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and applications to rigidity theory
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In this appendix we show how, given a group homomorphism π:G1→G2,
boundary maps can be used to implement contravariance in bounded con-
tinuous cohomology

π• : H•
cb(G2) → H•

cb(G1) .
To illustrate the issues involved, let us consider for example the typical

situation of the study of a representation of a discrete group Γ into, say,
a semisimple Lie group G. On the one hand, associated to every repre-
sentation π : Γ → G, we have the natural pullback π• : H•

cb(G) → H•
b(Γ)

in bounded cohomology which leads to useful invariants. On the other
hand, the fundamental fact that bounded cohomology can be realized as
L∞-cocycles on a boundary ([BM1, §1]), suggests the following: let G/P be
the maximal Furstenberg boundary of G, (B, ν) an amenable Γ-space and
ϕ : B → G/P an equivariant measurable map; it is natural to use the reso-
lution L∞((G/P )•) by essentially bounded cocycles on (G/P )• to represent
the bounded cohomology of G, and to try to implement the pullback π• by
precomposition with ϕ• : B• → (G/P )•. However, this does not provide
a well defined map L∞((G/P )•) → L∞(B•), unless the pushforward mea-
sure ϕ∗(ν) on G/P is absolutely continuous with respect to the Lebesgue
measure. The proof of this last property however is one of the difficult
points in many rigidity questions, and therefore cannot be seriously used
as an assumption. To circumvent this problem, we are guided by the fact
that all bounded cohomology classes of “geometric” origin are represented
by bounded Borel measurable strict invariant cocycles on flag manifolds,
which can therefore be precomposed with ϕ•.

In this appendix we formalize this situation in general, and we prove
that the resolution of bounded measurable functions on a measurable space
has the necessary properties which allow us to implement in a very concrete
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way – via precomposition with ϕ• though in a canonical way – the pullback
of any class which can be represented by a bounded Borel measurable strict
invariant cocycle. This leads in particular to geometrically meaningful for-
mulae, representing bounded characteristic classes. These general results
are being applied to rigidity theory, especially the study of group actions
on complex hyperbolic spaces in [BI1] and [BI2], on hermitian symmetric
spaces in [BI3], and are also used in the recent work of Monod and Shalom
on orbit equivalence ([MoS1] and [MoS2]). We refer to [I] for an illustration
of these techniques in a new proof of Milnor–Wood’s inequality ([Mi], [W])
and Matsumoto’s theorem [M] on the Euler number rigidity of actions of
surface groups by homeomorphisms of the circle.

1 More on Contravariance

Let Gi, i = 1, 2, be groups which are either discrete or locally compact
second countable. Some of the contravariance properties of the contin-
uous bounded cohomology with respect to a continuous homomorphism
π : G1 → G2 have already been mentioned in [BM1, §1.5 (and §2.4)]; here
we need to collect more results which we shall apply in §2 to specific sit-
uations of interest. For ease of reference, we start recalling the definition
of the pullback map π• : H•

cb(G2, E) → H•
cb(G1, E) induced in cohomology.

To avoid heavy notation, we use here π• for the map that in [BM1, §1.5]
was denoted by H•

cb(π,E), where (ρ,E) is a coefficient G2-module. Anal-
ogously, the corresponding map in degree n will be denoted by π(n). We
start by recording the following obvious fact:

Remark 1.1. Let G be any group and E• be a complex of G-modules. For
any subgroup H < G, the natural injection i• : EG• ↪→ EH• is a morphism
of complexes which induces a map in cohomology

i• : H•(EG
• ) → H•(EH

• ) .

Now recall that if π : G1 → G2 is any homomorphism as above, any coef-
ficient G2-module (ρ,E) can be viewed as a coefficient G1-module (π∗ρ,E)
via π: as such, we have an inclusion δ : CG2E ↪→ CG1E, which we can
consider as an inclusion of G1-modules. As the above observation holds for
Banach G2-modules in general, we can say analogously that, if C• is any
strong G2-resolution of CG2E, then CG2C• can be considered as a strong (in
fact, even admissible) G1-resolution of the G1-module CG2E. Now let A• be
a relatively injective resolution of the G1-module CG1E. By [BM1, Propo-
sition 1.5.2] applied to the inclusion of G1-modules δ : CG2E ↪→ CG1E, we
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obtain a G1-morphism of resolutions CG2E2• → A• which is unique up to
homotopy and induces a map in cohomology δ• : H•(Cπ(G1)• ) → H•(AG1• )
(observe that obviously CG2C

π(G1)• = CG1• ). However, because C• is a G2-
resolution of CG2E, as observed in Remark 1.1 we have a map in cohomology
i• : H•(CG2• ) → H•(Cπ(G1)• ). Hence we can define a map π• by composition

H•(AG1• ) H•(Cπ(G1)• )
δ•��

H•(CG2• ) .

i•
��

π•

�������������

(1)

If now A• and C• are strong resolutions – of CG1E and CG2E respectively –
via relatively injective modules, we have the usual canonical isomorphisms
H•(AG1• ) � H•

cb(G1, E) and H•(CG2• ) � H•
cb(G2, E), so that we can define

the pullback π• as the composition

H•
cb(G1, E) H•(AG1• )��� H•(Cπ(G1)• )

δ•��

H•(CG2• )

i•
��

H•
cb(G2, E) .

�
��π•

�������������������������������

Proposition 1.2. Let π : G1 → G2 be a continuous homomorphism of
either discrete or locally compact second countable groups, and let (ρ,E)
be a coefficient G2-module. Let C• and D• be strong resolutions of E by
G2-modules and let α

• : CG2D• → CG2C• be a G2-morphism. Then, for any
resolution A• of (π∗ρ,E) by relatively injective G1-modules, the diagram
in cohomology

H•(AG1• ) H•(DG2• )
γ•

��

α•
��

H•(CG2• )
π•

������������

is commutative, where π• is the map induced in cohomology by the homo-
morphism π, and γ• is the map induced in cohomology by any G1-morphism
of complexes CG2D• → A• extending the inclusion of G1-morphisms
CG2E ↪→ E.

Remark 1.3. Notice that it would have sufficed, in the statement of
Proposition 1.2, to require that C• and D• are strong resolutions of CG2E.
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Moreover, the existence in Proposition 1.2 of the G2-morphism α• :
CG2D• → CG2C• is automatically verified if C• is a resolution by relatively
injective modules (see also [BM1, Remark 1.4.3]).

Proof. We have observed already that both CG2C• and CG2D• can be viewed
as strong resolutions of the G1-module (π∗ρ,E). Applying twice [BM1,
Proposition 1.5.2] with G = G1, F• = A• and with E• = C• first, and
then E• = D•, we obtain that there are G1-morphisms of resolutions δ• :
CG2C• → A• and β• : CG2D• → A• which extend the inclusion CG2E ↪→ E
(of G1-morphisms), are unique up to G1-homotopy and induce canonical
maps in cohomology

H•(Cπ(G1)• )
δ• ��H•(AG1• )

and

H•(Dπ(G1)• )
γ•
1 ��H•(AG1• ) . (2)

But now the map α• : CG2D• → CG2C• can be considered as a G1-
morphism of G1-resolutions (via π), hence giving a G1-morphism of G1-
complexes

CG2D•
α•

��CG2C•
δ• ��A•

which induces in cohomology the map γ•1 in (2). Hence we have a diagram
of G1-morphisms

A• CG2D•
γ•
1��

α•
��

CG2C• .
δ•

�����������

so that, by [BM1, Proposition 1.5.2], the diagram in cohomology

H•(AG1• ) H•(Dπ(G1)• )
γ•
1��

α•
��

H•(Cπ(G1)• )

δ•

�������������

(3)

commutes.
Applying now Remark 1.1 to H = π(G1) and G = G2, we have that the

diagram
D

π(G1)•

α•
��

DG2•� ���

α•
��

C
π(G1)• CG2•� ���
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commutes and hence induces a commutative diagram in cohomology. Putting
this together with (1), and recalling the definition of π• given in (1), we
have the commutativity of the diagram

H•(AG1• ) H•(Dπ(G1)• )
γ•
1��

α•
��

H•(Cπ(G1)• )

δ•

�������������

H•(DG2• )

i•
�������������

α•
��

γ•

��

H•(CG2• ) ,

i•
�������������

π•

��

from which the assertion follows with γ• = γ•1 ◦ i•. ✷

2 Resolutions from Measurable Actions

Let X be a measurable space, that is a set with a σ-algebra of subsets, and
let E be the dual of a separable Banach space E	 with ground field K. We
say that a map f : Xn → E is weak-∗-measurable, if the evaluation function
x → 〈f(x), v〉 from Xn to K is measurable for every v ∈ E	. Define the
vector space

B(Xn, E) = {f : Xn → E : f is weak-∗-measurable} .
It is straightforward to verify that if ‖f‖ := supx∈Xn ‖f(x)‖E , then

B∞(Xn, E) =
{
f ∈ B(Xn, E) : ‖f‖ < ∞}

is a Banach space.
Now let G be either a discrete or a locally compact second countable

group acting measurably on the space X, that is assume that the action
a : G × X → X is measurable when G is equipped with the σ-algebra of
the Haar measurable sets. We assume that E is a coefficient G-module so
that the space B∞(Xn, E) is itself a Banach G-module (see [BM1, §1.1]).
Let dn : B∞(Xn, E) → B∞(Xn+1, E), n ≥ 1, be the standard homogeneous
coboundary operator dnf(x0, . . . , xn) =

∑n
i=0(−1)if(x0, . . . , x̂i, . . . , xn),

and let d0 : E → B∞(X,E) be the inclusion.
Our goal is to show that the complex B∞(X•, E) is a strong resolution

of E. In order to do this we need to define homotopy operators; if µ
is a probability measure on X, and f ∈ B∞(Xn+1, E), for n ≥ 0, then
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the map hnf : Xn → E defined by

hnf : (x1, . . . , xn) �→
∫

X
f(x0, x1, . . . , xn)dµ(x0) (4)

is weak-∗-measurable and ‖hnf‖ ≤ ‖f‖, so that hn defines an operator
hn : B∞(Xn+1, E) → B∞(Xn, E). It is also straightforward to verify that
for n ≥ 0, dnhn + hn+1dn+1 = IdB∞(Xn+1,E). For an appropriate choice of
the measure µ on X, we have the desired:
Proposition 2.1. The complex B∞(X•, E) is a strong resolution of
E with homotopy operators defined in (4) with respect to the measure
µ := a∗(ν ⊗ δp), where ν ∈ M1(G) is a probability measure which is
absolutely continuous with respect to the left Haar measure, δp is the Dirac
mass of a base point p ∈ X, and a∗ denotes the pushforward of measures
via the action map a.

Proof. Let λρ denote, as usual, the action of G on B∞(Xn, E), namely
λρ(g)f(x1, . . . , xn) = ρ(g)f(g−1x1, . . . , g

−1xn) for f ∈ B∞(Xn, E), (see
[BM1, §1.3]). It remains to be verified that, for n ≥ 0, the homotopy
operator hn sends continuous vectors in B∞(Xn+1, E) to continuous vectors
in B∞(Xn, E). Let dν(h) = ψ(h)dh, where dh is the left Haar measure
on G, ψ ∈ L1(G), ψ ≥ 0, and

∫
G ψ(h)dh = 1. Let f ∈ CB∞(Xn+1, E) be a

continuous vector. For every v ∈ E	 we compute
〈λρ(g)−1hnf(x1, . . ., xn), v〉 − 〈hnf(x1, . . . , xn), v〉

=
∫

G
〈π(g)−1f(hp, gx1, . . . , gxn), v〉ψ(h)dh

−
∫

G
〈f(hp, x1, . . . , xn), v〉ψ(h)dh

=
∫

G
〈π(g)−1f(ghp, gx1, . . . , gxn), v〉ψ(gh)dh

−
∫

G
〈f(hp, x1, . . . , xn), v〉ψ(h)dh

=
∫

G
〈π(g)−1f(ghp, gx1, . . . , gxn)− f(hp, x1, . . . , xn), v〉ψ(gh)dh

+
∫

G
〈f(hp, x1, . . . , xn), v〉(ψ(gh) − ψ(h))dh .

so that
|〈λρ(g)−1hnf(x1, . . . ,xn), v〉 − 〈hnf(x1, . . . , xn), v〉|

≤ ‖λρ(g)−1f−f‖ ‖v| + ‖f‖ ‖v‖
∫

G
|ψ(gh) − ψ(h)|dh ,
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and hence
‖λρ(g)−1hnf − hnf‖ ≤ ‖λρ(g)−1f − f‖+ ‖f‖

∫
G
|ψ(gh) − ψ(h)|dh .

Since f is a continuous vector and G acts continuously on L1(G), we con-
clude that hnf is a continuous vector. ✷

Corollary 2.2. There is a canonical map

ω• : H•(B∞(X•, E)G) ��H•
cb(G,E) .

That is, every bounded, measurable G-invariant cocycle c : Xn+1 → E
determines canonically a class [c] ∈ H•

cb(G,E).

Proof. This follows from [BM1, Proposition 1.5.2] with F = E, α : CE → E
the inclusion, E• = B∞(X•, E), and F• any strong resolution of E by
relatively injective G-modules. ✷

We draw one more consequence. Let X be a measurable space with
a measurable G-action and let Z ⊂ X be a non-empty measurable G-
invariant subset; we consider Z endowed with the σ-algebra of X restricted
to Z. The restriction map

R• : B∞(X•, E) → B∞(Z•, E)
is a norm-decreasing, G-morphism of complexes extending the identity.
Then Proposition 1.2 with π = Id , D• = B∞(X•, E) and A• any strong res-
olution of E by relatively injective modules, implies, together with Propo-
sition 2.1 and Corollary 2.2, the following:
Corollary 2.3. The diagram in cohomology

H•
cb(G,E) H•(B∞(X•, E)G)��

R•
��

H•(B∞(Z•, E)G)
Id•

		������������

is commutative. ✷

We need to introduce now one more morphism of complexes, the ex-
istence of which does requires some additional structure. Namely, if Y is
any topological space, Proposition 2.1 implies that the complex B∞(Y •, E)
is a strong resolution of E, once Y is equipped with its σ-algebra of Borel
sets. Let Y be a compact metrizable space on which G acts continuously,
and let M1(Y ) be the space of probability measures with the weak-∗ topol-
ogy; then M1(Y ) is a compact metrizable space on which G acts contin-
uously. Our next goal is to construct a natural morphism of G-complexes
B∞(Y •, E) �� B∞(M1(Y )•, E) extending the identity E → E. For
this, the following lemma is crucial:
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Lemma 2.4. Let Y be a compact metrizable space. Then, for every
f ∈ B∞(Y,K), the evaluation map

ev(f) : M1(Y ) → K

µ �→ µ(f) ,

is a Borel measurable function.

Proof. It is enough to consider the case in which K = R. Let B∞(Y,R) =⋃
N≥1 B(Y, (−N,N)). Fix N ∈ N and consider the class

BN =
{
f ∈ B(Y, (−N,N)) : ev(f) is Borel measurable

}
.

This class contains all continuous functions and, by the dominated conver-
gence theorem, is closed under pointwise convergence of sequences. Hence
BN contains all Baire functions. Since (−N,N) is homeomorphic to R and
Y is metrizable, the Lebesgue–Hausdorff theorem [S, Theorem 3.1.36] im-
plies that all Borel functions Y → (−N,N) are Baire functions and hence
BN = B(Y, (−N,N)), which proves the lemma. ✷

Now let f ∈ B∞(Y n, E) and, for µ1, . . . , µn ∈ M1(Y ) define

en(f)(µ1, . . . , µn) =
∫

Y n

f(y1, . . . , yn)dµ(y1) . . . dµ(yn) .

Evaluating on vectors in E	, the preceding lemma implies that the
map en(f) : M1(Y )n → E is weak-∗-measurable. Observe also that
‖en(f)‖ = ‖f‖. The following is then a straightforward verification.

Lemma 2.5. The map en : B∞(Y n, E) → B∞(M1(Y )n, E) gives an
isometric morphism of G-complexes extending the identity which, in par-
ticular, restricts to en : CB∞(Y n, E) → CB∞(M1(Y )n, E). ✷

Now we apply the results in §1 to the specific resolutions we just studied.
Let π : G1 → G2 be a continuous homomorphism as above, (B, ν) a G1-
measure space and X a G2-measurable space. We say that a measurable
map ϕ : B → X is a.e.-G1-equivariant if ϕ(gx) = π(g)ϕ(x) for all g ∈ G1

and ν-almost every x ∈ B. It is plain that any such map induces a norm
decreasing morphism of G1-complexes by precomposition

L∞
w∗(B•, E) B∞(X•, E)Φ•

�� .

Corollary 2.6. Let π, ϕ,E and X be as above, and assume that (B, ν)
is an amenable regular G1-measure space. Then any a.e.-G1-equivariant
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measurable map ϕ : B → X induces a commutative diagram in cohomology

H•
cb(G1, E) H•(B∞(X•, E)G2)Φ•

��

��
H•
cb(G2, E)

π•

		�������������

Proof. This is immediate from Proposition 1.2 and [BM1, Theorems 1
and 2] with D• = B∞(X•, E), A• = L∞

w∗(B•, E) and C• any strong resolu-
tion of (ρ,E) by relatively injective G2-modules (see Remark 1.3). ✷

Finally:

Corollary 2.7. Let π be a continuous homomorphism of discrete or
locally compact second countable groups, (ρ,E) a coefficient G2-module,
Y a separable compact metrizable continuous G2-space, (B, ν) an amenable
regular G1-space, and ϕ : B → M1(Y ) a measurable a.e.-G1-equivariant
map. Let c : Y n+1 → E be a Borel measurable G2-invariant bounded
cocycle, and [c] ∈ Hn

cb(G2, E) the associated cohomology class. Then

(b1, . . . , bn+1) → ϕ(b1) ⊗ · · · ⊗ ϕ(bn+1)(c)

defines an element in L∞
w∗(Bn+1, E) which represents the class

π(n)([c]) ∈ Hn
cb(G1, E).

Proof. According to Corollary 2.2, there is a canonical map

ω• : H•(B∞(Y •, E)G2) → H•
cb(G2, E).

The assertion will then follow from the commutativity of the following
diagram:

H•
cb(G1, E) H•(B∞(M1(Y )•, E)G2)Φ•

��

Id•
��

H•(B∞(Y •, E)G2)
e•��

ω•


����������������

H•
cb(G2, E)

π•

����������������

The commutativity of the diagram on the left follows from Corollary 2.6
with X = M1(Y ). The commutativity of the diagram on the right follows
from Proposition 1.2 with π = Id , G1 = G2, C• = B∞(M1(Y )•, E), D• =
B∞(Y •, E) and, finally, α• = e• as defined in Lemma 2.5. ✷

Remark 2.8. Just like in §1.7, one can replace the complex B∞(X•, E)
with the subcomplex B∞

alt(X
•, E) of alternating measurable bounded co-

chains, and all of the above results hold true verbatim.
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3 An Illustration

Let X be a proper CAT(–1)-space, G2 < Iso(X) a closed subgroup, E a
coefficient G2-module, and

c : X(∞)3 → E

a Borel measurable, alternating, bounded, G2-invariant cocycle. Let π :
G1 → G2 be a continuous homomorphism, where G1 is locally compact
second countable or discrete. Our objective is to give some natural sufficient
conditions implying that the class π(2)([c]) ∈ H2

cb(G1, E) does not vanish.
Given any set S, we denote by C3(S) the subset of S3 consisting of distinct
triples.
Proposition 3.1. Assume that E is separable, c is weak-∗-continuous
on C3(X(∞)), and let Lπ(G1) ⊂ X(∞) be the limit set of π(G1).

(1) If c|(Lπ(G1))3
is not identically zero, then π(2)([c]) �= 0;

(2) Assume that G1 is compactly generated. Then, for the Gromov norm
of π(2)([c]) we have∥∥π(2)([c])∥∥ = max

ξ1,ξ2,ξ3∈Lπ

∥∥c(ξ1, ξ2, ξ3)∥∥ .
Proof. We first prove (2). We distinguish two cases:

(a) Assume that π(G1) is elementary. Set L := π(G1). Either L is
compact, and hence H2

cb(L,E) = 0, which implies in particular that the
restriction of c to L vanishes in H2

cb(L,E), so that π(2)([c]) = 0; since
Lπ(G1) = ∅, this proves the equality. Or

∣∣Lπ(G1)

∣∣ �= ∅ and it consists of
at most two points; since c is alternating, its restriction to (Lπ(G1))

3 is
identically zero; Corollary 2.3 applied to Z = Lπ(G1) implies then that the
restriction of c to L vanishes, hence π(2)([c]) = 0, which proves the equality.

(b) Assume that π(G1) is not elementary. Let G∗
1 2 G1 be the finite

index subgroup given by [BM1, Theorem 6], πr the restriction of π to
G∗

1, and Lπr(G∗
1)

the limit set of πr(G∗
1). Since G∗

1 is of finite index in
G1, we have Lπ(G∗

1)
= Lπ(G1). Moreover, since the restriction map gives

an isometric embedding H•
cb(G1, E) → H•

cb(G
∗
1, E) (see [BM1, Proposition

2.4.1]), we have that ‖π(2)r ([c])‖ = ‖π(2)([c])‖. Now let (B, ν) be a doubly
Xsep-ergodic, regular, amenable G∗

1-space (see [BM1, Theorem 6]). Since
πr(G∗

1) is non-elementary, there is an equivariant measurable map ϕ : B →
Lπ(G∗

1)
, [BMo]; it follows from Corollary 2.7 that the map (b1, b2, b3) �→

c(ϕ(b1), ϕ(b2), ϕ(b3)) is a representative of π(2)r ([c]) and, from double Xsep-
ergodicity,

‖π(2)r ([c])‖ = ess supbi∈B

∥∥c(ϕ(b1), ϕ(b2), ϕ(b3))
∥∥
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= ess supξi∈(Lπ(G∗
1
))

3

∥∥c(ξ1, ξ2, ξ3)∥∥ ,
where now (Lπ(G∗

1)
)3 is equipped with the measure ϕ∗(ν)3 =

ϕ∗(ν) ⊗ ϕ∗(ν) ⊗ ϕ∗(ν). Since by hypothesis c is continuous on C3(Lπ(G∗
1)
)

and vanishes on its complement, we have that
ess supξi∈(Lπ(G∗

1
))

3

∥∥c(ξ1, ξ2, ξ3)∥∥ ≤ sup
(ξ1,ξ2,ξ3)∈C3(Lπ(G∗

1
))

∥∥c(ξ1, ξ2, ξ3)∥∥ := b ,

and we may assume that b > 0. On the other hand, let ε > 0 be such
that b − ε > 0, and let (ξ1, ξ2, ξ3) ∈ C3(Lπ(G∗

1)
) and v ∈ E	 with ‖v‖ = 1

be such that 〈c(ξ1, ξ2, ξ3), v〉 > b− ε. Then the set Sε of triples (η1, η2, η3)
with 〈c(η1, η2, η3), v〉 > b− ε is an open nonvoid set, and hence of positive
ϕ∗(ν)3-measure, since supp(ϕ∗(ν)3) = (Lπ(G∗

1)
)3. Hence we also have that

‖c(η1, η2, η3)‖ > b−ε on Sε, which implies that ess sup ‖c(ξ1, ξ2, ξ3)‖ ≥ b−ε
and hence is equal to b.

We now prove (1). Since c is alternating, it vanishes on (Lπ(G∗
1)
)3 �

C3(Lπ(G∗
1)
), hence the set V = {(ξ1, ξ2, ξ3) ∈ (Lπ(G∗

1)
)3 : c(ξ1, ξ2, ξ3) �= 0} is

open and, by hypothesis, nonvoid. Write G1 as the union
⋃

Q∈F Q, where
Q ranges in the family F of all compactly generated subgroups of G1. It
is plain that the union

⋃
Q∈F Lπ(Q) of the limit sets of π(Q) is dense in

Lπ(G∗
1)

and hence there is Q ∈ F with (Lπ(Q))3 ∩ V �= ∅. Part (2) of the
proposition allows us to conclude. ✷

In order to illustrate Proposition 3.1, we present an immediate appli-
cation to groups acting non-elementarily on the real hyperbolic plane H

2
R.

Recall that (see [BM2]) in degree two, if H is a continuous irreducible uni-
tary representation of PSL(2,R), we have

dimH2
cb(PSL(2,R),H) =

{
1 if H is spherical
0 otherwise .

Corollary 3.2. Let π : Γ → PSL(2,R) be a homomorphism with non-
elementary image. Then for any spherical representation H, the map

π(2) : H2
cb

(
PSL(2,R),H) → H2

b(Γ,H)
is injective.

Proof. It is shown in [BM2] that a generator of H2
cb(PSL(2,R),H) can

be explicitly described by an alternating, weak-∗-continuous PSL(2,R)-
invariant cocycle

ω : H
2
R(∞)3 → H ,

such that for every distinct triple (x, y, z) ∈ C3(H2
R(∞)), ω(x, y, z) �= 0.

Since by hypothesis the limit set of π(Γ) contains at least 3 points, Propo-
sition 3.1 enables us to conclude. ✷
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