™, the positivity of £ implies that for
all z > 1 we have z, ~£—x # 0 and hence (z+1)8(z+1) = (z+£)B(x). Since
z+ € >z +1 >0, the vanishing at infinity implies f(z) = 0 for all z > 1.
The alternation of w implies 3(z) = —B(—£—z), so that we remain only with
the case —¢ < z < 0, which we settle by descending induction starting from
B(0) =0 (by Aj). If1 - £ <z <0, then Syw(z —1,—£ — z,0)(v) = 0 reads

zB(z)+(1-L—z)B(z - 1)+ w(z—1,-L—2,1) =0.

The first term vanishes by the induction hypothesis and the third because of
z # 1,—£ and Ary. Therefore B(z — 1) = 0 since z # 1 — £. For the last step
z =1 — £, we have 8(z) = —B(—1), which is already done if 1 — £ # —1 and
follows from this formula if 1 — £ = —1.
(c) Notice first that Ker 8% is invariant under the linear map o defined by
ow(v) = w(—v). Therefore we have a decomposition Kerd% = Z, & Z_
according to the eigenvalues =1 of 0. Now, for w € Z, U Z_, we define
% :Z%* — C by
P(z,y) = w(z,y,—z —y,0).

We remark (by Ajp) that ¢ is alternating and vanishes if z or y is zero.
As before, it is enough for point (¢) to prove that v vanishes everywhere. For
simplicity, we write the operators Si as S, for € € {—1,1}. Now if

r#0, y#0, z+y+e#0, (7)
then the condition Ay reduces S.w = 0 to
(z+y)v(z,y) = @+ Pz +ey)+(y+ev(zyt+e). (8)

The simpler case is when x and y are of the same sign. Indeed, if y < = <0,
we start with ¥ (z, z) = ¥(0,y) = 0 and check by descending induction on y
that 1(z,y) is zero: if this is so for some y < —1, then (e = 1)

=Y (1) =
"/)(_1’3/_1)_ y_2"/)( 113/)‘0,

and thus by a additional induction on y < z < —1

z+1 y

Y(z,y—1) = m’ﬁ(x'*'l,y*l)‘*ry_lw(l‘,y) =0.
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This completes the (main) induction step and thus ¢(z,y) =0forally < z <
0. By alternation, the same holds for ¢ < y < 0; recalling that w € Z, U Z_,
we deduce also that ¥(z,y) = 0 for all z,y > 0.

The second case is when z and y are of opposite sign. Remark first that
on the line z + y = 0, the condition (7) holds away from zero, and that
vanishes. Therefore (8) yields

(z+e)v(z+e,—z)=(z—e)Y(z,—z+¢€) (Vz #0).

On the line = + y = ¢, the condition (7) holds for z # 0, e. This implies first
that 1(2¢,¢) = 0 (set z = €) and then, by induction, that ¥(z +¢€,—z) =0
for all z with sign €. The x of opposite sign (with € kept fixed) are obtained
by alternation together with w € Z, U Z_.

We have shown that 1(z,y) = 0 holds on the two lines z+y = € (e = £1).
Now we may use (8) for every z < 0,y > 0 with 2 + y = h > 2 in order to
deduce by induction on h that t(xz,y) vanishes. The remaining points in
z +y < —2 are taken care of by ¥(—z, —y) = ¢(z,y). O

4 Constructing Cocycles

Apart from the trivial representation, there are two types of spherical irre-
ducible continuous unitary representations of G factoring through PSLa(R):
the principal and complementary series [10,11]. They can be defined as fol-
lows.

4.1 Representation Spaces

Consider for o € C the character 6, of P defined by

- a b
b0 (p) = lal”, p= (0 a_1> €P.
For every ¢ # —1 one introduces the space of continuous functions
= {F € C(G) : F(pz) = 6,41 (0)F(z) Vz € G,p € P}

and endows it with the right regular G-action. For ¢ pure imaginary, one
obtains the principal series representations by taking the completion (o)
of E(o) with respect to the G-invariant pre-Hilbertian structure induced by
the inclusion E(o0) — L?(K) obtained by restricting functions from G to K.

For o real with 0 < ¢ < 1, one gets the complementary series repre-
sentations by taking the completion €(o) with respect to the G-invariant
pre-Hilbertian structure

/ /|Sf(k“)g dudv, f,9€ E(0).

in(u — v)|1-¢
-T -7
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As a small excursion away from unitary representations, we shall also
consider the LP complementary series for 1 < p < oo, which is the completion
LPC of the space E((2 — p)/p) for the norm induced by the inclusion E((2 —
p/)p) — LP(K) as above, see [4, Chap. 6].

4.2 Basic Construction
For all a € R and b € C*, we define the odd exponential

{a}b _ {ab ifa>0

—(-a)® ifa<0,

and extend it by {00} = co. We aim at the following

Proposition 4.1. For 0 € C~ {1}, there is a G-equivariant cocycle

~

w: RxRxR— E(0)
defined almost everywhere by
1
w(z,y,2)(9) = {9z — g}V + {gy - 92)V% 4+ {gz — gz} TV
(a) If o is pure imaginary, then the cocycle w represents a non-trivial class
in H2, (G, B(0)).
(b) If 0 < o <1, then w represents a non-trivial class in H2 (G, €(0)).

(c) If 1 <p< oo ando = (2—p)/p, then w represents a non-trivial class in
H2 (G, Lre).

More formally, we define for every o € C \ {—1} the function
F@) ;R xR — C=CuU {0}

by

s+

23in(3—;—t) (o+1)/2
cos(25%) —sin(2$t) J | ’

F(s,t) = {

with the convention F{?)(s,t) = 0if both s and ¢ are in w/2+2nZ. Henceforth,
we freely view F(?) as a function on S! x S1.

Lemma 4.2. For all distinct s,t € S! \ {n/2}

(a) FO(s,t) = {z —y}"™? for z = tan 257 y = tan 237,
(b) F)(s,t) = —F)(t,s) (where —co = 00);
(c) F©)(p.s,pit) = S,41(p)F () (s,t) for all p € P.

Up to a multiple, the two properties (b) and (c) determine F{©) entirely on
s,t # /2 (without further regularity assumptions).
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Proof. The properties of F(?) follow from trigonometric identities. The unique-
ness statement is due to the transitivity of P on pairs of distinct points of
S\ {n/2} in a given order with respect to m/2; the pairs with reversed order
are taken care of by (b). |

Now, for every s # t we define
Fs(z) . 81 C
U — FS(';)(u) = FO) (s + 2u,t + 2u).

Notice that Fs(;) is of period .
Lemma 4.3. For all distinct s,t € S \ {r/2}

(a) If R(c) > —1, then Fs(f;) is infinite on {T52%, Z52} + nZ (while it is
finite and analytic outside this set);
(b) If o is pure imaginary, then for 1 < p < oo we have

FQeI?8Y) <= p<2;

(c) For1 <p < oo and o = (2 — p)/p, the function Fs(;) does not belong to
Lre;

(d) For all distinct s,t € S* \ {r/2} and 0 < 0 < 1, the function FS( t) does
not belong to €(o).

Proof. The first three points follow from elementary calculus. By the tran-
sitivity properties of P and Lemma 4.2, it is enough to show (d) for a par-

ticular pair of distinct s,t. Therefore we set, say, f = Fé:’,r) so that f(u) =
{2/ cos2u}ff+1)/2. We need to show that (u,v) — f(u)f(v)|sin(u — v)|°~!
is not integrable in a neighborhood of the point (/4,7 /4). Now since f be-
haves around /4 as X —(o+1)/2 phehaves around zero, this amounts to study
the expression

€ e x—(o+D)/2y—(0+1)/2
/ / Xy XY (€>0).

If this were convergent, we could change to polar coordinates X = rcosn,
Y = rsinn and deduce the convergence of

"/2 (1 sin 2y)=(e+1)/2
/ / dndr,
o T |cos77—sm17|1 4

which is an absurdum. O

Now we come to the major feature of the functions FS( t), namely that
their singularities can be made to cancel each other in coboundary—like sums:
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Lemma 4.4. For all 0 € C~{~1} with R(c) < 1 and all distinct s,t,u € S!,
there is a continuous function S — C which coincides with Fs(:? +Ft(f;) +F)
outside {(m — 2s)/4, (m — 2t)/4, (r — 2u)/4} + nZ.

Proof. We claim that for distinct s, € S* \ {n/2} the function

(o) (o)
Fs,'rr/2 + F1r/2,t
can by continuously extended (by zero) at the point 0 € S'. This immediately
implies the statement of the lemma because of the transitivity properties of
P.
Applying the stereographic projection as in Lemma 4.2 (a) (which sends
/2 to 0o), we see that the claim follows from the fact that

tim (- (e ) <o,
& E), Y YO

where zo = tan ((2s + 7)/4) and yo = tan ((2¢t + 7)/4). In fact, writing the
expression in the limit as
G Pt Gk Al

{z =} 4z T

the above convergence statement follows from R(o) < 1. O

4.3 The Spectral Distribution

We have now collected all the ingredients to establish Proposition 4.1 and
Theorem 1.1. We realize the bounded cohomology of G as in Corollary 2.2
(with alternating cochains).

Proof of Proposition 4.1. Under the stereographic projection p : S! — 1@.,
the cocycle w will be defined almost everywhere on (S1)2 by

pr(s,,u)(9) = Fy7) g,0(0) + Fird g,u(0) + F{Z6,4(0)
By Lemma 4.4 and Lemma 4.2 (c), p*w ranges indeed in E(o), so that it is
bounded because the transitivity properties of G force it to have essentially
constant norm.

The only point remaining to be justified is non-triviality. If in any of
the three settings the class of p*w were trivial, we could find an alternating
equivariant cochain a on S! x S! with p*w = da. But the uniqueness state-
ment of Lemma 4.2 would then imply, via Fubini’s theorem and G = PK,
that «a(s,t)(pky) = 6,+1(p)Fs(;)(u) almost everywhere and up to a multi-
ple. This would be incompatible with respectively Lemma 4.3 (b), (c) and
Lemma 4.3 (d). a
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Proof of Theorem 1.1. (ii) Let Z = {1} be the kernel of G — H = PSL(R).
For every unitary representation (m, $) of G we have

(.:b(Gaf)) = (.:b(GaﬁZ)a

see e.g. [13, 8.5.3]. If § is irreducible, HZ can only be § or zero and thus
H, (G, $) vanishes unless the representation m factors through G — H.
Therefore, for point (b) in the theorem, we have only to consider the dis-
crete series. So assume that § is such a representation; by Corollary 2.2, any
class of H%, (G, %) can be represented by a G-equivariant alternating bounded
measurable cocycle

w: 8T xSt xSl — 9.

Applying Proposition 3.2, we get a cocycle for the corresponding differential
group A% of Definition 3.3. By the Riemann-Lebesgue lemma, the corre-
sponding function on Z3 must vanish at infinity. Therefore, the second point
of Proposition 3.4 forces this function to be zero. By injectivity of the Fourier
transformation, w vanishes, too.

(i) Given Corollary 2.2, the case of the trivial representation ) = C is just
the following well known fact: up to scalar multiple, there is one and only
one G-invariant alternating map (S!)® — C, and it is given by the cyclic
orientation cocycle.

So let $ be a non-trivial irreducible unitary representation of spherical
type. The conjunction of Proposition 3.2 with the first point of Proposition 3.4
gives that the dimension of H, (G, $) is at most one. Since we are left with
representations of the principal and complementary series, we can apply the
two first points in Proposition 4.1. This completes the proof of Theorem 1.1.
O

5 Above Degree Two

We begin by collecting what we need from Sect. 3:

Proposition 5.1. There is no non-zero alternating integrable G-invariant
cocycle (S')* — C.

Proof. Suppose there were such a cocycle; then by Proposition 3.2 its Fourier
transform would be a cocycle in the group A2 as defined in Definition 3.3.
But Proposition 3.4 (¢) would then force it to vanish. d

Remark 5.2. In view of the precise statement of the Proposition 3.4 and of the
proof of Proposition 3.2, we see that we have established the Proposition 5.1
not only for integrable functions, but for the whole algebraic dual of the space
of trigonometric polynomials.
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Now we have already:

Proof of Theorem 1.5. According to Corollary 2.2, every class of H3, (G) can
be represented by an essentially bounded measurable alternating G-invariant
cocycle (S')* — C. Such a cocycle is integrable since the measure on S! is
finite, so by Proposition 5.1 the cocycle must be zero. O

We observe the immediate

Corollary 5.3. The space H3, (G') is trivial for G' = PSLy(R), GL2(R),
PGL;(R).

Proof. As recalled in the above proof of Theorem 1.1, H3 (PSL2(R)) coin-
cides with H?, (SL2(R)). Since PSLy(R) is a closed subgroup of finite in-
dex in PGLy(R), the restriction map H$ (PGL2(R)) — HZ, (PSL2(R)) is
injective ([3]) and thus HZ, vanishes also for the former. Finally, we have
He, (PGL2(R)) = He, (GL2(R)) since the canonical map GL2(R) — PGL2(R)
has amenable kernel, see e.g. [13, 8.5.3]. O

As for our interpretation of Bloch’s result:

Proof of Theorem 1.2. Write G¢ = SL2(C). In view of the discussion in the
introduction, we have only to justify that H3 (G¢) contains no other class
than the class determined by the volume form. Let us apply Theorem 2.1
to H = G¢ and S = C with its H-action coming from the identification
C = 9H3. This action is amenable since C is an homogeneous space with
amenable isotropy [15, 4.3.2], the isotropy groups being minimal parabolic.
Now Bloch’s Theorem 7.4.4 in [1] states that there is only one measurable
Gc-invariant cocycle on C4-anditis precisely given by the Bloch—-Wigner
dilogarithm of the crossratio (we do not need this information here). O

5.1 Rogers’ Dilogarithm
Recall that the classical Euler dilogarithm Lis is defined by

. = z"
L) =Y. 5 (12l < 1)
n=1
and can be extended to C \ [1, oo[ by

Lz‘z(z)=—/oz@1;—_—ﬁdt.

Rogers introduced for 0 < z < 1 the following modification Ly of the diloga-
rithm:

1 % /logt log(l—t) Lis(z) — Lip(1 — z) + Lig(1)

Ly(z) = —= =
2(z) 2/0 (1_t+ t )dt 2

Since Ly(1) = Liz(1) = ¢(2), there is the symmetry Lo(1—z) = {(2) — Lo(z).

One verifies by differentiation that L. satisfies the functional equation (2) of

Proposition 1.6; various forms of this equation can be found e.g. in [12].
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5.2 Crossratio

Let us introduce some notation. We denote by 8, the symmetric group on n
elements considered with its action on R™ by permutation of the coordinates.
Let €, < 8, be the subgroup of cyclic permutations. We denote by ¢ : R* — R
the crossratio defined almost everywhere as

(z1 — z2)(73 — T4)
(z1 — z3)(z2 ~ T4)

c(z1,Z2,T3,T4) =

With the convention co/oo = 1, this definition makes sense for all quadruples
of distinct points in ﬁ.ARecall that ¢ is invariant under the diagonal action of
G = PSLy(R). Endow R with the orientation induced by the natural order on
R and denote by D; the set of n-tuples of cyclicly positively ordered distinct
points in ]ﬁ; then C,, preserves D;t. We write A, for the set of points with at
least two identical coordinates, so that

R*=4,u || =Df, (9)
[7]€8./Cn

where 7 ranges over a set of coset representatives. We remark that the image
c(DF) of D under the crossratio is the open interval ]0,1[. Indeed, since
G is transitive on DJ, it suffices to notice that for all 0 < z < 1 one has
e(0,z,1,00) = z.

Let now F : ]0,1[— C be an integrable function and write 7F(z) =
F(1 — z). We define 2 : R* — C as follows. Set first 2p(z) = F o ¢(z) for
all z € DJ, and observe that the condition 7F = —F is actually equivalent
to the C4-alternation of 2r. Indeed, denoting by o any generator of C4, one
checks that

cooc=1—-c.

Therefore, if 7F' = —F, there is a unique extension of the definition of £2r
to an alternating map R* — C because of (9); 2r must be zero on Ay
by alternation. Moreover, 2r is G-invariant by definition, for the diagonal
G-action commutes with 8,,. Writing out the crossratio, we have

d2r(0,z,y,1, 00)

=F<%) -F(y)+F(x)_F<§-) +F(H) (10)

for all 0 < z < y < 1. Finally, since the projective measure on Ris finite, the
Fubini-Lebesgue theorem together with the integrability of F' implies that
2r is integrable on R*.

Proof of Proposition 1.4. As we have already mentioned in the proof of
Theorem 1.1, there is up to scalar multiple only one G-invariant alternating
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map (8')® — C, and it is given by the cyclic orientation cocycle w defined
on R3 \ Aj by w(rz) = sign(n) for 7 € 83 and z € DF. It is therefore
enough in view of Corollary 2.2 to show that w A w is of the form df2 for
some {2 in L°°(R4) Since w Aw is locally constant on R5 < As, it is uniquely
determined by its value on a fixed z = (zo, ..., z4) € DF. We contend that
w Aw(z) = 1/3. To see this, we consider the Ss-action on {0, ...,4} in order
to define the subgroup B which permutes block-wise {0,1} and {3,4}:

B = {7r € Stabs, (2) : 7({0,1}) € {{0,1}, {3,4}}}.
Now the number

sign(m)w X w(n1z) = sign(m)w (T (0)s Tr(1)s Tr(2) )W (Tn(2), Tr(3)) Tr(4))

depends only on the class of 7 in B\85/Cs. There are three such double cosets,
and one checks that the above number is positive for two of them, negative
for the third. Therefore,

wAw(z) = |8|251gn7r)w><w(7r lg) =
TESs

as claimed. If we set now F = (1 — 2L2/{(2))/3, we have 7F = —F and the
above construction yields an alternating integrable G-invariant function {2 p
We claim that df2r = w A w; indeed, by alternation we may restrict to ¥
and by G-invariance even to the points (0,z,y,1, oo) for 0 < z < y < oo.
Now the Spence-Abel equation (2) applied to (10) yields

1
_ :w/\u)(o,x,yalaoo)7

d2r(0,z,y,1,00) = 3

finishing the proof. 0

Proof of Proposition 1.6. If a function L has the two properties assumed, then
setting F’ = (1 — 2L/¢(2))/3 we would as above get d2p = w A w, so that
d(2F — £2p+) = 0. Therefore, applying Proposition 5.1, we deduce 2p = 2p-.
Since the crossratio sends D"' onto 10,1[, we conclude that F' = F' whence
L =L,. O
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