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1.1. Prolegomenon

In this paper we continue our study of lattices in the automorphisms groups of
products of trees initiated in [BM97], [BM00a], [BM00b], [Moz98] (see also [Gla03],
[BG02], [Rat04]). We concentrate here on the interplay between the linear represen-
tation theory and the structure of these lattices. Before turning to the main results of
this paper it may be worthwhile to put certain concepts and results from [BM00a],
[BM00b] in perspective, and explain the motivation for our approach.

A lattice � in a locally compact group G is a discrete subgroup such that the
quotient space G/� carries a finite G-invariant measure. If in addition G/� is com-
pact the lattice is called cocompact or uniform.

In the framework of this paper the following classical setting will serve as a
motivating example. Let Qp denote the field of p-adic numbers and given two primes
p, q define the locally compact group:

G p,q = PSL(2, Qp) × PSL(2, Qq).

Lattices in G p,q fall into two classes: The reducible ones and the irreducible ones.
A lattice � < G p,q is called reducible if it has a subgroup of finite index which
is a direct product �p × �q where �p < PSL(2, Qp) and �q < PSL(2, Qq) are
lattices. A lattice is called irreducible if it is not reducible. Thus, for a reducible lattice,
each of the projections is a closed, in fact discrete, subgroup of the corresponding
factor. It is a remarkable fact that for an irreducible lattice � < G p,q both projec-
tions are dense in the corresponding factor. We recall at this point that the notions
of reducibility and irreducibility pertain to the theory of lattices in products of semi-
simple groups over local fields where analogous density properties hold for irreducible
lattices (cf. [Mar91] II Thm. (6.7)). It should be noted that this density result makes
essential use of the algebro-geometric structure of the ambient group and in particu-
lar of the Borel density theorem. Irreducible lattices in G p,q and more generally in a
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product G of semisimple groups over local fields of total rank at least 2 enjoy remark-
able algebraic and geometric properties as the following results due to G.A. Margulis
show:

– Arithmeticity: Any irreducible lattice in G is arithmetic. [Mar91, IX Thm (A)].
– Superrigidity: Any unbounded irreducible linear representation of an irreducible

lattice comes from a rational representation of the ambient group G. [Mar91,
VII Thm (5.6)].

– Normal subgroup Theorem: Any non-trivial normal subgroup of an irreducible
lattice in G is either finite and central or of finite index. [Mar91, IV Thm (4.9)].

An important geometric object associated with PGL(2, Qp) is its Bruhat–Tits
building Tp+1 which is a regular tree of degree p + 1 on which PGL(2, Qp) acts by
automorphisms. In fact PGL(2, Qp) acts transitively on the set of vertices of Tp+1 and
any pair of adjacent vertices is a complete set of representatives for the PSL(2, Qp)-
orbits. The group AutTp+1, with the topology of pointwise convergence on the set of
vertices, is a locally compact group containing PGL(2, Qp), and hence PSL(2, Qp),
as a closed (cocompact) subgroup. In particular a cocompact lattice in PGL(2, Qp),
or PSL(2, Qp), is also one in AutTp+1; this allows applying combinatorial and finite
group theory techniques, such as the theory of graphs of groups, to the study of
the structure of lattices in PGL(2, Qp). As an example we mention the result that a
cocompact lattice in AutTp+1 is virtually free on finitely many generators (see for
example [Ser03]). There are however certain more subtle finiteness properties shared
by cocompact lattices in PGL(2, Qp) which fail in general for cocompact lattices in
AutTp+1. For example one has a positive lower bound on the covolume of lattices in
PGL(2, Qp) whereas there are lattices of arbitrarily small covolume in AutTp+1. The
similarities and differences between the theory of lattices in AutTp+1 and the theory
of lattices in Lie groups, and in PGL(2, Qp) in particular, are part of an extensive
study and we refer to [BL01] for many results and references. Returning to the higher
rank situation and in the same geometric vein, we observe that a cocompact lattice
� in PGL(2, Qp) × PGL(2, Qq), or in G p,q for that matter, is also a cocompact
lattice in AutTp+1 × AutTq+1. If � is moreover torsion free then it acts freely on the
2-dimensional square complex Tp+1 × Tq+1 and the quotient �\(Tp+1 × Tq+1) is a
finite square complex inheriting the particular link structure of its universal covering,
namely that the link of each vertex is a complete bipartite graph. This puts the study
of such lattices in a rich geometric and combinatorial context. In fact, it was observed
by D. Wise ([Wis95, Thm 1.5]) that the universal covering space of a 2-dimensional
square complex is a product of trees exactly when the link at each vertex is a com-
plete bipartite graph. As for the similarities and differences between the theory of
cocompact lattices in AutTp+1 × AutTq+1 and G p,q , or PGL(2, Qp) × PGL(2, Qq),
the first major difficulty seems to be the proper generalization of the notion of irre-
ducible lattice. This issue will be discussed below after example 1.1.1. Let us indicate
one striking phenomenon: while cocompact lattices in PSL(2, Qp), AutTp+1 and
PGL(2, Qp) × PGL(2, Qq) are linear groups this need not be so for cocompact lat-
tices in AutTp+1 × AutTq+1 and as a consequence of the result proven in this paper
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we will obtain an algorithmic criterion of non-linearity (see cor. 1.1.20) using the
information contained in the finite quotient square complex.

Example 1.1.1. An interesting example of an irreducible lattice in PGL(2, Qp) ×
PGL(2, Qq) may be explicitly described as follows. Let p, q be two fixed dis-
tinct primes both congruent to 1 modulo 4. Let HZ denote the ring of integer
quaternions. Fix εp ∈ Qp and εq ∈ Qq , square roots of −1. Define a map
ϕ : HZ\{0} → PGL(2, Qp) × PGL(2, Qq) where for x = x0 + x1i + x2 j + x3k

ϕ(x) =
((

x0 + x1εp x2 + x3εp

−x2 + x3εp x0 − x1εp

)
,

(
x0 + x1εq x2 + x3εq

−x2 + x3εq x0 − x1εq

))

Let HZ(p, q) = {x ∈ HZ : |x |2 = xx = pkql for some k, l ∈ Z+}. Its image
ϕ(HZ(p, q)) < PGL(2, Qp) × PGL(2, Qq) is an irreducible arithmetic lattice.
To avoid torsion we shall be interested in a certain congruence sublattice of it, namely
the image of those quaternions in HZ(p, q) which are congruent to 1 modulo 2
(i.e., for which x0 is odd and x1, x2 and x3 are even). Let us denote this lattice by
� < PGL(2, Qp) × PGL(2, Qq). Using Jacobi’s theorem giving the number of ways
of representing a number as sum of four squares, one can show that � acts freely
transitively on the set of vertices of the square complex Tp+1 × Tq+1. The resulting
quotient Xp,q = �\(Tp+1 × Tq+1) which is a square complex on one vertex admits
an explicit description to which we now turn. Let us define the following two sets

L p = {x ∈ HZ : |x |2 = p, x ≡ 1(mod 2) x0 > 0} (1.1.1)

Lq = {x ∈ HZ : |x |2 = q, x ≡ 1(mod 2) x0 > 0} (1.1.2)

Observe that L p consists of p + 1, and Lq of q + 1, elements and if x ∈ L p (resp.

Lq) then x ∈ L p (resp. Lq). The 0-skeleton X (0)
p,q consists of a single vertex v0. The

1-skeleton of Xp,q consists of p+1
2 + q+1

2 loops based at v0. We shall partition these

loops into two sets Eh and Ev of sizes p+1
2 and q+1

2 respectively where the elements
of Eh will be thought of as horizontal loops and the elements of Ev as vertical loops.
We shall label each oriented loop of Eh by an element of L p where the two orien-
tations of a geometric loop are labeled by conjugate quaternions. Similarly we shall
label the oriented loops of Ev by the elements of Lq . Abusing notation we shall refer

also to the elements of L p, Lq as (oriented) loops. To describe the 2-skeleton X (2)
p,q ,

consider all the quadruples (a, b, a′, b′) where a, a′ ∈ L p, b, b′ ∈ Lq and

ab = ± b′a′. (1.1.3)

These quadruples come in equivalence classes:

{(a, b, a′, b′), (a, b′, a′, b), (a′, b, a, b′), (a′, b′, a, b)}
Where the second quadruple is obtained from equation (1.1.3) by multiplying by a on
the left and a′ on the right. Similarly the third is obtained by multiplying by b′ on the
left and b on the right and finally the last one is obtained by applying quaternionic
conjugation to equation (1.1.3).
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For each equivalence class we will have a geometric square in X (2)
p,q attached to

the 1-skeleton of Xp,q so that when we read the labels of the oriented loops along
its boundary in one of the four possible ways starting with an horizontal one we see
an element of the corresponding equivalence class. The following arithmetic fact (cf.
[Dic22]) is crucial. For each a ∈ L p and b ∈ Lq there are unique a′ ∈ L p and b′ ∈ Lq

so that
ab = ± b′a′.

Hence there are
( p+1

2

) · (q+1
2

)
geometric squares and the link of the vertex v0 is a

complete bipartite graph. Thus, indeed, the universal covering space X̃p,q is a product
of a (p + 1)-regular tree with a (q + 1)-regular tree. One can then identify X̃p,q with
the Bruhat–Tits building Tp+1 × Tq+1 associated with PGL(2, Qp) × PGL(2, Qq) so
that π1(Xp,q) is identified with �.

Let T1, T2 be regular trees of finite degrees at least three. We turn to the study
of cocompact lattices in a product AutT1 × AutT2. As above we shall call a lattice
� < AutT1 × AutT2 reducible if it has a subgroup of finite index which is a product of
lattices in the factors, and irreducible otherwise. In particular any reducible cocompact
lattice is virtually a product of two free groups. Let pri denote the projection on AutTi .
Then it is straightforward to verify that for a lattice � < AutT1 ×AutT2, the following
are equivalent:

(1) � is reducible.
(2) Both subgroups pr1(�) and pr2(�) are closed (hence discrete) in AutT1 and

AutT2.

Given a cocompact lattice � we will thus introduce Gi , the closure of pri(�) in
AutTi , and for a vertex xi of Ti let Gi (xi) denote the stabilizer in Gi of xi . It is a
compact open subgroup of Gi . While AutTi/Gi is compact, the following finiteness
result shows that from another point of view, Gi is “far away” from AutTi , namely:

Proposition 1.1.2. Assume that � < AutT1 × AutT2 is a cocompact lattice. Then the
compact group Gi(xi ) is topologically finitely generated.

Proof. Since pr1(�) is dense in G1 by definition and G1(x1) is open, the subgroup
pr1(�) ∩ G1(x1) is dense in G1(x1). On the other hand, we have pr1(�) ∩ G1(x1) =
pr1(� ∩ (G1(x1) × G2)). We now proceed to show that � ∩ (G1(x1) × G2) is finitely
generated which will conclude the proof. Let V := G1(x1) × G2 and G = G1 × G2.
Then V is an open subgroup of G and we claim that V ∩ � is a cocompact lattice
in V . Indeed every V -orbit in G/� being open is also closed and hence compact.
In particular, considering the V -orbit of e� we obtain a continuous injective map

V/(V ∩ �) → G/�

g(V ∩ �) �→ g�

which is a homeomorphism on its image, since the image V � is closed (in fact com-
pact) in G/�. Thus V/(V ∩ �) is compact which shows the claim. Finally, AutT2 is
compactly generated and AutT2/G2 is compact, hence G2 is compactly generated and
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hence so is V := G1(x1) × G2. Since � ∩ V is a cocompact lattice in V we deduce
that � ∩ (G1(x) × G2) is finitely generated. �

If now T is a regular tree and x a vertex, we have the homomorphism

τ : AutT (x) → (Z/2Z)N

which associate to each element g ∈ AutT (x) the sequence of signs of the permuta-
tions induced by g on all the spheres with center x . If the degree of T is at least 3 it
is clear that an arbitrary sequence of signs can specified and obtained by an element
g ∈ AutT (x). Hence the homomorphism τ is surjective and it follows in particular
that AutT (x) is not topologically finitely generated. In particular, cocompact lattices
in AutT1 × AutT2 never have dense projections. It would be of interest to understand
what happens in the case of non-uniform lattices.

The above discussion leads naturally to the following:

Basic Question. Which groups arise as closures of projections of cocompact lattices
in AutT1 × AutT2?

The interest in this question is partly due to a certain number of results showing that
there are strong connections between the topological and algebraic properties of the
groups Gi < AutTi and the algebraic and geometric properties of �; in other words,
� is as “rigid” as its ambient group G1 × G2. In particular, results of this type played
a role in [BM00a], [BM00b]. More recently, such connections have been established
in a remarkable degree of generality. Monod [Mon05], [Mon06] and Monod–Shalom
[MS02] have proved superrigidity results for the actions on CAT(0)-spaces of cocom-
pact lattices � < G1 × G2 in a product of locally compact groups. These results in
particular imply the following theorems which we will use in the sequel. In Theo-
rems 1.1.3, 1.1.4, 1.1.5, the groups G1, G2 are assumed to be locally compact and
compactly generated.

Theorem 1.1.3 ([Mon06, Cor. 4]). Let � < G1 × G2 be a cocompact lattice with
dense projections. Let H be a connected, k-simple, adjoint k-group where k is a local
field and let π : � → H(k) be a homomorphism with unbounded Zariski dense image.
Then π extends continuously to G1 × G2 factoring via one of the factors Gi .

In certain situations this result will imply that the linear representation theory of �

over any field is controlled by the continuous representation theory of G1 × G2 over
local fields.

The next result shows that the various decompositions of � as non-trivial amalgams
are completely described by the decompositions of Gi , i = 1, 2 as non-trivial amal-
gams. See also [Sha00, Theorem 0.7].

Theorem 1.1.4 ([MS02, Thm. 1.5]). Let � < G = G1 × G2 be a lattice with dense
projections. Let � act non-elementarily on a countable tree T . Then there exists an
invariant subtree on which the �-action extends continuously to a G-action factoring
via one of the Gi ’s.

Finally the following result of Bader and Shalom (generalizing Margulis’ Normal
Subgroup Theorem for the case of products) shows that normal subgroups of � are in
a sense controlled by the closed normal subgroups of G1 × G2.
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Theorem 1.1.5 ([BS03, Thm. 1.1]). Let � < G = G1 × G2 be a cocompact lattice
with dense projections. Assume that Homc(G, R) = (0). Let N � � be a normal
subgroup. The group �/N is finite if and only if the groups Gi/pri (N) are compact.

Remark 1.1.6. The idea of extending the scope of the rigidity phenomena of lattices in
higher rank Lie groups to the general locally compact setting by considering lattices
in general products goes at least back to [BnK70] and is present in the work of
G. Margulis in the seventies. When G1 and G2 are Lie groups over local fields, Theo-
rems 1.1.3, 1.1.4 and 1.1.5 are special cases of results of G. Margulis proven respec-
tively in [Mar74], [Mar81] and [Mar79]. Superrigidity theorems of varying degrees
of generality can be found in the book [Mar91] (and references therein), [Bur95],
[Mar94], [BM96], [Gao97], [Sha00], [MS02], [Bon], [Mon06] and [KM08].

If � is a cocompact lattice in AutT1 × AutT2 and Gi = pri (�) are, as before, the
closures of projections, assuming that � is torsion free, we consider the finite square
complex X := �\(T1 × T2). The finite permutation group induced by Gi (xi) on the
set of vertices adjacent to xi can be explicitly calculated from the combinatorics of
X . (We will see an illustration of this later in the paper in the case where X has a
single vertex.) It turns out that when � is irreducible and this finite permutation group
is sufficiently transitive, one obtains rather strong information on the global structure
of the non-discrete group Gi . With this in mind we introduced in [BM00a] various
classes of closed subgroups defined via “local conditions” and showed how these local
conditions imply certain global structure results. We now recall some salient features
of this theory.

Let T = (V , E) be a locally finite tree, V its set of vertices and E its set of
edges. Given a subgroup H < AutT and a vertex x ∈ V , its stabilizer H(x) acts
as a finite permutation group on the set E(x) ⊂ E of edges whose origin is the
vertex x , and we say that H is locally quasiprimitive (respectively, locally primitive,
locally 2-transitive, etc.) if this finite permutation group is quasiprimitive (respectively
primitive, 2-transitive, etc.) for every vertex x . Recall that a finite permutation group
F < Sym� acting on a finite set � is called quasiprimitive if every non-trivial normal
subgroup of F act transitively on �. It is called primitive if any equivariant factor of
� is trivial (i.e. either a point or �). The action is called 2-transitive if F acts tran-
sitively on �2\�� where �� is the diagonal. Quasiprimitive and primitive groups
have a rich structure theory, exemplified by results such as the O’Nan–Scott theorem
(cf., [DM96], [Pra97]). Following the classification of the finite simple groups one
has also a classification of 2-transitive groups (cf. the survey paper by P. Cameron
[Cam95]).

Given a totally disconnected group H let

H (∞) = ∩L<H L

where the intersection is taken over all open finite index subgroups. Let

QZ(H) = {h ∈ H : Z H (h) is open}
be the quasi-center of H . Both are topologically characteristic subgroups of H . The
subgroup H (∞) is closed, and any normal discrete subgroup of H is contained in
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QZ(H). To motivate these definitions observe that when H = G(Qp), where G is a
connected semisimple Qp-group, then H (∞) coincides with the subgroup G+ gene-
rated by all one parameter unipotent subgroups of G(Qp), and QZ(H) is the kernel of
the adjoint representation of the Lie group G(Qp). We recall next a few basic results
established in [BM00a] concerning the structure of these subgroups.

Theorem 1.1.7 ([BM00a] Prop. 1.2.1). Let T be a locally finite tree. Let H < AutT
be a closed non-discrete locally quasiprimitive group. Then

(1) H/H (∞) is compact.
(2) QZ(H) is a discrete subgroup of H and H/ QZ(H) is not compact.
(3) Any closed normal subgroup of H either contains H (∞) or is contained in

QZ(H).

The subgroup QZ(H) acts freely on the set of vertices of T . In particular if QZ(H)

is non-trivial then the subgroup (of index at most 2) of QZ(H) consisting of those
elements whose translation length is even is a free group on infinitely many gene-
rators. In analogy with semisimple Lie groups one would expect the poset of normal
subgroups of H (∞) to have a relatively simple structure; this is indeed the case as
shown by theorem 1.1.8, the difficulty being however that local transitivity properties
of H are not inherited by H (∞). A guiding principle in the study of the structure of
H is the analogy with the O’Nan-Scot structure theory of finite primitive permutation
groups of which theorem 1.1.8 is an analogue. Indeed we have:

Theorem 1.1.8 ([BM00a] Prop. 1.2.1, 1.5.1). Let H < AutT be a closed non-
discrete subgroup.

(1) If H is locally quasiprimitive, then H (∞)/ QZ(H (∞)) admits minimal closed
normal subgroups. These are finitely many, topologically simple, H-conjugate
and their product is dense.

(2) If H is locally primitive, H (∞)/ QZ(H (∞)) is a finite product of topologically
simple groups.

(3) If H is locally 2-transitive, H (∞)/ QZ(H (∞)) is topologically simple.

In all the above cases we have that QZ(H (∞)) = QZ(H) ∩ H (∞) and it acts freely
without inversions on T .

We observe that H (∞)/ QZ(H (∞)) may have an arbitrary large number of simple
factors. This is exemplified by Proposition 1.1.15 below and the subsequent dis-
cussion. We conclude from Theorem 1.1.8.1 that if H is locally quasiprimitive and
QZ(H (∞)) = {e}, then H (∞) is topologically simple. Indeed, assume QZ(H (∞)) is
trivial; we need to show that there is only one minimal closed normal subgroup in
H (∞). Assume that there were two or more such groups M1, M2, . . . ; then as all
are conjugate and their product is dense they are unbounded and hence M1 has a
non-void limit set in the boundary T (∞) of the tree. As M1 is a normal subgroup of
H (∞) and the latter acts cofinitely on the tree, it follows that this limit set must be
the whole boundary of T . Since M1 and M2 commute this limit set must be point-
wise fixed by M2 which is impossible. We conclude that the unique minimal closed
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normal subgroup of H (∞) coincides with H (∞) showing it is topologically simple.
This observation together with Theorem 1.1.5 leads to:

Corollary 1.1.9. Let Hi < AutTi be closed non-discrete locally quasiprimitive groups
and assume QZ(Hi ) = {e}. Let � < AutT1 × AutT2 be a cocompact lattice satisfying
H (∞)

i ⊂ pri (�) ⊂ Hi , i = 1, 2. Then any non-trivial normal subgroup of � is of finite
index.

Proof. Let Gi := pri (�) and N �� a normal subgroup. We now verify the hypothesis
of Theorem 1.1.5. We will use repeatedly the fact established above that Hi

(∞) is topo-

logically simple. We have [Gi , Gi ] ⊃ [Hi
(∞), Hi

(∞)] = Hi
(∞), where the last equal-

ity follows from the topologically semisimplicity of Hi
(∞). Thus, since Hi/Hi

(∞) is
compact (by theorem 1.1.7 1.) we deduce that Gi/[Gi , Gi ] is compact as well and
hence Homc(Gi , R) = (0). The subgroup pri (N) is normalized by Hi

(∞) and hence
we have either

(1) pri (N) ∩ Hi
(∞) = (e) or

(2) pri (N) ⊃ Hi
(∞).

Assume for instance that (1) occurs for i = 1. Then pr1(N) commutes with H1
(∞)

but since H1
(∞)\T1 is finite this implies that pr1(N) = (e). This implies that pr2(N)

is a discrete subgroup of AutT2, normalized by H2
(∞) and thus pr2(N) ∩ H2

(∞) ⊂
Q Z(H2

(∞)) = (e). Thus again, pr2(N) = (e) which implies N = (e). Thus if N �=
(e) then pri (N) ⊃ Hi

(∞) for i = 1, 2 and hence Gi/pri (N) is compact which together
with Theorem 1.1.5 implies that �/N is finite. �

Remark 1.1.10. If � satisfies the conditions of Corollary 1.1.9 then so does also any
finite index subgroup of �. See the beginning of §1.3.

The quasi-center plays, in several ways, an important role for the structure of �.
In [BM00b], Theorem 1.1.7 was applied to obtain the following criterion for non-
residually finiteness of �. Let 	1 = �∩(AutT1 ×e), 	2 = �∩(e×AutT2). We have:

Proposition 1.1.11 ([BM00b] Prop. 2.1, 2.2). Let Hi < AutTi be closed, non-
discrete, locally quasiprimitive groups and � < AutT1 × AutT2 be a lattice with
H (∞)

i ⊂ pri (�) ⊂ Hi . Then

(1) If 	1 · 	2 �= {e} then � is not residually finite.
(2) If Hi = pri (�) then 	i is a normal subgroup of QZ(Hi ) and the quotients

QZ(Hi )/	i are locally finite groups.

In the setting of Proposition 1.1.11.2, we have that 	i is non-trivial if and only if
the quasi center QZ(Hi ) is non-trivial. Theorems 1.1.5, 1.1.7 and Proposition 1.1.11.2
imply (see 1.3.2):

Theorem 1.1.12. Let � < AutT1 × AutT2 be a cocompact lattice such that Hi =
pri(�) are non-discrete, locally quasiprimitive. Let N �� be a normal subgroup. Then
either

1. N ⊂ QZ(H1) × QZ(H2), or
2. N is of finite index in �.
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Theorem 1.1.11 together with a predecessor (see [BM00b] §4) of the Normal Sub-
group Theorem of Bader–Shalom (Theorem 1.1.5) enabled us to construct a new class
of finitely presented simple groups.

Theorem 1.1.13 ([BM97], [BM00b]). For all sufficiently large n, m ∈ N there is a
torsion-free cocompact lattice in AutT2n × AutT2m which is a simple group.

Remark 1.1.14. In [Rat04] Diego Rattaggi has constructed many interesting lattices
� < AutT1 × AutT2. In particular he has constructed a (4, 12)-complex ([Rat04,
Example 2.26]) whose fundamental group is not residually finite (using Proposi-
tion 1.1.11). Using this example as well as his construction of an (A6, A6)-square
complex described in Example 1.1.19 and following the same strategy as in [BM00b]
he has established the existence of simple groups as above for all n ≥ 9 and m ≥ 13,
see [Rat04, Prop. 2.29 (1)].

An important ingredient in the proof of Theorem 1.1.13 consists of the identifica-
tion of the closures of the projections of lattices constructed via geometric methods.
This brings us back to the basic question above of which groups arise as closures of
projections of uniform lattices in AutT1 × AutT2.

The finitely generated simple groups of Theorem 1.1.13 are of course non-linear.
In the rest of the paper we will be interested in studying lattices which admit infinite

linear images. We will show that such lattices are essentially extensions of arithmetic
lattices in semisimple Lie groups over appropriate local fields.

In view of the superrigidity theorems mentioned above, locally quasiprimitive
groups which admit a p-adic analytic structure will play a central role in the discus-
sion of arithmeticity. We have:

Proposition 1.1.15. Let H < AutT be a closed non-discrete locally quasiprimitive
group. Assume that it admits a Qp-analytic structure. Let H denote the Lie algebra
of H, let G = Aut(H ⊗ Qp) a linear algebraic group defined over Qp and let Ad :
H → G(Qp) be the adjoint representation. Then

(1) G is adjoint and semisimple.
(2) ker Ad = QZ(H).
(3) Ad(H) ⊃ G+.

As mentioned above G+ denotes for a Qp-group G, the subgroup of G(Qp) generated
by all the one parameter unipotent Qp-subgroups.

Thus the group H is an extension by QZ(H) of the group Ad(H) which lies
between G+ and G(Qp). Recall that QZ(H) is either trivial or virtually a free group
on infinitely many generators. We remark that even though H , being a subgroup of
AutT , is a “rank one object” the group G may be of arbitrarily large rank. Consider a
connected simple algebraic group G defined over Qp and let � be its affine Bruhat–
Tits building. The action of G on � induces an action on any graph G which is
equivariantly drawn on � and this leads to the extension of G by π1(G) acting on
the universal covering tree G̃. In particular if one takes G to be the subgraph of the
1-skeleton of � obtained by considering all edges of a given colour, then the resulting
extension H , 1 → π1(G) → H → G(Qp) → 1 is a locally primitive group.
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Observe that in the setting of Proposition 1.1.15 the homomorphism Ad : H →
G(Qp) sends every vertex stabilizer H(x), x a vertex of T , isomorphically to a com-
pact subgroup of G(Qp). In particular H(x) is a virtually pro-p-group, i.e., H(x)

contains an open pro-p-subgroup of finite index. However in general it is not clear
to which extent the homomorphism is implemented by a geometric mapping of the
tree into the Bruhat–Tits building associated to G(Qp), and thus we have no real
way of comparing the “congruence” structure on H(x) induced by the tree struc-
ture of T and the congruence structure induced by that of a maximal compact sub-
group of G(Qp). There is however a powerful tool going back to Thompson and
Wielandt:

Proposition 1.1.16 ([BM00a], Prop. 2.1.2). Let T = (V , E) be a locally finite tree.
Let H < AutT be a closed locally primitive subgroup and when H is non-discrete
assume that H(x) is virtually pro-p. Then

(1) There is a vertex y ∈ V such that H2(y) is pro-p.
(2) If H acts transitively on V , then for any two adjacent vertices x, y the subgroup

H1(x, y) = H1(x) ∩ H1(y) is pro-p.

Where as in [BM00a] Hi (x) denotes the pointwise stabilizer of the ball of radius i
centered at x .

Our main result is:

Theorem 1.1.17. Let T1, T2 be locally finite trees and � < AutT1 × AutT2 a cocom-
pact lattice. Assume

(1) H (∞) < pri(�) < Hi , where Hi < AutTi is a closed non-discrete, locally quasi-
primitive subgroup.

(2) There is a linear representation π : � → GL(n, C) with infinite image.

Then there are prime numbers p1, p2 such that for each i = 1, 2 Hi is Qpi -analytic.
Let Gi be the adjoint semisimple algebraic group defined over Qpi given by Proposi-
tion 1.1.15 and Adi : Hi → Gi(Qpi ) the adjoint representation. Then

(1) (Ad1 × Ad2)(�) is an arithmetic lattice in G1(Qp1) × G2(Qp2).
(2) 	i := � ∩ Hi is of finite index in QZ(Hi ) := ker Adi .

and � fits into the exact sequence

1 → 	1 × 	2 → � → (Ad1 × Ad2)(�) → 1

Using the above result we can now characterize the “classical” situation:

Corollary 1.1.18. Let T1, T2 be locally finite trees. Let � < AutT1 × AutT2 be a
cocompact lattice. Assume

(1) Hi
(∞) < pri (�) < Hi , where Hi < AutTi is a closed non-discrete, locally

primitive subgroup.
(2) There is a linear representation π : � → GL(n, C) with infinite image.
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Then the following are equivalent:

(1) � is linear over C.
(2) � is residually finite.
(3) rankQpi

(Gi) = 1 for both i = 1, 2.

In this case the geometric realization |Ti | is isometric to the Bruhat–Tits tree associ-
ated to Gi .

We turn next to discuss some consequences of the above results formulated in geo-
metric terms, that is expressed in terms of finite square complexes �\(T1 × T2) rather
than in terms of lattices � < AutT1 × AutT2. We will concentrate here on the special
case of a square complex with a single vertex. Such square complexes correspond to
lattices acting freely transitively on the set of vertices of the product of trees T1 × T2.
A square complex with one vertex whose universal covering space is a product of two
trees is given by the following data (see Example 1.1.1):

– Two finite sets A1, A2 each endowed with a fixed point free involution x �→ x .
– A set of “squares” S ⊂ A1 × A2 × A1 × A2 satisfying the following two conditions:

(1) The elements of S come in equivalence classes:

{(a, b, a′, b′), (a, b′, a′, b), (a′, b, a, b′), (a′, b′, a, b)} ⊂ S

(2) (Link condition) For each pair (a, b) ∈ A1 × A2 there is a unique pair (a′, b′) ∈
A1 × A2 such that (a, b, a′, b′) ∈ S.

As in Example 1.1.1 this data determines a 2-dimensional 1-vertex square complex
X with a single vertex denoted x0, n1 = 1

2 |A1| horizontal geometric loops, n2 = 1
2 |A2|

vertical geometric loops and n1 · n2 = 1
4 |S| geometric squares. The complex X is the

quotient �\(T1 × T2) where each Ti is a 2ni regular tree and � = π1(X, x0). The
complex X provides also a presentation for �, namely:

� = 〈A1 ∪ A2 | aba′b′, (a, b, a′, b′) ∈ S, aa, a ∈ A1, bb, b ∈ A2〉.
The local transitivity properties of � on each factor can be easily read off the complex
X by considering the holonomy action of elements corresponding to oriented hori-
zontal loops on vertical edges and vice versa. Fixing a vertex (x1, x2) ∈ T1 × T2 the
group 〈A1〉, which is a free group on 1

2 |A1| generators, may be identified with the sta-
bilizer Stab�(x2). The covering map T1 × T2 → X induces a labeling of the oriented
1-skeleton of T1 × T2 by the elements of A1 ∪ A2. We may identify T1 with the tree
consisting of the connected component of the “horizontal 1-skeleton” of T1 × T2 con-
taining the chosen vertex (x1, x2). This induces a labeling of the oriented edges of
T1 by the elements of A1 and similarly we have a labeling of the oriented edges of
T2 by the elements of A2. Observe that paths without backtracking of length k start-
ing at the vertex x2 ∈ T2 correspond to A(k)

2 which is the set of irreducible words of

length k over A2. The action of 〈A1〉 on A(k)
2 , that is the permutation representation

ρ
(k)
12 : 〈A1〉 → SymA(k)

2 can be read directly from the complex by observing that
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for a ∈ A1 and w ∈ A(k)
2 there exist a unique pair: a′ ∈ A1, w′ ∈ A(k)

2 such that

a · w′ = w · a′. We have ρ
(k)
12 (a)(w) = w′. Exchanging the roles of the trees and the

generating sets we obtain: ρ
(k)
21 : 〈A2〉 → SymA(k)

1 . Let us define

P(k)
2 = Im ρ

(k)
12 < SymA(k)

2

P(k)
1 = Im ρ

(k)
21 < SymA(k)

1

We shall omit the superscript (k) when k = 1. We will say that X is a (P1, P2)-
complex when we want to emphasize the local permutation groups P1 < SymA1 and
P2 < SymA2.

Example 1.1.19 ([Rat04] Theorem 2.3). The (A6, A6)-complex X given by:

{a1b1a1b1, a1b2a1b3, a1b3a2b2, a1b3a3b2, a2b1a3b2,

a2b2a3b3, a2b3a3b1, a2b3a3b2, a2b1a3b1}
Satisfies the following:

(1) Any non-trivial normal subgroup of π1(X) is of finite index.
(2) Any linear representation of π1(X) in characteristic zero has finite image.
(3) Out(π1(X)) ≡ Z/2Z.

We will say that a complex X is irreducible if the lattice � = π1(X) is irreducible,
namely when no finite covering of X is a product of two graphs. It is a fundamen-
tal problem whether there is an algorithm for deciding if a given X is irreducible.
There is however a sufficient condition based on the Thompson-Wielandt Theorem,
see Proposition 1.1.16, which we describe next. Assume that Pi < SymAi is transi-
tive, i = 1, 2. Fix an edge ei in Ti and let Br(ei ) ⊂ Ti denote the neighbourhood of
radius r around ei , let Qi denote the restriction to B2(ei ) of the subgroup of P(3)

i con-
sisting of elements pointwise fixing B1(ei ). It follows from the Thompson-Wielandt
theorem 1.1.16 that if for some i = 1, 2 Qi �= {e} and is not a p-group then the lattice
is irreducible. In fact as a corollary of the arithmeticity theorem a much stronger asser-
tion holds:

Corollary 1.1.20. Let X be a (P1, P2)-complex where Pi < SymAi are primitive
permutation groups, i = 1, 2, and assume that Q1 �= {e} and is not a p-group. Then
any linear representation of π1(X) over a field of characteristic zero has finite image.

In applying the criterion for non-residually finiteness (Proposition 1.1.11) one
needs to detect whether the projection of � on one of the factor, say AutT2, has a
non-trivial kernel. In other words whether there exists an element w ∈ 〈A1〉 whose
action on T2 is trivial. Observe that while verifying whether a given element w ∈ 〈A1〉
acts trivially on T2 is a (easily) computable question, we do not know whether the
existence of such an element is decidable. We also do not know an algorithm for
deciding whether the quasi-center of H1 = pr1(�) is trivial or not. There is however,
a construction – called fibered product, see [BM00b] §2.2, 2.3 – which starting with
a 1-vertex square complex X produces a new 1-vertex square complex X � X which
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in suitable settings has a non-residually finite fundamental group whose closures of
projections have non-trivial quasi-centers. Let X be given by the data: A1, A2 and
S ⊂ A1 × A2 × A1 × A2 then X � X is defined by the data: A1 × A1, A2 × A2 and
R = {((a1, a2), (b1, b2), (a′

1, a′
2), (b′

1, b′
2)) : (ai , bi , a′

i , b′
i) ∈ S, i = 1, 2}. If X is a

(P1, P2)-complex then X � X is a (P1 × P1, P2 × P2)-complex and hence π1(X � X)
can never have locally primitive projections. However, see [BM00b] §2.2, it is con-
tained as an index 2 subgroup in a group which is locally primitive when P1 and P2

are primitive. The natural homomorphism

π1(X � X) → π1(X) × π1(X) (1.1.4)

has image of index 1, 2 or 4 and its kernel defines an infinite covering which is of
the form D1 ×D2 where each Di is a graph whose fundamental group is an infinitely
generated free group. Using [BM00b] Prop. 2.1 we showed:

Proposition 1.1.21. If X is an irreducible (P1, P2)-square complex where each Pi

is a 2-transitive permutation group with 2-transitive socle1 then π1(X � X) is not
residually finite; in fact π1(X � X)(∞) ⊃ π1(D1) × π1(D2).

Examples of 2-transitive permutation groups with 2-transitive socle include Sn, An

(n ≥ 5), PSL(2, Fq). See [Cam95, Table 5.1(b)] and [DM96, 7.7] for a complete list
of such groups. Composing the homomorphism in (1.1.4) with the projection on either
factor we obtain a surjective homomorphism, π1(X � X) → π1(X) showing that
rigidity fails in a strong way since not even the universal covering spaces of X � X
and X are isomorphic. However in §1.4 we will show:

Corollary 1.1.22. Let X be an irreducible (P1, P2)-complex and Y a (Q1, Q2)-
complex. Assume that P1 and P2 are primitive permutation groups. Then any surjec-
tive homomorphism ϕ : π1(X) → π1(Y ) is induced by an isomorphism f : X → Y .
In particular ϕ is an isomorphism and each Qi is permutation isomorphic to Pi (up
to reindexing).

1.2. Locally quasiprimitive groups and ppp-adic structure

The basic objective of this chapter is to show that a locally quasiprimitive group H
which admits a continuous representation into GL(n, Qp) with unbounded image is
p-adic analytic, and to investigate this p-adic structure more closely. First we estab-
lish a general fact about continuous representations of totally disconnected groups.
This will rest on the following consequence of the Howe-Moore Theorem [HM79].
We have:

Theorem 1.2.1. Let G be a Qp-almost simple group and O < G(Qp) an open
unbounded subgroup. Then O ⊃ G+

Proof. We may clearly assume that G is connected. Then δO ∈ �2(G(Qp)/O) is a
vector which is invariant under the unbounded group O and hence by the Howe-Moore
theorem is G+-invariant. �

1The socle is the subgroup generated by all minimal normal subgroups.
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Remark 1.2.2. To prove Theorem 1.2.1 one needs in fact only the local field analogue
of Mautner phenomenon — as proven by C. Moore for semisimple real Lie groups
in [Moo66, Theorem 1]. The arguments of Howe–Moore in [HM79, Proposition 5.5]
can be used to give a direct proof of the local field analogue of [Moo66, Theorem 1]
from which Theorem 1.2.1 follows.

Lemma 1.2.3. Let H be a locally compact totally disconnected group, K < H an
open compact subgroup and G a Qp-almost simple group. Let π : H → G(Qp) be a
continuous homomorphism with Zariski dense image. Then one of the following holds:

(1) π(K ) is finite.
(2) π(K ) is open and π(H) is compact.
(3) π(K ) is open and π(H) ⊃ G+.

Proof. Denote by G the Lie algebra of G. If the closed subgroup π(K ) is infinite,
its Lie algebra K ⊂ G(Qp) is of positive dimension. As π(H) commensurates π(K )

it follows that Ad π(H) leaves K invariant. Hence by the Zariski density of π(H) it
follows that K = G(Qp), implying that π(K ) is open. If π(H) is not compact it is
open and unbounded and hence by Theorem 1.2.1 we have π(H) ⊃ G+. �

Before proceeding we need a few more results from [BM00a] concerning locally
quasiprimitive groups.

Proposition 1.2.4 (see [BM00a, Prop. 1.2.1]). Let T be a tree and H < AutT a
closed non-discrete locally quasiprimitive subgroup. we have:

(1) QZ(H (∞)) is discrete, in fact, QZ(H (∞)) = H (∞) ∩ QZ(H).
(2) for any open normal subgroup N H (∞) we have N = H (∞).
(3) H (∞) = [H (∞), H (∞)].

Lemma 1.2.3 applied to locally quasiprimitive groups implies the following:

Lemma 1.2.5. Let H < AutT be a closed non-discrete locally quasiprimitive group.
Let L be a closed subgroup, H (∞) < L < H, G an almost Qp-simple group and
π : L → G(Qp) a continuous homomorphism with Zariski dense image. Then either

(1) π(L) is compact and hence π(H (∞)) = {e}. or

(2) (a) π(H (∞)) = G+,
(b) π(QZ(H (∞))) ⊂ Z(G(Qp)),
(c) π(K ) is open for any compact open subgroup K < H (∞).

Proof. Assume that π(L) is not compact, then π(H (∞)) is not finite (Theo-
rem 1.1.7.1) in particular not central and being normal in a Zariski dense subgroup of
an almost Qp-simple group it is itself Zariski dense. Now we apply the trichotomy of
Lemma 1.2.3 to π , H (∞) and K . We have:

(1) If π(K ) is finite then ker π � H (∞) is open and hence (by Prop. 1.2.4.2) we have
ker π = H (∞) and (by Theorem 1.1.7.1) hence π(L) is compact, contradiction.

(2) If π(K ) is open and π(H (∞)) is compact then π(H (∞)) is profinite; by Proposi-
tion 1.2.4.2 any profinite quotient of H (∞) is trivial, hence π(H (∞)) = {e}, thus
π(L) is compact, contradiction.



Linear Representations and Arithmeticity 15

(3) We have that π(K ) is open and π(H (∞)) ⊃ G+. Since G/G+ is finite one has
π(H (∞)) = G+. Finally π(QZ(H (∞))) is a countable subgroup of G(Qp) nor-
malized by G+ hence contained in Z(G(Qp)). �

The preceding lemma gives useful information about homomorphisms of locally
quasiprimitive groups into almost simple groups. The next lemma says that in a con-
tinuous representation there is always a semisimple part.

Lemma 1.2.6. Let H be a non-discrete, locally quasiprimitive group. Let π :
H (∞) → GL(n, Qp) be a continuous non-trivial representation and L be the Zariski
closure of π(H (∞)). Then

(1) L is connected.
(2) L/ Rad(L) is of positive dimension.

Proof. Since H (∞) does not have non-trivial continuous finite images it follows that
L◦ = L and L is connected. Assertion 2 follows from the fact that L is connected and
H (∞) is topologically perfect (see Prop. 1.2.4.3). �

It follows that if there exists a non-trivial continuous representation π : H (∞) →
GL(n, Qp) then there exists a Qp-simple, connected, adjoint group G of positive
dimension and a continuous homomorphism ρ0 : H (∞) → G(Qp) with Zariski dense
image. Thus we can use Lemma 1.2.5 with L = H (∞). Observe that ρ0(H (∞)) cannot
be trivial, hence

– ρ0(H (∞)) = G+
– QZ(H (∞)) ⊂ ker ρ0

We recall a few results from [BM00a] concerning normal subgroups of H (∞). Let M
be the set of closed normal subgroups M of H (∞), which are minimal with respect to
the property M � QZ(H (∞)). Then (see Theorem 1.1.8.1) the set M is non-void and
contains finitely many elements. These elements are H-conjugate and their product is
dense in H (∞).

In our setting notice that since QZ(H (∞)) ⊂ ker ρ0 � H (∞) it follows from
Theorem 1.1.8.1 that there exists M1 ∈ M, such that M1 �⊂ ker ρ0. Let also h1 =
e, h2, . . . , hn ∈ H be such that

M = {hi M1h−1
i : 1 ≤ i ≤ n}

and define ρi : H (∞) → G(Qp) by ρi(h) = ρ0(h
−1
i hhi). Then the following holds:

Lemma 1.2.7. The homomorphism ρ : H (∞) → (G+)n given by ρ(h) =
(ρi (h))1≤i≤n induces a topological isomorphism

H (∞)/ QZ(H (∞)) → (G+)n.

Proof. Since G+ is simple and ρ0(M1) is a non-trivial normal subgroup of
ρ0(H (∞)) = G+ we have that ρ0(M1) = G+ and hence M1 ker ρ0 = H (∞). We claim
that M2 · · · Mn ⊂ ker ρ0. Since M1 ∩ Mi = QZ(H (∞)) (by minimality), it follows
that for 2 ≤ i ≤ n, [M1, Mi ] ⊂ QZ(H (∞)) and hence ρ0(M1) = G+ commutes with
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ρ0(Mi ) which implies ρ0(Mi ) = e, 2 ≤ i ≤ n, and the claim is proved. We conclude
that ρ(M1 · · · Mn) = (G+)n. Note also ker ρ ⊃ QZ(H (∞)) and in fact one has equal-
ity since otherwise (see [BM00a] Prop. 1.5.1(3)) ker ρ would contain one of the Mi ’s.

�

The following is one of the main results of this chapter:

Theorem 1.2.8. Let H < AutT be a closed non-discrete locally quasiprimitive sub-
group, and let H (∞) < L < H be a closed subgroup. Assume that there exists a
continuous, unbounded representation:

π : L → GL(m, Qp).

Then

(1) H is a Qp-analytic group and H (∞) is of finite index in H.
(2) Its Lie algebra is a product Lie(H) = Gn where G is a Qp-simple Lie algebra.
(3) The adjoint representation Ad : H → Aut(Gn) has kernel equal QZ(H) and

induces an isomorphism: H (∞)/ QZ(H (∞)) → (G+)n where G is the connected
Qp-simple adjoint group attached to G.

Proof. Applying Lemmas 1.2.5, 1.2.6 we are in the setting of Lemma 1.2.7.
As both H (∞) and QZ(H (∞)) are normalized by H , H acts by conjugation on
H (∞)/ QZ(H (∞)) and we obtain via ρ a continuous action of H on (G+)n,
which we denote ε : H → Aut((G+)n), with ε(H (∞)) = Inn((G+)n). The
group H ′ = ε−1(Inn((G+)n)) is a closed subgroup of finite index in H . Then
H (∞) · ker ε = H ′, but since ker ε is a closed normal subgroup which is not cocom-
pact, we deduce (using Prop. 1.1.7.1) that ker ε ⊂ QZ(H), in particular H (∞) is of
countable index in H and hence (by Baire category) of finite index. Assertion (1) is
proved. The remaining statements follow by repeated application of Lemma 1.2.7. �

We finish this section with a result which gives information on homomorphisms
from a totally disconnected group into a semisimple group over Qp.

Proposition 1.2.9. Let H be a locally compact, totally disconnected second countable
group, G1, G2 connected adjoint semisimple Qp-groups such that G2 is Qp-simple
and every Qp-simple factor of G1 has positive Qp-rank. Let

π : H → G1(Qp) × G2(Qp)

be a continuous homomorphism such that pr1(π(H)) ⊃ G+
1 and pr2(π(H)) ⊃ G+

2 .
Then one of the following holds:

(1) π(H) ⊃ G+
1 × G+

2 .
(2) There exists a morphism ω : G1 → G2 of algebraic groups, defined over Qp

such that π(H) ⊂ Graphω(Qp) = {(g, ω(g)) : g ∈ G1(Qp)}.
Proof. The intersection π(H) ∩ (e × G2(Qp)) is normalized by e × G+

2 and hence
either contains e×G+

2 or is trivial. In the first case we deduce that π(H) ⊃ G+
1 ×G+

2 .
Assume that the second case occurs. Let K < H be a compact open subgroup. Since
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H/K is countable it follows that pri (π(K )) is a compact subgroup of Gi(Qp) which
is of countable index in pri (π(H)) ⊃ G+

i and hence (as can be seen for example using
the Baire category theorem) is open in Gi (Qp). Let Gi = Lie(Gi) and since π(K ) is
a closed subgroup of the p-adic Lie group G1(Qp) × G2(Qp), denote by K its Lie
algebra. Since pri (π(K )) is open in Gi (Qp) we have pri (K) = Gi (Qp). Moreover
since π(K ) ∩ (e × G2(Qp)) = {e}, we have that

K ∩ (0 ⊕ G2(Qp)) = {0}. (1.2.1)

Let then L ⊂ G1 × G2 denote the Zariski closure of π(H). Since π(H) commensu-
rates π(K ), this implies that π(H) acts on K by adjoint action and thus L(Qp) pre-
serves K. Together with (1.2.1) this implies that L �= G1 ×G2 and since pri (L) = Gi ,
this implies that L∩e×G2 = {e} and hence L is the graph of a morphism of algebraic
groups ω : G1 → G2 defined over Qp. �

A simple inductive argument gives:

Corollary 1.2.10. Assume that G1, . . . , Gn are connected Qp-almost simple of posi-
tive rank and π : H → ∏n

i=1 Gi (Qp) is a continuous homomorphism so that

(1) pri (H) ⊃ G+
i .

(2) π(H) is Zariski dense.

Then π(H) ⊃ ∏n
i=1 G+

i .

1.3. Arithmeticity

Our goal in this section is to prove Theorem 1.1.17. A cocompact lattice � <

AutT1 × AutT2 is said to be LQP-sandwiched if there exist closed non-discrete,
locally quasiprimitive subgroups Hi < AutTi such that

Hi
(∞) < pri (�) < Hi

Observe that since Hi
(∞) has no proper closed subgroup of finite index it follows that

every finite index subgroup of � is also LQP-sandwiched.
Recall

Proposition 1.3.1 ([BM00b, Cor. 3.3]). Let � < AutT1 × AutT2 be a cocompact lat-
tice which is LQP-sandwiched. Then

(1) Its abelianization �ab is finite.
(2) For any unitary representation ω : � → U(n), H1(�, ω) = 0.

Combining Theorem 1.1.3 and Proposition 1.3.1 we obtain:

Corollary 1.3.2. Let � < AutT1 × AutT2 be a LQP-sandwiched lattice. Then:

(1) Any homomorphism π : � → GL(n, C) has bounded image.
(2) Let k be a field of characteristic zero and π : � → GL(n, k) a homomorphism,

then the Zariski closure π(�)
Z

is semisimple.
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Proof. In (2) we may replace the field k by C and we will prove both (1) and (2) simul-
taneously. Let L be the connected component of the Zariski closure of the image of

� and let �′ < � be a subgroup of finite index with π(�′)Z = L. Since �′
ab is finite

and its image in L/[L, L] is Zariski dense, the latter is trivial and hence the radi-
cal Rad(L) coincides with the unipotent radical Radu(L). Let S = L/ Rad(L) and
π : �′ → S be the composition of π with the canonical projection L → S. If π(�)

were unbounded then there would be a simple quotient S → S1 such that composing
with π we would have a homomorphism π1 : �′ → S1 with Zariski dense unbounded
image. Setting Pi = pri (�

′), we are in the setting of Theorem 1.1.3 and π1 extends
to a continuous homomorphism factoring via, say, P1. Let π1,ext : P1 → S1 be this
continuous homomorphism. Since P1 is totally disconnected, ker π1,ext � P1 is open.
Since P1 ⊃ H1

(∞), we have ker π1,ext ⊃ H1
(∞) (Proposition 1.2.4.2) and hence the

image of π1,ext is compact, implying that π1(�
′) is bounded, a contradiction. Consider

now L/[Radu(L), Radu(L)] = S · V , the semidirect product of S with a vector space
V . The corresponding homomorphism �′ → S · V has the form γ �→ π(γ ) · c(γ ),
where π(�′) is bounded and c : � → V is a 1-cocycle with values in a bounded rep-
resentation of �′. It follows from Prop 1.3.1.2 that this cocycle is trivial and hence that
the image of �′ in S · V is contained in a conjugate of S. Since the image is Zariski
dense it follows that V = 0. I.e., Radu(L) = [Radu(L), Radu(L)] and hence we have
Radu(L) = 0. �

We introduce the following terminology: Let k be a local field. A k-triple is a triple
(�′, π, H) where �′ < � is a subgroup of finite index, H is a connected k-simple
adjoint group of positive dimension and π : �′ → H(k) is a homomorphism with
Zariski dense image. We say that it is of unbounded type if π(�′) is unbounded in
H(k).

Lemma 1.3.3. Let (�′, π, H) be a k-triple. Then there exist a finite extension Q ⊂
K ⊂ k of Q and a K -structure on H so that π(�′) ⊂ H(K ).

Proof. Consider H as a subgroup of GL(n, k) via the adjoint representation, fix an
embedding ι : k → C and let us abuse notation and denote by ι also the induced
group homomorphism ι : GL(n, k) → GL(n, C). The homomorphism ι ◦ π : �′ →
GL(n, C) as well as any twist of it by an automorphism of C have bounded image
(Corollary 1.3.2). It follows that for any γ ∈ �′ tr(ι◦π(γ )) = ι(tr π(γ )) is an algebraic
number. Since ι is the identity on Q, it follows that tr π(γ ) is in Q ∩ k for any γ ∈ �′.
Since �′ is finitely generated it follows that the field generated by all these traces is a
finite extension of Q which we denote by K . It follows now by a standard argument
using the Zariski density of π(�′) that there is a faithful k-rational representation
ρ : H → GL(V ) such that ρ(H) is defined over K and ρ(π(�′)) ⊂ ρ(H)(K ). �

Lemma 1.3.4. Assume that there is a representation ρ : � → GL(n, C) with infinite
image. Then there exists a Qp-triple of unbounded type.

Proof. By Corollary 1.3.2.2 the Zariski closure ρ(�)
Z

is semisimple. Passing to a
simple quotient we get a C-triple (�′, π, H). Endow H with the K -structure given
by Lemma 1.3.3. Then in particular π(�′) ⊂ H(K ). Let L = ResK/QH and let
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� : H(K ) → L(Q) be the “diagonal” isomorphism. Let S be the set of primes p for
which �(π(�′)) is unbounded in L(Qp). Using Corollary 1.3.2.2 as above it suffices
to show that S is non-empty. Assume that S = ∅; then �(π(�′)) is up to finite index,
contained in L(Z), hence discrete. On the other hand �(π(�′)) ⊂ L(R) is bounded
(Corollary 1.3.2.1) which implies that �(π(�′)) is finite, contradicting the fact that
π(�′) is Zariski dense in the non-trivial connected group H. �

1.3.1. Proof of the arithmeticity theorem 1.1.17

Let P� denote the set of primes p for which there exists a Qp-triple of unbounded
type. According to Lemma 1.3.4, P� is non-void. On the other hand let (�′, π, H) be
a Qp-triple of unbounded type and denote Li = pri (�

′). Theorem 1.1.3 implies that π
extends continuously to L1 × L2 factoring via, say, L1. Thus we obtain a continuous
unbounded linear representation L1 → H(Qp). By Theorem 1.2.8 it follows that L1

is Qp-analytic. This implies that |P�| ∈ {1, 2}. Since the case where |P�| = 1 is
slightly more involved we shall describe the argument for it (leaving the other case to
the reader) and assume henceforth that |P�| = 1.

Claim 1.3.5. Given any Qp-triple (�′, π, H) of unbounded type. There are Qp-triples
(�′′, πi , Hi), 1 ≤ i ≤ n, of unbounded type such that �′′ < �′ is of finite index,
H1 = H, π1 = π|�′′ and the product homomorphism

∏
πi : �′′ → ∏n

i=1 Hi(Qp) has
Zariski dense discrete image.

Endow H with the K -structure given by lemma 1.3.3; Q ⊂ K ⊂ Qp. Let � :
H(K ) → ResK/QH(Q) be the diagonal isomorphism, L the connected component of
the Zariski closure of the image of �′ and �′′ = (� ◦ π)−1(L(Q)). Then L is defined
over Q, semisimple (see Corollary 1.3.2) and �′′ is of finite index in �′. Since p is
the only prime for which � ◦ π(�′′) is unbounded in L(Qp), we deduce that, up to
a subgroup of finite index, �π(�′′) is contained in L(Z[1/p]); since moreover the
image in L(R) if �(π(�′′)) is bounded (Corollary 1.3.2) we conclude that �(π(�′′))
is discrete in L(Qp). If one lets now H1, . . . , Hn be the Qp-simple adjoint quotients
pi : L → Hi of L such that (�′′, πi , Hi ), with πi = pi ◦� ◦π , is of unbounded type,
then it is an easy verification that those fulfill the claim.

Let now (�′, π, H) be a Qp-triple of unbounded type and let (�′′, π, Hi) be the
triples given by the above claim. Each πi : �′′ → Hi(Qp) extends continuously to
L1 × L2 (where Li = pri (�

′′)) factoring via L1 or L2. Without loss of generality,
assume that for 1 ≤ i ≤ r , the extension factors via L1 and let π i : L1 → Hi(Qp)

be this continuous homomorphism and for r + 1 ≤ i ≤ n it factors via L2 giving
rise to a π i : L2 → Hi(Qp). Let α1 = ∏r

i=1 π i , α2 = ∏n
i=r+1 π i . It follows from

Lemma 1.2.5.2 and Lemma 1.2.10 that α(H1
(∞)) = ∏r

i=1 H+
i and α2(H2

(∞)) =∏n
i=r+1 H+

i .

Claim 1.3.6. r < n

Indeed if r = n then the continuous extension of
∏n

i=1 πi : �′′ → ∏n
i=1 Hi(Qp)

to L1 × L2 factors via the projection to L1, the extension being given by (�1, �2) �→
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α1(�1). Using Claim 1.3.5 this implies that α1(pr1(�
′′)) is discrete, in particular closed

and hence contains α1(pr1(�
′′)) = α1(L1) ⊃ ∏n

i=1 H+
i which is impossible.

Thus r < n and it follows from Theorem 1.2.8 that both H1 and H2 are p-adic
analytic groups. Let Gi , Gi and Adi : Hi → Aut(Gni

i ) be as in Theorem 1.2.8. Let us
switch notation and denote Fi = Gi , Fi = Gi . We have and

Ad = Ad1 × Ad2 : H1 × H2 → Aut(Gn1
1 ) × Aut(Gn2

2 )

H1
(∞) × H2

(∞) � (G+
1 )n1 × (G+

2 )n2

Claim 1.3.7. Ad(�) is discrete.

Since Hi
(∞) is of finite index in Hi (Theorem 1.2.8.1) we may replace � by �′ =

� ∩ (H1
(∞) × H2

(∞)). Let H be any factor of G
n1
1 , and let π be the composition of Ad

with the projection on H. Then (�′, π, H) is a Qp-triple of unbounded type to which
Claim 1.3.5 and the subsequent construction applies. In particular we obtain

α1 : H1
(∞) →

r∏
i=1

Hi , α1(H1
(∞)) =

r∏
i=1

H+
i ,

α2 : H2
(∞) →

n∏
i=r+1

Hi , α2(H2
(∞)) =

n∏
i=r+1

H+
i .

Observe that QZ(Hi
(∞)) ⊂ ker αi . This follows, for example, from the fact that each

H+
i is an adjoint group. Using Theorem 1.2.8.3 we conclude that the maps αi factor

via Adi : Hi
(∞) → Gn−i

i . I.e., the re are quotient maps q1 : G
n1
1 → ∏r

i=1 Hi ,
q2 : G

n2
2 → ∏n

i=r+1 Hi such that

H (∞)
1

Ad1 ��

α1 �����
��

��
��

G
n1
1

q1

��∏r
i=1 Hi

and

H (∞)
2

Ad2 ��

α2 �����������
G

n2
2

q2

��∏n
i=r+1 Hi

commute. In particular (α1 × α2)(�
′) = (q1 × q2)(Ad(�′)) is discrete.

Since this applies to any factor of G
n1
1 and similarly for G

n2
2 , we deduce that Ad(�)

is discrete. We deduce from the facts that Ad : H1
(∞)× H2

(∞) → (G+
1 )n1 ×(G+

2 )n2 is
surjective, �′ is a cocompact lattice and Ad(�′) is discrete that Ad(�′) is a cocompact
lattice in G1(Qp)

n1 × G2(Qp)
n2 for which the closure of the projection on the i’th

factor contains (G+
i )ni , for i = 1, 2. This implies that � is virtually a product of irre-

ducible lattices in semisimple (not simple) Lie groups of rank at least 2 This implies
that Ad(�′) is an arithmetic lattice and completes the proof in the case P� = {p}. �
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Proof of Corollary 1.1.18. 1 ⇒ 2 is just the well-known fact that finitely generated
linear groups are residually finite.

2 ⇒ 3. Since � is residually finite, Proposition 1.1.11.1 implies that 	i = {e},
i = 1, 2 and hence (by Theorem 1.1.17) we have QZ(Hi) = ker Adi = {e}. Thus
Adi : H (∞)

i → G+
i is a topological isomorphism. By considering the action on Ti

(via (Adi )
−1) of a split Cartan subgroup of Gi , one deduces that Gi has Qpi -rank 1.

3 ⇒ 1. The locally primitive group Hi acts via the adjoint map Adi on the Bruhat–
Tits tree �i associated with Gi . By Lemma 1.4.7 it follows that this action is imple-
mented via an isometry between the geometric realizations |Ti | and |�i |. This shows
that Adi is injective and hence � is linear. �

1.3.2. Proof of theorem 1.1.12

Theorem 1.1.12 follows from Theorem 1.1.5 and the following:

Lemma 1.3.8. Let � < AutT1 × AutT2 be a cocompact lattice such that Hi = pri (�)

are non-discrete, locally quasiprimitive. Let N �� be a normal subgroup. Then either

1. N ⊂ QZ(H1) × QZ(H2), or
2. pri (N) ⊃ H (∞)

i .

Proof. The closure pri (N) is a normal subgroup of Hi and hence (by Theorem 1.1.7)
either contains H (∞)

i or is contained in QZ(Hi ). Hence assume

pr1(N) ⊂ QZ(H1); (1.3.1)

we have to show
pr2(N) ⊂ QZ(H2). (1.3.2)

Assume by contradiction that (1.3.2) does not hold. Let 	i = � ∩ AutTi (where
we slightly abuse notation). Since pr2(N) is normal in pr2(�) = H2 we have by
Theorem 1.1.7 that

pr2(N) ⊃ H (∞)
2 (1.3.3)

But then (using 1.3.2 in [BM00a]) there is a finitely generated group L ⊂ N such
that pr2(L) acts co-finitely on the tree T2. Observe that (pri(L) ∩ 	i ) � pri (L) and
that pr1(L)/(pr1(L) ∩ 	1) is isomorphic to pr2(L)/(pr2(L) ∩ 	2), indeed both are
isomorphic to L/((ker pr1 |L)·(ker pr2 |L)). Since pr1(L)/(pr1(L)∩	1) is isomorphic
to a subgroup of QZ(H1)/	1 it is locally finite (Proposition 1.1.11.2). Hence also the
finitely generated group pr2(L)/(pr2(L) ∩ 	2) is locally finite and hence finite. But
then pr2(L) ∩ 	2 would act on T2 with a finite quotient. Hence 	2 and QZ(H2) will
be cocompact in H2, which contradicts Theorem 1.1.7, we conclude that pr2(N) ⊂
QZ(H2). �

1.4. Geometric rigidity

1.4.1.

Terminology: our trees will be without leaves. Given a tree T let us denote by |T |
its geometric realization which is a CAT(-1) space, endowed with the structure of a
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1-dimensional simplicial complex. Let |T |0 denote the set of 0-cells (corresponding
to the vertices of T ) and every 1-cell of |T | is isometric to [0, 1]. A group action on a
tree T is called c-minimal if there is no proper invariant subtree.

Theorem 1.4.1. Let � < AutT1 × AutT2 be a cocompact lattice such that Hi =
pri(�) are locally primitive and non-discrete. Let �′ < AutT ′

1 × AutT ′
2 be such that

�′\(T ′
1 × T ′

2) is finite and let π : � → �′ be a surjective homomorphism. Then up
to re-scaling metrics and exchanging the factors there are isometries ti : |Ti | → |T ′

i |
such that t := t1×t2 induces the homomorphism π , in particular π is an isomorphism.

Remark 1.4.2. If we assume that π is an isomorphism we do not need to impose the
condition that Hi is non-discrete.

Corollary 1.4.3. Let � < AutT1 × AutT2 be a cocompact lattice such that each Hi =
pri(�) is locally primitive and X� = �\(T1 × T2) be the quotient square complex.
Then

Out(�) ∼= AutX�

and hence is finite.

The above results follow from a general result describing all non-elementary actions
of � on a tree:

Theorem 1.4.4. Let � < AutT1 × AutT2 be a uniform lattice such that each Hi =
pri(�) is locally primitive and π : � → AutT be an action of � on a countable
tree T such that it is non-elementary and c-minimal. Then π extends continuously to
H1 × H2, factoring via one Hi and the continuous homomorphism π : Hi → AutT
obtained is realized by an isometry |Ti | → |T |.
Let us mention one more corollary:

Corollary 1.4.5. Let � < AutT1 × AutT2 be a cocompact lattice and assume that
Hi = pri (�) is locally primitive. Let 	1 = �∩(AutT1×e) and 	2 = �∩(e×AutT2).
If both 	1 �= {e} and 	2 �= {e}, then �/(	1 ·	2) has property FA. Namely any action
of �/(	1 · 	2) on a tree has a fixed point.

1.4.2.

In this subsection we shall prove Theorem 1.4.4. We will need the following lemmas:

Lemma 1.4.6. Let T = (V , E) be a locally finite tree, H < AutT a closed locally
primitive subgroup, X a complete CAT(0)-space and H × X → X a continuous action
with unbounded orbits. Then after re-scaling of the metric on X there is a continuous
H-equivariant map α : |T | → X whose restriction to each 1-cell is isometric and
whose restriction to the star of each 0-cell of |T | is injective.

Proof. Subdividing T once we may assume that H does not contain inversions and
hence H = 〈Hα ∪ Hβ〉 where α, β are any pair of adjacent vertices. Since for every
vertex v the subgroup π(Hv ) has bounded orbits in X , it follows that Xπ(Hv ) �= ∅
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and we may pick xα ∈ Xπ(Hα), xβ ∈ Xπ(Hβ) and define ϕ : V → X by ϕ(hα) =
π(h)xα , ϕ(hβ) = π(h)xβ , h ∈ H , thus obtaining an H-equivariant map from V to
X . Pick v ∈ V and let {x1, . . . , xk} be the set of vertices adjacent to v . We show
that ϕ : {v, x1, . . . , xk} → X is injective. If ϕ(v) = ϕ(x1), say, then π(Hv ) and
π(Hx1 ) both fix b := ϕ(v) = ϕ(x1) and hence π(H) fixes b, a contradiction. The
map ϕ : {x1, . . . , xk} → {ϕ(x1), . . . , ϕ(xk)} is Hv -equivariant and hence since the
Hv action is primitive, it is either injective or constant. In the latter case, let b ∈ X
denote this constant value of the image. Then each of the subgroups π(Hxi ), 1 ≤
i ≤ k fixes b and so does the subgroup N = 〈∪Hxi 〉 generated by them. Notice
that π(Hv) normalizes N and acts with bounded orbits on the subset X N ⊂ X of
points fixed by N . Since X N � b is non-empty it follows that there is a point fixed
by π(Hv · N) = π(H), a contradiction. In the sequel we pick xα and xβ (and hence
ϕ() such that [xα, xβ ] ∩ Xπ(Hα) = {xα} and [xα, xβ] ∩ Xπ(Hβ) = {xβ}. Note that
such a choice is clearly possible. Let |ϕ| : |T | → X be the geodesic extension of
ϕ to |T |. Let Tv = ∪k

i=1[v, xi ]; we have to show that |ϕ| is injective on Tv . We say
that xi ∼ x j if [ϕ(v), ϕ(xi )] ∩ [ϕ(v), ϕ(x j )] = [ϕ(v), q] with q �= ϕ(v). Clearly
this is an Hv -invariant equivalence relation and hence is either separating points, i.e.,
[ϕ(v), ϕ(xi )] ∩ [ϕ(v), ϕ(x j )] = {ϕ(v)}, ∀i �= j , or consists of one equivalence class,
in which case we have ∩k

i=1[ϕ(v), ϕ(xi )] = [ϕ(v), q] with q �= ϕ(v). In this case
however the point q is π(Hv )-fixed, contradicting the construction of ϕ. It follows that
|ϕ||Tv

is injective on Tv . �

Lemma 1.4.7. Let T and H be as in Lemma 1.4.6. Let T ′ be a countable tree, with a
continuous H-action π : H → AutT ′ which is c-minimal and has unbounded orbits.
Then π : H → AutT ′ is realized by an isometry |T | → |T ′| (up to possible re-scaling
of the distance on T ′).
Proof. Apply Lemma 1.4.6 to X = |T ′| and let α : |T | → |T ′| be the H-equivariant
map given by Lemma 1.4.6. We may assume that all the vertices of T have degree
at least 3. Together with Lemma 1.4.6 this implies that α(|T |0) ⊂ |T ′|0 hence α is
locally distance preserving. Observe that α(|T |) ⊂ |T ′| is an H-invariant subtree and
hence using the c-minimality of the action α(|T |) = |T ′|. A surjective map which is
uniformly locally isometric is necessarily a covering map. Hence α is an isometry. �

Theorem 1.4.4 is an immediate consequence of Lemma 1.4.7 and Theorem 1.1.4 of
Monod and Shalom.

1.4.3.

Here we complete the remaining assertions. To establish Theorem 1.4.1 consider
πi := pri ◦π : � → AutT ′

i . These are non-elementary, c-minimal actions hence by
Theorem 1.4.4 extend continuously to π̃i : H1 × H2 → AutT ′

i factoring via one of the
factors. Let us denote π̃ = π̃1 × π̃2. If both π̃1 and π̃2 factored via, say, H1 then we
will have (abusing notation) that π̃ (H1 × H2) = π̃(H1) ⊂ π̃(pr1(�) = �′. It follows
that the image of H1 is countable and hence must be finite (since the kernel would be
an open normal subgroup of a locally primitive group), which is impossible. We con-
clude that, after possible exchanging the indexes, the map π̃i factors via Hi , and the
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resulting homomorphism πi : Hi → AutT ′
i is realized (see Lemma 1.4.7) by an iso-

metry ti : |Ti | → |T ′
i | and hence the homomorphism π is realized by the isometry

t = t1 × t2. �

The remaining Corollaries 1.4.3 and 1.4.5 follow easily.
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