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Bounded cohomology for groups and spaces is related to usual cohomology and in
fact enriches it by providing stronger invariants. The aim of this talk is to illustrate
certain aspects of this philosophy. General references for bounded cohomology are
[12, 21, 22, 3].

1. Definition, low degrees. The continuous cohomology H•
c(G, E) of a topological

group G acting continuously by linear isometries on a Banach space E is defined
using the resolution of E by the complex of continuous E-valued cochains on G.
Using the subcomplex of continuous cochains which are bounded in the supremum
norm leads to the bounded continuous cohomology; it is equipped with a quotient
seminorm and comes with a comparison map H•

cb(G, E) → H•
c(G, E). In degree

zero both cohomology groups equal EG. In degree one the comparison map is
always injective; while H1

c(G, E) describes affine isometric G-actions on E with
given linear part, H1

cb(G, E) classifies those with bounded orbits. Starting with

degree two this theory really exhibits new phenomena. The kernel EH2
cb(G, E) of

the comparison map admits a description in terms of quasiactions. In the case
of trivial coefficients, where we denote the corresponding objects by H•

cb(G) and

H•
c(G), this kernel EH2

cb(G) is the quotient of the space

QH(G) :=
{

f : G → R : f is continuous and sup
x,y

∣

∣f(xy) − f(x) − f(y)
∣

∣ < ∞
}

of continuous quasimorphisms by the subspace Cb(G)⊕Homc(G, R), where Cb(G)
is the space of continuous bounded functions on G.

2. Examples. This interpretation, together with the exploitation of certain hyper-

bolicity phenomena, leads to nonvanishing results on H2
b(Γ); for instance, H2

b(Γ)
is infinite dimensional when Γ is:

(1) a lattice in a real rank one Lie group [14]
(2) Gromov hyperbolic and nonelementary [13],
(3) a subgroup of the mapping class group Mg for g ≥ 2 which is not virtually

Abelian [2].

Many of these examples are fundamental groups of finite aspherical complexes;
this illustrates the fact that there are no simple minded finiteness conditions on Γ
ensuring that H2

b(Γ) is finite dimensional; indeed for the free group Fr on r ≥ 2
generators, which is inherently a one-dimensional object, H2

b(Fr) and H3
b(Fr) are

infinite dimensional. This seems to be the price to pay for the advantage that
bounded cohomology is the receptacle of rather refined invariants as the next
section illustrates. Let’s however mention that if Γ is amenable Hn

b(Γ) = 0 for
n ≥ 1.

3. Two important examples.
(1) Bounded Euler class: The Euler class classifies the universal covering of

the group Homeo+(S1) of orientation preserving homeomorphisms of the circle
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S1; it admits a natural bounded representative eb ∈ H2
b

(

Homeo+(S1), Z
)

. For a

minimal action ρ : Γ → Homeo+(S1), its bounded Euler class ρ∗(eb) ∈ H2
b(Γ, Z) is

then a complete invariant of conjugacy [16]. Let eb
R

be the bounded class obtained
by changing coefficients from Z to R. Recently the author showed [4] that if Γ < G
is a lattice in a locally compact (second countable) group G, then for a minimal
action which is not conjugate into the group of rotations, ρ∗(eb

R
) is in the image

of the restriction map H2
cb(G) → H2

b(Γ) if and only if ρ finitely covers an action
which extends continuously to G.

(2) Bounded Kähler class: The integral of the Kähler form on triangles with
geodesic sides in a hermitian symmetric space (of noncompact type) gives the
bounded Kähler class κb

X
∈ H2

bc(G), where G = (Aut(X ))◦. The bounded Kähler
class of a representation ρ : Γ → G is then ρ∗(κb

X
) ∈ H2

b(Γ). When X is irreducible
and not of tube type, it is a complete conjugacy invariant for representations with
Zariski dense image [5, 10]. This invariant has served to define new types of
embeddings between Hermitian symmetric spaces [8] and enters as well in the
higher Teichmüller theory developed in [9, 7].

4. The comparison map. It encodes subtle information of algebraic and geometric
nature.

(1) Commutator length [1]: The stable length ℓst on the commutator subgroup
Γ′ of Γ is ℓst(γ) := limn→∞ ‖γn‖/n, where ‖ · ‖ denotes the commutator length.
Then ℓst vanishes identically if and only if EH2

b(Γ) = 0, that is the comparison
map in degree two is injective.

(2) Hyperbolicity [19]: A finitely generated group is (nonelementary) Gromov
hyperbolic if and only if the comparison map Hn

b(Γ, E) → Hn(Γ, E) is surjective
for every Banach Γ-module E and n = 2 (or equivalently n ≥ 2).

(3) Measure equivalence [24, 20]: It preserves the property that H2
b

(

Γ, ell2(Γ)
)

6=
0. The latter holds for all (nonelementary) Gromov hyperbolic groups.

(4) Higher rank [11, 23]: The comparison map is injective with image the G-
invariant classes if Γ < G is an irreducible lattice in a connected semisimple Lie
group G with finite center and rank rkG ≥ 2. This is also implied by the recent
result [23] that H2

cb(G) → H2
b(Γ) is an isomorphism for n < 2 rkG. Together with

2(3), 3(1) and 4(1) we obtain that:

– any homomorphism Γ → Mg has finite image [18];
– any Γ-action by homeomorphisms of S1 has a finite orbit [17];
– the stable length on commutators vanishes.

(5) Geometry of central extensions [15]: If a class α is in the image of the
comparison map H2

b(Γ, Z) → H2(Γ, Z) then the associated central extension

0 //Z //Γα
//Γ //e

is quasiisometric to Γ × Z; here Γ is a finitely generated group.
(6) Differential forms [6]: For a symmetric space of noncompact type X and a

discrete subgroup Γ < Iso(X ). there is a factorization
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H•

b(Γ) //

%%
L

L
L

L
L

L
L

L
L

L

H•(Γ) = H•

dR(Γ\X )

H(∞)(Γ\X )

66lllllllllllll

of the comparison map by a geometrically defined map to the cohomology H(∞)(Γ\X )
of the complex of smooth Γ-invariant differential forms on X which are bounded
and d-bounded. In case Γ is a lattice, H(∞)(Γ\X ) can be replaced by L2-cohomology.
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