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BOUNDED KÄHLER CLASS RIGIDITY OF ACTIONS
ON HERMITIAN SYMMETRIC SPACES

BY MARC BURGER AND ALESSANDRA IOZZI

Dedicated to the memory of Bob Broo

ABSTRACT. – We prove that the conjugacy class of a Zariski dense representationπ : Γ → PU(p, q),
q > p � 1, of a finitely generated groupΓ is completely determined by the pull-back viaπ of a bounded
cohomology class inH2

cb(PU(p, q),R) defined in terms of the Kähler form on the associated symm
space. Under the assumption thatH2

b(Γ,R) is finite dimensional, we show that, up to equivalence, th
is only a finite number of such representations for fixedq > p � 1; moreover, under the hypothesis th
H2

b(Γ,R) injects intoH2(Γ,R), we estimate the total number of such representations (for allq > p � 1) to
be bounded above bydimR H2(Γ,R).

 2004 Elsevier SAS

RÉSUMÉ. – On montre que la classe de conjugaison d’une représentation d’image Zariski
π : Γ → PU(p, q), q > p � 1 d’un groupe de type finiΓ est déterminée par l’image inverse parπ d’une
classe de cohomologie bornée dansH2

cb(PU(p, q),R) déduite de la forme de Kähler de l’espace symétri
hermitien associé. LorsqueH2

b(Γ,R) est de dimension finie, on démontre qu’il n’y a, à équivale
près, qu’un nombre fini de représentations d’image Zariski dense pourq > p � 1 fixés ; de plus, si l’on
suppose que l’application naturelleH2

b(Γ,R) → H2(Γ,R) est injective, alors le nombre total de tell
représentations (pour tousq > p � 1) est borné pardimR H2(Γ,R).

 2004 Elsevier SAS

1. Introduction

The purpose of this paper is to introduce and study bounded analogues of classical in
attached to isometric group actions on Hermitian symmetric spaces.

Let X be a Hermitian symmetric space (of non-compact type), that is a symmetric
admitting a complex structure invariant under the connected componentG of the group of
isometriesIso(X ) of X , and letΓ be a group. Then the second continuous cohomology g
H2

c(G,R) of G with real coefficients is a vector space of dimension the number of irredu
factors ofX [19] and, fixing a continuous classκ onG, one obtains for every homomorphis
π : Γ → G an invariantπ∗(κ) ∈ H2

c(Γ,R), well defined and constant on the (topologic
connected components of the representation varietyHom(Γ,G). For example, ifΓ = π1(S) is
the fundamental group of a compact oriented surface of genus at least2, the Toledo invariant
which is the evaluation ofπ∗(κ) on the fundamental class ofS, does, in certain cases, distingu
the connected components ofHom(Γ,G), and, when maximal, contains substantial informa
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78 M. BURGER AND A. IOZZI

aboutπ (see [17,21,32–34,4,7]; see also [22, Section 1.1] for analogous results whenΓ is a lattice
in SU(1, n)).

Assuming now thatX is irreducible, an explicit differentiable cocyclecG providing a

,

9] and
s

moto’s
class

if
d
then

iety

or ease

ces
tion
unded
generatorκG ∈H2
c(G,R) is given by

cG(g1, g2, g3) :=
∫

∆(g1x0,g2x0,g3x0)

ω,(1.1)

whereω is the Kähler form onX and∆(x, y, z) denotes an oriented smooth triangle inX with
geodesic sides. The starting point of our investigation is the fact thatcG is a bounded function
namely

‖cG‖∞ = πrG, rG = rankR(G),

(see [11] for classical groups and [10] for the general case). Thus, in the terminology of [
[27], cG defines a continuous bounded cohomology classκb

G ∈ H2
cb(G,R), which correspond

to κG under the canonical isomorphismH2
cb(G,R) �→H2

c(G,R) (see [9]).
Hence, for every homomorphismπ : Γ→G we obtain an invariantπ∗(κb

G) calledthe bounded
Kähler class ofπ, which lies in the second bounded cohomology groupH2

b(Γ,R) of Γ. Echoing
the work of É. Ghys on the bounded Euler class [14,15], and the treatment in [22] of Matsu
rigidity theorem [25], it is natural to ask which additional information the bounded Kähler
contains. In this direction we have the following:

THEOREM 1.1. –Let G = PU(p, q), Γ a finitely generated group,π : Γ→ G a homomor-
phism, andπ∗(κb

G) ∈H2
b(Γ,R) its bounded Kähler class. Assume that1 � p < q and thatπ has

Zariski dense image. Then
(i) π∗(κb

G) �= 0; and
(ii) π∗(κb

G) determinesπ up toG-conjugation.

Remark1.2. – In Theorem 1.1, the condition thatp be different fromq is necessary, since
Γ = π1(S) is the fundamental group of a compact oriented surfaceS of genus at least two an
π1, π2 : Γ→ PSU(p, p) := G are any two representations with maximal Toledo invariant,
π∗1(κ

b
G) = π

∗
2(κ

b
G) (see the proof of [7, Proposition 2.1]).

Thus, forG=PU(p, q) with p < q, Theorem 1.1 gives us an injective map

K :RZd(Γ,G)→H2
b(Γ,R)

π �→ π∗(κb
G)(1.2)

defined on the set ofG-conjugacy classes of representations ofΓ into G with Zariski dense
image, which is equivariant with respect to the canonical actions ofAut(Γ) on source and
target. Recall thatRZd(Γ,G) is in a natural way the set of real points of an affine var
([1, Proposition 8.2] and [31, Proposition 4.3 and Remark 4.4]).

In fact, Theorem 1.1 is a special case of a more general result to which we now turn. F
of statement let us introduce the following terminology: we say that a representationπ : Γ→G is
of type(p, q) if G is isomorphic toPU(p, q). Moreover we say thatπ1 : Γ→G1 andπ2 : Γ→G2

areequivalentif there is an isometryT :X1 →X2 between the corresponding symmetric spa
such thatπ2(γ) = Tπ1(γ)T−1. Finally, the Hermitian symmetric spaces under considera
will always be equipped with their normalized Bergman metric, when considered as bo
symmetric domains. Then we have:
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BOUNDED KÄHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 79

THEOREM 1.3. – Let Γ be a finitely generated group and letπi : Γ → Gi be pairwise
inequivalent representations of type(pi, qi), for 1 � i � n. Assume that1 � pi < qi and that
πi(Γ) is Zariski dense. Then the set
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}
⊂H2

b(Γ,R)

is linearly independent overZ.

Using Theorem 1.3 we show:

COROLLARY 1.4. – Let Γ be a finitely generated group. Assume thatH2
b(Γ,R) is finite

dimensional, and fix1 � p < q. Then there are, up to equivalence, only finitely m
representationsΓ→ PU(p, q) with Zariski dense image.

Remark1.5. – In fact, we prove a stronger result from which Corollary 1.4 follows, nam
that the image inH2

b(Γ,R) under the mapK in (1.2) of any continuous injective path

c : I→RZd(Γ,G)

from a non-empty open intervalI ⊂ R, contains an uncountable subset which is indepen
overR (Proposition 9.1).

Recall now that ifQH(Γ) is the vector space of quasihomomorphisms ofΓ, that is functions
f : Γ→R such that

sup
a,b∈Γ

∣∣f(ab)− f(a)− f(b)∣∣<∞,
then the kernel of the comparison mapH2

b(Γ,R)→H2(Γ,R) is described by the quotient

EH2
b(Γ) = QH(Γ)/

(
�∞(Γ)⊕Hom(Γ,R)

)
,

where we identify two quasihomomorphisms when they differ by a homomorphism p
bounded function. Applying Theorem 1.1(i) toΓ = F2, the free group on two generators, a
taking into account thatH2(F2,R) = 0, we deduce that any homomorphismπ :F2 → PU(p, q),
p < q, with Zariski dense image gives rise in a geometric way to a quasihomomor
fπ :F2 → R, which is not at bounded distance from a homomorphism. Moreover, in vie
Remark 1.5, Corollary 1.4 gives another proof of the fact that the second bounded cohom
group of a free group in at least two generators is infinite dimensional by providing a
geometric construction of an uncountable number of linearly independent bounded clas
hence of linearly independent (equivalence classes) of quasihomomorphisms inEH2

b(Γ) (see [5],
and also [18] and [26], for the original construction): for example, Benoist’s constructionε-
Schottky groups [2] shows that the space of discrete, faithful, Zariski dense realizations oF2 in
PU(p, q) has, modulo conjugation, positive dimension; see also [20] for an example of an e
continuous deformation intoPSU(1,2) of F2 realized as the ideal triangle group inPSU(1,1).

Imposing a stronger hypothesis, we conclude from Theorem 1.3:

COROLLARY 1.6. – Assume thatΓ is finitely generated and that the map

H2
b(Γ,R)→H2(Γ,R)

is injective. Then the number of inequivalent, Zariski dense representations of type(p, q),
1� p < q, is bounded bydimR H2(Γ,R).
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80 M. BURGER AND A. IOZZI

The hypotheses thatH2
b(Γ,R) is finite dimensional and thatH2

b(Γ,R) injects intoH2(Γ,R) are
thus intrinsic conditions on the bounded cohomology ofΓ guaranteeing strong rigidity properties.
In the same vein, N. Monod and Y. Shalom have shown that the conditionH2

b(Λ, �
2(Λ)) �= 0
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imposes on a groupΛ a rather strong rigid behavior in the context of orbit equivalence [28].
As sources of examples concerning Corollaries 1.4 and 1.6, we mention the following:

Examples1.7. – (1) IfΓ< G1 ×G2 is a lattice in a product of compactly generated loca
compact groups with dense projection onto each factor, one has the isomorphism [9]

H2
b(Γ)
H2

cb(G1)⊕H2
cb(G2).

In the particular case in which ifΓ<Aut(T1)×Aut(T2) is a cocompact lattice in the product
automorphism groups of regular treesTi of valency at least3 andGi := pri(Γ) acts transitively
on the boundaryTi(∞), from the fact thatH2

cb(Gi) = 0 [9] we obtain thatH2
b(Γ) = 0.

(2) If Γ <
∏

Gα(kα) is an irreducible lattice, whereGα arekα-almost simple groups ove
local fieldskα, with

∑
rankkα Gα � 2, thenH2

b(Γ) injects intoH2(Γ) [9], and both spaces ar
finite dimensional. In this case Margulis’ superrigidity theorem applies and implies Corollar

2. On the proof and the organization of the paper

The proof consists of two separate independent parts: roughly speaking, in the fi
define an algebraic function which, via properties related to boundary maps, characteri
representations up to conjugacy, while in the second we interpret this algebraic func
cohomological terms.

More specifically, we define the Hermitian triple product〈 · , · , · 〉 on triples of maxima
totally isotropic subspaces in generic position, which corresponds in the case ofSU(1, n) to
the classical notion of Hermitian triple product [16]. RealizingSU(p, q) =:G as the real point
of an algebraic group and considering the corresponding complexified Hermitian triple p
〈 · , · , · 〉C, standard arguments in Zariski topology show that the Hermitian triple produc
distinguish among representations when evaluated on the image of aΓ-equivariant measurab
mapϕ :B→ Is〈· , ·〉, whereB is a double ergodic amenable Poisson boundary forΓ andIs〈· , ·〉
is the Grassmannian of maximal totally isotropic subspaces.

The second step consists in relating the pull-back, viaϕ, of the Hermitian triple product to
the pull-back, viaπ, of the bounded Kähler classκb

G. To do this, using the double ergodici
and once again the amenability of theΓ-spaceB, we identify as usual the second bound
cohomology groupH2

b(Γ,R) of Γ with the spaceZL∞
alt(B

3)Γ of essentially bounded alternatin
Γ-invariant cocycles onB3 [9]. Moreover, we computeH2

cb(G,R) as the cohomology of a
appropriate resolution on generic configurations of points in the Shilov boundaryŠ of X ; the
class corresponding under the isomorphism to the bounded Kähler class has then a repre
βG which is a strict Borel cocycle on generic triples of points in the Shilov boundary
hence the pull-backπ∗ :H2

cb(G,R) → H2
b(Γ,R) can be implemented directly via the m

ϕ (after observing thatIs〈· , ·〉 
 Š). Moreover,βG has the further crucial property that
exponential is essentially the Hermitian triple product which could distinguish among Z
dense representations: the same property is hence inherited by the pull-back of the coho
class ofβG and thus by the pull-back of the bounded Kähler class.

The paper is organized as follows.
• In Section 3 we describe both the ball and the hyperboloid model for the Herm

symmetric space associated toG, together with their explicit isomorphism which relat
also the Shilov boundary in the ball model with the subsetIs〈· , ·〉 of the boundary in the
hyperboloid model. We also describe here the complexification ofG andIs〈· , ·〉.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



BOUNDED KÄHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 81

• In Section 4 we define the Hermitian triple product〈 · , · , · 〉, its complexified version
〈 · , · , · 〉C, and describe their relation. Then we show the essential lemma that〈 · , · , · 〉C
is not constant if and only ifp �= q.
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• In Section 5 we explicit the correspondence between generators of various cohom
groups in degree two (notablyH2(G,Z), H2

c(G,R), andH2
cb(G,R)), and we define a

cocycleβG on the Shilov boundary in the ball model of the Hermitian symmetric sp
which extends the cocyclecG on the interior corresponding to the Kähler form (see 1.1

• In Section 6 we define the resolution whose cohomology computes the bounded con
cohomology ofG and we show that the cohomology class of the extensionβG corresponds
to the bounded Kähler classκb

G under the canonical isomorphism in cohomology.
• In Section 7 we construct the boundary mapϕ :B → Is〈· , ·〉 into the space of maxima

totally isotropic subspaces, by first recalling the existence of a Poisson boundary forΓ which
implies, by standard arguments using the amenability of the action ofΓ onB, the existence
of aΓ-equivariant measurable map fromB into the space of probability measure onG/P ,
whereP is a minimal parabolic subgroup. Using the Zariski density of the represen
and Furstenberg’s boundary theory, we prove following [24] that the action ofπ(Γ) onG/P
is mean proximal, which allows us to deduce that in fact the boundary map alluded
takes values intoG/P . Composition with the projectionG/P →G/Q
 Is〈· , ·〉, whereQ
is an appropriate maximal parabolic containingP , gives the required map. Furthermore
prove that the images viaϕ of almost all points inB are pairwise in generic position.

• In Section 8, using the isomorphism (3.2) between the Shilov boundary and the sp
maximal totally isotropic subspaces, we put to use the boundary map in Section 7 a
resolution in Section 5 to show that indeed the pull-back of the Kähler class is repre
by the composition ofϕ with the cocycleβG defined in Section 5.

• In Section 9 we prove all results stated in the introduction.

3. Preliminaries

3.1. Two models of Hermitian symmetric spaces

Let V be a complex vector space with a non-degenerate Hermitian form〈· , ·〉. We start
by recalling two models for the symmetric spaceX associated to the special unitary gro
SU(V, 〈· , ·〉) and the explicit realization of the identification between them.

Let p be the index of the Hermitian form〈· , ·〉, that is the maximal dimension of a tota
isotropic subspace; thenp = min{p+, p−}, wherepε is the maximal dimension of a subspa
W ⊂ V such that〈· , ·〉|W is ε-definite, forε ∈ {+,−}. Modulo a change of sign, we may assu
that p = p+ � p−. The hyperboloid modelX h of X is the open subset of the Grassmann
Grp(V ) of p-planes inV given by,

X h :=
{
L ∈Grp(V ): 〈· , ·〉|L is positive definite

}
and its closure inGrp(V ) is

X h =
{
L ∈Grp(V ): 〈· , ·〉|L is semi-positive definite

}
.

To describe the realization ofX as a bounded symmetric domain, fix a subspaceL+ ∈X h with
orthogonal complementL− and, forε ∈ {+,−}, let 〈· , ·〉ε be the restriction toLε of ε〈· , ·〉. It is
easy to see that for anyL ∈ X h the orthogonal projectionprL+

|L :L→ L+ is an isomorphism

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



82 M. BURGER AND A. IOZZI

and hence we may define

E(L) := prL− ◦ (prL+
|L)−1 ∈ Lin(L+,L−),(3.1)
whereLin(L+,L−) is the space of linear maps fromL+ toL−. Moreover, for allL∈ X h,E(L)
is semi-positive definite and hence the map

E :X h→ Lin(L+,L−)(3.2)

defines an identification betweenX h and

X b :=
{
A ∈ Lin(L+,L−): Id+ −A∗A is semi-positive definite

}
,

whereA∗ is the adjoint map with respect to〈· , ·〉ε. Furthermore,E identifiesX h with

X b :=
{
A ∈ Lin(L+,L−): Id+ −A∗A is positive definite

}
(whose closure inLin(L+,L−) isX b ), and the spaceIs〈· , ·〉 of totally isotropicp-subspaces with
the Shilov boundary

Š =
{
A ∈ Lin(L+,L−): Id+ −A∗A= 0

}
,

of the bounded symmetric domainX b.

3.2. Complexification

We turn now to the description of a suitable model of the complexification ofSU(V, 〈· , ·〉), and
the spaceIs〈· , ·〉. For this, fix a real structurev→ v on theC-vector spaceV . Let VC := V × V
and define

∆V :V → VC

v �→ (v, v).

Then

τ(v,w) := (w,v)

gives a real structure onVC with fixed point set∆V (V ). The form

[· , ·] :V × V →C

(v,w) �→ [v,w] := 〈v,w〉
is C-bilinear and non-degenerate and, with an appropriate choice of the real structurev→ v, we
may assume that it is symmetric.

LetA= C×C be the algebra, product of two copies ofC, with involution

σ :A→A

(λ,µ) �→ (µ,λ),

and define∆C :C→C×C by ∆C(λ) = (λ,λ). Then

τ(λ,µ) = (µ,λ)(3.3)

4e SÉRIE– TOME 37 – 2004 –N◦ 1



BOUNDED KÄHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 83

defines a real structure onA with fixed point set∆C(C). Componentwise scalar multiplication
gives anA-module structure onVC, defined overR. The form

p

e

ts
F :VC × VC →A(
(v1,w1), (v2,w2)

)
�→
(
[v1,w2], [v2,w1]

)
enjoys then the following properties:

(1) F is Hermitian symmetric, that is, for alla, b ∈A andx, y ∈ VC,
(a) F (ax, by) = aσ(b)F (x, y), and
(b) F (y, x) = σ(F (x, y)).

(2) F is defined overR and extends the Hermitian form〈· , ·〉, namely

F
(
∆V (u),∆V (v)

)
=∆C

(
〈u, v〉

)
for all u, v ∈ V .

The groupGLA(VC) ofA-module automorphisms ofVC is defined overR and so is the subgrou

G=
{
T ∈GLA(VC): detA T = 1A, T preservesF

}
,

wheredetA is theA-valued determinant. IdentifyingGLA(VC) with GL(V )×GL(V ), we get

G=
{
(g, g�

−1
): g ∈ SL(V )

}
,

where 0 denotes the adjoint with respect to the symmetric form[· , ·]. Finally, restricting to
∆V (V ) the action ofG(R) gives an identification ofSU(V, 〈· , ·〉) with G(R).

The set of freeA-submodules of rankp consisting of totallyF -isotropic vectors may b
identified with the projective variety

IsF =
{
(U,W )∈Grp(V )×Grp(V ): [u,w] = 0, for all u∈ U,w ∈W

}
,

which is defined overR. The action ofG on IsF is also defined overR, and the map

∆Is〈· , ·〉 Is〈· , ·〉→ IsF (R)

L �→ (L,L)(3.4)

is an identification which is equivariant with respect to the identificationSU(V, 〈· , ·〉)
G(R).
The groupSU(V, 〈· , ·〉) acts transitively onIs〈· , ·〉 and Witt’s theorem implies that it ac

transitively on the set

Is(2)〈· , ·〉 =
{
(L1,L2) ∈ (Is〈· , ·〉)2: L1 ∩L2 = {0}

}
(3.5)

of pairs of transverse totally isotropicp-subspaces.

4. The Hermitian triple product

We proceed now to define an invariant for the action ofSU(V, 〈· , ·〉) on Grp(V )3. Given
L1,L2 ∈Grp(V ) andBi = {bji : 1 � j � p} a basis ofLi, set

〈B1,B2〉 := det
(
〈br1, bs2〉r,s

)
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



84 M. BURGER AND A. IOZZI

If Ci is another basis ofLi, andAi is the matrix of change of basis fromBi to Ci, we have

〈C1,C2〉= detA1〈B1,B2〉detA2.(4.1)

in

pic

s the

f

Given nowL1,L2,L3 ∈ Grp(V ), andBi, Ci bases ofLi, it follows from (4.1) that〈B1,B2〉
〈B2,B3〉〈B3,B1〉 differs from〈C1,C2〉〈C2,C3〉〈C3,C1〉 by a positive real, and hence we obta
a well defined invariant

〈L1,L2,L3〉 := 〈B1,B2〉〈B2,B3〉〈B3,B1〉 ∈R×
+ \C(4.2)

which we call theHermitian triple product(by analogy with [16, Section 2.2.5]).
Observe that ifLi ∈ X h, we can writeLi = {v + E(Li)v: v ∈ L+}, so that, if{v1, . . . , vp}

is an orthonormal basis ofL+, thenBi = {vk +E(Li)vk: 1 � k � p} is a basis ofLi. One can
easily check that

〈B1,B2〉= det
(
Id+ −E(L2)∗E(L1)

)
,

and hence one has inR×
+ \C the following equality

〈L1,L2,L3〉=
3∏
i=1

det
(
Id+ −E(Li+1)∗E(Li)

)
,(4.3)

where the indices are to be taken modulo3.
Observing thatL1 ∩ L⊥

2 = {0} if and only if 〈B1,B2〉 �= 0 (whereBi is a basis ofLi),
we deduce that on the spaceIs(3)〈· , ·〉 of triples of pairwise transverse maximal totally isotro

subspaces, the Hermitian triple product〈· , · , ·〉 takes values inR×
+ \C×.

The set of values taken by the Hermitian triple product on the Shilov boundary show
remarkable difference between the casesp+ = p− andp+ �= p−, as recorded in the following:

LEMMA 4.1. – The set of valuesVal taken by the Hermitian triple product onIs(3)〈· , ·〉 is as
follows:

(i) If p+ = p−,

Val =
{
{±i} mod R×

+ if p is odd,
{±1} mod R×

+ if p is even;
(4.4)

(ii) If p+ < p−,

Val =
{
{z: |z|= 1,�z � 0} mod R×

+ if p+ = 1,
R×

+ \C× if p+ > 1.

Proof. –We say that

A1,A2 ∈ Š are transverse ifdet(Id+ −A∗
2A1) �= 0,(4.5)

and defineδ : Š3→C by

δ(A1,A2,A3) := det(Id+ −A∗
2A1)det(Id+ −A∗

3A2)det(Id+ −A∗
1A3).

(i) In this case we have thatdimL+ = dimL− and everyA ∈ Š is an isomorphism o
unitary spaces as it verifiesId+ = A∗A. In particular we have thatAA∗ = Id−. Given now
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BOUNDED KÄHLER CLASS RIGIDITY OF ACTIONS ON HERMITIAN SYMMETRIC SPACES 85

A1,A2,A3 ∈ Š pairwise transverse, setCi = A∗
i+1Ai, for i= 1,2,3 (with the indices intended

modulo3), so that

ualities

d the

g

C3C2C1 = Id+.(4.6)

SinceCi is unitary, we have

det(Id+ −Ci) = det(Id+ −C−1
i ) = (−1)p det(Ci)−1 det(Id+ −Ci),

which implies, taking into account (4.6), that

δ(A1,A2,A3) = (−1)pδ(A1,A2,A3).

This shows thatδ(A1,A2,A3) is purely imaginary ifp is odd and real ifp is even. Taking
appropriate special matrices shows that the inclusions so obtained are in fact the eq
in (4.4).

(ii) In casep+ = 1, we have the classical Hermitian triple product of isotropic vectors an
claim follows for instance from [16, Section 7.1].

In case2 � p+ < p−, let p = p+ and q = p−, for notational simplicity; by choosin
orthonormal bases inL+,L−, we have the identificationsLin(L+,L−) 
 Mq,p(C) and
Š 
 Sp := {A ∈Mq,p(C): A∗A= Ip}. Let

X =
(
Ip
0

)
, Y =

(
−Ip
0

)
, and Z =

(
Z1

Z2

)
,

where

Z1 =



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp


 and Z2 =



µ 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 .

ThenX,Y ∈ Sp; moreoverZ ∈ Sp if and only if |λ1|2 + |µ|2 = 1, and|λi| = 1 for 2 � i� p.
Furthermore,X,Y,Z are pairwise transverse if and only ifλi /∈ {−1,1}, for 1 � i� p, which
we assume from now on. Then a computation gives

δ(X,Y,Z) = 22p−1
(
1− |λ1|2 + (λ1 − λ1 )

) p∏
j=2

(λj − λj ),

which easily implies the claim. ✷
Moving on to the complexified situation, letGrAp (V ) be the Grassmannian of freeA-

submodules ofVC of rank p. ForL1,L2 ∈ GrAp (V ), andBi = {bji : 1 � j � p} a basis ofLi
overA, set

〈B1,B2〉C := detA
(
F (br1, b

s
2)r,s

)
∈A.

We say that fori= 1,2

Li = Vi ×Wi are transverse ifV1 ∩ ⊥W2 = {0} andW1 ∩ ⊥V2 = {0},(4.7)
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where⊥U denotes the orthogonal of a subspaceU ⊂ V with respect to the symmetric form[· , ·].
Then

×

ents
〈B1,B2〉C ∈A if and only if L1,L2 are transverse.(4.8)

If Ci is anotherA-basis ofLi andAi ∈Mp,p(A) is the change of basis fromBi toCi, we have

(
F (cr1, c

s
2)r,s

)
=A1

(
F (br1, b

s
2)r,s

)
σ(At2).(4.9)

Setting

〈B1,B2,B3〉C = 〈B1,B2〉C〈B2,B3〉C〈B3,B1〉C,

we deduce from (4.9) that

〈C1,C2,C3〉C =N(detAA1)N(detAA2)N(detAA3)〈B1,B2,B3〉C,

whereN :A→ C is the norm map given byN(a) 1A = aσ(a). Thus, for anyL1,L2,L3 ∈
GrAp (V ), we obtain a well definedG-invariant Hermitian triple product

〈L1,L2,L3〉C = 〈B1,B2〉C〈B2,B3〉C〈B3,B1〉C ∈C× \A.

LEMMA 4.2. –
(i) G acts transitively onIsF ;
(ii) For everyL ∈ IsF , the set

nt(L) := {L′ ∈ IsF : L′ is not transverse toL}

is a proper Zariski closed subset ofIsF .

Proof. –(i) Choose a basis{e1, . . . , en} of V such that[ei, ej] = δij , and define

V0 = Ce1 + · · ·+Cep and W0 = Cep+1 + · · ·+Ce2p.

Since⊥V0 = Cep+1 + · · · + Cen, we have that(V0,W0) ∈ IsF . Let (U,W ) ∈ IsF and take
g ∈ SL(V ) such thatgU = V0. Theng∗−1(W )⊂ ⊥V0. Now,

StabSL(V )(V0) =
{(

A B
0 C

)
: detAdetC = 1

}
,

and hence the action ofStabSL(V )(V0) on ⊥V0 via h→ h∗−1 gives the fullGL(⊥V0)-action on
⊥V0; sincedimg∗−1(W ) = dimW0, there ish ∈ StabSL(V )(V0) with h∗−1(g∗−1(W )) =W0,
and thus(hg,hg∗−1)(U,W ) = (V0,W0).

(ii) follows from (4.8). ✷
Remark4.3. – One can show thatG acts transitively on the set of pairs of transverse elem

in IsF , but we shall not need this fact.

The set

Is(3)F =
{
(L1,L2,L3) ∈ (IsF )3: L1,L2,L3 are pairwise transverse

}
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is a Zariski open subset of(IsF )3, defined overR. The Cartesian product of the identification
∆Is〈· , ·〉 in (3.4) induces an identification

n

g

t of

e

e.
.
n

∆(3)
Is〈· , ·〉

: Is(3)〈· , ·〉→ Is(3)F (R).(4.10)

The affine spaceA with its R-structure given byτ (see (3.3)) is acted upon byC×, and this
action is defined overR; we denote byP1(C) the quotientC× \ (A�{0})with its corresponding
R-structure. Then the Hermitian triple product gives a regularG-invariant map

〈· , · , ·〉C : Is(3)F → P1(C)(4.11)

defined overR and with image contained inC× \A×. The map∆C giving the real structure o
A induces a map

∆:R×
+ \C×→C× \A×,

which is also a group homomorphism with kernel of order2, and one verifies that the followin
diagram

Is(3)F

〈· ,· , ·〉C

C× \A×

Is(3)〈· , ·〉

∆
(3)
Is〈· , ·〉

〈· ,· , ·〉
R×

+ \C×

∆

commutes.
For L1,L2 ∈ IsF (R) transverse, letOL1,L2 ⊂ IsF be the Zariski open, connected subse

those elementsL ∈ IsF which are transverse toL1 andL2. Then the function

PL1,L2 :OL1,L2 →C× \A×

given byPL1,L2(L) := 〈L1,L2,L〉C is regular and:

LEMMA 4.4. –If p− > p+, thenPm
L1,L2

is not constant for anym ∈ Z,m �= 0.

HerePm
L1,L2

(L) = (PL1,L2(L))m, where the product is taken inC× \A×.

Proof. –Since G(R) is transitive onIs(2)F (R) 
 Is(2)〈· , ·〉 (see (3.4), (3.5), and (4.10)) w
havePL1,L2(OL1,L2(R)) = Image(〈· , · , ·〉C|Is(3)

F
(R)

). Whenp− > p+, the latter is infinite by

Lemma 4.1. ✷

5. The bounded Kähler class

5.1. The Dupont cocycle as an integral cohomology class

LetG be a connected simple Lie group with finite center andX its associated symmetric spac
We assume thatX is Hermitian symmetric, that isX carries aG-invariant complex structure
Fix x0 ∈ X a basepoint, letK = StabG(x0), and letg = k ⊕ p be the corresponding Carta
decomposition of the Lie algebrag of G. We shall equipX with the metric defined by12Bg,
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whereBg is the Killing form ofg. For the associated Kähler formω we have then,

1

2]
-
ism

ra-

f

s

ωx0(X,Y ) =
2
Bg(X,JY ), for all X,Y ∈ p,

whereJ ∈ End(p) is the complex structure obtained from the identification ofTx0X with p. The
Kähler formω gives rise to the Dupont cocycle

cG(g1, g2, g3) :=
∫

∆(g1x0,g2x0,g3x0)

ω,(5.1)

where for any three pointsx, y, z ∈ X , ∆(x, y, z) denotes a2-simplex with verticesx, y, z and
geodesic sides. The (homogeneous) cocyclecG is G-invariant, differentiable and bounded [1
and thus defines both a continuous cohomology classκG ∈ H2

c(G,R) and a bounded contin
uous classκb

G ∈ H2
cb(G,R) which correspond to each other via the canonical isomorph

H2
cb(G,R) 
 H2

c(G,R) [9]. Taking into account thatH2
c(G,R) 
 R, these classes are gene

tors of their corresponding cohomology groups.
Denoting byH2(G,R) (respectivelyH2(G,Z)) the Borel cohomology ofG with coefficients

in R (respectivelyZ), it is important for us in the sequel to determine the specific multiple ocG
which is the image of a generator ofH2(G,Z)
 Z (see [19]) via the mapH2(G,Z)→H2(G,R).
To this end, letZ0 ∈ Z(k) be the uniquely defined element in the center ofk such that
adg(Z0)|p = J , u :K→ T a generator of the groupHomc(K,T) of continuous homomorphism
of K into the circleT, andDue : k→ iR its derivative at the identity.

LEMMA 5.1. –The cocycle

cZ

G(g1, g2, g3) :=
1
2πi

Due(Z0)
dimp

cG(g1, g2, g3)

determines a generator ofH2(G,Z).

Proof. –According to [13], such a cocyclecZ

G can be represented by

cZ

G(g1, g2, g3) =
∫

∆(g1x0,g2x0,g3x0)

Ω,(5.2)

whereΩ is the invariant2-form onX whose value atTx0X 
 p is

Ωx0(X,Y ) =
1
4πi

Due
(
[X,Y ]

)
, X,Y ∈ p.(5.3)

By using the decompositionk= RZ0 ⊕ [k, k], we define a2-formω1 onp by the equation

[X,Y ] = ω1(X,Y )Z0 +C, C ∈ [k, k].(5.4)

ThusDue([X,Y ]) = ω1(X,Y )Due(Z0) and we proceed to relateω1 to ωx0 . We have

2ωx0(X,Y ) = Tr
(
adg(X) adg(JY )

)
=Tr

(
adg(X) adg

(
[Z0, Y ]

))
.

By expandingadg([Z0, Y ]), and using (5.4), we obtain
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2ωx0(X,Y ) =−Tr
(
adg

(
[X,Y ]

)
adg(Z0)

)
=−Tr

(
ω1(X,Y )

(
adg(Z0)

)2)−Tr
(
adg(C) adg(Z0)

)

up

t

=dimpω1(X,Y )−Tr
(
adg(C) adg(Z0)

)
.

Using thatC ∈ [k, k], one checks thatTr(adg(C) adg(Z0)) = 0, and thus

Due
(
[X,Y ]

)
=

2
dimp

Due(Z0)ωx0(X,Y ),

which, together with (5.3) and (5.2), implies the lemma.✷
LEMMA 5.2. –
(i) If G= SU(p, q) thencZ

G = 1
4π(p+q)cG;

(ii) If G=PSU(p, q) thencZ

G = 1
4π gcd(p,q)cG.

Proof. –The Lie algebra ofSU(p, q) is

su(p, q) =
{
X ∈Mp+q(C): X

t
H +HX = 0

}
, whereH =

(
−Iq 0
0 Ip

)
.

For the Cartan involutionθ(X) =−X t, we have

p =
{(

0 B
B t 0

)
: B ∈Mq,p(C)

}
.

For the complex structure onp given byB→ iB we obtain

Z0 =

( ip
p+q Iq 0

0 −iq
p+q Ip

)
.

If G= SU(p, q), thenK = S(U(q)×U(p)), and a generatoru of Homc(K,T) is given by

u

(
A 0
0 B

)
:= detA.

From this we deduce readily that

Due(Z0) =
ipq

p+ q
,

which, together withdimp = 2pq, implies (i).
For part (ii), if we letGa be the adjoint groupPSU(p, q), then its maximal compact subgro

Ka is the quotient ofK by

Z(G) = {λIp+q : λp+q = 1}
and a generatorua of Hom(Ka,T) is given byua := un, wheren ∈ N is minimal such tha
un|Z(G) = 1. A computation gives then

n=
p+ q

gcd(p, q)
,

which implies (ii). ✷
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5.2. Extension to the boundary

Turning now to the ball modelX b of the symmetric space associated toG= SU(V, 〈· , ·〉), we

nd

ve
are going to extend the cocycle

c(x, y, z) :=
∫

∆(x,y,z)

ω(5.5)

to (a subset of) the closureX b ⊂ Lin(L+,L−). To this end, a formula for (5.5) due to Domic a
Toledo will be useful. ForX,Y ∈ X b transverse – that isdet(Id+ −X∗Y ) �= 0 (see (4.5)) – let

αG(X,Y ) :=−2
p∑

j=1

arg(1− λj),

whereλ1, . . . , λp are the eigenvalues ofX∗Y counted with multiplicity. Since|λj | � 1 and
λj �= 1, thenarg(1− λj) ∈ [−π/2, π/2] is well defined.

ForX,Y,Z ∈ X b pairwise transverse, let

βG(X,Y,Z) = αG(X,Y ) +αG(Y,Z) + αG(Z,X).

Then

LEMMA 5.3 [11]. –For everyX,Y,Z ∈ X b

βG(X,Y,Z) =
∫

∆(X,Y,Z)

ω.

LetX b (3) denote the set of triples of pairwise transverse elements ofX b. Then

LEMMA 5.4. – The functionβG :X b (3)→ [−πp,πp] is continuous, alternating,G-invariant,
anddβG(X1,X2,X3,X4) = 0 for all 4-tuples of pairwise transverse elements.

Proof. –The functionβG is clearly continuous onX b (3) and, by Lemma 5.3, satisfies all abo
properties on(X b)3. Since(X b)3 is dense inX b (3), we obtain the lemma. ✷

Finally, it follows from the above formulæ that

e
i
2βG(X,Y,Z) = det(Id+ − Y ∗X)det(Id+ −Z∗Y )det(IL+ −X∗Z) mod R+×,

for all (X,Y,Z)∈ X b (3). Taking into account (4.3), we obtain

e
i
2βG(E(L1),E(L2),E(L3)) = 〈L1,L2,L3〉 in R×

+ \C×(5.6)

for all pairwise transverseL1,L2,L3 ∈X h.

6. A resolution on the Shilov boundary

LetG= SU(V, 〈· , ·〉), let Š be the Shilov boundary ofX b, and let us define, for everyn� 2
and in analogy with the notation above,

Š(n) =
{
(X1,X2, . . . ,Xn) ∈ Šn: Xi,Xj are transverse for alli �= j

}
.
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For everyn � 2, the Banach spaceB∞
alt(Š

(n)) of bounded alternating Borel functions oňS(n),
equipped with the supremum norm, admits a natural coboundary operator

y

by
g

the

ks that
us
g

dn :B∞
alt(Š

(n))→B∞
alt(Š

(n+1)),

defined in the usual way. The groupG acts by homeomorphisms of̌S(n) and hence isometricall
onB∞

alt(Š
(n)). Then, in the terminology of [9] and [27], we have:

LEMMA 6.1. –The complex

0 R
d0 B∞(Š)

d1 B∞
alt(Š

(2))
d2 · · ·

is a strongG-resolution.

Proof. –Let B∞
alt(Š

n) be the space of alternating bounded Borel functions onŠn (with the
supremum norm),d′n :B∞

alt(Š
n)→ B∞

alt(Š
n+1) the natural coboundary operator,µ a G-quasi-

invariant probability measure oňS (for example, theK-invariant one), and

h′n−1 :B∞
alt(Š

n)→B∞
alt(Š

n−1)

α �→ h′n−1α,

where

h′n−1α(X2, . . . ,Xn) :=
∫
Š

α(X1,X2, . . . ,Xn)dµ(X1).

We have shown in [6] that the complex(B∞
alt(Š

•), d•) is a strongG-resolution ofR with
homotopy operatorsh′n. Let rn :B∞

alt(Š
n) → B∞

alt(Š
(n)) denote the operator obtained

restricting functions toŠ(n) and in :B∞
alt(Š

(n)) → B∞
alt(Š

n) the one obtained by extendin
functions from Š(n) to Šn by setting them equal to zero oňSn � Š(n). Both rn and in
areG-equivariant;rn is norm decreasing andin is norm preserving, thus they preserve
corresponding subspaces ofG-continuous vectors. We have the simple relation

dn = rn+1d
′
nin.

Observe that, whiler• is a morphism of complexes,{in}n fails to be. Define now

hn := rnh
′
nin+1.

Sinceh′n sends continuous vectors to continuous vectors, it follows from the above remar
hn sends the subspace of continuous vectors inB∞

alt(Š
(n+1)) into the subspace of continuo

vectors inB∞
alt(Š

(n)). All there remains to verify is that thehn’s are homotopy operators. Usin
the above definition ofhn and the fact thatr• is a morphism of complexes, we have

dn−1hn−1 = dn−1rn−1h
′
n−1in = rnd′n−1h

′
n−1in,

and

hndn = (rnh′nin+1)(rn+1d
′
nin).(6.1)
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Let α ∈ B∞
alt(Š

n+1) and defineα′ := in+1rn+1α. Then

′
{
α(X1, . . . ,Xn+1) if (X1, . . . ,Xn+1) ∈ Š(n+1),

gy

lass

ce

at it
α (X1, . . . ,Xn+1) =
0 otherwise.

Observe that if(X2, . . . ,Xn+1) ∈ Š(n), then

µ
{
X1 ∈ Š: (X1, . . . ,Xn+1) /∈ Š(n+1)

}
= 0

and hence, for all(X2, . . . ,Xn+1) ∈ Š(n),∫
Š

α′(X1,X2, . . . ,Xn+1)dµ(X1) =
∫
Š

α(X1,X2, . . . ,Xn+1)dµ(X1).

This implies thatrnh′nin+1rn+1 = rnh
′
n which, together with (6.1), shows that

hn+1dn+1 = rnh
′
nd

′
nin,

and hence

dn−1hn−1 + hndn = rn(d′n−1h
′
n−1 + h

′
nd

′
n)in = rnin = IdB∞

alt(Š
(n)).

This concludes the proof of the lemma.✷
Applying now [9, Proposition 1.5.2] we obtain a canonical map

H•(B∞
alt(Š

(•))G
)
→H•

cb(G,R)(6.2)

from the cohomology of the complex(B∞
alt(Š

(•))G, d•) into the bounded continuous cohomolo
of G. In particular the function considered in Section 5.2

βG : Š(3)→ [−πp,πp]

is a bounded, alternating,G-invariant cocycle oňS(3) (see Lemma 5.4), and thus defines a c
[βG] ∈H2(B∞

alt(Š
(•))G).

LEMMA 6.2. – Under the map(6.2), the class[βG] corresponds to the classκb
G ∈H2

cb(G,R).

Proof. –We consider the morphisms of complexes

B∞
alt(Š

(•))→ L∞(Š•)→ L∞(G•),

where the first one is obtained by considering a function onŠ(n) as a class inL∞(Šn) (recall
that Šn � Š(n) is a null set) and the second is obtained by realizingŠ as a homogeneous spa
of G by means of choosing a basepointb ∈ Š. The composed morphism

B∞
alt(Š

(•))→ L∞(G•)

extends the identity and it follows then from Lemma 6.1 and [9, Proposition 1.5.2] th
implements the canonical map (6.2) in cohomology. What is left to be shown is that

c(g1, g2, g3) := βG(g1b, g2b, g3b)
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is cohomologous tocG in L∞(G•). Define for all4-tuplest1, t2, t3, t4 of pairwise transverse
elements inX b

al

les as
ls,

st

oup, a
orem 3
erated
recall

d

�(t1, t2, t3, t4) := βG(t1, t2, t3) + βG(t3, t4, t1).

Whenti ∈ X b, this coincides with the integral of the Kähler classω over an oriented quadrilater
with verticest1, t2, t3, t4 and geodesic sides. Given now two triangles inX b with vertices
x1, x2, x3 andy1, y2, y3, and applying Stokes theorem to the geodesic prism with the triang
bases, we obtain a relation involving the integral ofω over two triangles and three quadrilatera
namely

βG(y1, y2, y3) = βG(x1, x2, x3) +�(y1, y2, x2, x1)

+�(y2, y3, x3, x2) +�(y3, y1, x1, x3).(6.3)

Using repeatedly the cocycle identity forβG, one checks that this relation extends to all6-tuples
of pairwise transverse points inX b.

Denoting by0 ∈X b the origin in the ball model ofX , and settingyi := gi0, xi := gib and

γ(g, h) := �(gb, hb, h0, g0),(6.4)

we obtain from (6.3) for allg1, g2, g3 such thatg1b, g2b, g3b are pairwise transverse, that

cG(g1, g2, g3) = c(g1, g2, g3) + dγ(g1, g2, g3).(6.5)

Since for almost every(g1, g2) ∈G2, g1b, g2b are transverse and

∣∣γ(g1, g2)∣∣� 2πp,

we deduce thatγ defines aG-invariant cochain inL∞(G2), and since (6.5) holds almo
everywhere, we deduce thatcG andc are cohomologous.✷

7. Boundary maps

We begin by recalling how to construct, from a presentation of a finitely generated gr
Poisson boundary with useful ergodicity properties. The statement was proven in [8, The
and Section 2.5] and it can be proven in greater generality, namely for all compactly gen
groups, using [8, Theorem 3 and Section 2.5] together with [23] (see [9, Theorem 6]). We
its proof here in this simpler case for sake of completeness.

PROPOSITION 7.1 [8]. – Let Γ be a finitely generated group,S a finite generating set an
(B,ν) the Poisson boundary associated to the measure

µ :=
1

2|S|
∑
s∈S

(δs + δs−1).

Then the diagonal action ofΓ onB ×B is ergodic and theΓ-action onB is amenable.

Proof. –Let FS be the free group on the setS, ρ :FS→ Γ the associated presentation ofΓ, TS
the Cayley graph ofFS relative toS andTs(∞) the boundary ofTS . ThenTS(∞) consists of
all reduced words of infinite length and carries a naturalFS-quasi-invariant measurem defined
by m(C(x)) := (2r(2r − 1)n−1)−1, wherer = |S|, n is the length ofx, andC(x) consists of
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all infinite reduced words starting withx. It is a classical fact that(TS(∞),m ) is the Poisson
boundary for the probability measure onFS

iated

ization
e that

ia
m :=
1

2|S|
∑
s∈S

(δs + δs−1) ∈M1(FS).

Moreover theFS-action onTS(∞) is amenable, and theFS-action onTS(∞) × TS(∞) is
ergodic. LetN = kerρ and (B,ν) be the point realization of the measure algebra assoc
to the subalgebraL∞(TS(∞))N of N -invariant functions inL∞(TS(∞)). That is,(B,ν) is a
standard measure space equipped with a measurable mapp :Ts(∞)→ B such thatp∗(m ) = ν
and the pull-back viap identifiesL∞(B,ν) with L∞(TS(∞))N . ThenFS acts onB, and this
action factors viaρ :FS→ Γ. Using now that the pull-back viaρ identifiesµ= ρ∗(m)-harmonic
bounded functions onΓ with N -invariantm-harmonic bounded functions onFS , we deduce
that (B,ν) is a Poisson boundary for(Γ, µ). SinceFS acts ergodically onTS(∞) × TS(∞),
we deduce thatΓ acts ergodically onB ×B. The amenability of theΓ-action onB follows
from a general result in [35], but can also be deduced directly by using the character
of amenable actions given in [9]. We follow this last approach and we shall thus prov
the BanachΓ-moduleL∞(B,ν) is relatively injective. To this end, letA,B be BanachΓ-
modules,i :A1 → A2 an admissible injectiveΓ-morphism (see [9]) andα :A1 → L∞(B,ν)
a Γ-morphism. Letj :L∞(B,ν)→ L∞(TS(∞)) be the injection given by the pull-back v
p :TS(∞)→B. ConsideringA1,A2 as BanachFS-modules viaρ :FS→ Γ, andi, j ◦ α asFS-
morphisms, the amenability of theFS-action onTS(∞) implies thatL∞(TS(∞)) is relatively
injective and hence there exists anFS-morphismβ :A2 → L∞(TS(∞)) extendingj ◦ α. Since
theN -action onA2 is trivial,β(A2)⊂ j(L∞(B,ν)) =L∞(TS(∞))N ⊂ L∞(T (∞)), and hence
(j|L∞(T (∞))N )−1 ◦ β :A2→ L∞(B,ν) is aΓ-morphism extendingα. ✷

Let nowΓ be a finitely generated group,π : Γ→ SU(V, 〈· , ·〉) a representation, and(B,ν) a
Poisson boundary ofΓ as in Proposition 7.1. Our objective is to prove:

PROPOSITION 7.2. –Assume thatπ(Γ) is Zariski dense. Then there exists aΓ-equivariant
measurable map

ϕ :B→ Is〈· , ·〉

such that for almost allb1, b2 ∈B, ϕ(b1) andϕ(b2) are transverse.

The proof of Proposition 7.2 is based on the following fact, whose proof we postpone.

THEOREM 7.3. – Let G be a connected semisimple group defined overR, P a minimal
parabolic subgroup defined overR and T :Λ→ G(R) a homomorphism of a groupΛ with
Zariski dense image. Then theΛ-action onG(R)/P(R) is mean proximal.

We present first the proof of Proposition 7.2 assuming Theorem 7.3.

Proof of Proposition 7.2. –Let G be the complexification ofSU(V, 〈· , ·〉) as described in
Section 3.2. In particular, we identifySU(V, 〈· , ·〉) with G(R) and Is〈· , ·〉 with IsF (R). Pick
a basepointb ∈ IsF (R); thenQ = StabG(b) is anR-parabolic subgroup ofG, sinceIsF is a
projective variety andG is transitive. LetP be a minimal parabolic subgroup ofG defined over
R and contained inQ. Then we have an equivariant surjection

G(R)/P(R)→G(R)/Q(R) = Is〈· , ·〉 .
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Since the action ofΓ onB is amenable, there exists aΓ-equivariant measurable map

ϕ :B→M1
(
G(R)/P(R)

)
.

lmost
to

o

n-

ave

,

ly in

g

ed
Since theΓ-action onG(R)/P(R) is mean proximal,ν is µ-stationary, andsuppµ generates
Γ (see Proposition 7.1 and Theorem 7.3), [24, Corollary 2.10, p. 201] implies that for a
all b ∈B, ϕ(b) is a Dirac measure, thus providing aΓ-equivariant measurable map in
G(R)/P(R), whose composition with the projectionG(R)/P(R) → G(R)/Q(R) gives a
Γ-equivariant measurable map

ϕ :B→ Is〈· , ·〉 .

We are left to show that the images underϕ of almost every two points inB are transverse. T
this purpose, observe that theΓ-invariant measurable map

B ×B→N

(b1, b2) �→ dim
(
ϕ(b1) ∩ϕ(b2)

)
is essentially constant, sinceΓ acts ergodically onB × B. Assume that this constant is no
zero, and letEss Im(ϕ) ⊂ Is〈· , ·〉 be the essential image ofϕ. ThenEss Im(ϕ) is closed and
π(Γ)-invariant. For everyx ∈ IsF = G/P, denoting bynt(x) the set ofy ∈G/Q which are
non-transverse tox (see Section 3), we have for almost allb1 ∈ B that ϕ(b2) ∈ nt(ϕ(b1))
for almost everyb2 ∈B. Sincent(x) is Zariski-closed, and hence Hausdorff-closed, we h
Ess Im(ϕ) ⊂ nt(ϕ(b1)) for almost allb1, and hence for some fixedb1 ∈B. SinceEss Im(ϕ) is
π(Γ)-invariant, we have the inclusion

Ess Im(ϕ)⊂
⋂
γ∈Γ

π(γ)nt
(
ϕ(b1)

)
:= L.

Since nt(ϕ(b1)) is a proper Zariski closed subset ofG/P, L is a proper, non-void
π(Γ)-invariant Zariski closed subset ofG/Q which contradicts the Zariski density ofπ(Γ)
in G. ✷

We now turn to the proof of Theorem 7.3. We may clearly replaceΛ by its imageT (Λ), so that
nowΛ is a Zariski dense subgroup ofG(R). We intend to show that theΛ-action onG(R)/P(R)
is mean proximal by verifying the hypotheses of [24, Proposition 2.13, p. 201]. This will re
an essential way on the following

THEOREM 7.4 [3,29]. – If Λ is a Zariski dense subgroup ofG(R), thenΛ contains an
R-regular element.

We shall need the existence, shown in [30], of a representationρ :G→GL(W ), defined over
R, with the following properties:

(a) An elementg ∈G(R) is R-regular if and only ifρ(g)|W (R) has a unique eigenvalueλg
of maximal modulus which occurs with multiplicity one. Letxg be the correspondin
eigenline in the real pointsPW (R) of the projective spacePW ;

(b) there isx0 ∈ PW (R) such thatP = StabG(x0) is a minimal parabolic subgroup defin
overR, {ρ(g)x0: g ∈G} spansW , and for anyR-regular elementp ∈P(R), xp = x0.

IdentifyingG/P with ρ(G)x0 ⊂ PW , and, analogously,G(R)/P(R) with ρ(G(R))x0 ⊂ PW ,
we deduce from (b) and the fact that everyR-regular elementg ∈ G(R) is conjugate to one
in P(R), thatxg ∈G(R)/P(R). Finally, letWg ⊂W be the sum of all eigenspaces ofρ(g)
corresponding to eigenvalues of modulus less thanλg .
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LEMMA 7.5. –Λ acts strongly proximally onG(R)/P(R).

Proof. –(Compare with the proof of [24, Theorem 3.7, p. 205].) Letλ ∈ Λ be an R-

i

,
ma

s

f

],
regular element (see Theorem 7.4). Thenρ(λ) attractsG(R)/P(R) � PWλ(R) towardsxλ. For
x∈G(R)/P(R) define

Gx :=
{
h ∈G: ρ(h)x ∈ PWλ ∩G/P

}
.

SincePWλ ∩G/P is a proper Zariski closed subset ofG/P, the setGx is a proper Zarisk

closed subset ofG, and hence, sinceΛ
Z
= G, for y, z ∈G(R)/P(R) fixed, there existsµ ∈ Λ

with ρ(µ)y /∈ PWλ andρ(µ)z /∈ PWλ. Thus

lim
n→∞

ρ(λnµ)y = xλ

and

lim
n→∞

ρ(λnµ)z = xλ,

which proves thatΛ acts proximally onG(R)/P(R). To deduce thatΛ acts strongly proximally
we proceed to show that every point inG(R)/P(R) has a contractible neighborhood; the lem
will then follow from [24, Proposition 1.6(a), p. 196]. Sinceρ(µ)Wλ =Wµλµ−1 , the subvariety
of G/P ( ⋂

µ∈Λ

ρ(µ)PWλ

)
∩G/P

isΛ-invariant and henceG-invariant. It is also properly contained inG/P and hence void. Thi
implies that ⋃

µ∈Λ

ρ(µ)PW c
λ ⊃G/P,

and hence that every point inG(R)/P(R) is contained in the contractible open set

G(R)/P(R) � PWµλµ−1 ,

for someµ. ✷
Let d be a distance onPW (R) and define (see [24, p. 203])Ψε to be the family of subsets o

PW (R) of the form

W ′(ε) :=
{
x∈ PW (R): d

(
x,PW ′(R)

)
> ε
}
,

whereW ′ ∈Grm−1(W ) is defined overR for m= dimW . In view of [24, Lemma 3.2, p. 203
in order to verify [24, Proposition 2.13(b)], we need only to show the following

LEMMA 7.6. –There existsε > 0 such that for everyW ′(ε) ∈Ψε,

ρ(Λ)
(
W ′(ε) ∩G(R)/P(R)

)
=G(R)/P(R).

Proof. –For everyW ′(R) ∈Grm−1(W (R)), x ∈G(R)/P(R), define

f
(
x,W ′(R)

)
= sup

λ∈Λ
d
(
ρ(λ)x,PW ′(R) ∩G(R)/P(R)

)
.
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If f(x,W ′(R)) were to vanish, then we would have thatρ(Λ)x ⊂ PW ′ ∩ G/P, and hence
ρ(G)x⊂ PW ′ ∩G/P, which would imply thatPW ′ ⊃G/P and hence{ }

tion
s

.1.

riants

les

ry
W ′ ⊃ ρ(g)x0: g ∈G .

Since the latter spansW we would obtain a contradiction. The lower semicontinuous func
f is hence positive on the compact spaceG(R)/P(R) ×Grm−1(W (R)) and thus there exist
ε > 0 such thatf(x,W ′(R)) > ε for all x ∈G(R)/P(R) andW ′(R) ∈ Grm−1(W (R)). This
implies the lemma. ✷

8. A formula for the bounded Kähler class of a representation

Let Γ be a finitely generated group and(B,ν) the Poisson boundary given in Proposition 7
Then the complex

R L∞(B) d
L∞

alt(B
2) d · · · ,

is a relatively injective resolution ofR and hence the bounded cohomologyH•
b(Γ,R) is

canonically isomorphic to the cohomology of the non-augmented subcomplex of inva
(L∞

alt(B
•)Γ, d•). Together with the ergodicity of theΓ-action onB × B, this yields an

isomorphism of Banach spaces

H2
b(Γ,R) �→ZL∞

alt(B
3)Γ,

where the right-hand side is the space ofΓ-invariant, alternating, essentially bounded cocyc
onB3. Let nowπ : Γ→G= SU(V, 〈· , ·〉) be a representation with Zariski dense image,

ϕ :B→ Is〈· , ·〉

theΓ-equivariant map given by Proposition 7.2 andψ its composition withE : Is〈· , ·〉→ Š. Then
it follows from Proposition 7.2 that for almost every(b1, b2, b3) ∈ B3, ψ(b1), ψ(b2), ψ(b3) are
pairwise transverse and hence

ψ∗
3βG(b1, b2, b3) := βG

(
ψ(b1), ψ(b2), ψ(b3)

)
is a well defined element inZL∞

alt(B
3)Γ.

THEOREM 8.1. – Under the isomorphism

H2
b(Γ,R) �→ZL∞

alt(B
3)Γ,

π∗(κb
G) corresponds toψ∗

3βG.

Proof. –We shall use the resolution defined in Section 6 on the Shilov boundaryŠ. Let

ψn :Bn→ Šn

be thenth Cartesian product of the mapψ. Sinceψ(b1), ψ(b2) are transverse for almost eve
(b1, b2) ∈B2, we deduce thatψn(b1, . . . , bn) ∈ Š(n) for almost every(b1, . . . , bn) ∈ Bn. Thus,
for f ∈ B∞

alt(Š
(n)), we define

ψ∗
n(f)(b1, . . . , bn) := fψn(b1, . . . , bn).
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and obtain in this way a morphism of complexes

ψ∗
• :B∞

alt(Š
(•))→ L∞

alt(B
•)

m of

ition

i

extending the identityR→R. Using that the complex of continuous bounded functionsCb(G•)
onGn, n� 1, gives a strong resolution by relatively injective modules, we obtain a morphis
complexes

α• :B∞
alt(Š

(•))→Cb(G•).

Finally, letπn :Cb(Gn)→ �∞(Γn) be the morphism of complexes given by the precompos
with π : Γ→G. It follows then from [6, Proposition 1.2] that the diagram in cohomology

H•(L∞
alt(B

•)Γ
)

H•(B∞
alt(Š

(•))G
)H•ψ

H•α

H•
b(Γ,R) H•

cb(G)H•π

commutes. Since by Lemma 6.2,H2α([βG]) = κb
G andH2ψ([βG]) is represented byψ∗

3βG, the
theorem is proven. ✷

9. The proofs

Proof of Theorems 1.1 and 1.3. –Letπi : Γ→ PSU(V, 〈· , ·〉i) be homomorphisms with Zarisk
dense image, andκb

i the bounded Kähler class ofPSU(V, 〈· , ·〉i). Since

Gi := SU
(
V, 〈· , ·〉i

) ai→ PSU
(
V, 〈· , ·〉i

)
is a finite central extension ofPSU(V, 〈· , ·〉i), there exist a finite central extension ofΓ

Γ̃ a→ Γ,

and homomorphisms

π̃i : Γ̃→ SU
(
V, 〈· , ·〉i

)
with Zariski dense image such thataiπ̃i = πia. Assume now that there aremi ∈ Z not all zero
with

r∑
i=1

miπ
∗
i

(
κb
i

)
= 0.

Denoting withκ̃b
i the bounded Kähler class ofSU(V, 〈· , ·〉i), and observing thata∗i (κ

b
i ) = κ̃b

i ,
we obtain

r∑
i=1

miπ̃
∗
i

(
κ̃b
i

)
= 0.(9.1)

LetB be the Poisson boundary associated to a presentation ofΓ̃ (see Proposition 7.1) and

ϕi :B→ IsFi(R)⊂ IsFi
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the boundary map given by Proposition 7.2. Taking into account Theorem 8.1, (5.6) and (9.1),
we obtain that for almost all(b1, b2, b3) ∈B3 and all1 � i� r, (ϕi(b1), ϕi(b2), ϕi(b3)) ∈ Is(3)Fi

and

e

ph

t

ion
ian,
r∏
i=1

〈
ϕi(b1), ϕi(b2), ϕi(b3)

〉mi

C
= [1] in C× \A×.(9.2)

Consider now the measurable map

ϕ :B→
r∏
i=1

IsFi(R)

b �→
(
ϕi(b)

)
i
,

Γ̃-equivariant with respect to the representation

π̃ : Γ̃→
r∏
i=1

Gi

γ �→
(
π̃i(γ)

)
i
,

defineΛ= π̃(Γ̃) and letH=ΛZ be the Zariski closure ofΛ in
∏r

i=1 Gi. Observe that, becaus
ϕ is Γ̃-equivariant, its essential imageEss Im(ϕ) is Λ-invariant. Fix now(b1, b2) ∈ B2 such
that (9.2) holds for almost everyb3 ∈B. In the notation of Lemma 4.4 and the paragra
preceding it, set

Pi := Pϕi(b1),ϕi(b2),

Oi :=Oϕi(b1),ϕi(b2), and O =
r∏
i=1

Oi.

Then it follows from (9.2) that

Ess Im(ϕ) ∩O ⊂
{
(x1, . . . , xr) ∈

r∏
i=1

Oi:
r∏
i=1

Pi(xi)mi = 1

}
.(9.3)

In view of Lemma 4.4, the latter is a Zariski closed proper subset of
∏r
i=1Oi, which implies

that Ess Im(ϕ) is contained in a Zariski closed proper subset of
∏r
i=1 IsFi , and hence tha

Ess Im(ϕ)Z is aΛ-invariant Zariski closed proper subset. This subset is thusH-invariant, which
implies thatH is a properR-algebraic subgroup of

∏r
i=1 Gi. If we denote byZ(Gi) the center

of Gi, let now

Li :=Gi/Z(Gi) and L :=
r∏
i=1

Li,

and letD be the image ofH in L. Then, under the identification ofPSU(V, 〈· , ·〉i) with Li(R),
we deduce fromΛ<H that

{(
π1(γ), . . . , πr(γ)

)
: γ ∈ Γ

}
<D(R).

Observe first that sinceD �= L, the caser = 1 cannot occur, which implies the first assert
of Theorem 1.1. Thusr � 2. Since theLi’s are simple (as abstract groups), non-abel
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pri(D) = Li andD 	 L, the subgroupD determines a partitionI1 ∪ · · · ∪ I, = {1, . . . , r} with
� < r, and, for every1 � k � �, i, j ∈ Ik, an isomorphism

an

is

d)

x

ble
nal

re

f

πij :Li→Lj ,

defined overR such that

πj(γ) = πijπi(γ), γ ∈ Γ.

Since� < r, we have that|Ik| � 2 for somek and hence there isi �= j such that(πi,Xi) and
(πj ,Xj) are equivalent, which proves Theorem 1.3.

Let r = 2, m1 = −m2 = 1, 〈· , ·〉1 = 〈· , ·〉2 andT12 :X1 →X2 the isometry induced byπ12.
Let ε= 1 if T12 preserves the complex structure andε=−1 otherwise. Then we get

π2(γ) = π12π1(γ), γ ∈ Γ,

and hence(1− ε)π∗1(κb
1) = 0 which, in view of Theorem 1.1(i), implies thatε= 1 and thatT12

is holomorphic. This shows part (ii) of Theorem 1.1.✷
PROPOSITION 9.1. – Let c : I → RZd(Γ,G) be any continuous injective path from

open interval I ⊂ R and let K :RZd(Γ,G) → H2
b(Γ,R) be the map defined in(1.2) by

K(π) = π∗(κb
G). Then{K(c(t)): t ∈ I} ⊂ H2

b(Γ,R) contains an uncountable subset which
independent overR.

Proof of Proposition 9.1 and Corollary 1.4. –Let (�∞(Γ•), d•) denote the standard (bounde
non-homogeneous complex, and(�1(Γ•), ∂•) the non-homogeneous complex of�1-chains. In
particular,

�∞(Γ)
d1

�∞(Γ2)

is the adjoint of

�1(Γ2)
∂2

�1(Γ),

and, sinceH2
b(Γ,R) is a Banach space,Imd1 ⊂ �∞(Γ2) is norm closed. Sinced1 = ∂∗2 , Imd1

is thus weak-∗ closed and hence the weak-∗ topology on�∞(Γ2) induces a locally conve
Hausdorff topology onH2

b(Γ,R) for which the mapK :RZd(Γ,G)→H2
b(Γ,R) is easily seen to

be continuous. In particular, any subspace ofH2
b(Γ,R) of finite dimensionn is isomorphic toRn

as a locally convex topological vector space, and hence is closed.
LetW be the vector subspace generated by{K(c(t)): t ∈ I} and assume that it has counta

dimension. LetW =
⋃
n�1Wn, where{Wn} is a sequence of increasing finite dimensio

subspaces. ThenI =
⋃
n�1(Kc)

−1(Wn) and, since(Kc)−1(Wn) is closed, there isn0 � 1 such
that(Kc)−1(Wn0 ) has non-void interior. Letd= dim(Wn0), so that we identifyWn0 with Rd.
Choose an open non-void intervalJ ⊂ (Kc)−1(Wn0)⊂R.

Letα ∈Aut(G) be the exterior automorphism of order2 which reverses the complex structu
on the associated symmetric space. Thenα acts freely and properly onRZd(Γ,G) thus, by
shrinkingJ , we may assume thatα(c(J)) ∩ c(J) = ∅. For anym� 1, let J (m) be the set o
m-tuples of distinct points onJ , and consider the map

Tm :J (m)→Rd(
Wn0)

(t1, . . . , tm) �→
m∑
i=1

iK
(
c(ti)

)
.
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We claim thatTm is injective. Indeed, assume thatTm(t) = Tm(s), wheret= (t1, . . . , tm) and
s = (s1, . . . , sm). Let σ ∈ Sm be a permutation such thatt1, . . . , ts, ts+1 . . . , tm, sσ(s+1), . . . ,
sσ(m) are pairwise distinct andti = sσ(i) for 1 � i� s. ThenTm(t) = Tm(s) implies that

e

no

,

all

n the
e thank
itute.
.

gulis,
s∑
i=1

(
i− σ(i)

)
K
(
c(ti)

)
+

m∑
i=s+1

iK
(
c(ti)

)
−

m∑
i=s+1

σ(i)K
(
c(sσ(i))

)
= 0,

which, in view of Theorem 1.3, forcess=m andi= σ(i), that ist= s.
Thus, the fact thatTm :J (m) → Rd is a continuous injective map from them-dimensional

manifold J (m) into Rd, forcesm � d, which is a contradiction. ThusW has uncountabl
dimension, which proves Proposition 9.1.

For the proof of Corollary 1.4, observe that the setC of regular points ofRZd(Γ,G) is a
manifold. Then, ifH2

b(Γ,G) is finite dimensional, Proposition 9.1 implies that there are
continuous injective paths intoC, and hence each connected component ofC is reduced to a
point thus implying thatRZd(Γ,G) is finite. ✷

Proof of Corollary 1.6. –Observe that ifω : Γ→ G is of type (p, q), then, by Lemma 4.2
κG/4π gcd(p, q) is in the image ofH2(G,Z) under the mapH2(G,Z) → H2(G,R), and
henceω∗(κG)/4π gcd(p, q) is in the image ofH2(Γ,Z)→ H2(Γ,R). Letting nowωi : Γ→Gi,
1 � i� n, be inequivalent, Zariski dense representations, withωi : Γ→Gi of type(pi, qi), and
setting

ci :=
ω∗
i (κGi)

4π gcd(pi, qi)
,

we deduce from Theorem 1.3 and the hypothesis thatH2
b(Γ,R) injects intoH2(Γ,R), that the

family {
4π gcd(pi, qi)ci: 1� i� n

}
⊂H2(Γ,R)

is linearly independent overZ and hence that the family

{ci: 1 � i� n} ⊂H2(Γ,R)

is linearly independent overZ as well. Since we are dealing with ordinary cohomology and
theci’s are integral classes, we deduce that{ci: 1 � i� n} is linearly independent overR. ✷
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