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1. Introduction

A symmetric space X is Hermitian if it carries a complex structure which is Isom(X')°-
invariant and hence, together with the Riemannian metric, defines a closed Isom(X)°-
invariant differential two-form on X', which thus turns X into a Kéahler manifold. The
Kahler form gives rise to invariants for isometric actions of finitely generated groups I
on X itself and on geometric objects related to X.

Rigidity results involving these invariants were proven first by Ghys [21] and Mat-
sumoto [31] (see also [26]) for actions of I' by orientation preserving homeomorphisms
on S!' by interpreting the orientation cocycle on S! as a bounded cohomology class.
The orientation cocycle is in turn, up to a multiple, the extension to the boundary of
the “area function” on geodesic triangles in the Poincaré disk which associates to an
ordered triple the area of the geodesic triangle determined by it.

Likewise, when X' is the complex hyperbolic space H¢ the angular invariant defined
by Cartan in [12] is a real valued bounded function on ordered triples in OHg and is,
up to a constant, the bounded cocycle defined by integrating the Kahler form on Hg
over geodesic triangles (see [22] for definition and background). The interpretation of
Cartan’s invariant as a bounded cohomology class has been applied by Toledo [35] to
study representations of surface groups into the isometry group of H¢ and recently by
the first two authors [26], [2], [4], [3] to reprove and extend the results of Goldman and
Millson [23] on deformation rigidity of complex hyperbolic lattices (see also [30] for an
approach by harmonic maps).

More generally, let X be a Hermitian symmetric space of noncompact type and let
G = Isom(X)° be the connected component of its group of isometries. Then X is
biholomorphic to a bounded domain D in a complex vector space on which G acts by
birational transformations defined on and preserving D. The Bergmann metric on D is
Kéhler of course and denoting by wgerg its Bergmann-Kéhler form and by A(z,y,z) C D
a smooth triangle with geodesic sides, the function on G2,

1
Copers (915 92, 93) 1= 2—/ WBerg, 0 €D,
T JA(g10,920,930)

defines a G-invariant continuous (homogeneous) two-cocycle which is bounded [19] and
thus defines both a continuous class kg,p € H2(G,R) and a bounded continuous class
HE’B € H2 (G, R), which correspond to each other via the comparison map H? (G,R) —
H2(G,R) and are called, respectively, the Kdhler class and the bounded Kdihler class.
Now let H be a locally compact group and p : H — G a continuous representation. The
invariant

P*(“%,B) € H2,(H,R)

is the bounded Kdhler class of p and the question to which extent this invariant deter-
mines p has been addressed by Ghys for actions by orientation preserving homeomor-
phisms of the circle in [21] and by the first two authors for G = SU(p, ¢) in [6], where
complete results were obtained. For instance, if p # ¢ and the image is Zariski dense,
then p is determined (up to conjugation) by its bounded Kéhler class.

One of the aims of this paper is to extend this type of results to more general (ir-
reducible) Hermitian symmetric spaces. Along the way we will have to face the issue
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of the proper generalization of the necessary hypothesis p # ¢q. This will bring in the
notion of tube type domain and lead us to establish a new characterization of domains
which are not of tube type, topics to which we now turn in more detail.

The space X (or the domain D) is of tube type if it is biholomorphic to a domain of
the form

VeiQcVaeiV,

where V' is a real vector space and € C V is a convex open cone. A typical example is
the symmetric space associated to SU(p, q), which is of tube type if and only if p = g,
in which case it is biholomorphic to

Herm,,(C) + i Herm, (C),

where Herm,,(C) is the vector space of Hermitian matrices and Herm;' (C) is the open
cone of positive definite ones.

A basic object in this context is the Shilov boundary S C 0D of the bounded domain
realization D of the symmetric space; its topological properties reflect analytic-geometric
properties of D, an example being the classical characterization of tube type domains as
those for which 7 (S) is infinite. One of our characterizations below of domains which
are not of tube type will give one more instance of this interplay. In order to state this
we will need to introduce two more objects, namely, the Hermitian triple product and
its “complexification”.

The Bergmann kernel kp : D x D — C* extends continuously to the subset S ¢
S x S consisting of pairs of transverse points, that is, to the unique open G-orbit in
SxS8=G/Q xG/Q, where Q is a specific maximal parabolic subgroup; on the subset
SB) - 83 consisting of triples of pairwise transverse points, we define the Hermitian
triple product

<< I >> 51(3) — RX\CXa (x,y,z) = kD(’JJ,y)k‘D(y,Z)k‘D(Z,’I') mod RX;

which is a G-invariant multiplicative cocycle on S®). If now G is the connected ad-
joint R-group associated to the complexification of the Lie algebra of G—so that
G = G(R)°—and Q < G is the parabolic subgroup with Q(R) = @, then we have
a natural identification

11 S — G/Q(R)

of the Shilov boundary S with the real points of the complex projective variety G /Q.
We define in Section 2.4 a G-invariant rational function {(-, -, -))c on (G/Q)? which
extends the Hermitian triple product via the identification : and is hence called the
complex Hermitian triple product.

Theorem 1. Let X be an irreducible Hermitian symmetric space. The following are
equivalent:
(1) X is not of tube type;
(2) the set SG) of triples of pairwise transverse points in the Shilov boundary is
connected;
(3) the Hermitian triple product (-, -, -)): S®) — RX\C* is not constant.
(4) the complex Hermitian triple product ((-, -, -))c on (G/Q)? is not constant.
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Remark 2. (1) For the convenience of the reader we recall that the classification of all
irreducible Hermitian symmetric spaces, according as to whether or not they are of tube
type, is as follows:

tube type | nontube type
SU(p, p) SU(p, )

p<4qg
Sp(2n,R)
SO*(2n) SO*(2n)
n even n odd
SO(2,n)

E7(—25) Eg(—14)

where E7(—25) and E¢(—14) correspond to the exceptional Hermitian symmetric spaces
of complex dimension 27 and 16, respectively.

(2) Invariants related to the Hermitian triple product have been introduced and
studied in various contexts and we refer the interested reader to [6], [13], [16], [17], [15],
[14].

The above theorem is an essential ingredient in our investigation of the geomet-
ric properties of maximal representations of compact surface groups [9], [8], [7]. It
is however also one of the essential building blocks in the following general theorem
characterizing representations in terms of their bounded Kéhler class.

Theorem 3. Let H be a locally compact second countable group, X an irreducible Her-
mitian symmetric space which is not of tube type and p : H — G := Isom(X)° a
continuous homomorphism with Zariski dense image. Then the bounded Kdhler class
p* (RI&B) is nonzero and determines p up to conjugation.

The hypothesis that X is not of tube type is necessary. Indeed, let I' < PU(1,1) be
a torsion free cocompact lattice, and p : I' — G a maximal representation (for results
and notions pertinent to the theory of maximal representations we refer the reader to

[9], [8], [7]). Then:
(1) p* (RI&B) = /\Xn}’,U(1 1,8 where Ay is some constant depending only on X;
(2) if X is of tube type, there exist one-parameter families of maximal representa-

tions which have Zariski dense image in G and are inequivalent modulo conju-
gation.

Theorem 3 will follow in fact from the next more general result. Recall that we
assume that all the Hermitian symmetric spaces are equipped with their Bergmann
metric and let us convene that if p;: H — G; := Isom(X;)° for i = 1,2 are continuous
representations, we say that (p1, X1) and (p2, X2) are equivalent if there is an isometry
T: Xy — X5 which intertwines the two actions.

Theorem 4. Let H be a locally compact second countable group and let (p;, X;), j =
1,...,n, be continuous isometric actions of H on irreducible Hermitian symmetric
spaces. Assume that:
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(1) for every 1 < j < n, X; is not of tube type;
(2) the actions are pairwise inequivalent; and
(3) pj(H) is Zariski dense in G; = Isom(X;)° for 1 < j < n.

Then the subset
{P(r¢,B) | 1 <j <n} CHZ(H,R)

1s linearly independent over Z.

Let T be a finitely generated group and let Rep, (T, G) be the set of representations
of I' into G with Zariski dense image, modulo G-conjugation. This quotient has a
natural structure of real semialgebraic set and, according to Theorem 3, if X is not of
tube type the continuous map

Repp(I',G) — H%(RR), [p] — P*(“%,B%

is injective. This, together with Theorem 4, will imply the following

Corollary 5. Let T be a finitely generated group and G := Isom(X)°, where X is an
wrreducible Hermitian symmetric space. Assume that:

(1) X is not of tube type; and

(2) HZ(T,R) is finite dimensional.
Then there are, up to G-conjugation, only finitely many representations I' — G with
Zariski dense image.

The Kihler class kg5 € H2(G, R) associated to the Bergmann metric comes from an
integral class, namely, is in the image of the map H2(G, Z) — H2(G, R) (see Section 4).
Using this integral representative we also obtain a generalization of the finiteness result
of [6, Cor. 1.6]:

Corollary 6. Assume thatT is finitely generated and that the comparison map H%(F, R)
— H2(T,R) is injective. Let X be an irreducible Hermitian symmetric space which is
not of tube type and let G := Isom(X)°. Then the number of conjugacy classes of
representations of I into G with Zariski dense image is bounded by dimgH?(T', R).

Outline of the paper

In Section 2, after having recalled (Sections 2.1 and 2.2) basic facts about the Borel and
the Harish-Chandra realizations of a Hermitian symmetric space, we give (Section 2.3)
a model for the complexification of the Shilov boundary; then we introduce and study
(Section 2.4) the Hermitian triple product and its complexification, and establish the
relation between these invariants in Corollary 2.17.

In Section 3 we prove Theorem 1: we study the decomposition of the Shilov boundary
into Bruhat cells (Section 3.1) and deduce our topological characterizations of domains
not of tube type in terms of the connectedness of the set of triples of pairwise trans-
verse points. Then (Section 3.2), using the work of Clerc and Qrsted, we consider the
Bergmann cocycle on the Shilov boundary, obtained by continuous extension of the
Kahler integral on geodesic triangles; the properties of this cocycle together with its
relation to the Hermitian triple product allow us to finish the proof of Theorem 1.
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In Section 4 we collect the ingredients in order to prove the remaining results, using
and simplifying the strategy in [6]. First (Section 4.1) we introduce the Kéhler class
and show that it comes from an “integral continuous” class on G. In Sections 4.2 and
4.3 we apply basic techniques from the theory of bounded continuous cohomology as
developed in [11], [32], [5]. In Section 4.2 we use the Bergmann cocycle on the Shilov
boundary to give a natural realization of the bounded Ké&hler class, and in Section 4.3
we establish in general (as in [6] for G = SU(p, ¢)) the formula for the bounded Kéhler
class of a representation using boundary maps. In Section 4.4 we recall a classical result
on the existence of boundary maps.

In Section 5 we finally prove Theorems 3 and 4 and Corollaries 5 and 6.

2. Hermitian triple product

We recall the necessary background material about the structure of Hermitian sym-
metric spaces. We follow mostly the paper by A. Korédnyi [28]; for proofs the reader is
referred to this paper and the references therein.

Let X be a symmetric space of noncompact type and G = Isom(X)° the connected
component of the identity of the group of isometries of X'. Recall that ry, the rank of X,
is the maximal dimension of an isometrically and totally geodesic embedded Euclidean
subspace in X.

Definition 2.1. A symmetric space X is Hermitian if it admits a G-invariant complex
structure. We call a connected semisimple real algebraic group of Hermitian type if its
associated symmetric space is Hermitian.

Example 2.2. A typical example, which will serve as an illustration throughout this
paper, is the symmetric space associated to SU(p, q). Let C™ be endowed with a non-
degenerate Hermitian form (-,-) of signature (p, q) given by

P n
() =25 — Y zW;
j=1

Jj=p+1

with respect to the standard basis (e1, ..., e,). Up to a change of sign we may assume
that p < ¢. The Lie group

Gpq:=SU(p,q) = {g € SL(n,C) [ {g-,9) = (-,")}
is of Hermitian type with associated symmetric space
Xpg = {L € Gr,,(C") | (-,-)|L is positive definite},

which is of rank p. Choosing L} = (e1, ..., ep) as a base point, we have the identification
Xp.q = Gpq/Kp,q where K, ; = Stabg,  (Ly) = S(U(p) x U(q)) is a maximal compact
subgroup. The embedding of X}, ;, as an open subspace in the complex Grassmannian
Grp(C™) is the Borel embedding, which naturally induces a G, j-invariant complex
structure on &), 4; the closure of the image

Xpg={L € Gry(C") | {-,-)|r is semipositive definite }

is a compactification of X, 4.
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2.1. The Borel embedding and the Harish-Chandra embedding

Let X be a Hermitian symmetric space of noncompact type with a fixed G-invariant
complex structure. The stabilizer K := Stabg(zg) of a given point 2o € X is a maximal
compact subgroup of G and the Lie algebra g of G decomposes as a direct sum g = ¢ p,
where € is the Lie algebra of K, orthogonal with respect to the Killing form 95 : gxg — R.

The fact that X is Hermitian implies that there exists a unique element Z; in the
center Z (%) of £ such that ad(Zy)|, induces the complex structure under the identification
p 2 T,,X; if, in addition, X is irreducible, then Zy spans Z(¥).

Denoting by [¢ the complexification [ ® C of a real Lie algebra [, g¢ splits under the
action of the endomorphism ad(Zy) into eigenspaces,

gc=ftcOpLr Dy,

where py are the (+i)-eigenspaces and €c is the zero-eigenspace. In particular, if € €
{+a *}a [peaPE] =0 and [EC,Pe] C Pe-

The group G = Aut(gc)® is a connected linear algebraic group defined over R whose
Lie algebra is identified with g¢ via the adjoint representation ad, and its set of real
points G(R)® = Aut(g)° is identified with G via the adjoint representation Ad. Denote
by Py, P_, K¢ the analytic subgroups of G with Lie algebras p,p_, 8¢, respectively.
Then P, P_, K¢ are algebraic subgroups and K¢ normalizes Py and P_. The semidi-
rect products K¢ Py and K¢ P- are opposite parabolic subgroups of G with unipotent
radicals Py and P_, respectively. Hence the product map induces an isomorphism of
varieties of P, x K¢ P_. onto the Zariski open and dense subset O, := P.KcP_. of G
for e € {+, -} [1, Prop. 14.21]. In particular P. N K¢ P_. = {e}, and the maps

7t O, — P,
w5 O — K, (2.1)

€ .
€. O — P,

defined by the uniqueness of the decompositions

are regular.
The homogeneous spaces

M. :=G/KcP-.
are complex projective varieties and, since K = GN K¢ P, one obtains the Borel embed-
dings b of the symmetric space X into the projective varieties M,: these are holomorphic
embeddings defined by
be : X =G/K — M., ¢gKw— gz,

where x. := KcP. for e € {+,—}.
If exp denotes the exponential map on G, we have
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Lemma 2.3. The map
Ceipe — M, 2+ (eXpZ)zL’g,

is a Kc-equivariant isomorphism of varieties between the affine space pe and the Zariski
open subset U, := P.x. C M.

Proof. Since P, is Abelian, the exponential map exp : p. — P, is an isomorphism of
varieties. The map &, is the composition of the isomorphism exp with the isomorphism
of varieties P. — U, induced by the orbit map P, — M, [1, Prop. 14.12]. O

Since we have the inclusion G C P.K¢P-_., the image of the Borel embedding b, is
contained in U, and hence, by Lemma 2.3, we may compose

b &t
X=G/K = U. > p.
to obtain the Harish-Chandra embeddings. The image
De =& 0be(X) Cpe
is a bounded symmetric domain in the complex vector space p., called the Harish-

Chandra realization of X. A more precise description of D, requires the notion of
strongly orthogonal roots which we recall in the following section.

Example 2.4. The Lie algebra g, 4 of G}, 4 is given by

Op.q = su(p,q) :={X €sl(n,C) | (X, )+ (-, X-) =0}

writing X = (é g) € su(p,q) with A € Mat(p,p,C), B € Mat(p,q,C), C €

Mat (g, p, C), and D € Mat(q, ¢, C), we have
A*=—-A, D*=-D, B*=C, tr(X)=0.
The central element in ¢ inducing the complex structure is

iq

Id, 0
Zy=|PT4 i» ,
0 -——1d,
ptq

and gives rise to the following decomposition of the complexification gc = sl(n, C),

be = {X65[(n,(C)|X: (6‘ g)}

{X esl(n,C) | X = <8 103)} ~ Mat(p, ¢, C),

Py

p_ = {X €sl(n,C) | X = <g 8)} =~ Mat(q, p, C).
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The Harish-Chandra realization (see Section 2.2) can be described geometrically by fix-
ing the base point L with orthogonal complement L_. Since the orthogonal projection
pry, |r: L — L is an isomorphism, every L € X, 4 can be realized as graph of a unique
linear map

Zy:=pr|p_o (prL+|L)_1: Ly —L_,
and the map

?I%q —)Mat(q7p7c)a L— ZL;
gives an identification of &}, ; with the bounded symmetric domain
Dp.q = {Z € Mat(q,p,C) | Id, — Z* Z is positive deﬁnite} Cyp_
and of X, , with
Dpqg = {Z € Mat(q,p,C) | Id, — Z*Z is semipositive deﬁnite} Cp_.

2.2. The Harish-Chandra realizations as bounded symmetric domains

Let h C € be a maximal Abelian subalgebra. Then Z(¢) C h so that the complexification
hc C gc is also maximal and can be checked to be a Cartan subalgebra in gc. Let
U = U(gc, he) be the set of roots of hc in ge and let

gc =be® P aa
agw
be the corresponding root space decomposition. Define
Ut .= {ac VU |g, Ct}
the set of compact roots and
UPe:={a e ¥ |gy CPpe}.

Choose an ordering ¥ = ¥ U W_ such that UPe C U, and refer to UP+ (respectively,
to WP-) as the set of positive (respectively, negative) noncompact roots.
To each root o € ¥ associate a three-dimensional simple subalgebra

gla]=CH,®CE,®CE_, C gc
as follows: H, € hc is the unique element determined by
B(H, H,)
B(Hy, Hy)

where (by a slight abuse of notation) 8 is the Killing form of g¢ and, since g, is one
dimensional, F, and E_, are the unique elements defined by the relations

[Eo,E_o]=H, and 7(E,)=—-E_,,

al(H) =2 for all H € ¢,

where 7 is the complex conjugation of g¢ with respect to the compact real form gy =

t @ ip. Then H, € ibh,
pe= Y CE,

aEWPe

and the elements X, = E, + E_,, together with Y,, = i(E, — E_,), for « € UP+ form
a real basis of p.
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Example 2.5. When g = su(p,q), gc = sl(n,C), and the Cartan subgroup can be
chosen to be

he = {H = diag(hi,....ha) | S by = o}.
j=1

The roots a € b are given by
aij(H) =hi —hj, 1<4,j<n,i#],
with o;; positive if 4 < j. Furthermore,
E,,; = Eij, the elementary matrix with the (7, j)th entry equal to 1,
H,,, = diag(hi,...,h,) with h; =1, hj = —1 and hy = 0 for all k # 1, j.
The subset
A ={ar14p;-- - ap2p},

is a maximal set of strongly orthogonal roots (see below). For v; = «; j4p, we get, in
particular,

0 Id, 0
> E,=[0 0 0]cCpy,
7iEA 0 0 0
0 00
> B, =1 0 0|cCp,
7i €A 0 00
0 Idy, 0
Xy =1, 0 0])cachy,
7i €A 0 0 0

where a is a maximal Abelian subalgebra contained in p.

Two roots a, 8 € ¥ are called strongly orthogonal if neither a — 3 nor a+ 3 is a root
and, by a theorem of Harish-Chandra (see [25, pp. 582-583]) there exists a (maximal)
set A = {m,...,7} C UP+ of r = ry strongly orthogonal positive noncompact roots.
The associated vectors X,, € p, 7; € A, span then a maximal Abelian subspace a of p
over R. The subspace exp(a)z, C b.(X) C M, is the image of

I
oci= {3 taul(t)) B, 19 € A1y € R .
j=1

under the map &.: p. — M., so that

&1o be(exp(a)zg) = f;l(exp(a)xé) =a.
is clearly bounded. From the K-equivariance of 7! and the Cartan decomposition
G = K exp(a)K, we obtain the following description of the Harish-Chandra realization
of X as a bounded symmetric domain

D. = ¢ o b (X) = {Ad(k) Ztanh(tj)ij |ke K, t; € R} C Pe.
j=1

The Harish-Chandra realization induces, moreover, an isomorphism Isom(X)°2 Aut(D,)S
which links the Riemannian structure of A with the complex structure of D..
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2.3. The Shilov boundary

As bounded domains in CV, the Harish-Chandra realizations of X are equipped with
certain structures.

Definition 2.6. The Shilov boundary S of a bounded domain D in a complex vector
space is the unique minimal closed subset of the topological boundary 9D of D with the
property that all functions f, continuous on D and holomorphic on D, satisfy |f(z)| <
max, g |f(y)| for all z € D.

The Shilov boundary S, of the Harish-Chandra realization D, is the Aut(D.)°-orbit
of the point

T
€10 1= eiz Ee, € D, C Pe,
=1

where Ee,; are, as above, the root vectors associated to the strongly orthogonal roots
v € A.

Example 2.7. The Shilov boundary of D, 4 is
Spq = {Z € Mat(q,p,C) |1d, — Z*Z =0} Cp_,
which corresponds to the space of maximal isotropic subspaces
Ispg = {L € Grp(C") | (-,-)|L =0} C Xpq

under the Borel embedding X, ;, C Gr,(C™).

2.3.1. Shilov boundary in the Borel embeddings. The description of the Shilov boundary
£(Se) in the Borel embeddings be(X) requires the introduction of the Cayley element,
which is defined by

c:= exp(%iZXw) € G,
j=1

where the X ’s are, as above, the real vectors in p corresponding to the strongly
orthogonal roots v; € A.

Proposition 2.8. With the above notations we have:
(1) &(Se) = Get(ze), where ¢t € {c,c71};
(2) the parabolic subgroup
Q= cKcP_c™'n cilKCPJrc
is defined over R and

Stabg(c'z.) = Q(R).
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Proof. For the first statement of the proposition, see [29]; as for the second, let o be

the conjugation of G with respect to the real structure G. Then o(c) = ¢~! and

O’(K(cp+) = K¢ P_, which shows that Q is defined over R. The last statement follows
from the fact that

Stabg(c™'z.) = ' KcP_cc ' NG = ¢ “'KcPc' NG =QNG = Q(R),

where the second equality is obtained by applying . [

For our purposes, the drawback of this description is that, while the Shilov boundary
S. is isomorphic as a G-space to the real points of the complex projective R-variety
G/Q, objects such as M,—in which 56(5’6) sits— and the G-action on M, are not
defined over R. We now remedy this by giving a suitable realization of G/Q.

2.8.2. Complexification of the Shilov boundary. Let L = G x G be the direct product
of the complex algebraic group G with itself. Let X(g,h) := (c(h),0(g)). Then the
conjugation ¥ defines an R-structure on L for which the parabolic subgroup N, :=
KcP. x KcP_. is defined over R. Via the identification L/N, =2 M, x M_. of complex
varieties we endow M, x M _. with the corresponding R-structure. The morphism

A:G—>L7 gH(gmg)?

is defined over R and, in particular, G acts R-algebraically on M, x M_..
For p, := (ce(xe),c_e(x_g)) we have p. € (M6 X M_E)(R), Q = Stabg(pe), so that
the orbit map provides an identification of R-varieties

G/Q — Gp. C M. x M_..

Similarly, we endow the affine space p X p_. with the R-structure given by ¥ and obtain
in this way an R-isomorphism

EeX€c
PpeXp_e —=U x U_,

of R-varieties sending G(i€o., —ieo_.) into U, x U_, with image Gp.(R). Let

et Se — GpE(R)) gi€0e — gpe,

denote the resulting identification.

2.4. Hermitian triple product and Bergmann kernels

We will now use the model of G/Q as an R-subvariety of M, x M_. described above in
order to define an invariant rational function on (G/Q)3, called the complex Hermitian
triple product, and relate it to the Bergmann kernel of the bounded domain via the
embedding ..
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Remark 2.9. The reader interested in seeing the construction below realized in a family
of examples, namely SU(p, q), is referred to [6, Sections 3 and 4].

To this end, let us start by considering the Zariski open subset of G X p. defined by
Ve :={(g9,2) € G x pc | g(exp(2)) € O},
and the automorphy factor
Je: Ve — K, (g,2) = m5(gexp(2)),

where 7§ is the projection on O, defined in (2.1). Using now the projections 7¢ also
defined in (2.1) let us consider the map

Ve — pe,  (g,2) — guz :=log (7 (g exp(2))),

which partially defines a G-action by birational isomorphisms of the affine space p..
Notice that, via &, p. is identified with a Zariski open subset U, C M, (see Lemma 2.3)
and, moreover, the partially defined G-action on p. corresponds, again via &, to the
action of G on M, “restricted” to U, (the fact that U, is not G-invariant corresponds
to the fact that the G-action on p. is only partially defined).

Let us now consider the Zariski open subset of p. x p_. defined by

W, : w) € pe X p—c | exp(—w)(exp(z)) € O}

€ pe X p—c | (exp(—w),exp(z)) € Ve },

{(zw)
{(zw)

and the complex automorphy kernel
Ke: We — K¢, (z,w) — Je(exp(—w), 2).

With a series of formal verifications we obtain the following

Lemma 2.10. Let (z,w) € W, and g € G be such that (g«z, gsw) € We, (9,2) € V¢
and (g, w) € V_.. Then:

(1) Ke(gez,gsw) = T (g, w)Ke(2,w)Te(g, 2)"1; and
1

(2) Ke(o(w),0(2)) = o(Ke(z,w)) .

Define now

ke(z,w) := det(Ad Ke(z,w)]p.)
je(gaz) = det(Ad je(gaz) Pe)'

Remark 2.11. For (z,w) € W, and (g, z) € V¢, we have that kc(z,w) # 0.

The relevance for complex analysis of the above algebraic objects is the following
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Proposition 2.12. ([34]) Let D. C p. be the bounded domain realization of X. Then
its Bergmann kernel kp, : De x D, — C is given by

kp, (21, 22) = Cek. (21, o(zg))
for some nonzero constant C.. In particular, the Bergmann kernel kp, extends contin-

wously to
—(2) —2
DE = {(21,22) € DE | (21,0'(22)) € WE}
and is nowhere nonzero.
Lemma 2.10 now readily implies:
Lemma 2.13. Under the same hypotheses as Lemma 2.10 we have:

(1) kﬁ(g*zvg*w) = j—e(ng)_lke(z;a w)je(g; Z)_l

(2) ke(o(w),0(2)) = ke(z, w).
Example 2.14. Recall that for g = su(p, ¢) we have

P+ = Mat(pa q, C), p_ = Mat(‘]apa C),
with 0(Z) = —Z*. Thus the real structure on p_ x p is given by

Vipo X py —poxpy, (Z W) (=W, -Z7).
The automorphy kernel

; and

d, - WZ 0 0
K_: Mat(q,p,C) x Mat(p,q,C)— K¢, (Z,W)— 0 (Id, —-Ww2z)=* 0|,
0 0 0

is well defined on the subset
W_ = {(Z7 W) € Mat(q,p,C) x Mat(p, ¢,C) | det(Id, — WZ) # 0}.
The Bergman kernel is
k_: Mat(q,p,C) x Mat(q,p,C) — C, (Z1,Z2) — det(Id, — Z52:)7",
wheren=2(p—1)+(¢g—p)+2=p+gq.
Let A = C x C be the algebra product of two copies of C endowed with the real
structure defined by X(a,b) = (b,a). Then the algebra homomorphism
A:C— A, A= (M),
is defined over R and A(C) = A(R). The algebra A has 1 = (1,1) as unit and the
subgroup C*1 = {(X,A) : A € C} is defined over R.
If zj = (25,2, ) €pe X p_c for j =1,2 on

w® = {(21,22) € (pe x p—e)? | (zf,zj_e) EWe,i#j} (2.2)
we define
F(Zlv ZQ) = (ké(ziv de)a ké(zgv Zfe)) € A”
and on
We(3) = {(21;22;23) € (pe X p—e)3 | (Ziazj) € We(2)7 { 7&.7} (23)
we define
(21, 29, 23)C := F(21,29)F (22, 23)F (23, 21) € A*. (2.4)

Then using Lemma 2.13 one can verify the following
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Lemma 2.15.

(1) If g € G and (21, 22,23) € W' are such that the triple (g.«z1, g«22, gx23) also

belongs to W€(3), then
(9x21, g 22, gx23)c € C* (21, 22, 23)C-

(2) For any quadruple (z1,22,23,24) such that for 1 < i < j < k < 4 we have

(2, 25, 21) € We(g), then
(29, 23, 24)c (21, 23, 2a) g {21, 22, 2a)c (21, 22, 23) L € C¥ 1.
(3) For (z1,22,23) € W such that also (2(21), B(22), X(23)) € W then

(E(21), 2(22), 8(23)) « = B((21, 22, 23)c).
We summarize the essential points of what we obtained so far in the following
Corollary 2.16. The algebraic subgroup C*1 of A* is defined over R and the map
(- Ne: W — cra\ax,
obtained from (2.4) by passing to the quotient of A* by C*1, is a G-invariant regular
map defined over R.
Using now the R-isomorphism
ge X 576: pe X P—e — UE X Ufe
we denote again by ((-, -, -))c the rational map on (M, x M_.)® with values in
C*1\A* which (Lemma 2.15(1)) can be defined on the union of the G-translates
of (& x &_0)3 (WE(?’)). Considering now G/Q as an R-subvariety of M, x M_, as in
Section 2.4, we restrict ({-, -, -))c to a rational map on (G/Q)3— which we call the
complex Hermitian triple product— defined over R (Lemma 2.13(3)) and G-invariant
(Lemma 2.13(2)).

We now establish the connection with the Bergmann kernel of D.. According to
Proposition 2.12, the map

(.-, y: DY . ¢x
given by
(21,22, 23) := kp_ (21, 22)kp, (22, 23)kp_ (23, 21),
where
D = {(z1,22,23) € p2 | (21, 25) € D i # it
is continuous and nowhere vanishing, and its composition ((-, -, -)) with the projection
C* — R*\C* is G-invariant (Lemma 2.15(2)). We call ((-, -, -)) the Hermitian triple

product. Recall now that as a homogeneous space, the Shilov boundary S, is isomorphic
to G/Q, where @ = Q(R) is thus a real parabolic subgroup of G. Thus let S denote
the unique open G-orbit in S? and

35(3) = {(21,22,23) IS 5763 | (#,25) € 5'6(2), i ;éj}.

Then l_)£3) D S}(B) and the complex Hermitian triple product is defined on 3 (5,6(3)) C
(G/Q)?, where 2.: S — G/Q is the embedding defined in Section 2.3.2 identifying
S. with (G/Q)(R). Denoting again by A: R*\C* — C*1\A* the homomorphism
induced by A: C* — A* we obtain, from Proposition 2.12:
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Corollary 2.17. The diagram

3 (- Ne

(G/Q) Cra\A~

TA
5’6(3) <<11>> RX\(CX

commutes.

3. Characterization of domains not of tube type

Keeping the notations of Section 2 we will assume throughout this section that A" is an
irreducible Hermitian symmetric space and denote, for ease of notation, D =Dy C p4
its Harish-Chandra realization in p, as well as S = S, its Shilov boundary. Our main
objective is to prove Theorem 1 in the Introduction.

3.1. Bruhat cell decomposition

The equivalence of the properties (1) and (2) in Theorem 1 will follow from the deter-
mination of the dimensions of the Bruhat cells in G/Q which is the subject matter of
this subsection. To this end we need the precise form of the restricted root system of
g and the description of @ in these terms. Recall that A = {v1,...,7,} is the set of
strongly orthogonal roots in Section 2.2; let h~ be the real span of the vectors iH.,, for
~i € A. Then i~ is a Cartan subalgebra of g° := Ad(c)g, where c¢ is the Cayley element
defined in Section 2.3.1 and the restricted root system = = =(g¢, i) of R-roots of ih~
in g¢ is one of the following two types:

* Type C,. (tube type), namely,

where the roots £; have multiplicity 1; for later purposes, we let a > 1 denote the
common multiplicity of the roots :I:%%- + %fyj;

* Type BC,. (not of tube type), namely,

where i%’yj are of even multiplicity, denoted by 2b.

Example 3.1. The multiplicities for su(p,q), 1 < p < g, arer=p,a=2,b=qg—p. In
particular, &, is of tube type if and only if p = q.

A set of positive simple roots is given by
Ap- = {37 — 371, 1 <i<r—1; 67}

where 0 = 1 in the type C, case and § = % in the type BC, case.
For our purposes we apply Ad(c) to this situation; this automorphism interchanges
ih~ and ad(Zp)a in gc and sends the root system = to the root system Z’ given by the
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R-roots of ad(Zy)a in g. Denoting by p; the image of v;, the set of simple negative
roots becomes

A={—2pi+ipip1, 1 <i<r—1; —bp,}.
Recall that the standard real parabolic subgroups Pg of G correspond to subsets © of

A with the convention that P := Pj is minimal parabolic. For the parabolic subgroup
Q = GNcKeP_c™! we have the well known

Lemma 3.2. ([29, Theorem 5.9], [28, §IV.2.8]) If © = A\{—0u,}, then Q = Ps.

The Weyl group W of the restricted root system is generated by the reflections
$1,...,8, where, for 1 <i <r —1, s; is the reflection in —%ui + %,ui_H, and s, is the
reflection in —dyu,. Let Wg be the subgroup generated by {s1,...,s,_1}and W® aset of

representatives (to be determined below) of W modulo Wg. The Bruhat decomposition
is the following disjoint union

G/Q= U cw),
weW®
where c(w) = Pw@.
Lemma 3.3. Let t), := sg...5., 1 < k <r. Then W® := {t;,tot1,...,t,...t1} is a
set of representatives of W modulo Wg.
Proof. This follows from the explicit form of the action of ¢; on the root system. Namely,
tk(“z) = M, for 1 i < ka
tr(pi) = pig1, for k
te(pr) = —pg. O
Lemma 3.4. Let w,,, = t,...t1. Then:
(1) e(wm) = QunQ is open and of dimension (2b+ 1)r + ar(r —1)/2;
(2) the codimension of c(ty_y ...t1) in G/Q is equal to (2b+ 1)k + ak(k —1)/2.
Proof. (1) The dimension is simply the sum of the multiplicities of the positive roots.
(2) Let ¥ be the set of all nondivisible negative roots in Z’ which do not lie in the
span of ©. For w € W define
By = w(P)NZ=T,
where Z% is the set of positive roots in ='; let
Jw = Z (ga +g2a)
Q€EEy,

and let U, be the unipotent subgroup corresponding to g,,. Then

NN

1 <r—1,

Uy — c(w), u— uw@,
is a diffeomorphism and, consequently,
dim ¢(w) = dim U,, = dim g,, .
To prove (2) it suffices then to check that
Sty — Bty = { My - M — k15 i + 515, J >0 =T — k4 1},

where n = 1 in the case C, and n € {1, %} in the case BC,, which, together with the
multiplicities, gives the formula for the codimension. [

Lemma 3.4 then implies:
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Corollary 3.5. Let X be an irreducible Hermitian symmetric space:
(1) if X is of tube type, then
codime(t,—1...t1) = 1;
(2) if X is not of tube type, then
codime(t,—g...t1) =23 for 1<k <r
Corollary 3.6. If X is not of tube type, then S©) is connected.

Proof. Indeed, S is obtained from S3 by removing finitely many subsets of codimen-
sion at least 3 (Corollary 3.5(2)). O
3.2. The Bergmann cocycle

The equivalence of the properties (1), (3) and (4) in Theorem 1 rests on the relation
between the Hermitian triple product and the Kéhler area of geodesic triangles in D,
and relies on the results of Clerc and Orsted.

Let kp : D x D — C* be the Bergmann kernel which, as previously noticed, extends

continuously to kp : 5(2) — C*, and let argkp : 5(2) — R denote the continuous
determination of the argument of kp vanishing on the diagonal of D?. Recall that the
Kahler form of the Bergmann metric is given by

WBerg = 100 1og kp(z, 2).
The following is then central for our immediate and subsequent purposes:

Theorem 3.7. ([18], [17]) Let A(x,y,z) C D be a smooth oriented triangle with geode-
sic sides and vertices x,y,z € D. Then

/ WBerg = _[arng(x7y) +arng(yaz)+arng(Z7x)}
A(z,y,2)

for all x,y,z € D.

For (z,y,z2) € P

B(x,y,z) = —[argkp(z,y) + argkp(y, z) + argkp(z, z)] (3.1)
3).

we define, as we may,

and we conclude readily using Theorem 3.7 and the fact that D? is dense in D
Corollary 3.8. The function
G 5(3) — R
is continuous, G-invariant, alternating and satisfies the cocycle identity
dB(x1, 2, 23,24) =0
whenever (z;,xj,x) € 5(3), 1< j<k.

We call 8 the Bergmann cocycle, and remark that it satisfies the following relation
with the Hermitian triple product

((z,y,2)) = P@¥3) mod R* (3.2)

for (z,y,2) € .
Another important consequence of Theorem 3.7 is the following



HERMITIAN SYMMETRIC SPACES AND KAHLER RIGIDITY 23
Corollary 3.9. ([17, Theorem 3.1]) For (x,y,z) € D3, we have that

By, )| <t

and

ba
Sup_ |ﬁ(x,y,z)| :Tf’l”?,
(z,y,2)€5®)

where pc = (r — L)a+ b+ 2.

In fact, it is easy to see that the supremum is achieved when z,y,z € S are the
vertices of a maximal triangle, that is, they are distinct and lie in the boundary of a
diagonal holomorphic disk in a maximal polydisk. The fact that those are exactly the
triples achieving the supremum is also due to Clerc and @rsted, but we will not use it
here.

Corollary 3.10. Let X be an irreducible Hermitian symmetric space.
(1) ([16, Theorem 4.3]). If X is of tube type, then

53 = { PG i — ) PC _qbe .Pc
6(5 ) { L w(r 2)2,...,7r(r 2)2,7r7’2}.

(2) If X is not of tube type, then

Proof. Part (1) follows from [16, Theorem 4.3].

(2) According to Corollary 3.9, B(S(3)) C [~7rpg /2, mrpa/2); moreover, if x,y, z € S
are the vertices of a maximal triangle which is positively oriented, then both (z,y,z) €
S®) and (y,z,z) € S, with 8(x,y, z) = 7rpe/2 and B(y, z, z) = —mrpg/2. Moreover,
since X is not of tube type, S is connected, which implies the assertion. [

Example 3.11. For explicit computations which give the statement of Corollary 3.10
when X = X, ; we refer the reader to [6, Lemma 4.1].

Proof of Theorem 1. The implication (1) = (2) is Corollary 3.6, the implication (2) =
(1) is Corollary 3.10(1), while the implication (1) = (3) is Corollary 3.10(2). The
equivalence of (3) and (4) follows from the fact that S is Zariski dense in (G/Q)?.

To see that (3) implies (1) let us assume that X is of tube type. Then again from
Corollary 3.10(2), if (z,v, z) € S®), we have that §(z,y, 2) = n(r — 2k)pg/2 for k € N,
where now pg = (r — 1)a + 2. Since

-1
2)707":476(7“2 )aJrrGZ

and, consequently, (r — 2k)pg/2 € Z, we have that
e~ P@v2) ¢ (41} for all (z,y,2) € SO,

and hence ((z,y, 2)) = eP@¥:2) =1 mod R*. O



24 MARC BURGER, ALESSANDRA I0ZZI, AND ANNA WIENHARD

4. The Kahler class, the bounded Kéihler class and boundaries

4.1. The Kahler class is integral

We keep the notation of Section 3, in particular, wpeg € Q*(D)¢ is the Bergmann—
Kahler form of the Bergmann metric of D = D4 C p; and define

1
CwBerg(91,92793) :g (010,020 O)wBerga
91Y,920,93

where, as before, A(x,y,z) C D denotes a smooth triangle with geodesic sides and
vertices z,y,z € D. Then cyp,,, is a continuous G-invariant homogeneous cocycle on G
and defines a continuous class kg g € H2(G,R) called the Kihler class.

If L is a locally compact group, let H2(L,Z) denote its continuous cohomology with
coefficients in Z which is computed, as is well known, using Borel cochains on L with
values in Z (see [33]). Let

Qr: H (L, Z) — HI(L,R)
denote the change of coefficients, and consider now the diagram

H2(G,Z) —2> H2(G, R)

|

Hom(K,T) —— H2(K,Z),

where the map corresponding to the vertical arrow is the restriction to K, and that to
the bottom one is the connecting homomorphism coming from the short exact sequence
of coefficients

0—>Z—>RLT—>O,

where T is the circle group and E(z) := exp(2miz). It is well known that both of these
maps are isomorphisms [24], so that we may speak of a class in H3(G, R) corresponding
to a continuous homomorphism K — T in Hom.(K,T). Now let j : K — T be the
continuous homomorphism which associates to k € K the complex Jacobian of z — kz
at the fixed point 0 € D. Then we have:

Proposition 4.1. The Kihler class kg5 € H2(G,R) corresponds to the complex Jaco-
bian j € Hom, (K, T). In particular, kg g is in the image of Qg : H2(G,Z) — H2(G,R).

Proof. Let u € Hom¢(K,T) and let €, be the G-invariant two-form on D whose value
at ToD = p is given by
1
(2)0(X,Y) = Z=(Dew) (X, V),
where D.u : £ — R is the derivative at e of u. Then, according to [20], a continuous
cocycle cq, : G® — R representing the class in H2(G,R) corresponding to u is given by

1
cQ, (91592593) = _/ Qu
2 A(910,920,930)
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Observing that the Bergmann metric is % of the metric given by the Killing form, it
follows from [6, (5.4)] that

(Pe)((X.Y]) = o (Det) (Z0)pere o (X, V),

where (Wgerg)o is the value at 0 of the Kéhler form wpers and, consequently

12
 4mi dim p

(2u)o(X,Y) (Dew)(Zo)(wBerg)o(X, Y).

We now apply this to u = j, where by definition we have that

j(exp(tZy)) = det(Ad(exp(tZo))lp. )-
Taking into account that Ad (exp(tZo)) acts on p, as multiplication by €%, we get that
j(exp(tZo)) = eitdimp
and thus (Deu)(Zp) = i dim p, which shows that (2y)o = (WBerg)o, thus concluding the

proof. [

4.2. The bounded Kahler class
The cocycle c,p,,, is related to the Bergmann cocycle defined in (3.1) by the relation

1
Cunorg (91,92, 93) = 5-5(910, 920, 930),
so that Corollary 3.8 implies that

pGT

o0 4

||CWBerg

Thus cup,,, gives a bounded continuous class IigyB € H? (G,R), called the bounded
Kdhler class, which corresponds to the Kéahler class k¢ B via the comparison map

which in this case is an isomorphism [10]. Let now B2, (S™) denote the Banach G-module
of bounded Borel cochains on S™ equipped with the simplicial coboundary operator

d:BX(S") — B (5™,

Then [5] ] ]
R — L*®(S) — L:ft(52) R—

is a strong G-resolution of the trivial G-module R and we have a natural map
H® (B.(S*)9) — H2,(G,R). (4.1)

We now use the following
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Theorem 4.2. ([14]) The cocycle 3: SG) — R extends to a G-invariant alternating
Borel cocycle on S3 such that

yZe]
Supq |6(:c,y,z)| :7.“,.?'
(x,y,2)€S®)

Let us denote by
Bg: S —R

the extension of 8 in Theorem 4.2 and by [65] € H? (Bgﬁ(S‘)G) its class. Then we
have:

Proposition 4.3. The class [ﬁs] goes to 2#&%73 under the natural map in (4.1).

Proof. Denote for simplicity by b := io, € S the point for which Stabg(h) = Q. Then
we have morphisms of complexes

M (S%) — L2(S%) — LT(G*),
where the second morphism is induced by the orbital map
G— S, g gb.
The resulting morphism B, (S*) — L, (G*) of complexes extends the identity R — R
and, consequently, [11], [32], the map induced in cohomology implements the natural

map (4.1). To finish the proof it then suffices to show that the bounded cocycle ¢ €
L (G?) defined by

_ 1
c(g91,92,93) = %65’(91177 gab, gsb)

is cohomologous t0 cup,,, in (L3 (G*),d®). This is formal and rests on the cocycle
property of 3 on . Namely, if g,h € G with (gb, hb) € S, define
V(g h) := B(gb, hb, ho) + B(ho, go, gb).
Then v € L%®(G x G)¢ and one verifies that
Coperg = C T dy (4.2)

almost everywhere. [

4.3. A formula for the pullback

Let H be a locally compact second countable group. Following Kaimanovich (slightly
extending a result in [11]), there is an étalée probability measure on H such that, if
(B, v) denotes the corresponding Poisson boundary, we have:
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Proposition 4.4. ([27]) The diagonal H-action on (B x B,v X v) is ergodic.

At any rate, the H-action on (B, v) is amenable and thus the complex
R— ... — L (B") — LX(B") — ...

consisting of alternating essentially bounded cochains in B™ is a resolution of R by
relatively injective G-modules; this, Proposition 4.4 and [11] imply:

Corollary 4.5. There is a canonical isometric isomorphism
HZ,(H,R) — ZL(B*)".

The right-hand side denotes the space of H-invariant alternating essentially bounded
cocycles on B3.

Let now p : H — G be a continuous homomorphism; assuming that there exists an
H-equivariant measurable map ¢ : B — S, we may define an element of ZL:ft(B3)H by

(©58) (b1, b2,bs) == Bg((b1), p(ba), p(b3)).

As a consequence of Proposition 4.3, Corollary 4.5 and [5], we have:

Proposition 4.6. Under the isomorphism
HZ,(H,R) = ZLg, (B*)"

the pullback p* (RI&B) of the class n%’B corresponds to (1/2m)(¢303).
4.4. Boundary maps

Under certain conditions, a boundary map as in Section 4.3 exists. We recall now a
result describing general conditions implying the existence of such a specific boundary
map; for a proof, see, for instance, [6].

Theorem 4.7. Let G be a connected semisimple algebraic group defined over R, G =
G(R)° and let P be a minimal parabolic subgroup defined over R. Assume that the
continuous homomorphism p: H — G has Zariski dense image and let (B,v) be a
Poisson boundary for H as in Proposition 4.4. Then there exists a measurable H -
equivariant map @: B — G/P. Moreover, any such map verifies that for almost every
(b1,b2) € B2, the images ¢(b1), p(ba) are transverse.

We recall that a,b € G/P are called transverse if the pair (a,b) € (G/P)? belongs to
the unique open G-orbit for the diagonal action on G/P x G/P.

In particular, assuming now that the symmetric space A associated to G is Hermi-
tian and letting as usual S C p denote the Shilov boundary of the bounded domain
realization of X', we have:

Corollary 4.8. Under the assumptions of Theorem 4.7, there exists a measurable equiv-
ariant map p: B — S such that (p(b1), (b)) € SP for almost every (b1,bs) € B2.

For the benefit of the reader we mention that an alternative condition to the Zariski
density ensuring that the conclusion of Corollary 4.8 holds is that p: H — G is a tight
homomorphism, as defined in [8].
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5. Proofs

In this section we conclude the proofs of Theorems 3 and 4 and Corollaries 5 and 6
in the Introduction.

We start with a preliminary observation concerning the Hermitian triple product and
keep the notation of Sections 2 and 3. In particular, we will identify the Shilov boundary
S with (G/Q)(R). Given (a,b) € S@, let O, C G/Q be the Zariski open subset on
which the map

Pa,b: Oa,b B Cxl\Axv T = <<a7b7 l‘))({;,

is defined.
Lemma 5.1. Assume that X is not of tube type. Then, for any m € Z, the map

Oupp — C*U\AY, x+— P,p(x)™,

s not constant.

Proof. Observe that since ({-, -, -))¢ is G-invariant,
<< Ty Ty T >>C(S(3)) == Pa7b(5’ M Oa,b).

If now be were constant, then P, 3(O45) would be finite; but O, being connected,
Py would be constant, and hence ((-, -, -))c would be constant on SG); but this
would imply by Corollary 2.17 that ((-, -, -)) is constant on S(), thus contradicting
Theorem 4(3). O

5.1. Proof of Theorems 3 and 4

We prove Theorem 4 since it will imply Theorem 3.
For 1 < ¢ < n, let p;: H — G; be continuous representations and set, for ease of
notation, kP := Ii%“B. Assume that there is a nontrivial linear relation over Z,

> mai (s8) = 0. 6.1)

Let (B, v) be a Poisson boundary of H given by Proposition 4.4 and let ¢;: B — S; be
the H-equivariant measurable maps given by Corollary 4.8. Then (5.1), Corollary 2.17,
(3.2) and Proposition 4.6 imply that, for almost every (b1, b, b3) € B3, we have

H ({pi(b1), @i(b2), pi(bs))) " = 1. (5.2)
Consider now

p: H— HGi, h (pi(h))i,

i=1
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and

p: B — Hsz‘, b— (pi(b)),,

i=1

and let us define A := p(H) with Zariski closure E := A7 Fix (b1,b2) € B? such that,
forall 1 <7< n,

o (pi(b1), pi(ba)) € S®) (see Corollary 4.8); and
e (5.2) holds for almost every b3 € B.

Set
Oi = O (1) pit02) © Gi/ Qi
and O :=[["_, O;, and define
P :0O; — C*1\A*

by P; := Py, (b,),4:(bs)- Then, for the essential image EssIm(¢) of ¢, we have
EssIm(¢)NO C {(:cl, coxp) €0 | le(xz)m _ 1}'
i=1

The right-hand side is a proper Zariski closed subset of O (Lemma 5.1), from which it

follows that the E-invariant subset Ess Im(go)Z C 1 G:/Q; is proper and Zariski closed,
and hence that E is a proper R-subgroup of HZL=1 G;. This implies, in particular, that
n > 2 and proves that the bounded Kabhler class p; (/@E) does not vanish. Since the
groups G; are all simple non-Abelian as abstract groups, and pr;(E) = G; (recall that
pi(H) is Zariski dense in G;), there exists a nontrivial partition I; U---Ul, = {1,...,n}

and R-isomorphisms 7;; : G; — Gy, for ¢, j € I for some ¢ < k < £, such that
pi(h) = mijpi(h)
for all h € H. In particular, there is ¢ # j such that (p;, X;) and (p;, X;) are equivalent,
which shows Theorem 4. [
Let n =2, my = —mo =1, T2 : &1 — A5 the isometry induced by 7. Let n =1 if
T12 preserves the complex structure and n = —1 otherwise. Then we get

pa(h) = m2p1(h)

for h € H, and hence (1 —7n)p; (ﬁ?) = 0, which—in view of the fact that p} (Ii?) #0—
implies that n = 1 and T} is holomorphic, thus completing the proof of Theorem 3. [

5.2. Proof of Corollaries 5 and 6

Concerning Corollary 5, we record the following proposition from [6, Prop. 9.1] which,
even though concerned specifically G = PSU(p, ¢q) for 1 < p < ¢, only uses Theorem 4
which is valid for any G = Isom(X)°, as long as X is Hermitian symmetric not of tube
type.

If T is a finitely generated group, let Rep(I", G) be the quotient of Hom(I', G) by the
G-conjugation and let Rep, (T, G) C Rep(T', G) be the subset consisting of represen-
tations with Zariski dense image.
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Proposition 5.2. ([6]) Assume that G = Isom(X)° and that X is an irreducible Her-
mitian symmetric space not of tube type. Let

c¢: I — Rep,p((T, G)
be a continuous injective path from an open interval I C R, and let
K: Repyp(l',G) — H%(I‘,R), pr P*(Kg,B)-
Then
{K(c(t)) |t eI} CH{(T,R)

contains an uncountable subset which is independent over R.

Proof of Corollary 5. If H%(F,R) is finite dimensional, Proposition 5.2 implies that
Rep,p (T, G) must be zero dimensional and hence consists of finitely many points. [

Proof of Corollary 6. Let (p;, X;) be inequivalent representations, where the X; are ir-
reducible Hermitian symmetric spaces not of tube type. Then

p; (ke B) € Image{H*(T",Z) — H*(I,R)} (5.3)
(see Proposition 4.1). Since HZ(T',R) injects into H?(T',R), we have that the classes

{p;K ("‘@Gq,,B) | 1< < n}

are independent over Z. Since we are dealing with ordinary cohomology and the
pi (”Gi,B) satisfy (5.3), they are also linearly independent over R. O
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