BOUNDARY MAPS IN BOUNDED COHOMOLOGY

M. Burger and A. Iozzi
Appendix to: Continuous bounded cohomology and applications to rigidity theory
by: M. Burger and N. Monod

In this appendix we show how, given a group homomorphism π : $G_{1} \rightarrow G_{2}$, boundary maps can be used to implement contravariance in bounded continuous cohomology

$$
\pi^{\bullet}: \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{2}\right) \rightarrow \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{1}\right) .
$$

To illustrate the issues involved, let us consider for example the typical situation of the study of a representation of a discrete group Γ into, say, a semisimple Lie group G. On the one hand, associated to every representation $\pi: \Gamma \rightarrow G$, we have the natural pullback $\pi^{\bullet}: \mathrm{H}_{\mathrm{cb}}^{\bullet}(G) \rightarrow \mathrm{H}_{\mathrm{b}}^{\bullet}(\Gamma)$ in bounded cohomology which leads to useful invariants. On the other hand, the fundamental fact that bounded cohomology can be realized as L^{∞}-cocycles on a boundary ([BM1, §1]), suggests the following: let G / P be the maximal Furstenberg boundary of $G,(B, \nu)$ an amenable Γ-space and $\varphi: B \rightarrow G / P$ an equivariant measurable map; it is natural to use the resolution $L^{\infty}\left((G / P)^{\bullet}\right)$ by essentially bounded cocycles on $(G / P)^{\bullet}$ to represent the bounded cohomology of G, and to try to implement the pullback π^{\bullet} by precomposition with $\varphi^{\bullet}: B^{\bullet} \rightarrow(G / P)^{\bullet}$. However, this does not provide a well defined map $L^{\infty}\left((G / P)^{\bullet}\right) \rightarrow L^{\infty}\left(B^{\bullet}\right)$, unless the pushforward measure $\varphi_{*}(\nu)$ on G / P is absolutely continuous with respect to the Lebesgue measure. The proof of this last property however is one of the difficult points in many rigidity questions, and therefore cannot be seriously used as an assumption. To circumvent this problem, we are guided by the fact that all bounded cohomology classes of "geometric" origin are represented by bounded Borel measurable strict invariant cocycles on flag manifolds, which can therefore be precomposed with φ^{\bullet}.

In this appendix we formalize this situation in general, and we prove that the resolution of bounded measurable functions on a measurable space has the necessary properties which allow us to implement in a very concrete
way - via precomposition with φ^{\bullet} though in a canonical way - the pullback of any class which can be represented by a bounded Borel measurable strict invariant cocycle. This leads in particular to geometrically meaningful formulae, representing bounded characteristic classes. These general results are being applied to rigidity theory, especially the study of group actions on complex hyperbolic spaces in [BI1] and [BI2], on hermitian symmetric spaces in [BI3], and are also used in the recent work of Monod and Shalom on orbit equivalence ([MoS1] and $[\mathrm{MoS} 2]$). We refer to $[\mathrm{I}]$ for an illustration of these techniques in a new proof of Milnor-Wood's inequality ([Mi], [W]) and Matsumoto's theorem $[\mathrm{M}]$ on the Euler number rigidity of actions of surface groups by homeomorphisms of the circle.

1 More on Contravariance

Let $G_{i}, i=1,2$, be groups which are either discrete or locally compact second countable. Some of the contravariance properties of the continuous bounded cohomology with respect to a continuous homomorphism $\pi: G_{1} \rightarrow G_{2}$ have already been mentioned in [BM1, $\S 1.5$ (and $\S 2.4$)]; here we need to collect more results which we shall apply in $\S 2$ to specific situations of interest. For ease of reference, we start recalling the definition of the pullback map $\pi^{\bullet}: \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{2}, E\right) \rightarrow \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{1}, E\right)$ induced in cohomology. To avoid heavy notation, we use here π^{\bullet} for the map that in [BM1, §1.5] was denoted by $\mathrm{H}_{\mathrm{cb}}^{\bullet}(\pi, E)$, where (ρ, E) is a coefficient G_{2}-module. Analogously, the corresponding map in degree n will be denoted by $\pi^{(n)}$. We start by recording the following obvious fact:
Remark 1.1. Let G be any group and $E \bullet$ be a complex of G-modules. For any subgroup $H<G$, the natural injection $i^{\bullet}: E_{\bullet}^{G} \hookrightarrow E_{\bullet}^{H}$ is a morphism of complexes which induces a map in cohomology

$$
i^{\bullet}: \mathrm{H}^{\bullet}\left(E_{\bullet}^{G}\right) \rightarrow \mathrm{H}^{\bullet}\left(E_{\bullet}^{H}\right) .
$$

Now recall that if $\pi: G_{1} \rightarrow G_{2}$ is any homomorphism as above, any coefficient G_{2}-module (ρ, E) can be viewed as a coefficient G_{1}-module ($\pi^{*} \rho, E$) via π : as such, we have an inclusion $\delta: \mathcal{C}_{G_{2}} E \hookrightarrow \mathcal{C}_{G_{1}} E$, which we can consider as an inclusion of G_{1}-modules. As the above observation holds for Banach G_{2}-modules in general, we can say analogously that, if $C_{\mathbf{0}}$ is any strong G_{2}-resolution of $\mathcal{C}_{G_{2}} E$, then $\mathcal{C}_{G_{2}} C_{\bullet}$ can be considered as a strong (in fact, even admissible) G_{1}-resolution of the G_{1}-module $\mathcal{C}_{G_{2}} E$. Now let A_{\bullet} be a relatively injective resolution of the G_{1}-module $\mathcal{C}_{G_{1}} E$. By [BM1, Proposition 1.5.2] applied to the inclusion of G_{1}-modules $\delta: \mathcal{C}_{G_{2}} E \hookrightarrow \mathcal{C}_{G_{1}} E$, we
obtain a G_{1}-morphism of resolutions $\mathcal{C}_{G_{2}} E_{2} \rightarrow A_{\bullet}$ which is unique up to homotopy and induces a map in cohomology $\delta^{\bullet}: \mathrm{H}^{\bullet}\left(C_{\bullet}^{\pi\left(G_{1}\right)}\right) \rightarrow \mathrm{H}^{\bullet}\left(A_{\bullet}^{G_{1}}\right)$ (observe that obviously $\mathcal{C}_{G_{2}} C_{\bullet}^{\pi\left(G_{1}\right)}=C_{\bullet}^{G_{1}}$). However, because C_{\bullet} is a G_{2} resolution of $\mathcal{C}_{G_{2}} E$, as observed in Remark 1.1 we have a map in cohomology $i^{\bullet}: \mathrm{H}^{\bullet}\left(C_{\bullet}^{G_{2}}\right) \rightarrow \mathrm{H}^{\bullet}\left(C_{\bullet}^{\pi\left(G_{1}\right)}\right)$. Hence we can define a map π^{\bullet} by composition

If now A_{\bullet} and C_{\bullet} are strong resolutions - of $\mathcal{C}_{G_{1}} E$ and $\mathcal{C}_{G_{2}} E$ respectively via relatively injective modules, we have the usual canonical isomorphisms $\mathrm{H}^{\bullet}\left(A_{\bullet}^{G_{1}}\right) \simeq \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{1}, E\right)$ and $\mathrm{H}^{\bullet}\left(C_{\bullet}^{G_{2}}\right) \simeq \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{2}, E\right)$, so that we can define the pullback π^{\bullet} as the composition

Proposition 1.2. Let $\pi: G_{1} \rightarrow G_{2}$ be a continuous homomorphism of either discrete or locally compact second countable groups, and let (ρ, E) be a coefficient G_{2}-module. Let C_{\bullet} and D_{\bullet} be strong resolutions of E by G_{2}-modules and let $\alpha^{\bullet}: \mathcal{C}_{G_{2}} D_{\bullet} \rightarrow \mathcal{C}_{G_{2}} C_{\bullet}$ be a G_{2}-morphism. Then, for any resolution A • of $\left(\pi^{*} \rho, E\right)$ by relatively injective G_{1}-modules, the diagram in cohomology

is commutative, where π^{\bullet} is the map induced in cohomology by the homomorphism π, and γ^{\bullet} is the map induced in cohomology by any G_{1}-morphism of complexes $\mathcal{C}_{G_{2}} D_{\bullet} \rightarrow A_{\bullet}$ extending the inclusion of G_{1}-morphisms $\mathcal{C}_{G_{2}} E \hookrightarrow E$.
Remark 1.3. Notice that it would have sufficed, in the statement of Proposition 1.2, to require that C_{\bullet} and D_{\bullet} are strong resolutions of $\mathcal{C}_{G_{2}} E$.

Moreover, the existence in Proposition 1.2 of the G_{2}-morphism α^{\bullet} : $\mathcal{C}_{G_{2}} D_{\bullet} \rightarrow \mathcal{C}_{G_{2}} C_{\bullet}$ is automatically verified if C_{\bullet} is a resolution by relatively injective modules (see also [BM1, Remark 1.4.3]).
Proof. We have observed already that both $\mathcal{C}_{G_{2}} C_{\bullet}$ and $\mathcal{C}_{G_{2}} D_{\bullet}$ can be viewed as strong resolutions of the G_{1}-module ($\pi^{*} \rho, E$). Applying twice [BM1, Proposition 1.5.2] with $G=G_{1}, F_{\bullet}=A_{\bullet}$ and with $E_{\bullet}=C_{\bullet}$ first, and then $E_{\bullet}=D_{\bullet}$, we obtain that there are G_{1}-morphisms of resolutions δ^{\bullet} : $\mathcal{C}_{G_{2}} C_{\bullet} \rightarrow A_{\bullet}$ and $\beta^{\bullet}: \mathcal{C}_{G_{2}} D_{\bullet} \rightarrow A_{\bullet}$ which extend the inclusion $\mathcal{C}_{G_{2}} E \hookrightarrow E$ (of G_{1}-morphisms), are unique up to G_{1}-homotopy and induce canonical maps in cohomology

$$
\mathrm{H}^{\bullet}\left(C_{\bullet}^{\pi\left(G_{1}\right)}\right) \xrightarrow{\delta^{\bullet}} \mathrm{H}^{\bullet}\left(A_{\bullet}^{G_{1}}\right)
$$

and

$$
\begin{equation*}
\mathrm{H}^{\bullet}\left(D_{\bullet}^{\pi\left(G_{1}\right)}\right) \xrightarrow{\gamma_{\mathrm{i}}^{\bullet}} \mathrm{H}^{\bullet}\left(A_{\bullet}^{G_{1}}\right) . \tag{2}
\end{equation*}
$$

But now the map $\alpha^{\bullet}: \mathcal{C}_{G_{2}} D_{\bullet} \rightarrow \mathcal{C}_{G_{2}} C_{\bullet}$ can be considered as a $G_{1^{-}}$ morphism of G_{1}-resolutions (via π), hence giving a G_{1}-morphism of G_{1} complexes

$$
\mathcal{C}_{G_{2}} D_{\bullet} \xrightarrow{\alpha^{\bullet}} \mathcal{C}_{G_{2}} C_{\bullet} \xrightarrow{\delta^{\bullet}} A_{\bullet}
$$

which induces in cohomology the map γ_{1}^{\bullet} in (2). Hence we have a diagram of G_{1}-morphisms

so that, by [BM1, Proposition 1.5.2], the diagram in cohomology

commutes.
Applying now Remark 1.1 to $H=\pi\left(G_{1}\right)$ and $G=G_{2}$, we have that the diagram

commutes and hence induces a commutative diagram in cohomology. Putting this together with (1), and recalling the definition of π^{\bullet} given in (1), we have the commutativity of the diagram

from which the assertion follows with $\gamma^{\bullet}=\gamma_{\mathbf{1}}^{\boldsymbol{\bullet}} \circ i^{\boldsymbol{\bullet}}$.

2 Resolutions from Measurable Actions

Let X be a measurable space, that is a set with a σ-algebra of subsets, and let E be the dual of a separable Banach space E^{b} with ground field \mathbf{K}. We say that a map $f: X^{n} \rightarrow E$ is weak-*-measurable, if the evaluation function $x \rightarrow\langle f(x), v\rangle$ from X^{n} to \mathbf{K} is measurable for every $v \in E^{b}$. Define the vector space

$$
\mathcal{B}\left(X^{n}, E\right)=\left\{f: X^{n} \rightarrow E: f \text { is weak-*-measurable }\right\} .
$$

It is straightforward to verify that if $\|f\|:=\sup _{x \in X^{n}}\|f(x)\|_{E}$, then

$$
\mathcal{B}^{\infty}\left(X^{n}, E\right)=\left\{f \in \mathcal{B}\left(X^{n}, E\right):\|f\|<\infty\right\}
$$

is a Banach space.
Now let G be either a discrete or a locally compact second countable group acting measurably on the space X, that is assume that the action $a: G \times X \rightarrow X$ is measurable when G is equipped with the σ-algebra of the Haar measurable sets. We assume that E is a coefficient G-module so that the space $\mathcal{B}^{\infty}\left(X^{n}, E\right)$ is itself a Banach G-module (see [BM1, §1.1]). Let $d_{n}: \mathcal{B}^{\infty}\left(X^{n}, E\right) \rightarrow \mathcal{B}^{\infty}\left(X^{n+1}, E\right), n \geq 1$, be the standard homogeneous coboundary operator $d_{n} f\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i} f\left(x_{0}, \ldots, \hat{x_{i}}, \ldots, x_{n}\right)$, and let $d_{0}: E \rightarrow \mathcal{B}^{\infty}(X, E)$ be the inclusion.

Our goal is to show that the complex $\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)$ is a strong resolution of E. In order to do this we need to define homotopy operators; if μ is a probability measure on X, and $f \in \mathcal{B}^{\infty}\left(X^{n+1}, E\right)$, for $n \geq 0$, then
the $\operatorname{map} h_{n} f: X^{n} \rightarrow E$ defined by

$$
\begin{equation*}
h_{n} f:\left(x_{1}, \ldots, x_{n}\right) \mapsto \int_{X} f\left(x_{0}, x_{1}, \ldots, x_{n}\right) d \mu\left(x_{0}\right) \tag{4}
\end{equation*}
$$

is weak-*-measurable and $\left\|h_{n} f\right\| \leq\|f\|$, so that h_{n} defines an operator $h_{n}: \mathcal{B}^{\infty}\left(X^{n+1}, E\right) \rightarrow \mathcal{B}^{\infty}\left(X^{n}, E\right)$. It is also straightforward to verify that for $n \geq 0, d_{n} h_{n}+h_{n+1} d_{n+1}=I d_{\mathcal{B}^{\infty}\left(X^{n+1}, E\right)}$. For an appropriate choice of the measure μ on X, we have the desired:
Proposition 2.1. The complex $\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)$ is a strong resolution of E with homotopy operators defined in (4) with respect to the measure $\mu:=a_{*}\left(\nu \otimes \delta_{p}\right)$, where $\nu \in \mathcal{M}^{1}(G)$ is a probability measure which is absolutely continuous with respect to the left Haar measure, δ_{p} is the Dirac mass of a base point $p \in X$, and a_{*} denotes the pushforward of measures via the action map a.

Proof. Let λ_{ρ} denote, as usual, the action of G on $\mathcal{B}^{\infty}\left(X^{n}, E\right)$, namely $\lambda_{\rho}(g) f\left(x_{1}, \ldots, x_{n}\right)=\rho(g) f\left(g^{-1} x_{1}, \ldots, g^{-1} x_{n}\right)$ for $f \in \mathcal{B}^{\infty}\left(X^{n}, E\right)$, (see [BM1, §1.3]). It remains to be verified that, for $n \geq 0$, the homotopy operator h_{n} sends continuous vectors in $\mathcal{B}^{\infty}\left(X^{n+1}, E\right)$ to continuous vectors in $\mathcal{B}^{\infty}\left(X^{n}, E\right)$. Let $d \nu(h)=\psi(h) d h$, where $d h$ is the left Haar measure on $G, \psi \in L^{1}(G), \psi \geq 0$, and $\int_{G} \psi(h) d h=1$. Let $f \in \mathcal{C B}^{\infty}\left(X^{n+1}, E\right)$ be a continuous vector. For every $v \in E^{b}$ we compute

$$
\begin{aligned}
& \left\langle\lambda_{\rho}(g)^{-1} h_{n} f\left(x_{1}, \ldots, x_{n}\right), v\right\rangle-\left\langle h_{n} f\left(x_{1}, \ldots, x_{n}\right), v\right\rangle \\
& =\int_{G}\left\langle\pi(g)^{-1} f\left(h p, g x_{1}, \ldots, g x_{n}\right), v\right\rangle \psi(h) d h \\
& \quad-\int_{G}\left\langle f\left(h p, x_{1}, \ldots, x_{n}\right), v\right\rangle \psi(h) d h \\
& = \\
& \quad \int_{G}\left\langle\pi(g)^{-1} f\left(g h p, g x_{1}, \ldots, g x_{n}\right), v\right\rangle \psi(g h) d h \\
& \quad-\int_{G}\left\langle f\left(h p, x_{1}, \ldots, x_{n}\right), v\right\rangle \psi(h) d h \\
& =\int_{G}\left\langle\pi(g)^{-1} f\left(g h p, g x_{1}, \ldots, g x_{n}\right)-f\left(h p, x_{1}, \ldots, x_{n}\right), v\right\rangle \psi(g h) d h \\
& \quad+\int_{G}\left\langle f\left(h p, x_{1}, \ldots, x_{n}\right), v\right\rangle(\psi(g h)-\psi(h)) d h
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left|\left\langle\lambda_{\rho}(g)^{-1} h_{n} f\left(x_{1}, \ldots, x_{n}\right), v\right\rangle-\left\langle h_{n} f\left(x_{1}, \ldots, x_{n}\right), v\right\rangle\right| \\
& \quad \leq\left\|\lambda_{\rho}(g)^{-1} f-f\right\|\left\|v\left|+\|f\|\|v\| \int_{G}\right| \psi(g h)-\psi(h) \mid d h\right.
\end{aligned}
$$

and hence

$$
\left\|\lambda_{\rho}(g)^{-1} h_{n} f-h_{n} f\right\| \leq\left\|\lambda_{\rho}(g)^{-1} f-f\right\|+\|f\| \int_{G}|\psi(g h)-\psi(h)| d h .
$$

Since f is a continuous vector and G acts continuously on $L^{1}(G)$, we conclude that $h_{n} f$ is a continuous vector.

Corollary 2.2. There is a canonical map

$$
\omega^{\bullet}: \mathrm{H}^{\bullet}\left(\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)^{G}\right) \longrightarrow \mathrm{H}_{\mathrm{cb}}^{\bullet}(G, E) .
$$

That is, every bounded, measurable G-invariant cocycle $c: X^{n+1} \rightarrow E$ determines canonically a class $[c] \in \mathrm{H}_{\mathrm{cb}}^{\bullet}(G, E)$.
Proof. This follows from [BM1, Proposition 1.5.2] with $F=E, \alpha: \mathcal{C} E \rightarrow E$ the inclusion, $E_{\bullet}=\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)$, and F_{\bullet} any strong resolution of E by relatively injective G-modules.

We draw one more consequence. Let X be a measurable space with a measurable G-action and let $Z \subset X$ be a non-empty measurable G invariant subset; we consider Z endowed with the σ-algebra of X restricted to Z. The restriction map

$$
R^{\bullet}: \mathcal{B}^{\infty}\left(X^{\bullet}, E\right) \rightarrow \mathcal{B}^{\infty}\left(Z^{\bullet}, E\right)
$$

is a norm-decreasing, G-morphism of complexes extending the identity. Then Proposition 1.2 with $\pi=I d, D_{\bullet}=\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)$ and A_{\bullet} any strong resolution of E by relatively injective modules, implies, together with Proposition 2.1 and Corollary 2.2 , the following:
Corollary 2.3. The diagram in cohomology

is commutative.
We need to introduce now one more morphism of complexes, the existence of which does requires some additional structure. Namely, if Y is any topological space, Proposition 2.1 implies that the complex $\mathcal{B}^{\infty}\left(Y^{\bullet}, E\right)$ is a strong resolution of E, once Y is equipped with its σ-algebra of Borel sets. Let Y be a compact metrizable space on which G acts continuously, and let $\mathcal{M}^{1}(Y)$ be the space of probability measures with the weak-* topology; then $\mathcal{M}^{1}(Y)$ is a compact metrizable space on which G acts continuously. Our next goal is to construct a natural morphism of G-complexes $\mathcal{B}^{\infty}\left(Y^{\bullet}, E\right) \longrightarrow \mathcal{B}^{\infty}\left(\mathcal{M}^{1}(Y)^{\bullet}, E\right)$ extending the identity $E \rightarrow E$. For this, the following lemma is crucial:

Lemma 2.4. Let Y be a compact metrizable space. Then, for every $f \in \mathcal{B}^{\infty}(Y, \mathbf{K})$, the evaluation map

$$
\begin{aligned}
e v(f): \mathcal{M}^{1}(Y) & \rightarrow \mathbf{K} \\
\mu & \mapsto \mu(f)
\end{aligned}
$$

is a Borel measurable function.
Proof. It is enough to consider the case in which $\mathbf{K}=\mathbf{R}$. Let $\mathcal{B}^{\infty}(Y, \mathbf{R})=$ $\bigcup_{N \geq 1} \mathcal{B}(Y,(-N, N))$. Fix $N \in \mathbf{N}$ and consider the class

$$
\mathcal{B}_{N}=\{f \in \mathcal{B}(Y,(-N, N)): e v(f) \text { is Borel measurable }\} .
$$

This class contains all continuous functions and, by the dominated convergence theorem, is closed under pointwise convergence of sequences. Hence \mathcal{B}_{N} contains all Baire functions. Since $(-N, N)$ is homeomorphic to \mathbf{R} and Y is metrizable, the Lebesgue-Hausdorff theorem [S, Theorem 3.1.36] implies that all Borel functions $Y \rightarrow(-N, N)$ are Baire functions and hence $\mathcal{B}_{N}=\mathcal{B}(Y,(-N, N))$, which proves the lemma.

Now let $f \in \mathcal{B}^{\infty}\left(Y^{n}, E\right)$ and, for $\mu_{1}, \ldots, \mu_{n} \in \mathcal{M}^{1}(Y)$ define

$$
e_{n}(f)\left(\mu_{1}, \ldots, \mu_{n}\right)=\int_{Y^{n}} f\left(y_{1}, \ldots, y_{n}\right) d \mu\left(y_{1}\right) \ldots d \mu\left(y_{n}\right) .
$$

Evaluating on vectors in E^{b}, the preceding lemma implies that the $\operatorname{map} e_{n}(f): \mathcal{M}^{1}(Y)^{n} \rightarrow E$ is weak-*-measurable. Observe also that $\left\|e_{n}(f)\right\|=\|f\|$. The following is then a straightforward verification.

LEMMA 2.5. The map $e_{n}: \mathcal{B}^{\infty}\left(Y^{n}, E\right) \rightarrow \mathcal{B}^{\infty}\left(\mathcal{M}^{1}(Y)^{n}, E\right)$ gives an isometric morphism of G-complexes extending the identity which, in particular, restricts to $e_{n}: \mathcal{C B}^{\infty}\left(Y^{n}, E\right) \rightarrow \mathcal{C B}^{\infty}\left(\mathcal{M}^{1}(Y)^{n}, E\right)$.

Now we apply the results in $\S 1$ to the specific resolutions we just studied. Let $\pi: G_{1} \rightarrow G_{2}$ be a continuous homomorphism as above, (B, ν) a $G_{1^{-}}$ measure space and X a G_{2}-measurable space. We say that a measurable $\operatorname{map} \varphi: B \rightarrow X$ is a.e.- G_{1}-equivariant if $\varphi(g x)=\pi(g) \varphi(x)$ for all $g \in G_{1}$ and ν-almost every $x \in B$. It is plain that any such map induces a norm decreasing morphism of G_{1}-complexes by precomposition

$$
L_{\mathrm{w} *}^{\infty}\left(B^{\bullet}, E\right) \stackrel{\Phi^{\bullet}}{\rightleftarrows} \mathcal{B}^{\infty}\left(X^{\bullet}, E\right)
$$

Corollary 2.6. Let π, φ, E and X be as above, and assume that (B, ν) is an amenable regular G_{1}-measure space. Then any a.e.- G_{1}-equivariant
measurable map $\varphi: B \rightarrow X$ induces a commutative diagram in cohomology

Proof. This is immediate from Proposition 1.2 and [BM1, Theorems 1 and 2] with $D_{\bullet}=\mathcal{B}^{\infty}\left(X^{\bullet}, E\right), A_{\bullet}=L_{\mathrm{w} *}^{\infty}\left(B^{\bullet}, E\right)$ and C_{\bullet} any strong resolution of (ρ, E) by relatively injective G_{2}-modules (see Remark 1.3).

Finally:
Corollary 2.7. Let π be a continuous homomorphism of discrete or locally compact second countable groups, (ρ, E) a coefficient G_{2}-module, Y a separable compact metrizable continuous G_{2}-space, (B, ν) an amenable regular G_{1}-space, and $\varphi: B \rightarrow \mathcal{M}^{1}(Y)$ a measurable a.e.- G_{1}-equivariant map. Let $c: Y^{n+1} \rightarrow E$ be a Borel measurable G_{2}-invariant bounded cocycle, and $[c] \in \mathrm{H}_{\mathrm{cb}}^{n}\left(G_{2}, E\right)$ the associated cohomology class. Then

$$
\left(b_{1}, \ldots, b_{n+1}\right) \rightarrow \varphi\left(b_{1}\right) \otimes \cdots \otimes \varphi\left(b_{n+1}\right)(c)
$$

defines an element in $L_{\mathrm{w} *}^{\infty}\left(B^{n+1}, E\right)$ which represents the class $\pi^{(n)}([c]) \in \mathrm{H}_{\mathrm{cb}}^{n}\left(G_{1}, E\right)$.

Proof. According to Corollary 2.2, there is a canonical map

$$
\omega^{\bullet}: \mathrm{H}^{\bullet}\left(\mathcal{B}^{\infty}\left(Y^{\bullet}, E\right)^{G_{2}}\right) \rightarrow \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{2}, E\right) .
$$

The assertion will then follow from the commutativity of the following diagram:

The commutativity of the diagram on the left follows from Corollary 2.6 with $X=\mathcal{M}^{1}(Y)$. The commutativity of the diagram on the right follows from Proposition 1.2 with $\pi=I d, G_{1}=G_{2}, C_{\bullet}=\mathcal{B}^{\infty}\left(\mathcal{M}^{1}(Y)^{\bullet}, E\right), D_{\bullet}=$ $\mathcal{B}^{\infty}\left(Y^{\bullet}, E\right)$ and, finally, $\alpha^{\bullet}=e$ as defined in Lemma 2.5.

Remark 2.8. Just like in $\S 1.7$, one can replace the complex $\mathcal{B}^{\infty}\left(X^{\bullet}, E\right)$ with the subcomplex $\mathcal{B}_{\text {alt }}^{\infty}\left(X^{\bullet}, E\right)$ of alternating measurable bounded cochains, and all of the above results hold true verbatim.

3 An Illustration

Let X be a proper $\operatorname{CAT}(-1)$-space, $G_{2}<\operatorname{Iso}(X)$ a closed subgroup, E a coefficient G_{2}-module, and

$$
c: X(\infty)^{3} \rightarrow E
$$

a Borel measurable, alternating, bounded, G_{2}-invariant cocycle. Let π : $G_{1} \rightarrow G_{2}$ be a continuous homomorphism, where G_{1} is locally compact second countable or discrete. Our objective is to give some natural sufficient conditions implying that the class $\pi^{(2)}([c]) \in \mathrm{H}_{\mathrm{cb}}^{2}\left(G_{1}, E\right)$ does not vanish. Given any set S, we denote by $\mathcal{C}_{3}(S)$ the subset of S^{3} consisting of distinct triples.
Proposition 3.1. Assume that E is separable, c is weak-*-continuous on $\mathcal{C}_{3}(X(\infty))$, and let $\mathcal{L}_{\pi\left(G_{1}\right)} \subset X(\infty)$ be the limit set of $\pi\left(G_{1}\right)$.
(1) If $\left.c\right|_{\left(\mathcal{L}_{\left.\pi\left(G_{1}\right)\right)^{3}}\right.}$ is not identically zero, then $\pi^{(2)}([c]) \neq 0$;
(2) Assume that G_{1} is compactly generated. Then, for the Gromov norm of $\pi^{(2)}([c])$ we have

$$
\left\|\pi^{(2)}([c])\right\|=\max _{\xi_{1}, \xi_{2}, \xi_{3} \in \mathcal{L}_{\pi}}\left\|c\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right\|
$$

Proof. We first prove (2). We distinguish two cases:
(a) Assume that $\pi\left(G_{1}\right)$ is elementary. Set $L:=\overline{\pi\left(G_{1}\right)}$. Either L is compact, and hence $\mathrm{H}_{\mathrm{cb}}^{2}(L, E)=0$, which implies in particular that the restriction of c to L vanishes in $\mathrm{H}_{\mathrm{cb}}^{2}(L, E)$, so that $\pi^{(2)}([c])=0$; since $\mathcal{L}_{\pi\left(G_{1}\right)}=\varnothing$, this proves the equality. Or $\left|\mathcal{L}_{\pi\left(G_{1}\right)}\right| \neq \varnothing$ and it consists of at most two points; since c is alternating, its restriction to $\left(\mathcal{L}_{\pi\left(G_{1}\right)}\right)^{3}$ is identically zero; Corollary 2.3 applied to $Z=\mathcal{L}_{\pi\left(G_{1}\right)}$ implies then that the restriction of c to L vanishes, hence $\pi^{(2)}([c])=0$, which proves the equality.
(b) Assume that $\pi\left(G_{1}\right)$ is not elementary. Let $G_{1}^{*} \triangleleft G_{1}$ be the finite index subgroup given by [BM1, Theorem 6], π_{r} the restriction of π to G_{1}^{*}, and $\mathcal{L}_{\pi_{r}\left(G_{1}^{*}\right)}$ the limit set of $\pi_{r}\left(G_{1}^{*}\right)$. Since G_{1}^{*} is of finite index in G_{1}, we have $\mathcal{L}_{\pi\left(G_{1}^{*}\right)}=\mathcal{L}_{\pi\left(G_{1}\right)}$. Moreover, since the restriction map gives an isometric embedding $\mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{1}, E\right) \rightarrow \mathrm{H}_{\mathrm{cb}}^{\bullet}\left(G_{1}^{*}, E\right)$ (see [BM1, Proposition 2.4.1]), we have that $\left\|\pi_{r}^{(2)}([c])\right\|=\left\|\pi^{(2)}([c])\right\|$. Now let (B, ν) be a doubly $\mathfrak{X}^{\text {sep }}$-ergodic, regular, amenable G_{1}^{*}-space (see [BM1, Theorem 6]). Since $\pi_{r}\left(G_{1}^{*}\right)$ is non-elementary, there is an equivariant measurable map $\varphi: B \rightarrow$ $\mathcal{L}_{\pi\left(G_{1}^{*}\right)},[\mathrm{BMo}] ;$ it follows from Corollary 2.7 that the map $\left(b_{1}, b_{2}, b_{3}\right) \mapsto$ $c\left(\varphi\left(b_{1}\right), \varphi\left(b_{2}\right), \varphi\left(b_{3}\right)\right)$ is a representative of $\pi_{r}^{(2)}([c])$ and, from double $\mathfrak{X}^{\text {sep }_{-}}$ ergodicity,

$$
\left\|\pi_{r}^{(2)}([c])\right\|=\operatorname{ess}_{\sup }^{b_{i} \in B}{ }\left\|c\left(\varphi\left(b_{1}\right), \varphi\left(b_{2}\right), \varphi\left(b_{3}\right)\right)\right\|
$$

$$
=\operatorname{ess} \sup _{\xi_{i} \in\left(\mathcal{L}_{\left.\pi\left(G_{1}^{*}\right)\right)^{3}}\right.}\left\|c\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right\|
$$

where now $\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)^{3}$ is equipped with the measure $\varphi_{*}(\nu)^{3}=$ $\varphi_{*}(\nu) \otimes \varphi_{*}(\nu) \otimes \varphi_{*}(\nu)$. Since by hypothesis c is continuous on $\mathcal{C}_{3}\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)$ and vanishes on its complement, we have that
and we may assume that $b>0$. On the other hand, let $\varepsilon>0$ be such that $b-\varepsilon>0$, and let $\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathcal{C}_{3}\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)$ and $v \in E^{b}$ with $\|v\|=1$ be such that $\left\langle c\left(\xi_{1}, \xi_{2}, \xi_{3}\right), v\right\rangle>b-\varepsilon$. Then the set $\mathcal{S}_{\varepsilon}$ of triples $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ with $\left\langle c\left(\eta_{1}, \eta_{2}, \eta_{3}\right), v\right\rangle>b-\varepsilon$ is an open nonvoid set, and hence of positive $\varphi_{*}(\nu)^{3}$-measure, $\operatorname{since} \operatorname{supp}\left(\varphi_{*}(\nu)^{3}\right)=\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)^{3}$. Hence we also have that $\left\|c\left(\eta_{1}, \eta_{2}, \eta_{3}\right)\right\|>b-\varepsilon$ on $\mathcal{S}_{\varepsilon}$, which implies that ess sup $\left\|c\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right\| \geq b-\varepsilon$ and hence is equal to b.

We now prove (1). Since c is alternating, it vanishes on $\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)^{3}$ $\mathcal{C}_{3}\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)$, hence the set $\mathcal{V}=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in\left(\mathcal{L}_{\pi\left(G_{1}^{*}\right)}\right)^{3}: c\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \neq 0\right\}$ is open and, by hypothesis, nonvoid. Write G_{1} as the union $\bigcup_{Q \in \mathcal{F}} Q$, where Q ranges in the family \mathcal{F} of all compactly generated subgroups of G_{1}. It is plain that the union $\bigcup_{Q \in \mathcal{F}} \mathcal{L}_{\pi(Q)}$ of the limit sets of $\pi(Q)$ is dense in $\mathcal{L}_{\pi\left(G_{1}^{*}\right)}$ and hence there is $Q \in \mathcal{F}$ with $\left(\mathcal{L}_{\pi(Q)}\right)^{3} \cap \mathcal{V} \neq \varnothing$. Part (2) of the proposition allows us to conclude.

In order to illustrate Proposition 3.1, we present an immediate application to groups acting non-elementarily on the real hyperbolic plane $\mathbb{H}_{\mathbf{R}}^{2}$. Recall that (see [BM2]) in degree two, if \mathcal{H} is a continuous irreducible unitary representation of $\operatorname{PSL}(2, \mathbf{R})$, we have

$$
\operatorname{dim} H_{\mathrm{cb}}^{2}(\operatorname{PSL}(2, \mathbf{R}), \mathcal{H})= \begin{cases}1 & \text { if } \mathcal{H} \text { is spherical } \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 3.2. Let $\pi: \Gamma \rightarrow \operatorname{PSL}(2, \mathbf{R})$ be a homomorphism with nonelementary image. Then for any spherical representation \mathcal{H}, the map

$$
\pi^{(2)}: \mathrm{H}_{\mathrm{cb}}^{2}(\operatorname{PSL}(2, \mathbf{R}), \mathcal{H}) \rightarrow \mathrm{H}_{\mathrm{b}}^{2}(\Gamma, \mathcal{H})
$$

is injective.
Proof. It is shown in [BM2] that a generator of $\mathrm{H}_{\mathrm{cb}}^{2}(\operatorname{PSL}(2, \mathbf{R}), \mathcal{H})$ can be explicitly described by an alternating, weak-*-continuous PSL(2,R)invariant cocycle

$$
\omega: \mathbb{H}_{\mathbf{R}}^{2}(\infty)^{3} \rightarrow \mathcal{H}
$$

such that for every distinct triple $(x, y, z) \in \mathcal{C}_{3}\left(\mathbb{H}_{\mathbf{R}}^{2}(\infty)\right), \omega(x, y, z) \neq 0$. Since by hypothesis the limit set of $\pi(\Gamma)$ contains at least 3 points, Proposition 3.1 enables us to conclude.

References

[BI1] M. Burger, A. Iozzi, Bounded cohomology and representation varieties in $\operatorname{PSU}(1, n)$, preprint announcement, April 2000. http://www.math.ethz.ch/~ iozzi/ann-def.ps
[BI2] M. Burger, A. Iozzi, Bounded cohomology and totally real subspaces in complex hyperbolic geometry, preprint, March 2001. http://www.math.ethz.ch/~ iozzi/tr.ps
[BI3] M. Burger, A. Iozzi, Bounded Kähler class rigidity of actions on hermitian symmetric spaces, preprint, April 2002. http://www.math.ethz.ch/~iozzi/supq.ps
[BM1] M. Burger, N. Monod, Continuous bounded cohomology and applications to rigidity theory, GAFA, Geom. Funct. Anal. (2002), in this issue.
[BM2] M. Burger, N. Monod, On and around the bounded cohomology of $S L_{2}$, in "Rigidity in Dynamics and Geometry, Cambridge, UK, 2000", Springer Verlag (2002), 19-37.
[BMo] M. Burger, S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9:1 (1996), 57-93.
[I] A. IozzI, Bounded cohomology, boundary maps, and representations into $\mathrm{Homeo}_{+}\left(S^{1}\right)$ and $S U(1, n)$, in "Rigidity in Dynamics and Geometry, Cambridge, UK, 2000", Springer Verlag (2002), 237-260.
[M] S. Matsumoto, Some remarks on foliated S^{1} bundles, Invent. Math. 90 (1987), 343-358.
[Mi] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1957-58), 215-223.
[MoS1] N. Monod, Y. Shalom, Rigidity of orbit equivalence and bounded cohomology, in preparation.
[MoS2] N. Monod, Y. Shalom, Cocycle super-rigidity and bounded cohomology for negatively curved spaces, in preparation.
[S] S.M. Srivastava, A Course on Borel Sets, Springer-Verlag, New York, 1998.
[W] J.W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257-273.

Marc Burger, FIM, ETH Zentrum, Rämistrasse 101, CH-8092 Zürich, Switzerland

