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Abstract. We introduce the notion of tight homomorphism into a locally compact
group with nonvanishing bounded cohomology and study these homomorphisms in
detail when the target is a Lie group of Hermitian type. Tight homomorphisms
between Lie groups of Hermitian type give rise to tight totally geodesic maps of
Hermitian symmetric spaces. We show that tight maps behave in a functorial way
with respect to the Shilov boundary and use this to prove a general structure theorem
for tight homomorphisms. Furthermore, we classify all tight embeddings of the
Poincaré disk.
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A Appendix 718
A.1 The norm of the bounded Kähler class 718. . . . . . . . . . . . . . . . . . . . . . . . .
A.2 Surjection onto lattices 719. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Let L,G be locally compact second countable topological groups. A continuous
homomorphism ρ : L → G induces canonical pullback maps ρ∗ in continuous coho-
mology and ρ∗b in continuous bounded cohomology. A special feature of continuous
bounded cohomology is that it comes equipped with a canonical seminorm ‖ · ‖ with
respect to which ρ∗b is norm decreasing, that is∥∥ρ∗b(α)

∥∥ ≤ ‖α‖ for all α ∈ H•
cb(G, R) .

Given a class α ∈ H•
cb(G, R) we say that a homomorphism ρ : L → G is α-tight

if the pullback ρ∗b preserves the norm of α, that is ‖ρ∗b(α)‖ = ‖α‖.
For the main part of the article we specialize to the situation when the target

group G is of Hermitian type, i.e. G is a connected semisimple Lie group with
finite center and without compact factors such that its associated symmetric space
X is Hermitian symmetric. Let J be the G-invariant complex structure on X ;
combining it with the unique G-invariant Riemannian metric of minimal holomorphic
sectional curvature −1, gives rise to the Kähler form ωG ∈ Ω2(X )G. We denote by
κb

G ∈ H2
cb(G, R) the bounded continuous cohomology class obtained in the familiar

way (see section 2.3) by integration of ωG over triangles with geodesic sides.
Definition 1. Let L be a locally compact second countable topological group and
G a group of Hermitian type. A continuous homomorphism ρ : L→ G is said to be
tight if ‖ρ∗b(κb

G)‖ = ‖κb
G‖.

It is implicit in the definition of a tight homomorphism that it depends on the G-
invariant complex structure J which is part of the data of the Hermitian symmetric
space X .
Fundamental Example. Let Γ < SU(n, 1) =: G be a cocompact lattice and
M := Γ\X the corresponding compact hyperbolic manifold. The (ordinary) Kähler
class ρ∗(κG) of a representation ρ : Γ → G, seen as a de Rham class on M , can be
paired with the Kähler form ωM on M to give a characteristic number

iρ :=
〈ρ∗(κG), ωM 〉
〈ωM , ωM 〉

which satisfies a Milnor–Wood inequality [BuIo2]

|iρ| ≤ rX .
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Representations such that iρ = rX are called maximal. (A modification of the
above construction leads to the definition of an analogous invariant even in the
case of nonuniform lattices, [BuIo2, §5].) Maximal representations are tight [BuIo2,
Lem. 5.3], and in fact, they are the most important examples of such.

The study of the structure of tight homomorphisms is paramount in the classifi-
cation of maximal representations of compact surface groups [BuIW1,2], [BuIoLW].
It should be remarked, however, that the scope of the notion goes well beyond this,
as for example every surjection of a finitely generated group onto a lattice in G is
tight (see Corollary A.4). In particular we have
Proposition 2. Let Modg be the mapping class group of a closed surface of
genus g ≥ 1. Then the natural homomorphism Modg → Sp(2g, R) is tight.

One of the main points of this paper is the following structure theorem for tight
homomorphisms.
Theorem 3. Let L be a locally compact second countable group, G a connected
algebraic group defined over R such that G := G(R)◦ is of Hermitian type. Suppose
that ρ : L→ G is a continuous tight homomorphism. Then,

(1) The Zariski closure H := ρ(L)
Z

is reductive.

(2) The centralizer ZG(H) of H := ρ(L)
Z
(R)◦ is compact.

(3) The symmetric space Y corresponding to H is Hermitian and Y admits a
unique H-invariant complex structure such that the inclusion H → G is tight
and positive.

To explain the notion of a positive homomorphism, let us recall that the com-
plex structure J defines a cone H2

c(G, R)≥0 of positive Kähler classes and, via the
isomorphism

H2
cb(G, R)

∼= �� H2
c(G, R) ,

a cone of bounded positive Kähler classes containing in particular κb
G. A continuous

homomorphism ρ : G1 → G2 between two groups of Hermitian type is said to be
positive if ρ∗bκb

G2
∈ H2

cb(G1, R)≥0.
As an immediate application of Theorem 3, we have

Corollary 4. Let G be a connected algebraic group defined over R such that
G := G(R)◦ is of Hermitian type and let ρ : Γ→ G be a maximal representation of
a lattice Γ < SU(n, 1). Then,

(1) The Zariski closure H := ρ(Γ)
Z

is reductive.

(2) The centralizer ZG(H) of H := ρ(Γ)
Z
(R)◦ is compact.

(3) The symmetric space Y corresponding to H is Hermitian and Y admits a
unique H-invariant complex structure such that the inclusion H → G is tight
and positive.

In the case in which Γ is the fundamental group of an oriented compact surface
possibly with boundary, one can reach much stronger conclusions, as for example
faithfulness and discreteness of ρ, [BuIW1,2], [BuIoLW].
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Our study of tight homomorphisms relies on the study of a parallel notion of
tightness for totally geodesic maps between symmetric spaces. Namely, let X1,X2
be Hermitian symmetric spaces of noncompact type.
Definition 5. A totally geodesic map f : X1 → X2 is said to be tight if

sup
∆⊂X1

∫
∆

f∗ωG2 = sup
∆⊂X2

∫
∆

ωG2 , (1.1)

where the supremum is taken over all smooth oriented triangles ∆ with geodesic
sides in X1 and X2, respectively.

A first immediate fact is the following:
Proposition 6. Let G1, G2 be Lie groups of Hermitian type and let X1,X2 be the
corresponding symmetric spaces. A homomorphism ρ : G1 → G2 is tight if and only
if the corresponding totally geodesic map f : X1 → X2 is tight.

Tight embeddings behave nicely at infinity. Recall that the Shilov boundary ŠX
of the Hermitian symmetric space X is the unique closed G-orbit in the (topological)
compactification of the bounded symmetric domain realization D of X , and can be
identified with G/Q, where Q < G is an appropriate parabolic subgroup. Two
points x, y in ŠX are said to be transverse if (x, y) is in the unique open G-orbit in
ŠX × ŠX .
Theorem 7. Let G1, G2 be Lie groups of Hermitian type and Š1, Š2 the Shilov
boundaries of the associated symmetric spaces. Let ρ : G1 → G2 be a continuous
tight homomorphism and f : X1 → X2 the corresponding totally geodesic tight map.
Then there exists a ρ-equivariant continuous map f̌ : Š1 → Š2 which extends f and
which maps transverse pairs to transverse pairs.

Using this theorem we can establish a general existence result for boundary maps.
Let Γ be a countable discrete group and (B, ν) a Poisson boundary for Γ. Recall
that under these conditions, the amenability of the Γ-action on (B, ν) insures the
existence of a ρ-equivariant measurable map from B to the space of probability
measures on G/P , where P is a minimal parabolic in G. Under some conditions,
such as for instance Zariski density of the image of the representation ρ, one can
deduce the existence of such a map with values in G/P (see [BuIo1], [BuIoW3]).

For tight homomorphisms we have the general existence result:
Theorem 8. Let G be a semisimple algebraic group defined over R such that
G := G(R) is of Hermitian type and let ρ : Γ→ G be a tight homomorphism. Then
there exists a ρ-equivariant measurable map ϕ : B → ŠX .

Recall that Hermitian symmetric spaces fall into two classes, according to whether
or not they admit a realization generalizing the upper half plane model of the
Poincaré disk. Namely, a Hermitian symmetric space is of tube type if it is bi-
holomorphically equivalent to a domain V ⊕ iΩ where Ω ⊂ V is a proper open cone
in the real vector space V . For any Hermitian symmetric space X maximal subdo-
mains of tube type exist, they are of the same rank as X , holomorphically embedded
and pairwise conjugate.
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Theorem 9. Let ρ : G1 → G2 be a tight homomorphism and f : X1 → X2 the
corresponding tight map. Then,

(1) If X1 is of tube type, then there exists a unique maximal subdomain of tube
type T ⊂ X2 such that f(X1) ⊂ T . Moreover ρ(G1) preserves T .

(2) If kerρ is finite and X2 is of tube type, then X1 is of tube type.

Our main tool to study tight embeddings and tight homomorphisms is the con-
cept of diagonal disk. Recall that a maximal polydisk in X is the image of a holo-
morphic and totally geodesic embedding t : D

rX → X . Maximal polydisks arise
as complexifications of maximal flats in X and are conjugate. It is easy to check
that maximal polydisks are tightly embedded. A diagonal disk in X is the image
of the diagonal ∆(D) ⊂ D

rX under the embedding t : D
rX → X . Diagonal disks are

precisely tight and holomorphically embedded disks in X .
Using diagonal disks we can give a simple criterion for tightness of a totally

geodesic embedding f : X1 → X2 in terms of the corresponding homomorphism of
Lie algebras (see Lemma 8.1). We apply this criterion to classify tight embeddings
of the Poincaré disk and obtain:
Theorem 10. Suppose that X is a Hermitian symmetric space and f : D → X
is a tight embedding. Then the smallest Hermitian symmetric subspace Y ⊂ X
containing f(D) is a product Y = Πk

i=1Yi of Hermitian symmetric subspaces Yi

of X , where Yi is the Hermitian symmetric space associated to the symplectic group
Sp(2ni, R). Moreover,

∑k
i=1 ni ≤ rX and the embedding f : D → Yi is equivariant

with respect to the irreducible representation SL(2, R) → Sp(2ni, R).
Tight embeddings are never totally real but they are also not necessarily holo-

morphic. The irreducible representations SL(2, R) → Sp(2n, R) provide examples of
non-holomorphic tight embeddings of the Poincaré disk when n ≥ 2.

We are not aware of an example of a non-holomorphic tight embedding of an
irreducible Hermitian symmetric space of rank rX ≥ 2. It might be that all tight
homomorphisms of higher-rank Hermitian symmetric spaces are holomorphic.

We suspect that tight embeddings of Hermitian symmetric spaces that are not
of tube type are always holomorphic. For tight embeddings of CH

n into classical
Hermitian symmetric spaces of rank 2 this can be deduced from [KoM].

Acknowledgments. We thank Domingo Toledo for useful discussions about tight
embeddings of complex hyperbolic spaces.

2 Tight Homomorphisms

2.1 Continuous bounded cohomology. In this section we recall some proper-
ties of bounded continuous cohomology which are used in the sequel. For proofs and
a comprehensive account of continuous bounded cohomology the reader is referred
to [M], [BuM2].

If G is a locally compact second countable group, then

Cb(Gk+1, R) :=
{
f : Gk+1 → R : f is continuous and ‖f‖∞ < ∞

}
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is a G-module via the action

(hf)(g0, . . . , gk) = f(h−1g0, . . . , h
−1gk) .

The continuous bounded cohomology H•
cb(G, R) of G with coefficients in R is the

cohomology of the complex of G-invariants

0 �� Cb(G, R)G d �� Cb(G2, R)G d �� · · ·

where d is the usual homogeneous coboundary operator defined for f ∈ Cb(Gk, R) by

df(g0, . . . gk) :=
k∑

i=0

f(g0, . . . , ĝi, . . . , gk) .

The supremum norm gives Cb(G•+1, R)G the structure of a Banach space and
induces a canonical seminorm ‖ · ‖ on H•

cb(G, R)

‖α‖ = inf
[f ]=α

‖f‖∞ .

The inclusion of complexes Cb(G•+1, R) ⊂ C(G•+1, R), where C(G•+1, R) de-
notes the space of continuous real-valued functions, induces a natural comparison
map

cG : H•
cb(G, R) → H•

c(G, R) (2.1)

from continuous bounded cohomology to continuous cohomology. Moreover, any
continuous homomorphism ρ : L → G of locally compact groups induces canonical
pullbacks both in continuous cohomology and in continuous bounded cohomology,
such that the diagram

H•
cb(G, R)

cG

��

ρ∗b �� H•
cb(L, R)

cL

��
H•

c(G, R)
ρ∗ �� H•

c(L, R)

commutes. In particular, if L < G is a closed subgroup, the pullback given by the
inclusion is the restriction map.
Proposition 2.1. (1) Let L be a locally compact second countable group and
L0 < L a closed subgroup. If L0 is of finite index in L, then the restriction map

H•
cb(L, R) −→ H•

cb(L0, R)
κ �−→ κ|L0

is an isometric isomorphism [BuM2, Prop. 2.4.2].
(2) If R � G is a closed amenable normal subgroup, the canonical projection

p : G → G/R induces an isometric isomorphism via the pullback

p∗b : H•
cb(G/R, R) �� H•

cb(G, R)

in continuous bounded cohomology, [M, Cor. 8.5.2].
(3) The seminorm ‖ · ‖ on H2

cb(G, R) is a norm which turns it into a Banach
space, [BuM2, Th. 2].
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(4) If G = G1× · · · ×Gn is a direct product of locally compact second countable
groups, then the map

H2
cb(G, R) −→

n∏
i=1

H2
cb(Gi, R)

κ �−→ (κ|Gi
)ni=1

(2.2)

into the Cartesian product of the continuous bounded cohomology of the factors, is
an isometric isomorphism, [BuM2, Cor. 4.4.1], that is

‖κ‖ =
n∑

i=1

∥∥κ|Gi

∥∥ . (2.3)

By a slight abuse of notation, we indicate by κ|Gi the pullback of κ ∈ H2
cb(G, R)

by the homomorphism
Gi −→ G = G1 × · · · ×Gn

gi �−→ (e, . . . , gi, . . . , e) .

Remark 2.2. (1) The statement in Proposition 2.1(1) is true more generally if
there exists an L-invariant mean on L/L0, but we shall not need this here.

(2) The fact that the isomorphism H2
cb(G, R) ∼=

∏n
i=1 H2

cb(Gi, R) is isometric is
not stated as such in [BuM2], but it follows from the proof. Moreover an explicit
inverse to the map H2

cb(G, R) →
∏n

i=1 H2
cb(Gi, R) in (2.2) is given by

n∏
i=1

H2
cb(Gi, R) −→H2

cb(G, R)

(κi)ni=1 �−→
n∑

i=1

(pi)∗bκi ,

where pi : G → Gi is the projection onto the i-th factor.
We record the following fact as a consequence of Proposition 2.1.

Corollary 2.3. Let L = H · R, where L is a locally compact second countable
group, H and R are closed subgroups of L. We assume that R is amenable and
normal in L. Then the restriction map

H•
cb(L, R) −→ H•

cb(H, R)
is an isometric isomorphism.

Proof. We have the following commutative diagram

L
p �� L/R

H
��

i

��

p|H
�� H/H ∩R ,

i

��

where i is the topological isomorphism induced by i; according to Proposition 2.1(2),
p∗b as well as (p|H)∗b and i

∗
b induce isometric isomorphisms. This implies the assertion

about i∗b. �



GAFA TIGHT HOMOMORPHISMS AND HERMITIAN SYMMETRIC SPACES 685 

2.2 General facts about α-tight homomorphisms. The pullback ρ∗b is semi-
norm decreasing with respect to the canonical seminorm in continuous bounded co-
homology, that is ‖ρ∗b(α)‖ ≤ ‖α‖ for all k ∈ N and all α ∈ Hk

cb(G, R). So, it is
natural to give the following
Definition 2.4. Let L,G be locally compact second countable topological groups
and α ∈ H•

cb(G, R) a continuous bounded cohomology class. A continuous homo-
morphism ρ : L→ G is said to be α-tight if ‖ρ∗b(α)‖ = ‖α‖.
Lemma 2.5. Let L,G,H be locally compact second countable groups. Suppose
that ρ : L → H, ψ : H → G are continuous homomorphisms. Let α ∈ H•

cb(G, R).
Then ψ is α-tight and ρ is ψ∗

b(α)-tight if and only if ψ ◦ ρ is α-tight.

Proof. The statement follows immediately from the chain of inequalities∥∥(ψ ◦ ρ)∗bα
∥∥ = ‖ρ∗bψ∗

bα‖ ≤ ‖ψ∗
bα‖ ≤ ‖α‖ . �

The following properties of tight homomorphisms are straightforward conse-
quences of the properties of continuous bounded cohomology summarized in Propo-
sition 2.1.
Lemma 2.6. Let L,G be locally compact second countable topological groups,
α ∈ H•

cb(G, R) and ρ : L→ G an α-tight homomorphism.

(1) Let H < G be a closed subgroup. If the image ρ(L) is contained in H then
ρ is α|H -tight and ‖α|H‖ = ‖α‖.

(2) Let L0 < L be a closed subgroup of finite index in L. Then ρ|L0
is α-tight

and ∥∥(ρ|L0
)∗bα

∥∥ = ‖ρ∗bα‖ = ‖α‖ .

(3) Let R�G be a closed amenable normal subgroup, p : G → G/R the canonical
projection. Then the homomorphism p ◦ ρ : L → G/R is tight with respect
to the class (p∗b)−1(α) ∈ H2

cb(G/R, R).
(4) Let α ∈ H2

cb(G, R) and if G := G1 × · · · × Gn, let pi : G → Gi be the
projection onto the i-th factor, i = 1, . . . , n. Then ρi = pi ◦ ρ : L → Gi is
α|Gi

-tight for all i.

Proof. (1) Since ρ(L) is contained in H we have that ρ∗bα = ρ∗b(α|H ). If ρ is α-tight,
then

‖α‖ = ‖ρ∗bα‖ =
∥∥ρ∗b(α|H )

∥∥ ≤ ‖α|H‖ .

Since H < G is a subgroup we have that ‖α|H‖ ≤ ‖α‖ and the claim follows.
(2) Since (ρ|L0

)∗bα is the restriction to L0 of the class (ρ∗bα) ∈ H•
cb(L, R), by

Proposition 2.1(1) and tightness of ρ we have that∥∥(ρ|L0
)∗bα

∥∥ = ‖ρ∗bα‖ = ‖α‖ .

(3) The facts that p∗b is an isometric isomorphism (Proposition 2.1(2)) and that
ρ is α-tight give rise to the following chain of equalities:∥∥(p ◦ ρ)∗b(p∗b)

−1α
∥∥ = ‖ρ∗bα‖ = ‖α‖ =

∥∥(p∗b)−1α
∥∥ .
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(4) By Proposition 2.1(1) and Remark 2.2 we have that

α =
n∑

i=1

(pi)∗b(α|Gi) .

Then

ρ∗(α) =
n∑

i=1

(ρi)∗b(α|Gi) ,

so that, by (2.3) and α-tightness of ρ, we have
n∑

i=1

‖α|Gi‖ = ‖α‖ =
∥∥ρ∗(α)

∥∥ =
∥∥∥∥

n∑
i=1

(ρi)∗b(α|Gi)
∥∥∥∥ ≤

n∑
i=1

∥∥(ρi)∗b(α|Gi)
∥∥ .

The assertion now follows since∥∥(pi)∗b(α|Gi)
∥∥ ≤ ‖α|Gi‖ . �

2.3 Groups of type (RH). Let G be a connected reductive Lie groups with
compact center. Then G = Gc · Gnc, where Gc is the largest compact connected
normal subgroup of G and Gnc is the product of all connected noncompact almost
simple factors of G. Then Gnc has finite center and Gc ∩Gnc is finite.
Definition 2.7. (1) A Lie group G is of Hermitian type if it is connected semisimple
with finite center and no compact factors and its associated symmetric space is
Hermitian.

(2) A group G is of type (RH) (reductive Hermitian) if it is a connected reductive
Lie group with compact center such that Gnc is of Hermitian type.

If G is a group of type (RH) and X is the symmetric space associated to Gnc we
have a homomorphism

q : G �� GX (2.4)

into GX := Isom(X )◦, which is surjective with compact kernel so that G acts prop-
erly on X .

Let J be the G-invariant complex structure on X and gX the G-invariant Rie-
mannian metric on X , normalized so that the minimal holomorphic sectional cur-
vature on every irreducible factor equals −1. We denote by ωX ∈ Ω2(X )G the
G-invariant two-form

ωX (X,Y ) := gX (X,J Y )

which is called the Kähler form of X .
Choosing a base point x0 ∈ X any G-invariant two-form ω ∈ Ω2(X )G gives rise

to a continuous cocycle
cω : G×G×G −→ R

(g0, g1, g2) �−→
1
2π

∫
∆(g0x0,g1x0,g2x0)

ω ,
(2.5)

where ∆(g0x0, g1x0, g2x0) denotes a smooth oriented triangle with geodesic sides
and vertices g0x0, g1x0, g2x0. Let κω = [cω] ∈ H2

c(G, R) denote the correspond-
ing continuous cohomology class; then the map ω �→ κω implements the van Est
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isomorphism [E]
Ω2(X )G ∼= H2

c(G, R) .

It is well known that if M is a connected simple Lie group with finite center,
then

dim H2
c(M, R) = 0 or 1 ;

in fact, the dimension is nonzero (hence 1) if and only if the associated symmetric
spaceM carries a M -invariant complex structure and hence is Hermitian symmetric.
Then Ω2(M)M = R ωM, and with the above notation and normalizations we have
Theorem 2.8 [DT], [CØ]. If M is an irreducible Hermitian symmetric space we
have that

1
2π

∣∣∣∣ sup
∆⊂M

∫
∆

ωM

∣∣∣∣ =
1
2π

sup
∆⊂M

∫
∆

ωM =
rM
2

,

where rM denotes the rank of M.

In particular cωM defines a bounded class κb
M ∈ H2

cb(M, R) which corresponds
to κω ∈ H2

c(M, R) under the comparison map in (2.1), and it was shown in [BuM1]
that the comparison map

cM : H2
cb(M, R) −→ H2

c(M, R) (2.6)
is an isomorphism in degree two. The following result for the canonical norm in
continuous bounded cohomology could also in principle be deduced from [DT], [CØ].
Theorem 2.9. With the above notation and if M is irreducible, then

‖κb
M‖ =

rM
2

.

Strictly speaking the concept of bounded continuous classes and their norms
does not occur in [DT], [CØ]; what the authors show is that for a specific – and
hence any – cocompact torsion-free lattice Γ < M , the singular bounded class in
H2

b(Γ\M) defined by integration of the Kähler form on straight simplices has Gromov
norm π rM. Using this and the isometric isomorphism between bounded singular
cohomology of Γ\M and bounded (group) cohomology of Γ, one could deduce the
above theorem. We shall however give in the Appendix a direct proof which in
particular avoids the construction of a lattice in M with specific properties.

Let now G be a group of type (RH), X = X1 × · · · × Xn a decomposition into
irreducible factors, and ωX ,i := p∗i (ωXi), where pi : X → Xi is the projection onto
the i-th factor. Then {

ωX ,i ∈ Ω2(X )GX : 1 ≤ i ≤ n
}

(2.7)
gives a basis of Ω2(X )GX and, in view of the van Est isomorphism [E],{

κX ,i := κωX ,i
∈ H2

c(GX , R) : 1 ≤ i ≤ n
}

(2.8)
gives a basis of H2

c(GX , R). Moreover, since it is the group GX which acts effectively
on X , it is obvious that Ω2(X )G = Ω2(X )GX , and hence the cohomology class defined
by the cocycle cω in (2.5) can be thought of as a cohomology class in H2

c(G, R). Hence
the map q in (2.4) defines an isomorphism

q∗ : H2
c(GX , R) −→ H2

c(G, R) , (2.9)
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and we denote by {
κG,i := q∗(κωX ,i

) ∈ H2
c(G, R) : 1 ≤ i ≤ n

}
(2.10)

the corresponding basis of H2
c(G, R).

If πi : GX → GXi denotes the projection onto the i-th factor, then we have that
the analogous map to (2.9) in bounded cohomology

q∗b : H2
cb(GX , R) −→ H2

cb(G, R) (2.11)

and
n∏

i=1

H2
cb(GXi , R) −→H2

cb(GX , R)

(κi) �−→
n∑

i=1

(pi)∗b(κi)

(2.12)

are now isometric isomorphisms: for (2.11) this follows from Proposition 2.1(2) and
the fact that kerq is compact, and for (2.12) it follows already from Remark 2.2.

Let κb
X ,i be the bounded class of GX defined by cωX ,i

= cωXi
◦ pi; then it follows

from the isomorphisms in (2.6) and (2.12) that{
κb
X ,i ∈ H2

cb(GX , R) : 1 ≤ i ≤ n
}

(2.13)

gives a basis of H2
cb(GX , R) and, analogously to before,{

κb
G,i := q∗b(κ

b
X ,i) ∈ H2

cb(G, R) : 1 ≤ i ≤ n
}

(2.14)

a basis of H2
cb(G, R).

Thus if ω =
∑n

i=1 λiωX ,i is any element in Ω2(X )G written in the above basis
(2.7), then

κb
ω =

n∑
i=1

λiκ
b
G,i

is the bounded class in H2
cb(G, R) defined by cω =

∑n
i=1 λicωX ,i

and corresponding
to ω under the isomorphism Ω2(X )G → H2

cb(G, R). Moreover applying the isometric
isomorphism in (2.12) and Theorem 2.9 we have that

‖κb
ω‖ =

n∑
i=1

|λi| ‖κb
G,i‖ =

n∑
i=1

|λi|
rXi

2
, (2.15)

and in particular

‖κb
G‖ =

rX
2

. (2.16)

With the same notation we have
Proposition 2.10. For any Hermitian symmetric space X we have that

1
2π

sup
∆⊂X

∣∣∣∣
∫

∆
ω

∣∣∣∣ =
1
2π

sup
∆⊂X

∫
∆

ω =
n∑

i=1

|λi|
rXi

2
,

where ∆ ⊂ X runs through all smooth triangles with geodesic sides in X .
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Proof. We assume here Theorem 2.8 and we focus on the nonirreducible case. If
ω =

∑n
i=1 λiωX ,i, then∫

∆
ω =

n∑
i=1

λi

∫
∆

ωX ,i =
n∑

i=1

λi

∫
pi(∆)

ωXi

so that∣∣∣∣ 1
2π

∫
∆

ω

∣∣∣∣ =
1
2π

∣∣∣∣
n∑

i=1

λi

∫
pi(∆)

ωXi

∣∣∣∣ ≤ 1
2π

n∑
i=1

|λi|
∣∣∣∣
∫

pi(∆)
ωXi

∣∣∣∣ ≤
n∑

i=1

|λi|
rXi

2
,

where we used Theorem 2.8 in the last inequality. For the opposite inequality, let
ε > 0 and ∆i ⊂ Xi be smooth triangles with geodesic sides such that∫

∆i

ωXi ≥ π rXi −ε .

More precisely let σ+
i : ∆ → Xi be a parametrization of ∆i with geodesic sides, and

σ−
i be the parametrization of ∆i with the opposite orientation. Then let ∆X be the

image of the map

σ : ∆ −→ X
t �−→

(
ση1

1 (t), . . . , σηn
n (t)

)
,

where ηi = sign(λi). Then ∫
∆X

ωX ,i =
∫

σ
ηi
i

ωXi

and∫
∆X

ω =
n∑

i=1

λi

∫
σ

ηi
i

ωXi =
n∑

i=1

|λi|
∫

∆i

ωXi ≥ π

( n∑
i=1

|λi| rXi

)
− ε

n∑
i=1

|λi| .

Since this holds for any ε > 0 the proof is complete. �

Definition 2.11. Let L be a locally compact second countable topological group
and G a group of type (RH). A continuous homomorphism ρ : L → G is said to be
tight, if ρ is κb

G-tight, that is if∥∥ρ∗(κb
G)

∥∥ = ‖κb
G‖ .

Proposition 2.12. Let H,G be Lie groups of type (RH), X the symmetric space
associated to G and Y = Y1 × · · · × Yn the symmetric space associated to H, where
the Yi’s are irreducible. Let ρ : H → G be a homomorphism and assume that
ρ∗(κb

G) =
∑n

i=1 λiκ
b
H,i. Then ρ is tight if and only if rX =

∑n
i=1 |λi| rYi .

Proof. We have by (2.15) ∥∥ρ∗(κb
G)

∥∥ =
n∑

i=1

|λi| ‖κb
H,i‖ ,

and since ‖κb
G‖ = rX/2 (by (2.16)) and ‖κb

H,i‖ = rYi/2 (by Theorem 2.9), the
assertion follows immediately. �
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2.4 Tight maps. Let now f : X1 → X2 be a totally geodesic map, where X1,X2
are Hermitian symmetric spaces of noncompact type.. Recall that this means that
given any geodesic c : R → X1, the path f ◦ c : R → X2 is a geodesic, possibly not
parametrized by arclength; in fact, f ◦ c might be the constant map. At any rate,
for every triangle ∆1 ⊂ X1 with geodesic sides, f(∆1) ⊂ X2 is so as well, and hence

sup
∆1⊂X1

∫
∆1

f∗(ωX2) ≤ sup
∆2⊂X2

∫
∆2

ωX2 (2.17)

where the supremum on each side is taken over all triangles with geodesic sides.
Definition 2.13. (1) A totally geodesic map f : X1 → X2 is tight if equality holds
in (2.17).

(2) We say that a subsymmetric space Y ⊂ X2 is tightly embedded if the inclusion
map is tight.

Proposition 2.14. Let f : X1 → X2 be a totally geodesic map and Y ⊂ f(X1) a
subsymmetric space.

(1) The map f is tight if and only if the subsymmetric space f(X1) is tightly
embedded in X2.

(2) If Y is tightly embedded in X2, then f is tight.

Proof. For the first assertion it suffices to observe that every triangle in f(X1) with
geodesic sides is the image of a triangle in X1 with geodesic sides. This implies that

sup
∆1⊂X1

∫
∆1

f∗(ωX2) = sup
∆2⊂f(X1)

∫
∆2

ωX2

which shows the first assertion.
The second assertion follows immediately from the above and the inequalities

sup
∆⊂Y

∫
∆

ωX2 ≤ sup
∆1⊂f(X1)

∫
∆1

ωX2 ≤ sup
∆2⊂X2

∫
∆2

ωX2 . �

Given a homomorphism ρ : G1 → G2 of Lie groups of type (RH), let x1 ∈ X1 be
a base point, K1 = StabG1(x1) the corresponding maximal compact subgroup and
x2 ∈ X2 a point such that ρ(K1)(x2) = x2. Then ρ gives rise to a map

f : X1 −→ X2

defined by f(gx1) := ρ(g)x2, which is ρ-equivariant and totally geodesic.
Lemma 2.15. The diagram

H2
cb(G2, R)

��

ρ∗b �� H2
cb(G1, R)

��

Ω2(X2)G2
f∗

��

∼=
�������������

∼=
�������������

Ω2(X1)G1

∼=
�������������

∼=
�������������

H2
c(G2, R)

ρ∗ �� H2
c(G1, R)

commutes.
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Proof. Let ω ∈ Ω2(X2)G2 . Using the points x1 ∈ X1 and x2 = f(x1) ∈ X2 in the
construction of the cocycles we have

cf∗(ω) = cω ◦ ρ . �

Corollary 2.16. In the above situation the following are equivalent:

(1) The homomorphism ρ : G1 → G2 is tight.
(2) The totally geodesic map f : X1 → X2 is tight.

Proof. By Lemma 2.15 we have that ρ∗(κb
G2

) = κb
f∗(ωX2

). Thus, applying Proposi-
tion 2.10 we have that∥∥ρ∗(κb

G2
)
∥∥ =

∥∥κb
f∗(ωX2

)

∥∥ =
1
2π

sup
∆1⊂X1

∫
∆1

f∗ωX2

and

‖κb
G2
‖ =

1
2π

sup
∆2⊂X2

∫
∆2

ωX2

from which the equivalence follows readily. �

From Corollary 2.16 and Proposition 2.12 we immediately deduce the following:
Corollary 2.17. Let H,G be Lie groups of type (RH) with associated Hermitian
symmetric spaces Y and X , ρ : H → G a homomorphism and f : Y → X a ρ-
equivariant totally geodesic map. Let Y = Y1 × · · · × Yn be the decomposition into
irreducible factors and suppose that f∗(ωX ) =

∑n
i=1 λiωY ,i. The totally geodesic

map f : Y → X is tight if and only if rX =
∑n

i=1 |λi| rYi .

Before stating the next corollary let us recall the following:
Definition 2.18. (1) A maximal polydisk in X is the image of a totally geodesic
and holomorphic embedding t : D

rX → X of a product of rX Poincaré disks.
(2) A diagonal disk in X is the image of the diagonal ∆(D) ⊂ D

rX under an
embedding t : D

rX → X of D
rX as a maximal polydisk. In particular d := t ◦ ∆ :

D→ X is a totally geodesic and holomorphic embedding.
Maximal polydisks arise as complexifications of maximal flats in X , and hence

are conjugate under GX . Moreover, with the normalization chosen in section 2.3 the
embedding t : DrX → X is isometric. In fact one can say more, as we have
Lemma 2.19. A metric on an Hermitian symmetric space X is normalized if and
only if every maximal polydisk f : D

rX → X is isometrically embedded.

Proof. If X is irreducible, it follows from the computation in [CØ, p. 273-274], that
the holomorphic sectional curvature is minimal at u ∈ TxX if and only if the complex
geodesic obtained by u is the image of a factor of a maximal polydisk t : D

rX → X .
The general case follows immediately. �

Lemma 2.19 has the following useful consequence:
Corollary 2.20. Let Y ⊂ X be a Hermitian subsymmetric space of the same rank
as X . Then the restriction to Y of the normalized metric on X is the normalized
metric on Y.
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Proof. Indeed, every maximal polydisk t : D
rY → Y in Y is a maximal polydisk

in X . �

Definition 2.21. A Hermitian symmetric space X is said to be of tube type if X is
biholomorphically equivalent to a tube domain of the form

{v + iu | v ∈ V , u ∈ Ω} ⊂ V ⊕ iV ,

where V is a real vector space and Ω ⊂ V is a proper open cone.
Every Hermitian symmetric space X contains maximal (with respect to the inclu-

sion) subdomains T of tube type which are of the same rank as X , holomorphically
embedded and conjugate under GX . Moreover, the embedding T ⊂ X is always
isometric (see Corollary 2.20).
Corollary 2.22. (1) Let f : Y → X be a holomorphic and isometric embedding.
Then f is tight if and only if rY = rX .

(2) Maximal polydisks t : D
rX → X are tight.

(3) Diagonal disks d : D → X are tight.
(4) Maximal tube type subdomains T ⊂ X are tight.

Proof. If f : Y → X is holomorphic and isometric, then f∗(ωX ) = ωY =
∑n

i=1 ωY ,i,
so (1) follows from the fact that rY =

∑n
i=1 rYi and Proposition 2.12.

Then (2) and (4) follow at once from (1) since the embeddings t : D
rX → X and

T ⊂ X are holomorphic and isometric.
To see (3), observe that since t is a holomorphic isometry, then t∗(ωX ) = ωD

rX ;
moreover, an easy verification shows that ∆∗(ωD

rX ) = rXωD. It follows then that
d∗(ωX ) = rXωD, so that the assertion follows from Proposition 2.12. �

Further examples of tight maps and tight homomorphisms will be discussed in
section 8.1.

3 Kähler Classes and the Shilov Boundary

In this section we collect the facts from the geometry of Hermitian symmetric spaces,
some of which are of independent interest, needed for our purpose. Those concerning
the geometry of triangles are due, in the context of irreducible domains, to Clerc
and Ørsted [CØ]; we present also here the necessary – easy – extensions to general
domains.

Let X be a Hermitian symmetric space of noncompact type with a fixed GX -
invariant complex structure J . Fix a maximal compact subgroup K = StabGX (x0),
where x0 ∈ X is some base point. Let g = k ⊕ p be the corresponding Cartan
decomposition, where g = Lie(GX ) and k = Lie(K). There exists a unique element
ZJ in the center Z(k) of k such that ad(ZJ )|p induces the complex structure J under
the identification p ∼= Tx0X . The complexification gC of g splits into eigenspaces of
ad(ZJ ) as

gC = kC ⊕ p+ ⊕ p− . (3.1)
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The Hermitian symmetric space X can be realized as a bounded symmetric
domain

D ⊂ p+ ∼= C
N .

Let us describe the structure of D more explicitly. Let us fix h ⊂ k a maximal
Abelian subalgebra. Then Z(k) ⊂ h and hC is a maximal Abelian subalgebra, indeed
a Cartan subalgebra of gC. The set Ψ = Ψ(gC, hC) of roots of hC in gC decomposes
compatibly with the decomposition of gC in (3.1) as

Ψ = ΨkC ∪Ψp+ ∪Ψp−,

here Ψl := {α ∈ Ψ | the root space gα ⊂ l}. One can choose an ordering Ψ = Ψ+∪Ψ−
such that Ψp± ⊂ Ψ±.

To every root α ∈ Ψ we associate a three dimensional simple subalgebra
g[α] = CHα ⊕ CEα ⊕ CE−α , (3.2)

where Hα ∈ hC is the unique element determined by α(H) = 2 B(H,Hα)
B(Hα,Hα) for all

H ∈ hC and B is the Killing form on gC. The elements Eα, E−α are the elements
of g±α satisfying the relation [Eα, E−α] = Hα and τ(Eα) = −E−α, where τ is the
complex conjugation of gC with respect to the compact real form gU = k⊕ ip. Then
p+ =

∑
α∈Ψp+ CEα and the vectors Xα = Eα + E−α, Yα = i(Eα − E−α), α ∈ Ψp+,

form a real basis of p.
Two roots α, β ∈ Ψ are called strongly orthogonal if neither α + β nor α− β

is a root. By a theorem of Harish-Chandra there exists a maximal set Λ =
{γ1, . . . , γr} ⊂ Ψp+ of r = rD strongly orthogonal roots. The associated vectors
Xγj ∈ p span a maximal Abelian subspace a of p over R. The bounded symmetric
domain D admits the following description

D =
{

Ad(k)
r∑

j=1

tanh(tj)Eγj : k ∈ K , tj ∈ R

}
⊂ p+ ; (3.3)

moreover, we call

P0 =
{

Ad(k)
r∑

j=1

tanh(tj)Eγj : k ∈ exp(h) , tj ∈ R

}
⊂ D (3.4)

the standard maximal polydisk and

∆0 =
{

Ad(k)
r∑

j=1

tanh(t)Eγj : k ∈ Z(K) , t ∈ R

}
⊂ P0 , (3.5)

the standard diagonal disk. With the explicit description of D we define the (nor-
malized) Bergmann kernel

kD : D ×D → C
×,

by
kD(z,w) = hD(z,w)−2, (3.6)

where hD(z,w) is the polarization of the unique K-invariant polynomial h on p+
such that

h

( r∑
j=1

sjEγj

)
=

r∏
j=1

(1− s2
j) .
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The (normalized) Bergmann kernel is continuous on D2 and gives rise to a Rie-
mannian metric gD, called the (normalized) Bergmann metric on D, which has
minimal holomorphic sectional curvature −1: this holds in the irreducible case by
[CØ, (1.2)] and follows for the general case by the naturality under product of the
normalized metric. Let us observe that the Bergmann metric and the normalized
Bergmann metric are equivalent: indeed for an irreducible domain they are propor-
tional – the proportionality factor however depends on the domain, see [CØ, (1.2)]
for the precise value – and the Bergmann and normalized Bergmann metrics behave
functorially with respect to taking products.

The Kähler form given by

ωD = i∂∂ log kD(z, z)

corresponds to ωX under the isomorphism X → D.
Lemma 3.1. Let D ⊂ C

N be a bounded symmetric domain with Riemannian
distance dD( · , · ). Then there exists a constant c = c(D) such that for all x, y ∈ D

dD(x, y) ≥ c‖x− y‖eucl ,

where ‖ · ‖eucl denotes the Euclidean norm on C
N .

Proof. Using the observation above, it suffices to show the lemma for the distance
coming from the Bergmann metric.

Let bD be this metric, then at every z ∈ D we have

(bD)z( · , · ) =
〈
· ,AdK(z, z)−1 ·

〉
,

where 〈 · , · 〉 is the Hermitian form on p+ coming from the Killing form and K
is the kernel function defined on an open subset of p+ × p+ with values in the
complexification KC of the maximal compact subgroup (for definition and details
see [S2, §5.6 and Prop. 6.2]).

We now need to estimate the eigenvalues of AdK(z, z). Writing z = Ad(k)z1
and observing that

AdK(z, z) = Ad(k) AdK(z1, z1)Ad(k)−1,

we may assume that

z1 =
rD∑
j=1

ξjEγj .

An explicit calculation (see e.g. [S2, p. 71]) shows that the eigenvalues of
AdK(z1, z1) on the root space gα for α ∈ Ψp+ are given by(

1− |ξj|2
)2

,(
1− |ξj|2

)(
1− |ξk|2

)
,(

1− |ξj|2
)
, or(

1− |ξj|2
)(

1 + |ξk|2
)

+ |ξk|4 ,

where 1 ≤ j �= k ≤ rX . In particular, since 0 ≤ |ξj | < 1 every eigenvalue of
AdK(z, z)−1 is greater than 1/3 and the claim follows. �
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3.1 Shilov boundary. We shall denote by GD the connected component of the
group Aut(D) of holomorphic automorphisms of D. When D′ ⊂ D is a Hermitian
symmetric subspace, we shall denote by AD′ the subgroup of GD of Hermitian type
associated to D′; in fact, AD′ is the product of the noncompact connected almost
simple factors of the reductive subgroup NGD(D′), where if E ⊂ D is any subset, we
define

NGD(E) :=
{
g ∈ GD : g(E) = E

}
.

The closure D contains a unique closed GD-orbit which is the Shilov boundary
ŠD of D; more precisely, the Shilov boundary ŠD is the GD orbit of the point∑r

j=1 Eγj ⊂ p+, where Eγj are the root vectors associated to strongly orthogonal
roots γj ∈ Λ (see (3.2)), and can hence be realized as GD/Q, where Q is the stabilizer
in GD of

∑r
j=1 Eγj . In particular, if D is irreducible, then Q is a maximal parabolic

subgroup in GD.
Lemma 3.2. (1) Let D = D1×· · ·×Dn be a decomposition into irreducible factors.
Then the Shilov boundary ŠD of D is the product ŠD1 × · · · × ŠDn of the Shilov
boundaries of the irreducible factors.

(2) If P is any maximal polydisk and ∆ ⊂ P is any diagonal disk, then
Š∆ ⊂ ŠP ⊂ ŠD.

(3) If D′ ⊂ D is a Hermitian symmetric subspace with rD′ = rD, then ŠD′ ⊂ ŠD.

Proof. (1) This first assertion follows from the characterization of ŠD as the unique
closed GD-orbit in D.

(2) To see the second assertion observe that since all maximal polydisks (and
their diagonal disks) are conjugate by GD, it suffices to show the assertion for the
standard maximal polydisk P0. First it is obvious that Š∆0 ⊂ ŠP0 . Then let AP0 be
the subgroup of Hermitian type of GD associated to P0; clearly the vector

∑r
j=1 Eγj

is contained in ŠP0 and hence its AP0-orbit is contained in its GD-orbit, which implies
that ŠP0 ⊂ ŠD and hence the second assertion.

(3) Finally, let P ⊂ D′ be a maximal polydisk and let AD′ be the subgroup of
Hermitian type of GD associated to D′. Then P is maximal in D as well and hence,
by (2), ŠP ⊂ ŠD′. This, together with the obvious inclusion AD′

(
ŠP

)
⊂ GD

(
ŠP

)
implies that ŠD′ ⊂ ŠD. �

The relationship between the geodesic ray compactification D(∞) of X and the
boundary ∂D of the domain D is far from being simple. For example, a point in
D(∞) does not uniquely determine one in ∂D; this is however true if the endpoint
of a geodesic ray lies in the Shilov boundary. In fact we have
Lemma 3.3 [L, Th. 9.11]. Let z ∈ ŠD be a point in the Shilov boundary of D and
let η1, η2 : [0,∞) → D be geodesic rays such that

(1) limt→∞ η1(t) = z, and
(2) supt≥0 dD(η1(t), η2(t)) < ∞.

Then limt→∞ η2(t) = z.

Sketch of the proof. We can assume that the bounded symmetric domain is irre-
ducible and that z = eQ ∈ Š = GD/Q. The geodesic η1 converges to z ∈ Š if and
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only if the stabilizer StabGD(η1) is a parabolic subgroup P which is contained in
the maximal parabolic subgroup Q < GD. Then supt≥0 dD(η1(t), η2(t)) < ∞ implies
that StabGD(η1) = StabGD(η2) = P . Now P < Q and P cannot be contained in any
other conjugate of Q, hence limt→∞ η2(t) = z. �

We shall as usual say that a geodesic ray r : [0,∞) → D is of type P , where P is
a parabolic subgroup of GD, if the stabilizer of the point in D(∞) defined by r is P
or, what amounts to the same, if

P =
{
g ∈ GD : sup

t≥0
dD

(
g r(t), r(t)

)
< +∞

}
.

By way of example, we notice that the geodesic
r0 : [0,∞) −→ D

t �−→
r∑

j=1

tanh(t)Eγj

(3.7)

is of type Q; this is the geodesic contained in ∆0 connecting 0 to
∑r

j=1 tanh(t)Eγj

in D. We should observe here that there are many geodesics connecting 0 to∑r
j=1 Eγj in D, and they need not be at a finite distance from r0. A typical example

is given by

t �→
r∑

j=1

tanh(ajt)Eγj

where 0 < a1 < · · · < ar. However we have the following:
Proposition 3.4. For any x ∈ D and z ∈ ŠD, there is a unique diagonal disk
∆x,z ⊂ D with {x, z} ⊂ ∆x,z. Moreover, if rx,z denotes the unique geodesic ray in
∆x,z joining x to z, then rx,z is of type Qz := StabGD(z). Furthermore, for every
x1, x2 ∈ D and z ∈ ŠD, we have that

sup
t≥0

dD
(
rx1,z(t), rx2,z(t)

)
< +∞ .

Proof. Concerning the existence of such a disk, observe that the diagonal GD-action
on D× ŠD is transitive; indeed Q acts transitively on D. Thus we may assume that
x = 0 and z =

∑r
j=1 tanh(t)Eγj . But then ∆0 and r0 (see (3.7)) are the objects we

sought for.
Let for the moment r∆

x,z denote the geodesic joining x to z inside ∆, where ∆ is
a diagonal disk. Let z ∈ ŠD, and consider x ∈ ∆, x′ ∈ ∆′ both diagonal disks with
z ∈ ∂∆ ∩ ∂∆′. Then there is g ∈ GD with

g(∆) = ∆′ , gx = x′ , gz = z ,

that is g ∈ Qz. In particular

g
(
r∆
x,z

)
= r∆′

x′,z . (3.8)

Let D = D1×· · ·×Dn be a decomposition into irreducible components and, accord-
ingly, GD = GD1×· · ·×GDn , x = (x1, . . . , xn), x′ = (x′

1, . . . , x
′
n) and z = (z1, . . . , zn).

Now if pi : D → Di denotes the projection on to the i-th factor, we observe that
pi

(
r∆
x,z

)
is a ray with parametrization proportional to the arclength and of type Qzi .
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Since now Qzi is maximal parabolic, there is a unique geodesic ray rxi
i : [0,∞) → Di

starting at xi of type Qzi and hence
r∆
x,z(t) =

(
rxi
i (ait)

)
for some ai > 0. Similarly,

r∆′
x′,z(t) =

(
r
x′

i
i (bit)

)
for some bi > 0. If now g = (g1, . . . , gn), according to (3.8) we have

gi

(
rxi
i (ait)

)
= r

x′
i

i (bit) , for all t ≥ 0 ,

which implies, since g is an isometry, that ai = bi for 1 ≤ i ≤ n. Finally, since
gi ∈ Qzi , we have that

sup
s≥0

dDi

(
rxi
i (s), rx′

i
i (s)

)
< +∞

and hence
sup
t≥0

dD
(
r∆
x,z(t), r

∆′
x′,z(t)

)
< +∞ . (3.9)

It remains to show the uniqueness assertion. For that, let ∆, ∆′ be diagonal
disks with x ∈ ∆ ∩∆′ and z ∈ ∂∆ ∩ ∂∆′. Because of (3.9) we have that

r∆
x,z(t) = r∆′

x′,z(t)
for all t ≥ 0. Thus the holomorphic disks ∆,∆′ contain a half line in common and
hence coincide. �

3.2 The Bergmann cocycle and maximal triples. Let us denote by D the
closure of D in p+.
Definition 3.5. We define
D(2) :=

{
(z,w) ∈ D ×D : hD(z,w) �= 0

}
D[2] :=

{
(z,w) ∈ D2 : there exists some geodesic in D connecting z to w

}
.

Then D(2) is a star-shaped domain and is the maximal subset of D2 to which the
Bergmann kernel kD extends continuously. Moreover, expanding [CØ, Prop. 4.1] to
the nonirreducible case, we have that

D[2] ⊂ D2
.

If
argkD : D(2) −→ R

is the continuous determination of the argument of kD vanishing on the diagonal
of D2, then the integral

∫
∆⊂X ωX can be expressed in terms of the function argkD.

Proposition 3.6 [CØ]. Let ∆(x, y, z) ⊂ D be a smooth oriented triangle with
geodesic sides and vertices x, y, z ∈ D. Then∫

∆(x,y,z)
ωD = −

[
argkD(x, y) + argkD(y, z) + argkD(z, x)

]
.

Define the following subsets of D3:

D(3) :=
{
(z1, z2, z3) ∈ D

3 : (zi, zj) ∈ D
(2) for all i �= j

}
,

D[3] :=
{
(z1, z2, z3) ∈ D

3 : (zi, zj) ∈ D
[2] for all i �= j

}
.
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Definition 3.7. The Bergmann cocycle

βD : D(3) → R

is defined by

βD(x, y, z) := − 1
2π

[
argkD(x, y) + argkD(y, z) + argkD(z, x)

]
.

It is a GD-invariant alternating continuous function which satisfies the cocycle
identity dβ(z1, z2, z3, z4) = 0 whenever (zi, zj , zk) ∈ D(3) for all 1 ≤ i, j, k ≤ 4
pairwise distinct.

In terms of the decomposition D = D1 × · · · × Dn into irreducible factors, we
have the following formulas for the above mentioned objects:

hD
(
(z1, . . . , zn), (w1, . . . , wn)

)
=

n∏
i=1

hDi(zi, wi) , (3.10)

D(2) =
{
(z,w) ∈ D2 : (zi, wi) ∈ D

(2)
i , 1 ≤ i ≤ n

}
, (3.11)

D[2] =
{
(z,w) ∈ D2 : (zi, wi) ∈ D

[2]
i , 1 ≤ i ≤ n

}
, (3.12)

analogous formulas for D(3) and D[3]
, (3.13)

βD(x, y, z) =
n∑

i=1

βDi(xi, yi, zi) whenever (x, y, z) ∈ D(3)
. (3.14)

From (3.14) and Theorem 2.8 we deduce that |βD| ≤ rD/2 and clearly

βD(x, y, z) =
rD
2

if and only if βDi(xi, yi, zi) =
rDi

2
for all 1 ≤ i ≤ n . (3.15)

Theorem 3.8. Suppose that (x, y, z) ∈ D[3]
is such that βD(x, y, z) = rD/2, then

(1) The points x, y, z lie on the Shilov boundary ŠD; and
(2) there exists a unique diagonal disk d : D → D such that d(1) = x, d(i) = y,

d(−1) = z. Moreover,

d(D) ⊂
{
p ∈ D : p is fixed by StabGD(x, y, z)

}
with equality if D is irreducible.

(3) The group GD acts transitively on the set{
(x, y, z) ∈ D[3] : βD(x, y, z) =

rD
2

}
of maximal triples.

Proof. All the above assertions are due to Clerc and Ørsted in the irreducible case,
[CØ]. In the general case, the first assertion follows from (3.15) and Lemma 3.2(1).

In the second assertion, only the uniqueness needs to be verified, but this follows
easily from the fact that a totally geodesic map D→ D is necessarily isometric.

The last assertion follows immediately from (3.15), (3.13) and the irreducible
case. �
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3.3 On subdomains of maximal rank. The main goal of this section is to
show that if D′,D′′ are subdomains of D of maximal rank, that is rD = rD′ = rD′′ ,
whose Shilov boundaries coincide, then D′ = D′′. We begin with the following.
Lemma 3.9. Let D′ ⊂ D be a subdomain of maximal rank. Then,

(1) kD′ = kD|D′ ;

(2) D′[3] =
(
D′)3 ∩ D[3]

;

(3) βD′(x, y, z) = βD|D′[3](x, y, z) for all (x, y, z) ∈ D′[3].

Proof. (1) We observed already that the normalized Bergmann metric on D′ is the
restriction of the normalized Bergmann metric on D (see Corollary 2.20), thus the
first assertion follows readily.

(2) The second assertion is obvious.
(3) To see the third assertion, observe first of all that if (x, y, z) ∈ D′3, then the

equality follows from (1). Furthermore, continuity of the Bergmann cocycle and the
fact that D′3 is dense in D′[3] complete the proof. �

Lemma 3.10. Let D′ ⊂ D be a subdomain of maximal rank, AD′ the associated
subgroup of Hermitian type and f : D → D′ a diagonal embedding. Then

NGD(ŠD′) = NGD(D′) ⊂ AD′ · ZGD(f)

where ZGD(f) = {g ∈ GD : gx = x for all x ∈ f(D)}.
Proof. Let x := f(1), y := f(i) and z := f(−1), and pick g ∈ NGD(ŠD′). We have
that since (x, y, z) ∈ Š

[3]
D′ then (gx, gy, gz) ∈ Š

[3]
D′ and, using Lemma 3.9(3),

rD
2

= βD′(x, y, z) = βD(x, y, z) = βD(gx, gy, gz) = βD′(gx, gy, gz) ,

which implies by Theorem 3.8(3) that there exists h ∈ AD′ with hx = gx, hy = gy,
hz = gz and thus g ∈ AD′ · StabGD(x, y, z). Since StabGD(x, y, z) ⊂ ZGD(f) (see
Theorem 3.8(2)), we obtain that NGD(ŠD′) ⊂ AD′ · ZGD(f).

Let now p ∈ f(D) ⊂ D′. Then NGD(ŠD′) · p ⊂ AD′(p) = D′, and since
NGD(ŠD′) = NGD(ŠD′) · AD′ , we obtain that NGD(ŠD′)D′ = D′ and hence
NGD(ŠD′) ⊂ NGD(D′). The opposite inclusion is clear. �

Proposition 3.11. Let D′,D′′ be subdomains of D of maximal rank, and assume
that ŠD′ = ŠD′′ . Then D′ = D′′.

Proof. Let x, y, z ∈ ŠD′ = ŠD′′ with βD(x, y, z) = rD/2. Then

βD′(x, y, z) =
rD′

2
and βD′′(x, y, z) =

rD′′

2
,

and there are diagonal disks

fD′ : D → D′ and fD′′ : D → D′′

with
fD′(1) =x = fD′′(1)
fD′(i) =y = fD′′(i)

fD′(−1) =z = fD′′(−1) .
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Those are also diagonal disks in D and hence by uniqueness we have fD′ = fD′′, and
in particular D′ ∩ D′′ �= ∅. Pick now p ∈ D′ ∩ D′′ and apply Lemma 3.10 to obtain

D′ = NGD(ŠD′) · p = NGD(ŠD′′) · p = D′′ . �

4 Structure Theorem for Tight Embeddings, I

The main objective in this section is to prove the following structure theorem.
Theorem 4.1. Let H,G be Lie groups of Hermitian type, ρ : H → G a continuous
tight homomorphism and f : D′ → D the corresponding ρ-equivariant tight totally
geodesic map. Then f extends continuously to a ρ-equivariant map

f̌ : ŠD′ → ŠD .

Moreover the centralizer ZG

(
ρ(H)

)
is compact.

4.1 The case of the Poincaré disk. We will first prove Theorem 4.1 in the
case when D′ = D is the Poincaré disk.
Proposition 4.2. Let L be a finite covering of PU(1, 1) and G a group of
Hermitian type. Let ρ : L→ G a continuous tight homomorphism with finite kernel
and f : D → D the corresponding totally geodesic tight embedding. Then,

(1) f extends continuously to a map

f̌ : ∂D → ∂D ,

which is ρ-equivariant and has image f̌(∂D) ⊂ ŠD.
(2) If x �= y in ∂D, then f̌(x) and f̌(y) are transverse.
(3) The centralizer ZG

(
ρ(L)

)
is compact.

Proof. Observe that since f is equivariant, there exists a constant c > 0 such that

dD
(
f(x), f(y)

)
= c dD(x, y) .

Next, let r1, r2 : R
+ → D be geodesic rays representing a given point ξ ∈ ∂D and

a ≥ 0 such that limt→∞ dD(r1(t), r2(t + a)) = 0. Then

lim
t→∞ dD

(
f(r1(t)), f(r2(t + a))

)
= 0 ,

and, by Lemma 3.1,

lim
t→∞

∥∥f(r1(t))− f(r2(t + a))
∥∥

eucl
= 0 ,

which shows that the geodesics t �→ f(r1(t)) and t �→ f(r2(t)) have the same end-
points in ∂D. This produces a well-defined and equivariant (continuous) extension
f̌ : ∂D → ∂D of f . Observe that for all x �= y in ∂D, (f̌(x), f̌(y)) ∈ D[2] since x, y
and thus f̌(x), f̌(y) are joined by a geodesic.

Now, for the (normalized) Kähler forms ωD ∈ Ω2(D)G and ωD ∈ Ω2(D)L we have
since f is tight

f∗(ωD) = εωD ,

where |ε| = rD. Composing if necessary with an orientation reversing isometry of D

we may assume ε = rD.
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This implies by integration over simplices with geodesic sides in D and continuity
of f̌ , as well as of βD on D[3] and of βD on D

[3] that

β
(
f̌(x), f̌(y), f̌(z)

)
= rD βD(x, y, z)

for all (x, y, z) ∈ D
[3].

Applying this to a positively oriented triple (x, y, z) we get

β
(
f̌(x), f̌(y), f̌(z)

)
=

rD
2

and hence, by Theorem 3.8, f̌(x) ∈ ŠD. This shows (1). The second assertion follows
from the fact we already remarked that (f̌(x), f̌(y)) ∈ D[2] if x �= y. For the third
assertion, let η : R

+ → D be a geodesic ray with limt→∞ η(t) = x. Then f(η) is a
geodesic ray in D converging to f̌(x). For g ∈ ZG(ρ(L)) the geodesic ray g · f(η) is
at bounded distance from f(η), hence Lemma 3.3 implies that

gf̌(x) = f̌(x) .

In particular ZG(ρ(L)) ⊂ StabG(f̌(x), f̌(y), f̌ (z)) which by Theorem 3.8(2) is com-
pact. �

Corollary 4.3. Let H,G be groups of Hermitian type and let {κb
H,i}ni=1∈H2

cb(H, R)
be the basis of H2

cb(H, R) corresponding to the decomposition Y = Y1×· · ·×Yn into
irreducible factors of the symmetric space Y associated to H. Let ρ : H → G be
a tight homomorphism and assume that ρ∗bκb

G =
∑n

i=1 λiκ
b
H,i. If H = H1 · · ·Hn is

the decomposition of H into connected almost simple groups where Hi corresponds
to Yi, then λi = 0 if and only if Hi is in the kernel of ρ.

Proof. If f : Y → X is a tight ρ-equivariant map, then

f∗(ωX ) =
n∑

i=1

λiωY ,i ,

where ωY ,i = p∗i (ωYi). Assume that λi �= 0 for 1 ≤ i ≤ � and λ�+1 = · · · =
λn = 0. For 1 ≤ i ≤ � define ti : D → Yi to be the embedding as a diagonal
disk (Definition 2.18) composed with an isometry of D reversing the orientation
in the case in which λi < 0, and let ρi : SU(1, 1) → Isom(Yi)◦ be the associated
homomorphism. Let bi ∈ Yi be a basepoint and define

t : D −→ Y1 × · · · × Yn

z �−→
(
t1(z), . . . , t�(z), b�+1, . . . , bn

)
.

and
π : SU(1, 1) −→ Isom(Y)◦

g �−→
(
ρ1(g), . . . , ρ�(g), e, . . . , e

)
.

Taking into account that H is a finite extension of Isom(Y)◦, let

π̃ : L→ H

be the lift of π to a finite extension L of SU(1, 1). Then

t∗
( n∑

i=1

λiωY ,i

)
=

( n∑
i=1

|λi| rYi

)
ωD = rXωD ,
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where the last equality follows from the fact that f is tight (Corollary 2.17). Thus

f ◦ t : D −→ X ,

is tight and equivariant with respect to the homomorphism

ρ ◦ π̃ : L −→ G.

Let now H = H1 · · · · ·Hn be the decomposition of H into connected almost simple
groups, where Hi is a finite extension of Isom(Yi)◦. In particular, for � + 1 ≤ j ≤ n,
Hj commutes with π̃(L) and hence ρ(Hj) commutes with (ρ ◦ π̃)(L) which implies
that, for �+1 ≤ j ≤ n, ρ(Hj) is contained in ZG

(
ρπ̃(L)

)
which is compact by virtue

of Proposition 4.2, and hence ρ(Hj) = e.
The converse, namely that ρ(Hj) = e implies that λj = 0 is clear. �

4.2 Positivity. Let G be a group of type (RH). We shall use freely the nota-
tion from section 2.3. In this section, we prove that the notion of tightness does
not depend on the choice of the specific Kähler class κb

G ∈ H2
cb(G, R) which we

used to define it but, indeed, it depends only on the choice of a GX -invariant com-
plex structure on X . In the case when X is irreducible this is immediate from
H2

cb(G, R) = R κb
G. In the general case, however, one could have some “cancella-

tions” coming from different factors, but we are going to set up conditions which
will allow us some freedom to choose the Kähler classes according to the context.

Again, let X = X1 × · · · × Xn be the decomposition into irreducible factors.
Then any choice of GX -invariant complex structure JX determines a GXi-invariant
complex structure JXi on Xi and hence an orientation on H2

cb(GXi , R). Conversely,
any choice of orientation on each H2

cb(GXi , R) determines a complex structure on X .
Definition 4.4. A bounded cohomology class α ∈ H2

cb(G, R) is positive if

α =
n∑

i=1

µiκ
b
G,i

with µi ≥ 0 for all i = 1, · · · , n and strictly positive if the µi > 0, for all i = 1, . . . , n.
The cone of positive Kähler classes in H2

cb(G, R) is denoted by H2
cb(G, R)≥0 and

the cone of strictly positive Kähler classes by H2
cb(G, R)>0.

Note that the cone H2
cb(G, R)≥0 depends only on the complex structure J . In

fact H2
cb(G, R)>0 coincides with the set of bounded Kähler classes associated to any

G-invariant Hermitian metric on X compatible with the complex structure J ; in
particular we have that κb

G ∈ H2
cb(G, R)>0.

Proposition 4.5. Let ρ : H → G be a homomorphism of a locally compact group
H into a group G of type (RH). Then the following are equivalent:

(1) ρ is tight;
(2) ρ is α-tight for some α ∈ H2

cb(G, R)>0;
(3) ρ is α-tight for all α ∈ H2

cb(G, R)>0;
(4) ρ is α-tight for all α ∈ H2

cb(G, R)≥0.

This is a consequence of the special Banach space structure of H2
cb.
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Lemma 4.6. Let V be a Banach space. Let vi ∈ V , i = 1, . . . , k, be vectors such
that ∥∥∥∥

n∑
i=1

vi

∥∥∥∥ =
n∑

i=1

‖vi‖ .

Then for every real numbers µ1, . . . , µn ≥ 0, we have that∥∥∥∥
n∑

i=1

µi vi

∥∥∥∥ =
n∑

i=1

µi‖vi‖ .

Proof. By virtue of the Hahn–Banach theorem the norm of a vector w ∈ V is given
by

‖w‖ = sup
{
|λ(w)| : λ : V → R is a linear form of norm 1

}
.

By hypothesis, if we fix ε > 0, there exists λ : V → R a linear form of norm 1 such
that

λ

( n∑
i=1

vi

)
>

∥∥∥∥
n∑

i=1

vi

∥∥∥∥− ε =
( n∑

i=1

‖vi‖
)
− ε .

From this and the fact that λ(vi) ≤ ‖vi‖, we must have that
λ(vi) ≥ ‖vi‖ − ε

for all i = 1, . . . , n, and hence, if µi ≥ 0,
µiλ(vi) ≥ µi‖vi‖ − µiε .

But then

λ

( n∑
i=1

µivi

)
≥

( n∑
i=1

µi‖vi‖
)
− ε

n∑
i=1

µi ,

which, since ε is arbitrary, shows the assertion. �

Proof of Proposition 4.5. We start by showing that (1)⇒(4). We first verify that
the vectors vi := ρ∗b(κ

b
G,i) satisfy the hypotheses of Lemma 4.6. We have that∥∥∥∥

n∑
i=1

vi

∥∥∥∥ =
∥∥∥∥

n∑
i=1

ρ∗bκb
G,i

∥∥∥∥ = ‖ρ∗bκb
G‖ = ‖κb

G‖ ,

where the last equality follows from the fact that ρ is tight. Moreover, Lemma 2.6(4)
implies that

‖vi‖ =
∥∥ρ∗b(κb

G,i)
∥∥ = ‖κb

G,i‖ , (4.1)
and hence

n∑
i=1

‖vi‖ =
n∑

i=1

‖κb
G,i‖ = ‖κb

G‖ .

Thus,
∥∥ ∑n

i=1 vi

∥∥ =
∑n

i=1 ‖vi‖, and applying Lemma 4.6 we get

‖ρ∗bα‖ =
∥∥∥∥

n∑
i=1

µiρ
∗
bκ

b
G,i

∥∥∥∥ =
n∑

i=1

‖µiρ
∗
bκ

b
G,i‖

=
n∑

i=1

µi‖κb
G,i‖ =

∥∥∥∥
n∑

i=1

µiκ
b
G,i

∥∥∥∥ = ‖α‖ .

Thus ρ is α-tight.



704 M. BURGER, A. IOZZI AND A. WIENHARD GAFA 

The implications (4) ⇒ (3) ⇒ (2) are obvious.
Finally, to see that (2) ⇒ (1), let α =

∑n
i=1 λiκ

b
G,i be strictly positive. Then

setting vi := λiκ
b
G,i and µi := 1/λi, the argument above implies that if ρ is α-tight

then it is κb
G-tight. �

Definition 4.7. A homomorphism ρ : H → G of groups of type (RH) is said to be
positive if ρ∗bκb

G ∈ H2
cb(H, R)≥0 and strictly positive if ρ∗bκb

G ∈ H2
cb(H, R)>0.

The point of the next lemma is to provide a converse to Lemma 2.6(4), for which
we need the hypothesis of positivity. Remark that it will be essential that, with
the norm on the continuous bounded cohomology, we have that if v,w are positive
classes then ‖v + w‖ = ‖v‖ + ‖w‖.
Lemma 4.8. Let H,G be of type (RH) and let ρ : H → G be a continuous
homomorphism. With the notation in section 2.3, if ρi := q ◦ ρ : H → GXi is tight
and positive for all i = 1, . . . , n then ρ is tight and positive.

Proof. Since we have

κb
G =

n∑
i=1

κb
G,i ∈ H2

cb(G, R) ,

then

ρ∗bκb
G =

n∑
i=1

(ρi)∗bκb
Xi

.

Since (ρi)∗bκ
b
Xi

are positive for all i = 1, . . . , n, ρ∗bκb
G is positive; this, and the

hypothesis that ∥∥(ρi)∗bκ
b
Xi

∥∥ = ‖κb
Xi
‖ ,

allow us to deduce that

‖ρ∗bκb
G‖ =

∥∥∥∥
n∑

i=1

(ρi)∗bκb
Xi

∥∥∥∥ =
n∑

i=1

∥∥(ρi)∗bκb
Xi

∥∥ =
n∑

i=1

‖κb
Xi
‖ = ‖κb

X ‖ = ‖κb
G‖ . �

Lemma 4.9. Let H,G be Lie groups of type (RH), L a locally compact group,
ρ : L→ H a tight homomorphism, and ψ : H → G a positive tight homomorphism.
Then ψ ◦ ρ : L→ G is a tight homomorphism.

Proof. If ψ is positive, ψ∗
bκb

G ∈ H2
cb(H, R)≥0. By Proposition 4.5, if the homomor-

phism ρ is tight, it is also ψ∗
b(κb

G)-tight and Lemma 2.5 concludes the proof. �

Lemma 4.10. Let H,G be Lie groups of Hermitian type with associated symmetric
spaces Y and X with complex structures JY and JX . Suppose that ρ : H → G is
a tight homomorphism and f : Y → X is the corresponding tight map. Then there
exists a complex structure J ′ on Y such that ρ is tight and positive with respect
to J ′. If moreover kerρ is finite, then this structure is unique.

Proof. Since ρ is tight, we have 0 �= ρ∗bκ
b
G ∈ H2

cb(H, R). So, if Y is irreducible, then
ρ : H → G is either positive with respect to JY or with respect to −JY .
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In the case when Y is not irreducible, let Y = Y1×· · ·×Yn be the decomposition
into irreducible factors, and Ji the complex structure on Yi induced by JY . We
have

ρ∗bκ
b
G =

n∑
i=1

µiκ
b
H,i .

Set J ′
i = εiJi, where εi = sign(µi) and let J ′ be the complex structure on Y which

induces the complex structure J ′
i on Yi. Let κ′b

H,i = sign(µi)κb
H,i ∈ H2

cb(H, R) be
the basis vectors of H2

cb(H, R) corresponding to J ′. Then

ρ∗bκ
b
G =

n∑
i=1

sign(µi)µiκ
b
H,i ,

so ρ is positive with respect to J ′ and tight. In case kerρ is finite we have that
µi �= 0 for all 1 ≤ i ≤ n (Corollary 4.3) and hence J ′ is unique. �

Proof of Theorem 4.1. Let D′ and D be the bounded domain realizations respec-
tively of Y and X . Let f : D′ → D be a ρ-equivariant totally geodesic tight map.
Because of Lemma 4.10 we may assume that f is positive. For every x ∈ D′ and
z ∈ ŠD′ , let ∆x,z ⊂ D′ be the unique diagonal disk given by Proposition 3.4 and

dx,z : D → ∆x,z

the unique totally geodesic map with

dx,z(0) = x and dx,z(1) = z .

Then f ◦ dx,z : D → D is tight (Lemma 4.9) and hence, by Proposition 4.2 extends
to

f ◦ dx,z : ∂D → ŠD .

We set

f̌x(z) :=
(
f ◦ dx,z

)
(1) = lim

t→∞ f
(
rx,z(t)

)
.

If now x′ is another point in D, we have that

sup
t≥0

dD′
(
rx,z(t), rx′,z(t)

)
< +∞

and, since f is totally geodesic, also

sup
t≥0

dD
(
f(rx,z(t)), f(rx′,z(t))

)
< +∞ .

Since f̌x(z) ∈ ŠD, we deduce, by (3.8), that f̌x′(z) = f̌x(z); thus the extension
f̌ : ŠD′ → ŠD is independent of x and hence ρ-equivariant. �

5 Tight Embeddings and Tube-Type Domains

Let X be a Hermitian symmetric space and D its bounded symmetric domain real-
ization. We will use the concepts and notation from section 3.
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The real vectors Xγj ∈ p associated to the strongly orthogonal roots γj ∈ Λ,
j = 1, . . . , r (see section 3.1) give rise to the Cayley element

c = exp
(

π

4
i

r∑
j=1

Xγj

)
∈ GC = exp(gC) .

Remark 5.1. The Cayley element defines the Cayley transformation p+ ⊃ D →
H ⊂ p+, which sends D to a Siegel domain H, which, if X is of tube type (see
Definition 2.18), is a tube domain of the form V ⊕ iΩ.

The automorphism Ad(c) of gC is of order 4 if X is of tube type and of order 8
if X is not of tube type. When X is not of tube type Ad(c)4 is an involution of gC

which preserves g and commutes with the Cartan involution of g = k ⊕ p (see e.g.
[KW, Th. 4.9]).

We denote by gT ⊂ g the fix points of Ad(c)4 in g and let gT = kT ⊕ pT be its
Cartan decomposition. Then the corresponding Hermitian symmetric space XT is of
tube type. Furthermore, XT is isometrically and holomorphically embedded into X ,
the rank of XT equals the rank of X and as a bounded symmetric domain XT is
realized as

DT = D ∩ p+
T ,

where p+
T are the fixed points of Ad(c)4 in p+.

Note that the maximal standard polydisk P0 is contained in DT (see (3.4)), hence
also

∑r
j=1 Eγj ∈ ŠDT

⊂ ŠD. Moreover, for the polynomial hD which is related to
the Bergmann kernel by equation (3.6), we have

hDT
= hD|

p+
T

.

This implies in particular that D(3)
T = D(3) ∩ (p+

T )3 and βDT
= βD|DT

(3)
.

Lemma 5.2. DT is a maximal (with respect to inclusion) subdomain of tube type
in D.

5.1 The Shilov boundary and tube type domains. It is well known that
the structure of the Shilov boundary ŠD detects whether D is of tube type or not, see
for example [KW, Th. 4.9]. Similarly the behavior of the restriction of the Bergmann
cocycle to the Shilov boundary detects whether D is of tube type or not when D is
irreducible. In the general case we have
Proposition 5.3 [BuIoW3, Cor. 3.10]. Let

Š(3) :=
{
(z1, z2, z3) ∈ Š3 : (zi, zj) ∈ Š(2) for all i �= j

}
,

the space of triples of pairwise transverse points in Š. Then Š(3) ⊂ D[3]
and the

Bergmann cocycle βD is well defined and continuous on Š(3). Furthermore,

(1) If D is of tube type, then

βD(Š(3)) =
{
−rD

2
,−rD

2
+ 1, · · · ,

rD
2
− 1,

rD
2

}
.

(2) If D is irreducible and not of tube type, then

βD(Š(3)) =
[
−rD

2
,
rD
2

]
.
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The following relation (see Proposition 5.6) between transverse pairs in the Shilov
boundary and maximal subdomains of tube type is important for our later consid-
erations. If (x, y) ∈ Š

(2)
D we define

(ŠD)x,y :=
{
z ∈ ŠD : (z, x) ∈ Š(2) , (z, y) ∈ Š(2)}

to be the set of points z ∈ Š which are transverse to x and to y. This is an open
and dense set in ŠD. In the following we shall denote

∑r
j=1 Eγj by EΛ, where, as in

section 3, Λ refers to the set {γ1, . . . , γr} of strongly orthogonal roots. The following
lemma is crucial and follows immediately from the case in which D is irreducible,
which was proven by Clerc and Ørsted as the first step in the proof of Theorem 4.7
in [CØ].
Lemma 5.4 [CØ]. Let z ∈ ŠD be transverse to EΛ and −EΛ with∣∣βD(z,EΛ,−EΛ)

∣∣ =
rD
2

.

Then z ∈ ŠDT
.

If (x, y) ∈ Š
(2)
D and D′ ⊆ D is a subdomain of Hermitian type, we define

Mx,y(D′) :=
{
z ∈

(
ŠD′

)
x,y

:
∣∣βD′(z,Eλ,−EΛ)

∣∣ =
rD
2

}
. (5.1)

From the above lemma we now deduce
Proposition 5.5. With the above notation, we have that

MEΛ,−EΛ
(D) = MEΛ,−EΛ

(DT ) (5.2)

and ŠDT
is the real Zariski closure in ŠD of MEΛ,−EΛ

(D).

Proof. Equation (5.2) follows from Lemma 5.4 and the fact that βD|(ŠDT
)(3) = βDT

.

Since DT is of tube type, then MEΛ,−EΛ
(DT ) is a nonempty open subset of ŠDT

,
and hence (5.2) implies that the Zariski closure of MEΛ,−EΛ

(D) is ŠDT
�

Proposition 5.6. Let D be a Hermitian symmetric space and (x, y) ∈ Š
(2)
D be a

pair of transverse points in its Shilov boundary. Then there exists a unique maximal
subdomain Txy ⊂ X of tube type with x, y ∈ ŠTxy . Moreover, ŠTx,y is the real Zariski
closure in ŠD of Mx,y(D).

Proof. Observe that (EΛ,−EΛ) are in ŠDT
and DT is a maximal subdomain of

tube type. Moreover, since GD acts transitively on Š
(2)
D , we obtain the existence

statement for every pair (x, y) ∈ Š
(2)
D .

Concerning uniqueness, we may assume, again by transitivity of the GD-action
on Š

(2)
D , that (x, y) = (EΛ,−EΛ). Thus, let D′ ⊂ D be a maximal subdomain of

tube type with (EΛ,−EΛ) ∈ Š
(2)
D′ . Since rD = rD′ , we have that βD|(ŠD′ )(3) = βD′

and hence

MEΛ,−EΛ
(D′) ⊂ MEΛ,−EΛ

(D) = MEΛ,−EΛ
(DT )

which implies, upon taking the real Zariski closure and using Proposition 5.5, that
ŠD′ ⊂ ŠDT

. On the other hand, dimD′ = dimDT , which, since D′ and DT are
of tube type, implies that dim ŠD′ = dim ŠDT

and, together with the previously



708 M. BURGER, A. IOZZI AND A. WIENHARD GAFA 

established inclusion, that ŠD′ = ŠDT
; this then implies by Proposition 3.11 that

D′ = DT . �

Remark 5.7. One could prove the uniqueness in Proposition 5.6 also by considering
the Lie algebra of the stabilizer of (EΛ,−EΛ) ∈ Š

(2)
D , but for us the characterization

of ŠTxy obtained as a byproduct of the proof is essential.
Let TX be the space of maximal tube type subdomains in X . Then, since all max-

imal subdomains of tube type are conjugate, TX is a homogeneous space under GX .
The map

Š
(2)
X → TX

provided by Proposition 5.6 is a GX -equivariant map between GX -homogeneous
spaces and hence is real analytic.

5.2 Structure theorem for tight embeddings, II.

Theorem 5.8. Let H,G be Lie groups of Hermitian type with associated sym-
metric spaces Y and X . Let ρ : H → G be a continuous tight homomorphism and
f : Y → X the induced ρ-equivariant tight map. Then,

(1) If Y is of tube type, then there exists a unique maximal tube type subdomain
T ⊂ X such that f(Y) ⊂ T and ρ(H) preserves T .

(2) If ρ has finite kernel and X is of tube type, then Y is of tube type.

We shall need the following.
Lemma 5.9. Under the assumption of Theorem 5.8, let f̌ : ŠY → ŠX be the
(continuous) equivariant map given by Theorem 4.1, and let

f∗(ωX ) =
n∑

i=1

λiωY ,i .

Then for all (x, y, z) ∈ Š(3), we have

βX
(
f̌(x), f̌(y), f̌(z)

)
=

n∑
i=1

λiβYi(xi, yi, zi) .

In particular, if f is moreover positive and βY(x, y, z) = rY/2, then

βX
(
f(x), f(y), f(z)

)
=

rX
2

.

Proof. Let 0 ∈ DY and r0,x, r0,y and r0,z be the geodesic rays given by Proposi-
tion 3.4; then we know that

f̌(x) = lim
t→∞ f

(
r0,x(t)

)
, (5.3)

and analogously for y and z. Writing x = (x1, . . . , xn) and y and z in coordinates,
we have

βX
(
f(r0,x(t)), f(r0,y(t)), f(r0,z(t))

)
=

∫
∆(r0,x(t),r0,y(t),r0,z(t))

f∗(ωX )

=
n∑

i=1

λiβYi

(
r0,xi(t), r0,yi(t), r0,zi(t)

)
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and by using (5.3) and the fact that the normalized Bergmann cocycles extend
continuously to Š

(3)
Yi

and Š
(3)
X , we conclude the first claim.

Now assume that f is positive; then if βY(x, y, z) = rY/2, then βYi(xi, yi, zi) =
rYi/2 and hence

βX
(
f̌(x), f̌(y), f̌(z)

)
=

n∑
i=1

λi
rYi

2
=

rX
2

,

where the last equality follows from Corollary 2.17 and the fact that f is positive,
that is λi ≥ 0. �

Proof. By changing complex structure on Y we may assume that f is positive
(Lemma 4.10). Let (ŠY)x be the set of points in Y transverse to x so that (ŠY)x,y =
(ŠY)x∩(ŠY)y, and let us consider the set Mx,y(Y) defined in (5.1). Let f̌ : ŠY → ŠX
be the equivariant extension of f given by Theorem 4.1. Since f is tight and positive,
we have that for every z ∈ Mx,y(Y)∣∣βX (f̌(x), f̌(y), f̌(z))

∣∣ =
rY
2

(see Lemma 5.9), and hence

f̌(z) ∈ ŠTf̌(x),f̌(y)

by Proposition 5.5, and thus,

Tf̌(x),f̌(y) = Tf̌(x),f̌(z)

by the uniqueness statement in Proposition 5.6.
Let TX be the conjugacy class of maximal tube type domains seen as a G-

homogeneous space and hence as a real analytic variety. The map
(ŠY)x −→ TX

z �−→ Tf̌(x),f̌(z)
(5.4)

is real analytic and constant on the subset Mx,y(Y) ⊂ (ŠY)x; but since Y is of tube
type, Mx,y(Y) is open, (ŠY)x is connected and hence the map (5.4) is constant on
(ŠY)x.

Let now (x1, y1) and (x2, y2) be arbitrary elements in (ŠY)(2) and choose
z ∈ (ŠY)x1,x2. Then we have

Tf̌(x1),f̌(y1) = Tf̌(x1),f̌(z) = Tf̌(x2),f̌(z) = Tf̌(x2),f̌(y2)

which shows that the map

(ŠY)(2) −→ TX
(x, y) �−→ Tf̌(x),f̌(y)

is constant and hence its constant value T ⊂ X is ρ(H)-invariant. Since
f̌(x) ∈ ŠTf̌(x),f̌(y)

, we also deduce that f̌(ŠY) ⊂ ŠT .
Now, by Theorem 4.1 we know that the centralizer of ρ(H) < G in G is compact;

this implies that, given any maximal compact subgroup K < H, there is a unique
point xK ∈ X which is ρ(K)-fixed. Since ρ(H) leaves T invariant, this implies that
xK ∈ T and hence that f(Y) ⊂ T .
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For the second statement, observe that if X is of tube type, then βX takes on
finitely many values; since ρ has finite kernel, this implies that λi �= 0 for all 1 ≤ i ≤ n

and hence each βYi takes on finitely many values on Š
(3)
Yi

, and this, together with
Proposition 5.3, implies that Yi is of tube type. �

6 Extensions to Groups of Type (RH)

Here we indicate the argument extending Theorems 4.1 and 5.8 to Lie groups of type
(RH). The study of tight homomorphisms of groups of type (RH) can be reduced
to the study of homomorphisms of groups of Hermitian type. In fact, let G1, G2 be
groups of type (RH) and let ρ : G1 → G2 be a continuous homomorphism. We have
the inclusion ρ(G1,nc) ⊂ G2,nc and hence the commutative diagram

G1
ρ �� G2

G1,nc

��

ρ �� G2,nc

��

hence ρ∗b(κb
G2

)|G1,nc
= (ρ)∗b

(
κG2 |G2,nc

)
. From this and Corollary 2.3 we deduce the

equalities ∥∥ρ∗b(κb
G2

)
∥∥ =

∥∥ρ∗b
(
κb

G2 |G2,nc

)∥∥ and ‖κb
G2
‖ =

∥∥κG2 |G2,nc

∥∥ ,

from which it follows that ρ is tight if and only of ρ|G1,nc
is tight.

From this and Theorems 4.1 and 5.8 we readily deduce the following:
Theorem 6.1. Let H,G be Lie groups of type (RH), ρ : H → G a continuous
tight homomorphism and f : D′ → D the corresponding ρ-equivariant tight totally
geodesic map. Then f extends continuously to a ρ-equivariant map

f̌ : ŠD′ → ŠD .

Moreover the centralizer ZG

(
ρ(H)

)
is compact.

Theorem 6.2. Let H,G be Lie groups of type (RH) with associated symmetric
spaces Y and X . Let ρ : H → G be a continuous tight homomorphism and f : Y → X
the induced ρ-equivariant tight map. Then,

(1) If Y is of tube type, then there exists a unique maximal tube type subdomain
T ⊂ X such that f(Y) ⊂ T and ρ(H) preserves T .

(2) If ρ has compact kernel and X is of tube type, then Y is of tube type.

7 Structure Theorem for Tight Homomorphisms

In this section we prove the main structure theorem for tight homomorphisms.
Theorem 7.1. Let L be a locally compact group, G a connected algebraic group
defined over R such that G = G(R)◦ is of type (RH), and ρ : L → G a continuous
tight homomorphism. Then:

(1) The Zariski closure H := ρ(L)
Z

is reductive.
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(2) The centralizer ZG(H) of H := ρ(L)
Z
(R)◦ is compact.

(3) The group H is of type (RH) and the symmetric space Y corresponding to
H is Hermitian.

(4) There is a unique complex structure on Y such that the embedding H → G
is tight and positive.

Proof. Set H := ρ(L)
Z
(R)◦. Then the inclusion H → G is tight. Let

H = Hss ·R
be the decomposition of H, where R is the amenable radical and Hss is a semisimple
connected Lie group with finite center and no compact factors. Then it follows from
Corollary 2.3 that the inclusion Hss → G is tight. Let

Hss = H1 · · · · ·Hn

be the decomposition of Hss into almost simple factors, and let H1, . . . ,Hl, l ≤ n,
be the almost simple factors of Hss for which the restriction κb

G|Hi ∈ H2
cb(Hi, R) is

nonzero. Then

‖κb
G‖ = ‖κb

G|Hss‖ =
l∑

i=1

‖κb
G|Hi‖

and the inclusion

H1 . . . Hl → Gnc

is tight. Let X be the symmetric space associated to Gnc, Yi the symmetric space
associated to Hi, 1 ≤ i ≤ l, and Y1×· · ·×Yl → X the corresponding tight embedding.

Then, by Theorem 4.1, the centralizer ZGnc(H1 . . . Hl) is compact, which implies
first that � = n, that is ZGnc(Hss) is compact and hence that ZG(H) is compact.
Now, if H were not reductive, it would be contained in a proper parabolic subgroup
of G and hence ZG(Hss) would be noncompact. Hence H is reductive and, since
ZG(Hss) is compact and Y1× . . .Yn is Hermitian symmetric, the group H is of type
(RH).

Finally, (4) follows from Lemma 4.10. �
From Theorem 7.1 we can now deduce the following

Theorem 7.2. Let Γ be a countable discrete group with probability measure θ and
let G be a semisimple real algebraic group such that G := G(R)◦ is of type (RH).
If (B, ν) is a Poisson boundary for (Γ, θ) and ρ : Γ → G is a tight homomorphism,
then there exists a ρ-equivariant measurable map

ϕ : B → ŠX .

Proof. Let H be the Zariski closure of ρ(Γ). By Theorem 7.1 the symmetric space
Y associated to H := H(R)◦ is Hermitian symmetric and we fix a complex structure
such that the embedding Y → X is tight and positive. Theorem 4.1 gives the
existence of a ρ-equivariant map f̌ between the corresponding Shilov boundaries

f̌ : ŠY → ŠX . (7.1)

Let QH < H be a maximal parabolic subgroup defined over R such that ŠY ∼=
H(R)/QH(R), and let PH < QH be a minimal parabolic subgroup defined over R
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contained in QH , so that we have an equivariant map

H(R)/PH (R) � H(R)/QH(R) ∼= ŠY . (7.2)

Since ρ : Γ→ H has Zariski dense image [BuIoW3, Th. 4.7] implies the existence
of a ρ-equivariant measurable boundary map

ϕ0 : B → H(R)/PH(R)

which composed with the maps in (7.1) and (7.2) provides the ρ-equivariant map
ϕ : B → Š. �

8 A Criterion for Tightness

To get a simple criterion when a totally geodesic embedding is tight let us recall the
relation between totally geodesic embeddings and Lie algebra homomorphisms.

Let G1, G2 be connected semisimple Lie groups with finite center and no com-
pact factors and X1,X2 be the corresponding symmetric spaces. Fix two base points
xj ∈ Xj, j = 1, 2, and let gj = kj⊕pj be the corresponding Cartan decompositions of
gj = Lie(Gj). Then every totally geodesic embedding f : X1 → X2 with f(x1) = x2
induces a Lie algebra homomorphism ρ : g1 → g2 which respects the Cartan decom-
positions. Conversely, any Lie algebra homomorphism ρ : g1 → g2 respecting the
Cartan decompositions gives rise to a totally geodesic embedding f : X1 → X2 with
f(x1) = x2.

Let X be a Hermitian symmetric space with a fixed complex structure JX and
let ZJX ∈ Z(k) be the element in the center of k such that ad(ZJX )|p induces the
complex structure JX on Tx0X ∼= p. The restriction of the Killing form B on g to k

is a negative definite symmetric bilinear form. Let

k = RZJX ⊕ RZ⊥
JX

be the orthogonal decomposition of k with respect to B|k . We identify RZJX with
R by sending ZJX to i. Then the orthogonal projection onto RZJX defines a homo-
morphism λZJX ∈ Hom(k, iR).

To relate tightness of a totally geodesic embedding with properties of the corre-
sponding Lie algebra homomorphism we make use of the isomorphism

Hom(k, iR) → Ω2(X )GX → H2
cb(GX , R) , (8.1)

where the first map associates to a homomorphism λ ∈ Hom(k, iR) the unique GX -
invariant differential form on X whose value at x0 is

(ωλ)x0(X,Y ) :=
1

4πi
λ
(
[X,Y ]

)
,

for X,Y ∈ p ∼= Tx0X .
Let X1,X2 be two Hermitian symmetric spaces with complex structures JXj given

by Zj = ZJXj
∈ Z(kj), j = 1, 2. Let f : X1 → X2 be a totally geodesic embedding,

f(x1) = x2, and ρ : g1 → g2 the corresponding Lie algebra homomorphism. Let
D be the Poincaré disk and ZD ∈ so(2) ⊂ sl(2, R) the element which induces the
standard complex structure on D. Let dj : D → Xj , j = 1, 2 be diagonal disks with
dj(0) = xj and ρj : sl(2, R) → gj the corresponding Lie algebra homomorphisms.
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Lemma 8.1. The embedding f : X1 → X2 is tight and positive if and only if

λZ2

(
ρ(ρ1(ZD))

)
= λZ2

(
ρ2(ZD)

)
.

Proof. We start by showing that since the embedding d1 : D → X1 is tight and
positive, then f : X1 → X2 is tight and positive if and only if h := f ◦ d1 : D → X2
is tight and positive. In fact, let X1 = X1,1 × · · · × X1,n be the decomposition of X
into irreducible subspaces and let

f∗(ωX2) =
n∑

i=1

λiωX1,i .

Then

h∗(ωX2) =
n∑

i=1

λid
∗
1(ωX1,i) =

n∑
i=1

λi rX1,i ωD ,

where the last inequality follows from the fact that d1 is tight and positive. If h is
tight and positive, then

h∗(ωX2) = rX2 ωD

so that
n∑

i=1

λi rX1,i = rX2 . (8.2)

Since f is norm decreasing then
n∑

i=1

|λi| rX1,i ≤ rX2 ,

which together with (8.2) implies that f is positive and, by Corollary 2.17, tight.
Let ωλZ2

∈ Ω2(X2)G2 be the differential form corresponding to λZ2 . Then, since
Ω2(D)PSL(2,R) = RωD is one dimensional

h∗ωλZ2
=

λZ2(ρ(ρ1(ZD)))
λZ2(ρ2(ZD))

d∗2ωλZ2
.

But since d2 is tight and positive, h is tight and positive if and only if the propor-
tionality constant is equal to 1. �

Lemma 8.1 gives a criterion for tightness which takes on a particular nice form
when X2 is of tube type. Recall from [KW, Prop. 3.12.] that a Hermitian symmetric
space X2 is of tube type if and only if there exists a diagonal disk d2 : D → X2 such
that the corresponding Lie algebra homomorphism satisfies ρ2(ZD) = Z2.
Corollary 8.2. Let X1,X2 be Hermitian symmetric spaces of tube type. A
totally geodesic embedding f : X1 → X2 is tight and positive if and only if the
corresponding Lie algebra homomorphism ρ : g1 → g2 satisfies

λZ2

(
ρ(Z1)

)
= 1 .

Proof. Since X1,X2 are of tube type, we can choose the tight holomorphic disks
dj : D → Xj, j = 1, 2, such that the corresponding Lie algebra homomorphisms
ρj : sl(2, R) → gj satisfy ρj(ZD) = Zj . Then λZ2(ρ2(ZD)) = λZ2(Z2) = 1 and
Lemma 8.1 implies the claim. �
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Let us compare this criterion for tightness with the characterization of Lie algebra
homomorphisms corresponding to holomorphic totally geodesic embeddings.
Definition 8.3 [S2]. A homomorphism ρ : g1 → g2 is said to be of type
(H1) if ad

(
ρ(Z1)

)
= ad(Z2).

(H2) if ρ(Z1) = Z2.
(H2′) if ρ is (H1) and the induced holomorphic totally geodesic map D1 → D2 maps

the Shilov boundary of D1 into the Shilov boundary of D2.
Lie algebra homomorphisms of type (H1) are in one-to-one correspondence with

holomorphic totally geodesic embeddings X1 → X2.
With these definitions, Theorem 4.1 implies

Corollary 8.4. Assume that f : X1 → X2 is a holomorphic tight embedding.
Then the corresponding Lie algebra homomorphism ρ : g1 → g2 is an (H2′) homo-
morphism.

Corollary 8.2 together with [S2, Prop. 10.12] implies the following.
Corollary 8.5. Suppose X1,X2 are Hermitian symmetric spaces of tube type.
Then f : X1 → X2 is a tight and holomorphic embedding if and only if the corre-
sponding homomorphism of Lie algebras ρ : g1 → g2 is an (H2)-homomorphism.

Remark 8.6. When g1, g2 are not of tube type, the property of being an (H2)-
Lie algebra homomorphism does not imply tightness: for su(1, n) = Aut(V, h) the
representations of su(1, n) on Λk(V ) preserving the Hermitian form induced by h
are always (H2) [S2, p. 188], but we will see below that they are tight only for k = 1.

8.1 Examples.

Example 8.7. By Corollary 8.5 (H2) Lie algebra homomorphisms give examples
of diagonal embeddings if the Hermitian symmetric spaces are of tube type. All
(H2) Lie-algebra homomorphisms were classified by Satake [S1] and Ihara [I1,2].

If we are actually interested in the existence of tight homomorphism of Lie groups
of Hermitian type the problem becomes more complicated since the Lie algebra
homomorphism might only lift to a Lie group homomorphism of a finite cover of
the adjoint Lie group. Satake showed in [S1] (see also [S2, Ch. IV]) that some of
the those (H2) Lie algebra homomorphism lift to Lie group homomorphisms, for
example,

τ : SU(n, n)→ Sp(4n, R) ,

τ : SO∗(4n) → Sp(8n, R) ,

τ : Spin(2, n) → Sp(2m, R), where m depends on n mod 8 ,

are tight homomorphisms.

Example 8.8. An important and interesting tight embedding that is not holomor-
phic is the embedding of the Poincaré disk into the Siegel upper half space obtained
from the 2n-dimensional irreducible representation sl(2, R) → sp(2n, R).
Proposition 8.9. The homomorphism ρ : sl(2, R) → sp(2n, R) given by the
2n-dimensional irreducible representation of sl(2, R) is tight.



GAFA TIGHT HOMOMORPHISMS AND HERMITIAN SYMMETRIC SPACES 715 

Proof. Let Z2 and Z2n be generators of the center of the maximal compact Lie
subalgebras in sl(2, R) and sp(2n, R) respectively. Let λ be the homomorphism
Hom(k2n, iR) given by the orthogonal projection onto R · Z2n. Then we have to
determine λ(ρ(Z2)).

Let V = R2n−1[x, y] be the vector space of homogeneous polynomials of degree
2n − 1 in two variables x, y, with a basis is given by (P0, . . . Pm), m = 2n − 1,
where Pk(x, y) = xm−kyk. The 2n-dimensional irreducible representation of sl(2, R)
is given by the following action: Let X =

(
a b
c −a

)
∈ sl(2, R), then

ρ(X)Pk(x, y) = a(m− 2k)Pk + b(m− k)Pk+1 + ckPk−1 .

This action preserves the skew symmetric bilinear form 〈 . , . 〉 on V , defined by
〈Pk, Pl〉 = (−1)k

(
k+l
k

)−1
δm−k,l and gives rise to the irreducible representation

ρ : sl(2, R) → sp(2n, R) ,

into the Lie algebra of the symplectic group Sp(V, 〈 . , . 〉). The map J defined by
JPk = (−1)kPm−k gives a complex structure on V and the element in the center
of k2n ⊂ sp(2n, R) which induces the complex structure on p2n ⊂ sp(2n, R) via the
adjoint action is Z2n = 1

2J .
The image of the element

Z2 =
1
2

(
0 −1
1 0

)
is given by ρ(Z2)Pk = 1

2((k−m)Pk+1 + kPk−1). Decomposing ρ(Z2) = λ(ρ(Z2))Z2n

mod Z⊥
2n, we get

Z2nρ(Z2) = −λ
4 IdV mod Z⊥

2n .

Since tr(Z2nZ⊥
2n) = 0, we have that tr(Z2nρ(Z2)) = −λ

4 dim(V ). Now Z2nρ(Z2)Pk =
1
4(−1)k+1[(m− k)Pm−k−1 − kPm−k+1]. Thus the diagonal terms are

1
4 (−1)n(2n − 1− n + 1) for k = n− 1 and 1

4(−1)nn for k = n .

Hence ∣∣tr(Z2nρ(Z2))
∣∣ = n

2 = 1
4 dim(V ) =

∣∣tr(Z2nZ2n)
∣∣ ,

and |λ| = 1. �

Proposition 8.10. The irreducible representation ρ : su(1, 2) → su(2, 4) is not
tight.

Proof. Let V be a 3-dimensional complex vector space with Hermitian form of
signature (1, 2). The irreducible representation ρ : su(1, 2) → su(2, 4) is the repre-
sentation given by the action of su(1, 2) on Sym2(V ) with the induced Hermitian
form. Let Zsu(2,4) be the generator of the center of the maximal compact sub-
algebra on su(2, 4) and Zsu(2,2) the generator of the center of the maximal com-
pact subalgebra of the tightly embedded subalgebra su(2, 2) ⊂ su(2, 4). Then
tr(Zsu(2,4)Zsu(2,2)) = −1, so the representation ρ : su(1, 2) → su(2, 4) is tight if
and only if |tr(Zsu(2,4)ρ(Zsu(1,1)))| = 1, where Zsu(1,1) is a generator of the center of
the maximal compact subalgebra of su(1, 1) ⊂ su(1, 2). A direct computation shows
that |tr(Zsu(2,4)ρ(Zsu(1,1)))| = 1/6, thus ρ is not tight. �
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Example 8.11. Considering a complex vector space VC of dimension (1 + n)
with a Hermitian form of signature (1, n) as real vector space VR of dimension
(2 + n) with a quadratic form of signature (2, n) provides a natural embedding
SU(1, n) → SO(2, 2n). The corresponding embedding Hn

C
→ X2,2n is holomorphic

but it is not tight. Since Hn
C

is of rank one, the totally geodesic embedding extends
continuously to a map of the boundary of Hn

C
, but its image does not lie in the

Shilov boundary of X2,2n.

Example 8.12. In SL(4, R) there are two copies of Sp(4, R)

Sp(4, R)A :=
{
g ∈ SL(4, R) | g∗Jg = J

}
,

Sp(4, R)B :=
{
g ∈ SL(4, R) | g∗J̃g = J̃

}
,

where J =
(

0 Id
−Id 0

)
and J̃ =

(
0 Λ

−Λ 0
)

with Λ = ( 0 1
1 0 ), The two embeddings iA,B :

SL(2, R) → SL(4, R)

iA

((
a b
c d

))
=

(
a Id b Id
c Id d Id

)

iB

((
a b
c d

))
=

(
a Id bΛ
cΛ d Id

)
.

are also conjugate by s. The images of SL(2, R) under these two embeddings are
contained in Sp(4, R)A ∩ Sp(4, R)B . The embedding iA is tight and positive with
respect to Sp(4, R)A but totally real with respect to Sp(4, R)B .

The boundary ∂D of D is mapped under both embeddings into the Shilov bound-
aries ŠA respectively ŠB. The totally real embedding extends to an embedding of
SL(2, C) whereas the tight embedding extend to an embedding of SO(2, 2) into
Sp(4, R) .

9 Classification of Tight Embeddings of the Poincaré Disk

In this section we classify all tight embeddings f : D → X , where X is any Hermitian
symmetric space.
Definition 9.1. Let X be a Hermitian symmetric space of noncompact type.
Let V ⊂ X be a subset. The Hermitian hull H(V ) of V is the smallest Hermitian
symmetric subspace H(V ) ⊂ X , such that V ⊂ H(V ).

If X1,X2 are Hermitian symmetric spaces and f : X1 → X2 is a totally geodesic
embedding, we denote by H(f) = H(f(X1)) the Hermitian hull of f(X1) ⊂ X2.

Remark 9.2. We make some observations.
(1) Let X1 be irreducible, then f : X1 → X2 is (anti)-holomorphic if and only if

H(f) = f(X1).
(2) If f : X1 → X2 is tight, then f : X1 → H(f) is tight and H(f)→ X2 is tight

and holomorphic.
(3) If f : X1 → X2 is tight, then H(f) is of tube type if and only if X1 is of tube

type (Theorem 5.8).
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Proposition 9.3. Let X1,X2 be Hermitian symmetric spaces of tube type and
f : X1 → X2 a tight embedding with corresponding Lie algebra homomorphism
ρ : g1 → g2. Let H(f) ⊂ X2 be the Hermitian hull and h ⊂ g2 the Lie subalgebra
corresponding to the subgroup of Hermitian type GH(f) determined by H(f).

Then h is the subalgebra generated by ρ(g1) and Z2, where Z2 ∈ k2 is the element
defining the complex structure on X2.

Proof. The Hermitian symmetric space H(f) is of tube type and the embedding
H(f)→ X2 is tight and holomorphic, therefore the corresponding Lie algebra homo-
morphism is an (H2) homomorphism (Lemma 8.5). In particular, the element Zh in
the center of the maximal compact subalgebra of h defining the complex structure
on H(f) equals Z2. Thus

〈
ρ(g1), Z2

〉
⊂ h, and equality follows from the minimality

of H(f). �
Proposition 9.3 allows us to define in the above context (X1 and X2 of tube type)

the Hermitian hull of the Lie algebra homomorphism ρ : g1 → g2 as

H(ρ) :=
〈
ρ(g1), Z2

〉
.

Remark 9.4. A similar characterization of the Hermitian hull is not true if X is not
of tube type. Consider for example the canonical embedding of su(p, p) → su(p, q).
It is holomorphic and tight, but the central element Zp,q of the maximal compact
Lie algebra defining the complex structure on the symmetric space associated to
SU(p, q) is not contained in su(p, p) if p �= q.

Lemma 9.5. Let X be an irreducible Hermitian symmetric space and f : D → X
a tight embedding with corresponding Lie algebra homomorphism ρ : sl(2, R) → g.

If H(ρ) = g, then g ∼= sp(2n, R) and ρ : sl(2, R) → g is the 2n-dimensional
irreducible representation.

Proof. Since D is of tube type, H(ρ) = g implies that necessarily X is of tube
type. Thus, Proposition 9.3 gives that g = 〈ρ(sl(2, R)), ZJX 〉R. Let gC be the
complexification of g and ρC : sl(2, C) → gC the complexification of ρ, then gC =
〈ρC(sl(2, C)), ZJX 〉C.

By tightness ZJX cannot lie in the centralizer of ρ(sl(2, R)) in g and so ZJX can-
not lie in the centralizer of ρC(sl(2, C)) in gC. Hence, the centralizer ZgC

(ρC(sl(2, C)))
is trivial.

This means that ρC(sl(2, C)) is a semiprincipal three-dimensional simple sub-
algebra of gC. Semiprincipal subalgebras were classified by Dynkin, and we refer the
reader to [Dy], [V] for more details. Using the classification by Dynkin (see [Dy], [V]),
we consider all possible cases of semiprincipal three-dimensional simple subalgebras
in gC which are complexifications of three-dimensional simple subalgebras of the
specific real form g of gC. This case by case study gives the following result:

1. When g = sp(2n, R), gC = sp(2n, C) the semiprincipal subalgebra h is given
by the image of the irreducible representation of sl(2, C) → sp(2n, C), hence
ρ : sl(2, R) → sp(2n, R) is the irreducible representation.

2. When g = su(n, n), gC = sl(2n, C) the semiprincipal subalgebra is also given
by the irreducible representation of sl(2, C), which in dimension 2n is always
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contained in sp(2n, C). Thus we have H(ρ) = 〈ρ(sl(2, R)), Zg〉 = sp(2n, R) ⊂
su(n, n).

3. When g = so(2, 2n − 1), gC = so(2n + 1, C) the semiprincipal subalgebra h is
the image of the irreducible representation of sl(2, C). But any real irreducible
representation of sl(2, R) into so(2, 2n − 1) is contained either in so(2, 3) ∼=
sp(4, R) or so(2, 1) ∼= sp(2, R).

4. In the remaining cases g = so(2, 2n), so∗(2n) or eV II there are no semiprincipal
three dimensional subalgebras in gC which are complexifications of a real three
dimensional simple subalgebra in g.

Summarizing we get the result: g ∼= sp(2n, R) and ρ : sl(2, R) → g is given by
the irreducible representation of sl(2, R). �

Corollary 9.6. Let f : D → X be a positive tight embedding with corresponding
Lie algebra homomorphism ρ : sl(2, R) → g. Then

H(ρ) = ⊕k
i=1sp(2ni, R) ⊂ g

with
∑k

i=1 ni ≤ rX and ρi : sl(2, R) → sp(2ni, R) being the irreducible representa-
tion, and

H(f) = Y1 × · · · × Yk ,

where Yk is a symmetric space associated to Sp(2ni, R).

Proof. The subalgebra H(ρ) is a semisimple Lie algebra of Hermitian type, so
H(ρ) = ⊕k

i=1hi, where all simple factors hi are of tube type. The representations
ρi : sl(2, R) → hi correspond again to tight embeddings with hi = H(ρi). Hence
Lemma 9.5 implies the claim. �

A Appendix

A.1 The norm of the bounded Kähler class. We give here a proof of the
following:
Theorem A.1. Let M be a connected simple Lie group with finite center and
assume that its associated symmetric spaceM is Hermitian. Let κb

M ∈ H2
cb(M, R) be

the continuous bounded class given by the Kähler form associated to the Hermitian
metric of holomorphic sectional curvature -1. Then

‖κb
M‖ =

rM
2

.

Since κb
M is defined by the cocycle cωM which, according to Theorem 2.8 is

bounded by rM/2, the inequality

‖κb
M‖ ≤

rM
2

follows. Observe that the opposite inequality cannot be immediately deduced from
the statement that

‖cωM‖∞ =
rM
2

,



GAFA TIGHT HOMOMORPHISMS AND HERMITIAN SYMMETRIC SPACES 719 

since the norm ‖κb
M‖ is the infimum of the supremum norms over all bounded

cocycles on M representing κb
M.

We shall proceed as follows: let d : D → M be a diagonal disk (see Defini-
tion 2.18) and ρ : L→M the corresponding homomorphism, where L is some finite
covering of SU(1, 1). Then

d∗(ωM) = rM ωD

and hence it follows from Lemma 2.15 that

ρ∗b(κ
b
M ) = rM κb

L .

Since the pullback in continuous bounded cohomology is norm decreasing, we have

‖κb
M‖ ≥

∥∥ρ∗b(κ
b
M )

∥∥ = rM ‖κb
L‖ ,

and it suffices to determine the values of ‖κb
L‖. Thus the theorem will follow from

the following:
Proposition A.2. With the above notation we have that

‖κb
L‖ = 1

2 .

Proof. Let e : (∂D)3 → {−1, 0, 1} be the orientation cocycle on the circle ∂D. we
use the fact that the space of L-invariant alternating bounded measurable cocycles
on ∂D is isometrically isomorphic to H2

cb(L, R) and that, under this isomorphism, e
corresponds to 2κb

L, [Io]. Thus, since ‖e‖∞ = 1, we deduce that ‖κb
L‖ = 1/2. �

A.2 Surjection onto lattices.

Proposition A.3. Let Γ be a countable discrete group, G a Lie group of Hermitian
type and ρ : Γ→ G a homomorphism such that the image ρ(Γ) is Zariski dense and
the action of Γ on the Shilov boundary of the associated symmetric space is minimal.
Then ρ is tight.

The proof of this proposition relies on functoriality properties of bounded coho-
mology. We use that the bounded continuous cohomology H2

b(L, R) in degree two of
a locally compact group L can be realized isometrically as the space ZL∞

alt
(
B3, R

)L

of L-invariant bounded alternating L∞ cocycles on any space (B, ν) on which the
L-action is amenable and mixing. In particular if G is a group of Hermitian type,
then

H2
b(G, R) ∼= ZL∞

alt
(
(G/P )3, R

)G
, (A.1)

where P < G is a minimal parabolic subgroup. Likewise, we use that if Γ is the
countable discrete group with a probability measure θ then a Poisson boundary
(B, ν) for (Γ, θ) always exists and then

H2
b(Γ, R) ∼= ZL∞

alt
(
B3, R

)Γ
.

For more details and proofs of the precise functoriality properties we refer the reader
to [BuIoW3, §4] and to the references therein.
Proof. We realize the Shilov boundary of the bounded domain realization D of
the symmetric space associated to G as Š = G/Q. We fix a minimal parabolic
subgroup P < Q < G and denote by pr : G/P → G/Q the canonical projection. If
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βD : Š3 → R is the normalized Bergmann cocycle, then pr∗βD : (G/P )3 → R is a
cocycle in L∞

alt((G/P )3, R)G representing the class κb
G ∈ H2

cb(G, R). It follows from
(A.1) that

‖κb
G‖ = ess sup

x1,x2,x3∈G/P
pr∗βD(x1, x2, x3) .

Since the image of ρ is Zariski dense, there exists a ρ-equivariant measurable
boundary map ϕ : (B, ν) → G/P [BuIoW3, Th. 4.7], and moreover ϕ∗pr∗βD repre-
sents ρ∗bκb

G [BuIoW3, Prop. 4.6].
The essential image of pr ◦ ϕ : (B, ν) → G/Q is defined as the support of the

push-forward measure (pr◦ϕ)∗(ν) and is hence a closed ρ(Γ)-invariant subset which,
by minimality of the Γ-action, must be equal to G/Q. But then this implies that

ess sup
x1,x2,x3∈G/P

∣∣pr∗βD(x1, x2, x3)
∣∣ = ess sup

b1,b2,b3∈G/P

∣∣pr∗βD
(
ϕ(b1), ϕ(b2), ϕ(b3)

)∣∣ ,

and hence
‖κb

G‖ = ‖ρ∗bκb
G‖ . �

From the above proposition we immediately obtain the following:
Corollary A.4. Let Γ be a countable discrete group, G a Lie group of Hermitian
type and ρ : Γ → G a homomorphism. If ρ(Γ) contains a lattice Λ < G, then ρ is
tight.

Corollary A.5. Let Modg be the mapping class group of a closed oriented surface
of genus g. Then the natural homomorphism ρ : Modg → Sp(2g, R) is tight. In
particular if κb

G ∈ H2
cb(Sp(2g, R)) is the bounded Kähler class associated to the

normalized Kähler form, then the norm of ρ∗bκ
b
G ∈ H2

b(Modg, R) is g/2.

Proof. The natural homomorphism ρ : Modg → Sp(2g, R) surjects onto Sp(2g, Z),
so ‖ρ∗bκb

G‖ = ‖κb
G‖ which equals g/2 by Theorem A.1. �
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