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BOUNDED KAHLER CLASS RIGIDITY OF ACTIONS
ON HERMITIAN SYMMETRIC SPACES

BY MARC BURGER AND ALESSANDRAIOZZI

Dedicated to the memory of Bob Brooks

ABSTRACT. — We prove that the conjugacy class of a Zariski dense representation— PU(p, q),
q > p = 1, of a finitely generated group is completely determined by the pull-back vieof a bounded
cohomology class ifil%,(PU(p, q),R) defined in terms of the Kahler form on the associated symmetric
space. Under the assumption tii& (T, R) is finite dimensional, we show that, up to equivalence, there
is only a finite number of such representations for fixes p > 1; moreover, under the hypothesis that
H(T',R) injects intoH?(T, R), we estimate the total number of such representations (feralb > 1) to
be bounded above hyimg H?(T, R).
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RESUME. — On montre que la classe de conjugaison d’'une représentation d'image Zariski dense
m:I' — PU(p,q), ¢ > p > 1 d'un groupe de type fini® est déterminée par I'image inverse pad'une
classe de cohomologie bornée daifg (PU(p, ¢), R) déduite de la forme de Kahler de I'espace symétrique
hermitien associé. LorsqulZ(I',R) est de dimension finie, on démontre qu'il N’y a, & équivalence
prés, qu’un nombre fini de représentations d'image Zariski denseqgpup > 1 fixés; de plus, si I'on
suppose que I'application naturell® (I",R) — H?(I',R) est injective, alors le nombre total de telles
représentations (pour toys> p > 1) est borné padimg H*(T, R).
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1. Introduction

The purpose of this paper is to introduce and study bounded analogues of classical invariants
attached to isometric group actions on Hermitian symmetric spaces.

Let X be a Hermitian symmetric space (of non-compact type), that is a symmetric space
admitting a complex structure invariant under the connected companeftthe group of
isometrieslso(X’) of X', and letl" be a group. Then the second continuous cohomology group
H%(G,R) of G with real coefficients is a vector space of dimension the number of irreducible
factors of ¥ [19] and, fixing a continuous clagson G, one obtains for every homomorphism
m:I' — G an invariant7*(x) € H3(I',R), well defined and constant on the (topological)
connected components of the representation vatiety(I", G). For example, ifl’ = 71 (.S) is
the fundamental group of a compact oriented surface of genus atlethst Toledo invariant,
which is the evaluation af* () on the fundamental class §f does, in certain cases, distinguish
the connected componentsiéém(T", G), and, when maximal, contains substantial information
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78 M. BURGER AND A. |0ZZI

aboutr (see[17,21,32-34,4,7];see also [22, Section 1.1] for analogous resultidamattice
in SU(1,n)).

Assuming now thatY' is irreducible, an explicit differentiable cocycl&; providing a
generatokg € H2(G,R) is given by

(1.1) ca(91,92,93) = / w,

A(g120,92%0,93%0)

wherew is the Kéhler form on¥ andA(z,y, z) denotes an oriented smooth trianglelinwith
geodesic sides. The starting point of our investigation is the factth& a bounded function,
namely

lcgllo =7ra, ra=rankg(G),

(see [11] for classical groups and [10] for the general case). Thus, in the terminology of [9] and
[27], c: defines a continuous bounded cohomology clgss H2, (G, R), which corresponds
to k¢ under the canonical isomorphidit, (G, R) = H2(G, R) (see [9)]).

Hence, for every homomorphism I' — G we obtain an invariant*(x2) calledthe bounded
Kahler class ofr, which lies in the second bounded cohomology gréijgl", R) of I'. Echoing
the work of E. Ghys on the bounded Euler class [14,15], and the treatment in [22] of Matsumoto’s
rigidity theorem [25], it is natural to ask which additional information the bounded Kéhler class
contains. In this direction we have the following:

THEOREM 1.1.-Let G = PU(p,q), I a finitely generated groups:I' — G a homomor-
phism, andr* (x2) € HZ(T, R) its bounded Kahler class. Assume that p < ¢ and thatr has
Zariski dense image. Then

(i) 7 (k&) +#0;and
(i) 7* (k%) determinesr up toG-conjugation.

Remark1.2. — In Theorem 1.1, the condition thabe different fromg is necessary, since if
I’ = m(S) is the fundamental group of a compact oriented surfacé genus at least two and
m,me: ' = PSU(p,p) := G are any two representations with maximal Toledo invariant, then
7 (k%) = 73 (k2) (see the proof of [7, Proposition 2.1]).

Thus, forG = PU(p, ¢q) with p < ¢, Theorem 1.1 gives us an injective map

K:Rzq4(I',G) — HZ(T,R)
(1.2) 7T'—>7T*(I<Llé)

defined on the set off-conjugacy classes of representationd’ofhto G with Zariski dense
image, which is equivariant with respect to the canonical actiongwfI') on source and
target. Recall thaRzq(I',G) is in a natural way the set of real points of an affine variety
([, Proposition 8.2] and [31, Proposition 4.3 and Remark 4.4]).

In fact, Theorem 1.1 is a special case of a more general result to which we now turn. For ease
of statement let us introduce the following terminology: we say that a representation G is
of type(p, q) if G is isomorphic tdPU(p, q). Moreover we say that; :T' — G; andmy: I’ — G2
areequivalentf there is an isometr{": X1 — X, between the corresponding symmetric spaces
such thatr(y) = T'mi(y)T 1. Finally, the Hermitian symmetric spaces under consideration
will always be equipped with their normalized Bergman metric, when considered as bounded
symmetric domains. Then we have:

4€ SERIE— TOME 37 — 2004 N° 1



BOUNDED KAHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 79

THEOREM 1.3.— Let I be a finitely generated group and let:T" — G; be pairwise
inequivalent representations of tygg;, ¢;), for 1 < i < n. Assume that < p; < ¢; and that
m;(T") is Zariski dense. Then the set

{77 (rg,): 1<i<n} CHE(T,R)

is linearly independent ovex.
Using Theorem 1.3 we show:

COROLLARY 1.4.— LetI' be a finitely generated group. Assume tiE}(I', R) is finite
dimensional, and fixl < p < ¢. Then there are, up to equivalence, only finitely many
representation§' — PU(p, ¢) with Zariski dense image.

Remark1.5. — In fact, we prove a stronger result from which Corollary 1.4 follows, namely
that the image ifiZ (', R) under the magk in (1.2) of any continuous injective path

c: I —Rzq(T,G)

from a non-empty open intervdl C R, contains an uncountable subset which is independent
overR (Proposition 9.1).

Recall now that ifQH(T") is the vector space of quasihomomorphism§ pthat is functions
f:T"— R such that
sup | f(ab) — f(a) — f(b)| < oo,

a,bel’

then the kernel of the comparison mEQ(I", R) — H?(T', R) is described by the quotient
EH(I') = QH(I')/ (¢(T') & Hom(T', R)),

where we identify two quasihomomorphisms when they differ by a homomorphism plus a
bounded function. Applying Theorem 1.1(i) fo= [F5, the free group on two generators, and
taking into account thafl?(Fs, R) = 0, we deduce that any homomorphismFs — PU(p, q),
p < q, with Zariski dense image gives rise in a geometric way to a quasihomomorphism
f=:Fa2 — R, which is not at bounded distance from a homomorphism. Moreover, in view of
Remark 1.5, Corollary 1.4 gives another proof of the fact that the second bounded cohomology
group of a free group in at least two generators is infinite dimensional by providing a new
geometric construction of an uncountable number of linearly independent bounded classes and
hence of linearly independent (equivalence classes) of quasihomomorphiBHiS(iR) (see [5],
and also [18] and [26], for the original construction): for example, Benoist’s construction of
Schottky groups [2] shows that the space of discrete, faithful, Zariski dense realizatinsof
PU(p, q) has, modulo conjugation, positive dimension; see also [20] for an example of an explicit
continuous deformation intBSU(1, 2) of IF, realized as the ideal triangle groupR$U(1,1).
Imposing a stronger hypothesis, we conclude from Theorem 1.3:

COROLLARY 1.6.— Assume thal is finitely generated and that the map
HZ(I',R) — H3(I',R)

is injective. Then the number of inequivalent, Zariski dense representations of itype
1< p< g, is bounded bylimg H?(T', R).
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80 M. BURGER AND A. |0ZZI

The hypotheses thét? (I', R) is finite dimensional and th&t? (I", R) injects intoH?(T', R) are
thus intrinsic conditions on the bounded cohomologly gliaranteeing strong rigidity properties.
In the same vein, N. Monod and Y. Shalom have shown that the condifgn, ¢(A)) # 0
imposes on a group a rather strong rigid behavior in the context of orbit equivalence [28].

As sources of examples concerning Corollaries 1.4 and 1.6, we mention the following:

Examplesl.7. — (1) IfT' < G; x G2 is a lattice in a product of compactly generated locally
compact groups with dense projection onto each factor, one has the isomorphism [9]

HE (T) > HE, (Gh) @ HE (Ga).-

In the particular case in whichIf < Aut(77) x Aut(7z) is a cocompact lattice in the product of
automorphism groups of regular tregsof valency at least andG; := pr,(T") acts transitively
on the boundary; (cc), from the fact that?, (G;) = 0 [9] we obtain that? (T") = 0.

(2) f T < [[ Ga(ks) is an irreducible lattice, wher&:,, arek,-almost simple groups over
local fieldsk,, with }" rank,, G, > 2, thenH? (T') injects intoH?(I") [9], and both spaces are
finite dimensional. In this case Margulis’ superrigidity theorem applies and implies Corollary 1.6.

2. On the proof and the organization of the paper

The proof consists of two separate independent parts: roughly speaking, in the first we
define an algebraic function which, via properties related to boundary maps, characterizes the
representations up to conjugacy, while in the second we interpret this algebraic function in
cohomological terms.

More specifically, we define the Hermitian triple produyct-,-) on triples of maximal
totally isotropic subspaces in generic position, which corresponds in the c&fé(bfn) to
the classical notion of Hermitian triple product [16]. Realiz#ig(p, ¢) =: G as the real points
of an algebraic group and considering the corresponding complexified Hermitian triple product
(-, -, )c, standard arguments in Zariski topology show that the Hermitian triple product can
distinguish among representations when evaluated on the imagE-efjaivariant measurable
mapy: B — Is(. .y, whereB is a double ergodic amenable Poisson boundary'fandls,. .,
is the Grassmannian of maximal totally isotropic subspaces.

The second step consists in relating the pull-back,iaf the Hermitian triple product to
the pull-back, viar, of the bounded Kéahler clasg. To do this, using the double ergodicity
and once again the amenability of thespaceB, we identify as usual the second bounded
cohomology groupi? (I', R) of I" with the space2 L, (B*)" of essentially bounded alternating
I-invariant cocycles orB® [9]. Moreover, we computéi? (G,R) as the cohomology of an
appropriate resolution on generic configurations of points in the Shilov bourttiafyt’; the
class corresponding under the isomorphism to the bounded Kéhler class has then a representative
B¢ which is a strict Borel cocycle on generic triples of points in the Shilov boundary and
hence the pull-backr* :H? (G,R) — HZ(I',R) can be implemented directly via the map
¢ (after observing thals. .y ~ S). Moreover, ¢ has the further crucial property that its
exponential is essentially the Hermitian triple product which could distinguish among Zariski
dense representations: the same property is hence inherited by the pull-back of the cohomology
class of3g and thus by the pull-back of the bounded Kahler class.

The paper is organized as follows.

e In Section 3 we describe both the ball and the hyperboloid model for the Hermitian
symmetric space associated@) together with their explicit isomorphism which relates
also the Shilov boundary in the ball model with the suldsgt., of the boundary in the
hyperboloid model. We also describe here the complexificatian afdls,. ..
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BOUNDED KAHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 81

In Section 4 we define the Hermitian triple produgt -, - ), its complexified version

(-, -, )¢, and describe their relation. Then we show the essential lemmg that- )¢

is not constant if and only ip # q.

In Section 5 we explicit the correspondence between generators of various cohomology
groups in degree two (notabl?(G,Z), H2(G,R), and H? (G,R)), and we define a
cocycleSq on the Shilov boundary in the ball model of the Hermitian symmetric space,
which extends the cocycle; on the interior corresponding to the Kéhler form (see 1.1).

In Section 6 we define the resolution whose cohomology computes the bounded continuous
cohomology ofG and we show that the cohomology class of the extensipnorresponds

to the bounded Kahler clag$, under the canonical isomorphism in cohomology.

In Section 7 we construct the boundary mapB — Is,. ., into the space of maximal
totally isotropic subspaces, by first recalling the existence of a Poisson boundB&nylfiach
implies, by standard arguments using the amenability of the actibroofB, the existence

of aT'-equivariant measurable map frabinto the space of probability measure 61 P,
where P is a minimal parabolic subgroup. Using the Zariski density of the representation
and Furstenberg’s boundary theory, we prove following [24] that the actie(ldfon G/ P

is mean proximal, which allows us to deduce that in fact the boundary map alluded above
takes values int@// P. Composition with the projectiot'/P — G/Q ~Is,. ., whereQ

is an appropriate maximal parabolic containifggives the required map. Furthermore we
prove that the images via of almost all points inB are pairwise in generic position.

e In Section 8, using the isomorphism (3.2) between the Shilov boundary and the space of
maximal totally isotropic subspaces, we put to use the boundary map in Section 7 and the
resolution in Section 5 to show that indeed the pull-back of the Kéhler class is represented

by the composition of with the cocyclese defined in Section 5.
e In Section 9 we prove all results stated in the introduction.

3. Preliminaries
3.1. Two models of Hermitian symmetric spaces

Let V be a complex vector space with a non-degenerate Hermitian {orm We start
by recalling two models for the symmetric spagdeassociated to the special unitary group
SU(V, {-,-)) and the explicit realization of the identification between them.

Let p be the index of the Hermitian forrt, -), that is the maximal dimension of a totally
isotropic subspace; then= min{p,,p_}, wherep,. is the maximal dimension of a subspace
W C V suchthat-, -)|w ise-definite, fore € {4+, —}. Modulo a change of sign, we may assume
thatp = p, < p_. The hyperboloid modek™ of X is the open subset of the Grassmannian
Gr, (V) of p-planes inV given by,

X" :={L € Gry(V): (-,-)| is positive definitg
and its closure ifGr, (V) is
X = {L €Gry(V): (-,-)|1 is semi-positive definitp
To describe the realization éf as a bounded symmetric domain, fix a subspace X" with
orthogonal complemerii_ and, fore € {+,—}, let(-,-). be the restriction td.. of (-, -). Itis

easy to see that for any € X’ the orthogonal projectiopr;, |r: L — Ly is an isomorphism
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82 M. BURGER AND A. |0ZZI
and hence we may define
(3.1) E(L):=pry,_o(prp, |r) ' €Lin(Ly, L),

whereLin(L , L_) is the space of linear maps frolm_ to L _. Moreover, for allL ¢ X", E(L)
is semi-positive definite and hence the map

(3.2) E: X" — Lin(Ly,L_)
defines an identification betweér?* and
Xb:={A€Lin(Ly,L_): Id. — A* Ais semi-positive definitp,
whereA* is the adjoint map with respect o, -).. FurthermoreF identifies X" with
X':={A€Lin(Ly,L_): Id, — A*Ais positive definit¢

(whose closure ifuin(L,L_) is X?), and the spack,. ., of totally isotropicp-subspaces with
the Shilov boundary

S={AeLlin(Ly,L_): Idy — A*A=0},

of the bounded symmetric domai?.
3.2. Complexification

We turn now to the description of a suitable model of the complexificati®igV, (-, -)), and

the spacds,. .. For this, fix a real structure — v on theC-vector spacé’. Let Vg :=V x V
and define
Ay:V =V
v (v,7).
Then

7(v,w) := (W, D)
gives a real structure ovic with fixed point setAy (V). The form
[,]:VxV-=C
(v,w) = [0, 0] = (v,70)

is C-bilinear and non-degenerate and, with an appropriate choice of the real struetufewe
may assume that it is symmetric.
Let A =C x C be the algebra, product of two copies@fwith involution

0c:A— A
(A ) = (1, A),
and defineA¢ : C — C x C by Ac()\) = (A, \). Then

(3.3) (A ) = (71, \)
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BOUNDED KAHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 83

defines a real structure ot with fixed point setA¢(C). Componentwise scalar multiplication
gives anA-module structure ofr;, defined oveR. The form
F:V(C X V(C — A
((Ul,wl), (Uz,wz)) = ([Ulan]a [Uz,wl])

enjoys then the following properties:
(1) Fis Hermitian symmetric, that is, for all, b € A andx,y € V¢,
(@) F(az,by) =aoc(b)F(x,y), and

(b) F(y,z)=0(F(z,y)).
(2) Fis defined oveR and extends the Hermitian fortn, -), namely

F(Av(u), Av(v)) =Ac ((u7 U>)

forall u,v e V.
The groupGL 4 (V) of A-module automorphisms &f: is defined oveR and so is the subgroup

G = {T € GL4(V¢): detaT =14, T preserves},

wheredet 4 is the A-valued determinant. IdentifyinGL 4 (V¢) with GL(V) x GL(V), we get

G={(9,9" ) geSL(N)},

whereb denotes the adjoint with respect to the symmetric fdrm]|. Finally, restricting to
Ay (V) the action ofG(R) gives an identification d8U(V (-, -)) with G(R).

The set of freeA-submodules of rank consisting of totallyF-isotropic vectors may be
identified with the projective variety

Isp = {(U, W) e Grp(V) x Grp(V): [u,w] =0, forallu e U,w e W},

which is defined oveR. The action ofG onIsr is also defined oveR, and the map
AIs<, = IS(. . b ISF(R)
(3.4) L~ (L,L)

is an identification which is equivariant with respect to the identifica®ioiiV, (-, -)) ~ G(R).
The groupSU(V,(-,-)) acts transitively onls.. ., and Witt's theorem implies that it acts
transitively on the set

(3.5) Isf,),> = {(L1, L) € (I y)* LiN Ly ={0}}

of pairs of transverse totally isotropiesubspaces.

4. TheHermitian triple product

We proceed now to define an invariant for the actiorSof(V, (-, -)) on Gr,(V)3. Given
Lq,Ly € Grp(V) andB; = {b}: 1 <j < p} abasis ofL;, set

(B1, By) :=det ((bY,b3)r,s).
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84 M. BURGER AND A. 10ZZI
If C; is another basis aof;, andA; is the matrix of change of basis froBy to C;, we have
(41) <Cl,CQ> :detA1<Bl,Bg>detA2.

Given nowL,, Ly, Ls € Gr,(V), and B;, C; bases ofL;, it follows from (4.1) that(B:, B2)
(Bq, B3)(Bs, By) differs from(C1, C3)(C2, C5){C5, C1) by a positive real, and hence we obtain
a well defined invariant

(42) <L1,L2,L3> = <Bl,Bg><BQ,B3><B3,Bl> S Ri \(C

which we call theHermitian triple product(by analogy with [16, Section 2.2.5]).

Observe that ifL; € X", we can writeL; = {v + E(L;)v: v € L}, so that, if{vy,...,v,}
is an orthonormal basis di,, thenB; = {v;, + E(L;)vx: 1 <k < p} is a basis ofL;. One can
easily check that

<Bl, Bg> = det(Id+ - E(Lg)*E(Ll)),

and hence one has &} \ C the following equality

(43) Ll,LQ,Lg Hdet ]dJr — z+1) (Ll)),

where the indices are to be taken modailo

Observing thatl; N Ly = {0} if and only if (B, Bz) # 0 (where B; is a basis ofL;),
we deduce that on the spaléf)’,)» of triples of pairwise transverse maximal totally isotropic
subspaces, the Hermitian triple prodyct , -) takes values iR \ C*.

The set of values taken by the Hermitian triple product on the Shilov boundary shows the
remarkable difference between the cgses= p_ andp, # p_, as recorded in the following:

LEMMA 4.1. - The set of value¥al taken by the Hermitian triple product oﬁsg,g),> is as
follows 7

(i) fpy=p-,
_ J{#i} mod R} ifpisodd,
(4.4) Val = { {+1} mod RY ifpis even;
(i) 1f py <p_,

Val — {z: [2| =1,R2 <0} mod R} ifpy =1,
RY\ C~ if py > 1.

Proof. —We say that
(4.5) Ay, As € S are transverse iflet (Id, — A3A;) #0,
and defingy: S — C by
8(Ay, Ay, Ag) = det(Id, — A3A,)det(Idy — A%As)det(Idy — At Ay).

(i) In this case we have thatim L, = dimL_ and everyA € S is an isomorphism of
unitary spaces as it verifiekl, = A*A. In particular we have thatl A* = Id_. Given now
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BOUNDED KAHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 85
Ay, Ay, As € S pairwise transverse, sét; = A7 A, fori=1,2,3 (with the indices intended
modulo3), so that
(4.6) C3C,C, =1dy.

SinceC; is unitary, we have
det(Idy — C;) =det(Id; — C; 1) = (=1)P det(C;) "t det(Id . — Cy),
which implies, taking into account (4.6), that
6(Ar, Az, Ag) = (—1)P8( Ay, Az, Ag).

This shows that(A;, A2, A3) is purely imaginary ifp is odd and real ifp is even. Taking
appropriate special matrices shows that the inclusions so obtained are in fact the equalities
in (4.4).

(i) In casep = 1, we have the classical Hermitian triple product of isotropic vectors and the
claim follows for instance from [16, Section 7.1].

In case2 < p; < p_, let p =p, and ¢ = p_, for notational simplicity; by choosing
orthonormal bases inL,,L_, we have the identification&in(L4+,L_) ~ M, ,(C) and
S~8,:={AeM,,(C): A*A=1,}.Let

_ Ip _ _Ip — Z
() (7). e (2)

where
A 0 ... 0 w 0 ... 0
0 X ... O 0 0 0
Z1 = . . . . and Z5 = co ) .
0 0 ... X 0 0 ... 0

ThenX,Y € S,; moreoverZ € S, if and only if |A\1|? + |u[? = 1, and|\;| = 1 for 2 < i < p.
Furthermore XY, Z are pairwise transverse if and onlyXf ¢ {—1,1}, for 1 < ¢ < p, which
we assume from now on. Then a computation gives

p
§(X,Y,Z) =21 (1= I\ P+ (=) [T =),
=2

which easily implies the claim. O

Moving on to the complexified situation, Ieiﬁr;f‘(v) be the Grassmannian of fre-
submodules o of rankp. For £1,£s € G} (V), and B; = {b!: 1< j < p} a basis ofL;
overA, set

(B1, Ba)c == det 4 (F(b],b3),s) € A.
We say that for = 1,2

(4.7) L; =V; x W; are transverse ¥, N W, = {0} andW; N+, = {0},
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where' U denotes the orthogonal of a subspatce V' with respect to the symmetric form, -].
Then

(4.8) (B1,Bs)c € A* ifandonlyif L;,Ls are transverse
If C; is anotherA-basis ofC; andA; € M,, ,(A) is the change of basis frof; to C;, we have

(4-9) (F(Civcg)r,s) =4 (F(b{,b;)T,S)U(Ag).

Setting
(B1,Ba, B3)c = (B1, B2)c (B2, Bs)c (B3, Bi)c,

we deduce from (4.9) that
<Cl, CQ, 03>(C = N(detA Al)N(detA AQ)N(detA A3)<B1, BQ, Bg>(c,

where N: A — C is the norm map given bW (a)14 = ac(a). Thus, for anyl;, L, L3 €
Gr;f‘(V), we obtain a well define@-invariant Hermitian triple product

(L1, Lo, L3)c = (B1, B2)c (B2, B3)c(Bs, Bi)c € C* \ A.

LEMMA 4.2.—
() G acts transitively ofsg;
(i) ForeveryL €lsp, the set

nt(L) :={L£' €Isp: L' is nottransverse td}

is a proper Zariski closed subsetBfz.

Proof. —(i) Choose a basiées, . .., e, } of V such thafe;, ;] = d;;, and define
V():C€1+"'+(C€p and W0:C€p+1—|—"'+(cegp.

SincetVy = Cepy1 + -+ + Cep, We have that(Vp, W) € Isp. Let (U, W) € Isp and take
g € SL(V) such thayU = V;. Theng* ' (W) c +V;. Now,

Stabgr,v) (Vo) _{<61 g) : det Adet C' = 1},

and hence the action 6fabsy,( (Vo) on+V; via h — h* " gives the fullGL(+V;)-action on
LVp; sincedim g* ' (W) = dim Wy, there ish € Stabgy,(v (Vo) with 2~ (g*~ (W) = W,
and thus(hg, hg* ™) (U, W) = (Vo, Wp).

(i) follows from (4.8). O

Remark4.3. — One can show th& acts transitively on the set of pairs of transverse elements
in Isg, but we shall not need this fact.

The set
1s$) = {(£1, La, L3) € (Isp)®: L1, La, L3 are pairwise transverye
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is a Zariski open subset ¢fsr)?, defined oveiR. The Cartesian product of the identification
Ay, ., in(3.4) induces an identification

(4.10) AP

3 3
2P P (R).

¢

The affine spacel with its R-structure given byr (see (3.3)) is acted upon By*, and this
action is defined oveR; we denote byP! (C) the quotientC* \ (A~ {0}) with its corresponding
R-structure. Then the Hermitian triple product gives a reg@anvariant map

(4.11) (-, e I8 - PY(C)
defined ovelR and with image contained i6* \ A*. The mapAc giving the real structure on
Ainduces a map

A:RY\C* —C*\ A,

which is also a group homomorphism with kernel of ordeand one verifies that the following
diagram

Is() £ode oy A

A;sg__}T Tz
3 (i)
Is(®) ) S RY\ CX

commutes.
For L1, Ly € Isp(R) transverse, leO,, ., C Isp be the Zariski open, connected subset of
those element§ € Isy which are transverse t6; and£,. Then the function

Prizy:Opy o, > CF\ A
givenbyP;, £,(L):= (L1, Ls, L) is regular and:
LEMMA 4.4.—If p_ > p,, thenPf; . is not constant for anyn € Z, m # 0.
Here Py », (L) = (Pc, c,(L£))™, where the product is taken @ \ A*.

Proof. —Since G(R) is transitive onlsg) (R) ~ Isf_),> (see (3.4), (3.5), and (4.10)) we
have Pz, »,(Or, .2, (R)) = Image((-, -, ) . Whenp_ > p., the latter is infinite by
Lemma4.l. O

C | IS(F?’) (R) )

5. The bounded Kahler class
5.1. The Dupont cocycle as an integral cohomology class
Let G be a connected simple Lie group with finite center ahitls associated symmetric space.
We assume thalt’ is Hermitian symmetric, that i& carries aG-invariant complex structure.

Fix o € X a basepoint, lei{ = Stabg(z¢), and letg = ¢ © p be the corresponding Cartan
decomposition of the Lie algebgaof G. We shall equipt with the metric defined by%Bg,
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whereB, is the Killing form of g. For the associated Kéhler fonmwe have then,
1
Wz (X, Y) = §Bg(X7 JY), forall X,Y ep,

whereJ € End(p) is the complex structure obtained from the identificatioff gfX with p. The
Kahler formw gives rise to the Dupont cocycle

(5.1) ca(91,92,93) = / w,

A(g120,92%0,93%0)

where for any three points, y, z € X, A(x,y, z) denotes &-simplex with vertices, y, z and
geodesic sides. The (homogeneous) cocyglés G-invariant, differentiable and bounded [12]
and thus defines both a continuous cohomology class H?(G,R) and a bounded contin-
uous class:? € H2 (G,R) which correspond to each other via the canonical isomorphism
H? (G,R) ~ H2(G,R) [9]. Taking into account thal? (G, R) ~ R, these classes are genera-
tors of their corresponding cohomology groups.

Denoting byH? (G, R) (respectively? (G, Z)) the Borel cohomology of+ with coefficients
in R (respectivelyz), it is important for us in the sequel to determine the specific multiple;of
which is the image of a generatoridf (G, Z) ~ Z (see [19]) via the map? (G, Z) — H?(G,R).
To this end, letZ, € Z(¢) be the uniquely defined element in the centerto$uch that
adg(Zo)|p = J, u: K — T agenerator of the grodfiom, (K, T') of continuous homomorphisms
of K into the circleT, and Du, : ¢ — iR its derivative at the identity.

LEMMA 5.1.-The cocycle

1 Du.(Z
Cé(91792793) = _J

= 3ri dimp cc (91,92, 93)

determines a generator of* (G, Z).

Proof. —According to [13], such a cocycl€, can be represented by

(52) Cé(91192193) = / Qa

A(g9120,92%0,93%0)
where() is the invarian2-form on X’ whose value af,,, X ~p is
(5.3) QmO(X,Y):ﬁDue([X,Y]), XY ep.
By using the decomposition= R 7, & [¢, £], we define &-form w; onp by the equation
(5.4) (X, Y]=wn(X,Y)Zy+C, Celtrt.
ThusDu.([X,Y]) =w1(X,Y)Du.(Zy) and we proceed to relatg to w,,. We have
2wz (X,Y) = Tr(adg(X) adg (JY)) = Tr(adg (X ) adg ([Zo, Y]))-
By expandingadg([Zo,Y]), and using (5.4), we obtain
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200 (X,Y) = —Tr(adg ([X,Y]) adg(Z0))
— —Tr(wi (X, Y)(adg(Z))?) — Tr(adg(C) adg(Zo))
=dimpw (X,Y) — Tr(ady(C) adg(Z0)).
Using thatC € [¢, €], one checks thalr(ady(C) adg(Zo)) = 0, and thus

Due(Zo)wzo (X,Y),

Du.([X,Y]) = oy

which, together with (5.3) and (5.2), implies the lemma

LEMMA 5.2.—
(I) If G =SU(p,q) thencZ = WCG;
(||) If G= PSU(p, q) thenCé = WCG.

Proof. —The Lie algebra o8U(p, q) is

su(p,q) = {X € My14(C): X'H+HX =0}, whereH = ( Oq

=
N———

For the Cartan involutiod(X) = —X *, we have

p:{(gt g):Bqu,p((C)}.

For the complex structure gngiven by B — i B we obtain

Zo = _ig .
0 ptq P

If G=SU(p,q), thenK = S(U(q) x U(p)), and a generatar of Hom. (K, T) is given by

u (A 0) :=det A.

0 B

From this we deduce readily that
ipq

Du.(Zy) = ,
(2= e

which, together withlim p = 2pq, implies (i).
For part (ii), if we letG, be the adjoint groupPSU(p, q), then its maximal compact subgroup
K, is the quotient of” by

Z(G) ={ M, q: W9 =1}

and a generaton, of Hom(K,,T) is given byu, := u™, wheren € N is minimal such that
u"|z(@) = 1. A computation gives then

__pbta
ged(p,q)’

which implies (ii). O
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5.2. Extension to the boundary

Turning now to the ball modet” of the symmetric space associatedie= SU(V, (-,-)), we
are going to extend the cocycle

(5.5) c(z,y,z):= / w
A(m7y7z)

to (a subset of) the closurgb ¢ LHLJF, L_). To this end, a formula for (5.5) due to Domic and
Toledo will be useful. FoX, Y € X? transverse — that iet(Id . — X*Y') # 0 (see (4.5)) — let

p
ac(X,Y):==2) arg(l- X)),
j=1

where A, ..., \, are the eigenvalues of *Y counted with multiplicity. Sincg);| < 1 and
Aj # 1, thenarg(l — \;) € [-n/2,7/2] is well defined.

For X,Y, Z € X? pairwise transverse, let
Ba(X.Y, Z)=ac(X,Y) + ac(Y, Z) + ac(Z, X).
Then
LEMMA 5.3 [11]. —ForeveryX,Y, Z € x®
Ba(X,Y, Z) = / w.

A(X,Y,Z)

Let X* ® denote the set of triples of pairwise transverse element€ofhen

LEMMA 5.4.—The functionig : Xt 3 — [—7p, p] is continuous, alternatingz-invariant,
anddgq (X1, X2, X3, X4) = 0 for all 4-tuples of pairwise transverse elements.

Proof. —The functiongg is clearly continuous o’® ) and, by Lemma 5.3, satisfies all above
properties or{X’?)3. Since(x?)? is dense int® (®), we obtain the lemma. O

Finally, it follows from the above formulae that
e3P (XV2) — et (Id, — Y*X) det(Idy — Z*Y)det(If, — X*Z) mod RT*,
forall (X,Y,Z) e X% (3) Taking into account (4.3), we obtain
(5.6) 3Ac(B(L).B(12).B(Ls) — (L Ly, Ly) inRX \ CX

for all pairwise transversé,, Lo, L3 € Xh,

6. A resolution on the Shilov boundary

Let G =SU(V,(-,-)), let S be the Shilov boundary ot?, and let us define, for every > 2
and in analogy with the notation above,

SM ={(X1, Xa,...,X,) € 8™ X;, X; are transverse for all j }.
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For everyn > 2, the Banach spacB®, (S™) of bounded alternating Borel functions ™),
equipped with the supremum norm, admits a natural coboundary operator

dp: By (S™) = By, (S0 H),
defined in the usual way. The groGpacts by homeomorphisms 8f* and hence isometrically
on B (S™). Then, in the terminology of [9] and [27], we have:

LEMMA 6.1. —The complex

0—= R —2> B(8) —= B, (§@)) 2> -

is a strongG-resolution.

Proof. —Let ijt(S") be the space of alternating bounded Borel functionsS®r(with the
supremum norm)d’, : BX (S™) — B (S™+1) the natural coboundary operatgr,a G-quasi-
invariant probability measure oﬁl(for example the(-invariant one), and

—1- Bdlt(Sn)—)Balt(Snil)
a—hl_a,
where
10X X0 = [ ol Xy o) du(X0).
S

We have shown in [6] that the compIe(Bglot(S'),q.) is a strongG-resolution of R with
homotopy operators:;,. Let r,,: B} (S™) — Bglot(S("))v denote the operator obtained by
restricting functions toSvW and i, : B, (S™) — B (S™) the one obtained by extending
functions from S(™ to S™ by setting them equal to zero ofi* ~ S(™. Both r, andi,

are G-equivariant;r,, is norm decreasing ang, is norm preserving, thus they preserve the
corresponding subspaces@fcontinuous vectors. We have the simple relation

dn =Tn+1 d;ﬂn
Observe that, while, is a morphism of complexe$i., } ,, fails to be. Define now

hn = rnh;ﬂ'n—ﬁ-l-
Sinceh!, sends continuous vectors to continuous vectors, it follows from the above remarks that
hn, sends the subspace of continuous vector8dn(S"*+1)) into the subspace of continuous
vectors inB25, (S(™). All there remains to verify is that thie,’s are homotopy operators. Using
the above definition of,, and the fact that, is a morphism of complexes, we have

!/ - ! !/ .
dnflhnfl = dnflrnflhn_lln = Tndn_lhn_llnv

and
(6.1) hndn, = (rphlins1) (Tpe1dlin).
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Leta € B (S™+1) and definey’ := 1,117,410 Then

a’<X1,...,Xn+1>={0‘<X17-..,Xn+1> if (X1,..., Xpp1) € 5D,
0 otherwise.
Observe that if X5, ..., X, 1) € S, then
/L{Xl S SZ (Xl, .. .,Xn+1) ¢ S(n+1)} =0
and hence, for all X, ..., X,,11) € S,
/a/(Xth, vy X)) dp(Xy) = /a(Xl,X2, o X)) dp(Xy).
S S
This implies that,, k. i, +17n4+1 = Tk, Which, together with (6.1), shows that
hn+ldn+l = Tnh;ld;llna
and hence
dyp—1hn—1 + hpdp =rp(dl,_ bl 1+ hod) )ig = Tyin = ]dBéﬁ(g(n)).
This concludes the proof of the lemmat
Applying now [9, Proposition 1.5.2] we obtain a canonical map

(6.2) H* (B3(S*)%) — H%, (G, R)

from the cohomology of the compléﬁgﬂ(S(‘))G, d, ) into the bounded continuous cohomology
of G. In particular the function considered in Section 5.2

B8 — [~mp, mp]

is a bounded, alternatings-invariant cocycle or5®) (see Lemma 5.4), and thus defines a class
[Bc] € H2(BS5,(S#)F).

LEMMA 6.2. — Under the mayg6.2), the clasgg| corresponds to the clasg, € H (G, R).

Proof. —We consider the morphisms of complexes
T (S©®) = L2(8%) — L=(G*),
where the first one is obtained by considering a functiorb6h as aclass ir,>(S™) (recall
thatS” <. S( is a null set) and the second is obtained by realizings a homogeneous space
of G by means of choosing a basepdird S. The composed morphism
BR.(5®) — L=(G*)

extends the identity and it follows then from Lemma 6.1 and [9, Proposition 1.5.2] that it
implements the canonical map (6.2) in cohomology. What is left to be shown is that

©(91,92,93) = Bc(91b, g2b, g3b)
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is cohomologous te¢ in L>°(G*). Define for all4-tuplesty, ts, ts3,t4 Of pairwise transverse
elements in®

D(tlv t27 t37 t4) = ﬁG(tla t27 t3) + ﬁG(t37 t47 tl)

Whent; € X, this coincides with the integral of the Kahler classver an oriented quadrilateral
with verticest,, ts,t3,t, and geodesic sides. Given now two trianglesAt with vertices
x1, T2, x3 andys, yo, y3, and applying Stokes theorem to the geodesic prism with the triangles as
bases, we obtain a relation involving the integrabajver two triangles and three quadrilaterals,
namely

Ba (y1,y2,y3) = Ba(x1, 22, 23) + O(y1, Y2, 72, 71)
(6.3) + 0(y2,y3, 3, 22) + O(ys, y1, 21, 23).

Using repeatedly the cocycle identity 8¢, one checks that this relation extends tosailiples
of pairwise transverse points ikib.
Denoting by0 € X* the origin in the ball model of’, and setting; := ¢,0, z; := g;b and

(6.4) (g, h) := D(gb, hb, h0, g0),
we obtain from (6.3) for ally;, go, g3 such thaty; b, g2b, g3b are pairwise transverse, that

(6.5) ca(91,92,93) = (91,92, 93) + dv(91,92,93)-

Since for almost every;, g2) € G2, g1b, g2b are transverse and

1v(g1,92)| < 27p,

we deduce thaty defines aG-invariant cochain inL>(G?), and since (6.5) holds almost
everywhere, we deduce that ande are cohomologous. O

7. Boundary maps

We begin by recalling how to construct, from a presentation of a finitely generated group, a
Poisson boundary with useful ergodicity properties. The statement was proven in [8, Theorem 3
and Section 2.5] and it can be proven in greater generality, namely for all compactly generated
groups, using [8, Theorem 3 and Section 2.5] together with [23] (see [9, Theorem 6]). We recall
its proof here in this simpler case for sake of completeness.

PrROPOSITION 7.1 [8]. — LetI" be a finitely generated groug, a finite generating set and
(B, v) the Poisson boundary associated to the measure

1
= —— 0s +d5-1).
2|5 sezs( )

Then the diagonal action df on B x B is ergodic and th&'-action onB is amenable.

Proof. —LetFs be the free group on the s€t p: Fs — I' the associated presentationlqfZg
the Cayley graph oF g relative to.S and7;(oo) the boundary offs. Then7g(co) consists of
all reduced words of infinite length and carries a natiliy@lquasi-invariant measuf@ defined
by m(C(z)) := (2r(2r — 1)"~1)~1, wherer = |S|, n is the length ofr, andC(x) consists of
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all infinite reduced words starting with. It is a classical fact tha{Zs(co), ) is the Poisson
boundary for the probability measure Bg

L 1
mi= o > (e +0,-1) € M (Fs).

ses

Moreover theF s-action on7g(co) is amenable, and thEg-action on7g(c0) X Zg(o00) is
ergodic. LetN = ker p and (B, v) be the point realization of the measure algebra associated
to the subalgebra > (7s (o))" of N-invariant functions inL>°(7Zs(c0)). That is,(B,v) is a
standard measure space equipped with a measurable fiao) — B such thap.(m) = v

and the pull-back via identifies L>°(B, v) with L>°(75(c0))™. ThenFs acts onB, and this
action factors vig : Fs — I". Using now that the pull-back viaidentifiesy = p.(m)-harmonic
bounded functions ol with N-invariantm-harmonic bounded functions dns, we deduce

that (B, v) is a Poisson boundary fdf, ;). SinceFgs acts ergodically orfs(oo) x Zg(c0),

we deduce thal acts ergodically onB x B. The amenability of thd'-action onB follows

from a general result in [35], but can also be deduced directly by using the characterization
of amenable actions given in [9]. We follow this last approach and we shall thus prove that
the Banachl'-module L>°(B,v) is relatively injective. To this end, led, B be Banachl'-
modules,i: A; — A, an admissible injectiv&-morphism (see [9]) and: A; — L°°(B,v)

a I'-morphism. Letj: L>°(B,v) — L*°(7s(c0)) be the injection given by the pull-back via
p:7Ts(00) — B. Consideringd;, As as Banaclt¥s-modules vigp: Fs — T', andi, j o o asFg-
morphisms, the amenability of tH&s-action on7s(oo) implies thatL>° (75 (o)) is relatively
injective and hence there exists Bg-morphismj: A, — L (7s(c0)) extendingj o a. Since

the N-action onAs is trivial, 3(A2) C 5(L>°(B,v)) = L>®(Ts(<))Y C L>=(T (x)), and hence
(JlLo(7(00y)~) "' 0 B: Ay — L>°(B,v) is al’-morphism extending. O

Let nowT be a finitely generated group,; " — SU(V, (-, -)) a representation, and,v) a
Poisson boundary df as in Proposition 7.1. Our objective is to prove:

PROPOSITION 7.2. —Assume thatr(T") is Zariski dense. Then there existd aequivariant
measurable map

w:B—1Is.
such that for almost albb,, b2 € B, ¢(b1) and(bs) are transverse.
The proof of Proposition 7.2 is based on the following fact, whose proof we postpone.

THEOREM 7.3.— Let G be a connected semisimple group defined dkeP a minimal
parabolic subgroup defined ov& and T: A — G(R) a homomorphism of a group with
Zariski dense image. Then theaction onG(R)/P(R) is mean proximal.

We present first the proof of Proposition 7.2 assuming Theorem 7.3.

Proof of Proposition 7.2. et G be the complexification o§U(V, (-,-)) as described in
Section 3.2. In particular, we identifyU(V, (-,-)) with G(R) andIs,. ., with Isp(R). Pick
a basepoinb € Isp(R); thenQ = Stabg (b) is anR-parabolic subgroup o, sincelsy is a
projective variety andx is transitive. Le® be a minimal parabolic subgroup &f defined over
R and contained ilQ. Then we have an equivariant surjection

G(R)/P(R) — G(R)/Q(R) =Is,. .
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Since the action of on B is amenable, there existd'aequivariant measurable map
¢:B— M'(G(R)/P(R)).

Since thel-action onG(R)/P(R) is mean proximaly is u-stationary, andupp 1. generates

T" (see Proposition 7.1 and Theorem 7.3), [24, Corollary 2.10, p. 201] implies that for almost
all be B, (b) is a Dirac measure, thus providing I&dequivariant measurable map into
G(R)/P(R), whose composition with the projectio®(R)/P(R) — G(R)/Q(R) gives a
I'-equivariant measurable map

w:B—1Is .

We are left to show that the images ungeof almost every two points i are transverse. To
this purpose, observe that theinvariant measurable map

BxB—N

is essentially constant, sindeacts ergodically o3 x B. Assume that this constant is non-
zero, and letssIm(p) C Is(. ., be the essential image ¢f. ThenEssIm(y) is closed and
m(T)-invariant. For everyr € Isp = G/P, denoting bynt(x) the set ofy € G/Q which are
non-transverse ta: (see Section 3), we have for almost &Jl € B that ¢(bs) € nt(p(b1))

for almost everyb, € B. Sincent(x) is Zariski-closed, and hence Hausdorff-closed, we have
EssIm(yp) C nt(p(b1)) for almost allb;, and hence for some fixdd € B. SinceEssIm(yp) is
m(T)-invariant, we have the inclusion

EssIm(yp) C ﬂ m(y)nt(e(b1)) := L.
yel’

Since nt(p(by)) is a proper Zariski closed subset & /P, L is a proper, non-void,
m(T)-invariant Zariski closed subset & /Q which contradicts the Zariski density af(T")
inG. O

We now turn to the proof of Theorem 7.3. We may clearly replaty its imagel'(A), so that
now A is a Zariski dense subgroup @f(R). We intend to show that the-action onG(R) /P (R)
is mean proximal by verifying the hypotheses of [24, Proposition 2.13, p. 201]. This will rely in
an essential way on the following

THEOREM 7.4 [3,29].— If A is a Zariski dense subgroup @&(R), then A contains an
R-regular element.

We shall need the existence, shown in [30], of a representatich— GL(W), defined over
R, with the following properties:

(@) Anelemeny € G(R) is R-regular if and only ifp(g)|w ) has a unique eigenvalug
of maximal modulus which occurs with multiplicity one. Le} be the corresponding
eigenline in the real poinBW (R) of the projective spacBW;

(b) there iszo € PW(R) such thafP = Stabg (z) is @ minimal parabolic subgroup defined
overR, {p(g)zo: g € G} spang¥, and for anyR-regular elemenp € P(R), x, = xo.

Identifying G/P with p(G)z, C PW, and, analogouslyz(R)/P(R) with p(G(R))zo C PW,
we deduce from (b) and the fact that ev&yregular elemeny € G(R) is conjugate to one
in P(R), thatz, € G(R)/P(R). Finally, let W, C W be the sum of all eigenspaces gffy)
corresponding to eigenvalues of modulus less than
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LEMMA 7.5.—A acts strongly proximally oz (R) /P (R).

Proof. —(Compare with the proof of [24, Theorem 3.7, p. 205].) Lee A be anR-
regular element (see Theorem 7.4). Théh) attractsG(R)/P(R) . PW) (R) towardsz . For
z € G(R)/P(R) define

G, :={heG: p(h)z e PWyNG/P}.

SincePW, N G/P is a proper Zariski closed subset &f/P, the setG, is a proper Zariski

closed subset o, and hence, sinc&” = G, for y,z € G(R)/P(R) fixed, there existg € A
with p(u)y ¢ PWy andp(p)z ¢ PW,. Thus

lim p(A"p)y =\

n—oo
and
lim p(A"u)z =z,
n—oo

which proves that acts proximally orG(R)/P(R). To deduce thaA acts strongly proximally,
we proceed to show that every point@(R) /P (R) has a contractible neighborhood; the lemma
will then follow from [24, Proposition 1.6(a), p. 196]. Sinpgu)Wy = W,,,,,-:, the subvariety
of G/P

(ﬂpWWWQﬂGﬂ’

nEA

is A-invariant and henc&-invariant. It is also properly contained & /P and hence void. This
implies that

U p(wPws > G/P,
nEA

and hence that every point (8(R)/P(R) is contained in the contractible open set
G(R)/P(R) N PW,5,-1,

forsomey. O

Let d be a distance oRRW (R) and define (see [24, p. 203 to be the family of subsets of
PW (R) of the form

W'(e):={z e PW(R): d(z,PW'(R)) > ¢},

whereW'’ € Gr,,,_1 (W) is defined oveR for m = dim . In view of [24, Lemma 3.2, p. 203],
in order to verify [24, Proposition 2.13(b)], we need only to show the following

LEMMA 7.6.—There exists > 0 such that for everyV’(¢) € ¥,
p(A)(W'(e) NG(R)/P(R)) = G(R)/P(R).
Proof. —For everylW’(R) € Gr,,—1 (W (R)), z € G(R)/P(R), define

f(z, W' (R)) = igd(p(A)z, PW’'(R) N G(R)/P(R)).
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If f(z,W'(R)) were to vanish, then we would have thgt\)z ¢ PW’' n G/P, and hence
p(G)x C PW’' N G/P, which would imply thatP1¥’ > G /P and hence

W' > {p(g)zo: g€ G}.

Since the latter sparid” we would obtain a contradiction. The lower semicontinuous function
f is hence positive on the compact sp&€R)/P(R) x Gr,,_1(W(R)) and thus there exists

¢ > 0 such thatf(z, W/(R)) > ¢ for all z € G(R)/P(R) andW'(R) € Gry,,—1(W(R)). This
implies the lemma. O

8. A formulafor the bounded Kéahler class of a representation

LetT be a finitely generated group an®, v) the Poisson boundary given in Proposition 7.1.
Then the complex

R—>L°°(B)—d>L°° (BQ)—d> e

alt

is a relatively injective resolution oR and hence the bounded cohomoloHy (T',R) is
canonically isomorphic to the cohomology of the non-augmented subcomplex of invariants
(LS5, (B*)F,dd). Together with the ergodicity of thé&-action on B x B, this yields an
isomorphism of Banach spaces

H2 (F R) —> ZLa.lt(Bg)Fa

where the right-hand side is the spacd eihvariant, alternating, essentially bounded cocycles
on B3, Letnowr:T' — G = SU(V, (-, -)) be a representation with Zariski dense image,

w:B—1Is(.
thel'-equivariant map given by Proposition 7.2 ahdts composition with? : Is,. ., — S. Then

it follows from Proposition 7.2 that for almost evefly, bs, b3) € B3, 1(b1),1(b2), ¥ (b3) are
pairwise transverse and hence

V3 8c(b1,b2,b3) := B (¥ (b1), ¥ (ba), ¥ (b3))

is a well defined element ig LSS, (B3)".

THEOREM 8.1. — Under the isomorphism
H}Q)(FaR) E) ZLZ?t(Bg)Fa

7*(k2,) corresponds ta); B¢
Proof. ~We shall use the resolution defined in Section 6 on the Shilov bourftidrgt
Y":B" — 8"
be thenth Cartesian product of the map Singew(bl),w(bg) are transverse for almost every
(b1,bs) € B?, we deduce that™(by,...,b,) € S for almost everyb,...,b,) € B”. Thus,
for f € Bgﬁ(S(")) we define
U (b1, bn) = fU" (b, -, bn).
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and obtain in this way a morphism of complexes
ve BR(S®) — LE(B*)

extending the identitR — R. Using that the complex of continuous bounded functiGp&G*)
onG",n > 1, gives a strong resolution by relatively injective modules, we obtain a morphism of
complexes

ae: BR(5)) = Cu(G).

Finally, letr,, : C,,(G™) — £°°(T'"") be the morphism of complexes given by the precomposition
with 7:T' — G. It follows then from [6, Proposition 1.2] that the diagram in cohomology

H (L35, (B*)T) < He (B35 (5))6)

Hy (T, R) HE,(G)

s

commutes. Since by Lemma 6R2%a([3¢]) = k& andH?1([B¢]) is represented by} 3, the
theorem is proven. O

9. Theproofs

Proof of Theorems 1.1 and 1.3Letr; : T’ — PSU(V, (-, -),) be homomorphisms with Zariski
dense image, and’ the bounded Kahler class BSU(V, (-, -);). Since

G :=SU(V, (-,);) B PSU(V, (-, ):)
is a finite central extension &SU(V/ (-, -);), there exist a finite central extensionIof
rar,
and homomorphisms
7i:D— SU(V, (-, );)

with Zariski dense image such thatr; = m;a. Assume now that there are; € Z not all zero
with

imiﬁ (m?) =0.
i=1

Denoting withz? the bounded Kahler class 8U(V, (-,-);), and observing that} (xP) = &P,
we obtain

(9.1) > mid; (i7) =0.
=1
Let B be the Poisson boundary associated to a presentatiofisae Proposition 7.1) and
Vs :B— ISFl(R) C ISFT;
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the boundary map given by Proposition 7.2. Taking into account Theorem 8.1, (5.6) and (9.1),
we obtain that for almost allb;, b2, b3) € B3 and all1 <i < r, (¢i(b1),pi(b2), pi(b3)) € Isg)
and

T

(9.2) [10i01), 0i(b2), i(bs)) " =[1] inCT*\ A%,

i=1

Consider now the measurable map

<p:B—>HIsFi(R)

b— (‘Pi(b))i’

[-equivariant with respect to the representation

T

defineA = #(I") and letH = A Z be the Zariski closure of in [[}_, G,. Observe that, because
¢ is T-equivariant, its essential imadess Im(yp) is A-invariant. Fix now(b;,by) € B2 such
that (9.2) holds for almost every; € B. In the notation of Lemma 4.4 and the paragraph
preceding it, set

P = P«Pi(bl)=<ﬂi(b2)7

O, = Otpi(bl),tpi(bz)v and O:HOi-
=1

Then it follows from (9.2) that
(9.3) EssIm(p) NO C {(xl, cey &) € H(’)i: HPi(:vi)mf‘ = 1}.
i=1 i=1

In view of Lemma 4.4, the latter is a Zariski closed proper subsgfof, O;, which implies
that EssIm(p) is contained in a Zariski closed proper subset[§f_, Isr,, and hence that

EssIm(y) Z is aA-invariant Zariski closed proper subset. This subset is Hitisvariant, which
implies thatH is a propeiR-algebraic subgroup df[;_, G;. If we denote byZ(G;) the center
of G;, let now

L;:=G,/Z(G;) and L:=]]Li,
i=1

and letD be the image oH in L. Then, under the identification &®SU(V, (-, -);) with L;(R),
we deduce from\ < H that

{(m1(7),--. 7 (7)): v €T} <D(R).

Observe first that sincB # L, the case: = 1 cannot occur, which implies the first assertion
of Theorem 1.1. Thus > 2. Since theL;’s are simple (as abstract groups), non-abelian,
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pr;(D) =L; andD < L, the subgroufD determines a partitiofy U ---U I, = {1,...,7} with
¢ <r,and, foreveryi <k </,1,j € I, an isomorphism

Tij ZLZ' — Lj,
defined oveRR such that

mi(7) = miymi(y), veT.
Since? < r, we have thatl| > 2 for somek and hence there is# j such that(r;, X;) and
(mj, X;) are equivalent, which proves Theorem 1.3.
Letr=2,m;=—-ma=1, (-, )1 =(,-)2 andTi2: X; — X, the isometry induced by-.
Lete = 1if T2 preserves the complex structure ang —1 otherwise. Then we get

ma(y) =mami(y), ~veT,

and hencél — £)7} (k) = 0 which, in view of Theorem 1.1(i), implies that= 1 and that7},
is holomorphic. This shows part (ii) of Theorem 1.1

PROPOSITION 9.1. — Let ¢: 1 — Rzq(T',G) be any continuous injective path from an
open intervall C R and let K:Rzq(I',G) — HZ(I',R) be the map defined iif1.2) by
K () =n*(k%). Then{K(c(t)): t € I} C H3(I',R) contains an uncountable subset which is
independent oveR.

Proof of Proposition 9.1 and Corollary 1.4.let (¢>°(T"*), d, ) denote the standard (bounded)
non-homogeneous complex, afd (I'*),d,) the non-homogeneous complex @fchains. In
particular,

(1) = (1)

is the adjoint of
02
(%) —— ¢4(I),

and, sincell? (', R) is a Banach spacénd; C ¢°°(I'?) is norm closed. Sincé;, = 93, Imd,
is thus weaks closed and hence the weaktopology on/>(I'?) induces a locally convex
Hausdorff topology oiiZ (T, R) for which the mapK : Rzq (T, G) — HE (', R) is easily seen to
be continuous. In particular, any subspac#l$fl’, R) of finite dimensiom is isomorphic tdR™
as a locally convex topological vector space, and hence is closed.

Let W be the vector subspace generated By(c(¢)): t € I'} and assume that it has countable
dimension. LetW = (., W,, where{W,} is a sequence of increasing finite dimensional
subspaces. Theh=J, ., (K¢)~"(W,) and, sincg K¢)~' (,,) is closed, there ig; > 1 such
that (Kc)~%(W,,) has non-void interior. Lef = dim(W,,, ), So that we identifyi¥/,,, with R<.
Choose an open non-void intervalc (Ke)~1(W,,,) C R.

Leta € Aut(G) be the exterior automorphism of ordewhich reverses the complex structure
on the associated symmetric space. Theacts freely and properly oRzq(I", G) thus, by
shrinking J, we may assume thait(c(J)) N ¢(J) = 0. For anym > 1, let J'™ be the set of
m-tuples of distinct points od, and consider the map

Ty : J™ S RY~ W)

(tl,...,tm)|—>. iK (c(t:)).
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We claim thatT;,, is injective. Indeed, assume tHA, (¢t) = T,,,(s), wheret = (t1,...,t,,) and
5= (s1,...,5m). Leto € S, be a permutation such that, ..., ts,tsi1 ... tm, So(s+1)s- -+
S4(m) are pairwise distinct ant] = s, ;) for 1 <i < s. ThenT,,(t) = T;,(s) implies that

Yo(i—o@)E(ct) + D ik (clt) = D (i) K (e(so)) =0,
) i=s+1 i=s+1

which, in view of Theorem 1.3, forces=m andi = o (i), that ist = s.

Thus, the fact thaf,, : J(™ — R? is a continuous injective map from the-dimensional
manifold J("™) into R¢, forcesm < d, which is a contradiction. Thu¥/’ has uncountable
dimension, which proves Proposition 9.1.

For the proof of Corollary 1.4, observe that the 6ebf regular points ofRz4(T',G) is a
manifold. Then, ifHZ (T, G) is finite dimensional, Proposition 9.1 implies that there are no
continuous injective paths int6', and hence each connected componen®'a$ reduced to a
point thus implying thaRRz4 (T, G) is finite. O

Proof of Corollary 1.6. -Observe that itv:T' — G is of type (p,q), then, by Lemma 4.2,
kg /4mged(p, q) is in the image ofH?(G,Z) under the mapH?(G,Z) — H?(G,R), and
hencew* (k¢)/4mged(p, ) is in the image oH1?(T", Z) — H2(T, R). Letting noww; : T’ — G,

1 <i < n, be inequivalent, Zariski dense representations, wjti" — G; of type (p;, ¢;), and
setting

Cr Wf (K/Gi)
" drged(p, qi)’

we deduce from Theorem 1.3 and the hypothesisHfdl", R) injects intoH?(I", R), that the
family

{47r ged(pi, gi)ei: 1<i< n} C H*(T',R)

is linearly independent ovet and hence that the family
{e;: 1<i<n} CH*(T,R)

is linearly independent oveZ as well. Since we are dealing with ordinary cohomology and all
thec;’s are integral classes, we deduce that 1 <i < n} islinearly independentové&®. 0O
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