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Abstract. — We give a pointed overview of the foundation of the homological alge-

bra approach to continuous bounded cohomology for locally compact groups, which

allows us to prove an integral formula involving specific representatives of bounded

cohomology classes. We then illustrate how this formula can be used to put in the

same framework several rigidity results.

Résumé (Une formule utile en cohomologie bornée). — Nous traitons certains aspects de

l’approche homologique à la cohomologie continue bornée des groupes localement

compacts. Comme application nous démontrons une formule intégrale impliquant

des représentants spécifiques de certaines classes de cohomologie bornée de nature

géométrique. Nous illustrons sur des cas précis comment cette formule donne un

cadre commun à un certain nombre de phénomènes de rigidité.

1. Introduction

A theory of continuous bounded cohomology for locally compact groups was deve-

loped in [27] and this proved itself to be rather useful and flexible at the same time.

Bounded cohomology was originally defined by Gromov in 1982 and has already been

used by several authors. The point of the theory developed in [27] is the introduc-

tion in this context of relative homological algebra methods in the continuous setting.

Based on this theory, the authors [18, 19, 16, 20, 15, 17, 21, 22, 23, 25, 24]

developed a machinery which has already proved itself very fruitful in showing several

rigidity results for actions of finitely generated groups or in finding new proofs of

known results. We want to list here in very telegraphic style some results in which

either bounded cohomology or continuous bounded cohomology play an essential role.
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Minimal Volume (Gromov [39]): A geometric application to control the minimal

volume of a smooth compact manifold by its simplicial volume, that is the seminorm

of the fundamental class in `1-homology.

Actions on the Circle (Ghys [37]): E. Ghys observed that the Euler class of a group

action by homeomorphisms on the circle admits a bounded representative, leading

thus to the bounded Euler class of this action, which determines the action up to

semiconjugacy (see § 2.3).

Maximal Representations in Homeo+(S1) (Matsumoto, [51], see also [44]): A cha-

racterization of representations of surface groups which are semiconjugate to a hyper-

bolization as those with maximal Euler number (see § 3.2).

Stable Length (Bavard [5]): The stable length of commutators of a finitely generated

group Γ vanishes if and only if the comparison map between bounded cohomology and

ordinary cohomology (see § 2.2)

H2
b(Γ,R) → H2(Γ,R)

is injective.

Characterization of Gromov Hyperbolic Groups (Mineyev [53, 54]): A finitely ge-

nerated group is Gromov hyperbolic if and only if for every Banach Γ-module V , the

comparison map H2
b(Γ, V ) → H2(Γ, V ) is surjective.

Central Extensions and their Geometry (Gersten [36]): If

0 → Z → Γ̃ → Γ → 1

is a central extension of a finitely generated group Γ given by a bounded two-cocycle,

then Γ̃ is quasiisometric to Γ× Z. Applying this to Γ = Sp(2n,Z) and to the inverse

image Γ̃ of Γ in the universal covering of Sp(2n,R), one obtains that Γ̃ is quasiisometric

to Γ× Z; since Γ̃ has property (T) for n ≥ 2 , while Γ× Z does not, this shows that

property (T) is not a quasiisometry invariant.

Boundedness of Characteristic Classes (Gromov [39], Bucher-Karlsson [13, 14],

[48]): M. Bucher-Karlsson, strengthening a result of Gromov, showed that characte-

ristic classes of flat bundles admit cocycle representatives taking finitely many values,

hence in particular they are bounded. Lafont and Schmidt proved recently a conjec-

ture of Gromov to the effect that closed locally symmetric spaces (of noncompact

type) have positive simplicial volume and M. Bucher-Karlsson succeeded in giving

the precise value of the simplicial volume of a product of two compact surfaces.

Orbit Equivalence (Monod–Shalom [57]): If Γ is a finitely generated group, then

the nonvanishing of H2
b

(
Γ, `2(Γ)

)
is an invariant of measure equivalence, and this can

be applied to show rigidity of certain products under measure equivalence (see § 2.3).

Theory of Amenable Actions (Burger–Monod [27]): For a locally compact group G

acting on a standard measure space (S, µ), the amenability of the G-action (in the
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sense of Zimmer, [68]) is equivalent to the injectivity of the G-module L∞(S, µ) in a

sense appropriate for bounded cohomology (see Definition 2.6).

Rigidity Questions for Group Actions on Hermitian Symmetric Spaces: When G

is a connected semisimple Lie group with finite center such that the associated sym-

metric space X is Hermitian, then there is a canonical continuous bounded class

κ ∈ H2
cb(G,R) constructed using the Kähler form on X . This allows to associate to

any homomorphism ρ : Γ → G an invariant ρ(2)(κ) ∈ H2
b(Γ,R), coined the bounded

Kähler class of ρ, and which contains substantial information about the homomor-

phism. This is put to use to study various aspects of group actions on X .

The first one concerns the case where Γ is a lattice in SU(1, p), ρ is the homomor-

phism Γ → SU(1, q) obtained from injecting SU(1, p) in a standard way into SU(1, q)

(1 ≤ p ≤ q), and the question is the local rigidity of ρ in the variety of representa-

tions of Γ into SU(1, q) (see § 5); an important part of this paper will be devoted to

developing certain tools in continuous bounded cohomology which are instrumental

in answering this question – see § 4 – (Burger–Iozzi [17, 20, 16], Koziarz–Maubon

[47]).

The second aspect deals with the case in which G is in general the isometry group

of a Hermitian symmetric space, Γ is the fundamental group of a compact oriented

surface and the question concerns the geometric understanding of certain components

of the representation variety of Γ into G, namely those formed by the set of maximal

representations – see § 3.3 – (Burger–Iozzi–Wienhard [22, 23, 25], Wienhard [64],

Burger–Iozzi–Labourie–Wienhard [21]).

The third aspect is when Γ is an arbitrary, say finitely generated, group: remarkably,

if ρ : Γ → G has Zariski dense image and X is not of tube type, then the bounded

Kähler class of ρ determines ρ up to conjugation, (Burger–Iozzi [19], Burger–Iozzi–

Wienhard [24]).

The scope of these notes is to give a description of one underlying feature in conti-

nuous bounded cohomology common to these last results ([17, 20, 16, 22, 23]) as

well as to the proof in [44] of Matsumoto’s theorem in [51] and to Gromov’s proof of

Mostow rigidity theorem in [62]. More specifically, we prove an integral formula which

involves specific representatives of bounded cohomology classes. Particular instances

of this formula were proven already in [44] and [22], while here we give a treatment

which unifies at least the first half of the statement. As this is rather technical, we

postpone its statement to § 2 (Proposition 2.38 and also Principle 3.1) and § 4.2

(Proposition 4.9 and Principle 4.1), where the patient reader will be gently guided.

The paper is organized as follows. In § 2 we lay the foundation of continuous

bounded cohomology for the noninitiated reader, who will be lead to the statement of

an easy version of the main result in § 4. In § 3 we describe the instances in which the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



É
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results of § 2.7 are used. In § 4 we give a complete proof of a more general version of

the Formula in Proposition 2.38 from which the statements in Proposition 2.38 can be

easily obtained. Finally, in § 5 we give the application which triggered Proposition 4.9,

namely an original proof of a deformation rigidity theorem announced in 2000 in [17]

and [44] with a sketch of a proof and also proven by analytic methods in 2004 in [47].

Acknowledgments: The authors thank Theo Bühler and Anna Wienhard for detailed

comments on this paper. Their thanks go also to the referee for having read the paper

very carefully and having spotted many typos and imprecisions; the remaining ones

are of course the authors’ sole responsibility.

2. Bounded Cohomology Preliminaries

We refer to [27], [56] and [18] for a complete account of different parts of the

theory.

2.1. Definition via the Bar Resolution. — Let G be a locally compact group.

Definition 2.1. — A coefficient G-module E is the dual of a separable Banach space

on which G acts continuously and by linear isometries.

Examples 2.1. — Relevant examples of coefficient G-modules in this note are:

1. R with the trivial G-action;

2. Any separable Hilbert space H with a continuous G-action by unitary operators;

3. L∞(G/H) with the G-action by translations, where H is a closed subgroup of

the second countable group G.

4. L∞w∗(S,E), that is the space of (equivalence classes of) weak∗-measurable maps

f : S → E from a G-space (S, µ) into a coefficient module. We recall that a

regular G-space is a standard Borel measure space (S, µ) with a measure class

preserving G-action such that the associated isometric representation on L1(S, µ)

is continuous.

Now we proceed to define the standard complex whose cohomology is the conti-

nuous bounded cohomology with values in a coefficient module E. Let

Cb(Gn, E) :=
{
f : Gn → E : f is continuous and

‖f‖∞ = sup
g1,...,gn∈G

‖f(g1, . . . , gn)‖E <∞
}

be endowed with the G-module structure given by the G-action

(hf)(g1, . . . , gn) := hf(h−1g1, . . . , h
−1gn) ,

SÉMINAIRES & CONGRÈS 18
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and let Cb(Gn, E)G be the corresponding submodule of G-invariant vectors. Then the

continuous bounded cohomology H•
cb(G,E) of G with coefficients in E is defined as

the cohomology of the complex

0 //Cb(G,E)G d //Cb(G2, E)G d //Cb(G3, E)G d // . . .(2.1)

where d : Cb(Gn, E) → Cb(Gn+1, E) is the usual homogeneous coboundary operator

(df)(g0, . . . , gn) :=
n∑

j=0

(−1)jf(g0, . . . , ĝj , . . . , gn) .

More precisely,

Hn
cb(G,E) := ZCb(Gn+1, E)G/BCb(Gn+1, E)G ,

where

ZCb(Gn+1, E)G := ker
{
d : Cb(Gn+1, E)G → Cb(Gn+2, E)G

}
are the homogeneous G-invariant n-cocycles, and

BCb(Gn+1, E)G = im
{
d : Cb(Gn, E)G → Cb(Gn+1, E)G

}
are the homogeneous G-invariant n-coboundaries.

Remark 2.2. — If κ ∈ Hn
cb(G,E), then we define

‖κ‖ := inf
{
‖c‖∞ : c ∈ ZCb(Gn+1, E), [c] = κ

}
,

so that Hn
cb(G,E) is a seminormed space with the quotient seminorm.

If we drop the hypothesis of boundedness in (2.1), we obtain the continuous coho-

mology of G, which we denote by Hn
c (G,E). Thus continuous bounded cohomology

appears as the cohomology of a subcomplex of the complex defining continuous coho-

mology, and thus we have a natural comparison map

H•
cb(G,E) → H•

c(G,E) .

Note however that in the case of continuous cohomology, the appropriate coefficients

are just topological vector spaces with a continuous G-action (See [40], [9] and [6] for

the corresponding homological algebra theory in continuous cohomology.)

If the group G is discrete, the assumption of continuity is of course redundant,

and in this case the cohomology and bounded cohomology will be simply denoted by

H•(G,E) or H•
b(G,E) respectively. Observe that in this case a homological algebra

approach was already initiated by R. Brooks [11] and later developed by N. Ivanov

[45] and G. Noskov [59].

Exercise 2.2. — Write down the complex of inhomogeneous cochains and the formula

for the coboundary map in this setting; compare with [56, § 7.4] and/or [40].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008
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2.2. Low Degree. — We indicate briefly here what the bounded cohomology computes

in low degrees. Notice however that in order to verify our assertions, one should

mostly use the nonhomogeneous definition of continuous bounded cohomology (see

Exercise 2.2).

2.2.1. Degree n = 0. — Since BCb(G,E) = 0, then

H0
cb(G,E) = ZCb(G,E)G

=
{
f : G→ E : f is constant and G-invariant

}
= EG ,

that is the space of G-fixed vectors in E and, in fact, there is no difference between

continuous cohomology and continuous bounded cohomology in degree 0.

2.2.2. Degree n = 1. — If we denote by ρ the (linear) isometric action of G on E, the

cohomology group H1
c(G,E) classifies the continuous affine actions of G with linear

part ρ, while H1
cb(G,E) the continuous affine actions of G with linear part ρ and

with bounded orbits. In particular, if E = R is the trivial module, then H1
cb(G,R) =

Homcb(G,R) = 0, and the same holds also if E = H is a separable Hilbert space

(exercise) and if E is any reflexive separable Banach module, [56, Proposition 6.2.1].

2.2.3. Degree n = 2. — If G is a discrete group and A is an Abelian group (in

particular, A = Z or R) , it is a classical result that H2(G,A) classifies the equivalence

classes of central extensions ‹G of G by A, that is the equivalence classes of short exact

sequences

0 //A //‹G //G //0 ,

such that the image of A in ‹G is contained in the center. There is no such a cha-

racterization of second continuous bounded cohomology in degree two. However, as

alluded to in the introduction, Gersten gave a very useful geometric property of central

extensions which admit associated bounded cocycles.

Note that in general, a lot of information in degree two can be obtained from the

comparison map

H2
cb(G,E) −→ H2

c(G,E)

as illustrated for instance by Bavard’s and Mineyev’s theorems in the introduction. It

is easy to verify that if E = R, the kernel of the comparison map in degree two (the

so called “exact part of the continuous bounded cohomology”) is identified with the

space of continuous quasimorphisms

QM(G,R) :=
{
f : G→ R : f is continuous and

sup
g,h∈G

|f(gh)− f(g)− f(h)| <∞
}

SÉMINAIRES & CONGRÈS 18
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up to homomorphisms and continuous bounded functions – the “trivial quasi-

morphisms” – namely

EH2
cb(G,R) := ker

{
H2

cb(G,R) → H2
c(G,R)

}
= QM(G,R)/

(
Homc(G,R)⊕ Cb(G,R)

)
.

2.3. Examples. — We give here a few examples of cocycles, most of which will be

used in the sequel.

2.3.1. Bounded Euler class. — Let G = Homeo+

(
S1

)
(thought of as a discrete group,

for simplicity). The Euler class e ∈ H2
(
Homeo+(S1),R

)
can be represented by a non-

homogeneous cocycle arising from the central extension of Homeo+(S1) by Z defined

by the group HomeoZ(R) of homeomorphisms of the real line which commute with

integral translations

0 //Z // HomeoZ(R)
p
// Homeo+(S1) //

s

hh
0 .

Then, if one chooses a section s of the projection p in such a way that s(f)(0) ∈
[0, 1), for f ∈ Homeo+(S1), the cocycle associated to the central extension is boun-

ded and hence defines a bounded cohomology class called the bounded Euler class

eb ∈ H2
b

(
Homeo+(S1),R

)
, independent of the section chosen. A homogeneous cocycle

whose class is a multiple of the bounded Euler class is the orientation cocycle defined

by

c(g0, g1, g2) :=


1 if (g0x, g1x, g2x) is positively oriented

−1 if (g0x, g1x, g2x) is negatively oriented

0 otherwise ,

(2.2)

where x ∈ S1 is a fixed basepoint and g0, g1, g2 ∈ Homeo+(S1). Then it is an exercise

to show that −2eb = [c] ∈ H2
b

(
Homeo+(S1),R

)
.

2.3.2. Dupont cocycle (first instance). — Let G = PU(1, 1) and consider the unit

disk D2 with Poincaré metric (1 − |z|2)−2|dz|2 and associated area form ωD2 = (1 −
|z|2)−2dz ∧ dz. If x ∈ D2, then

bD2(g0, g1, g2) :=

∫
∆(g0x,g1x,g2x)

ωD2 ,(2.3)

where ∆(g0x, g1x, g2x) is the geodesic triangle with vertices g0x, g1x, g2x, is a

PU(1, 1)-invariant cocycle which is bounded since

|bD2(g0, g1, g2)| < π .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008
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Moreover, if the basepoint x is chosen on the boundary ∂D2 ∼= S1, then the cocycle

βD2 that one can define analogously by integration on ideal triangles is also PU(1, 1)-

invariant and bounded, and, in fact, if c|PU(1,1) denotes the restriction to PU(1, 1) <

Homeo+(S)1 of the orientation cocycle c defined in (2.2), then

πc|PU(1,1) = βD2 .

2.3.3. Cartan invariant. — If 〈 , 〉 is a Hermitian form of signature (p, 1) on Cp+1,

a model of complex hyperbolic p-space Hp
C is given by the cone of negative lines. In

this model the visual boundary ∂Hp
C is the set of isotropic lines. A basic invariant of

three vectors x, y, z ∈ Cp+1 is their Hermitian triple product

[x, y, z] = 〈x, y〉〈y, z〉〈z, x〉 ∈ C

which can be projectivized to give a well defined map
(
∂Hp

C
)
→ R×\C whose compo-

sition with 1
π arg gives the Cartan invariant (invariant angulaire, [28])

cp : (∂Hp
C)3 → [−1, 1] .(2.4)

A chain in ∂Hp
C is by definition the boundary of a complex geodesic in Hp

C, that

is an isometrically and holomorphically embedded copy of D2; as such, it is a circle

equipped with a canonical orientation, and it is uniquely determined by any two

points lying on it. When restricted to a chain, the Cartan invariant is nothing but

the orientation cocycle (2.2); furthermore, the Cartan invariant is a strict alternating

cocycle on (∂Hp
C)3 ∼=

(
SU(1, p)/P

)3
, where P < SU(1, p) is a (minimal) parabolic

subgroup.

The area form ωD2 can be generalized in different directions: the first uses the fact

that the area form on the Poincaré disk is obviously also its volume form and will be

illustrated in the next example; the subsequent three examples use instead that the

area form on the Poincaré disk is its Kähler form, that is a nonvanishing differential

two-form which is PU(1, 1)-invariant (hence closed). The existence of a Kähler form

ωX is what distinguishes, among all symmetric spaces, the Hermitian ones.

2.3.4. Volume cocycle. — Let G = PO(1, n)◦ be the connected component of the

group of isometries of real hyperbolic space Hn
R. Then the volume of simplices with

vertices in Hn
R is uniformly bounded, hence defines a G-invariant alternating conti-

nuous bounded cocycle. Likewise, the volume of ideal simplices inHn
R (that is simplices

with vertices on the sphere at infinity ∂Hn
R of Hn

R) defines a G-invariant alternating

bounded cocycle.

SÉMINAIRES & CONGRÈS 18
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2.3.5. Dupont cocycle. — Let G be a connected semisimple group with finite center

and X the associated symmetric space which we assume to be Hermitian. In the sequel

we will normalize the Hermitian metric such that the minimum of the holomorphic

sectional curvature is −1. Letting now ωX be the Kähler form and x ∈ X a basepoint,

integration over simplices ∆(x, y, z) with vertices x, y, z and geodesic sides gives rise

to a continuous G-invariant cocycle on G defined by

bX (g0, g1, g2) :=

∫
∆(g0x,g1x,g2x)

ωX ,

for g0, g1, g2 ∈ G, which turns out to be bounded (Dupont [31]). In fact, more precisely

we have that

‖bX ‖∞ = πrX ,

where rX is the rank of X , (Domic–Toledo [30] and Clerc–Ørsted [29]).

Notice that, contrary to the constant sectional curvature case, the geodesic triangle

∆(g0x, g1x, g2x) has uniquely defined geodesic sides, but not uniquely defined interior:

however the integral is well defined because the Kähler form is closed.

2.3.6. Bergmann cocycle. — To extend the previous picture to the boundary, recall

that any Hermitian symmetric space X has a realization as a bounded symmetric

domain D ⊂ Cn. Let Š be the Shilov boundary of D, that is the only closed G-orbit in

the topological boundary ∂D of D. While in the rank one case any two points in the

topological boundary ∂D of D can be connected by a geodesic, the same is not true

in higher rank. Let Š(3) be the subset of Š3 consisting of triples of points which can

be joined pairwise by geodesics. Then for x1, x2, x3 ∈ Š(3) one can define heuristically

βX (x1, x2, x3) :=

∫
∆(x1,x2,x3)

ωX(2.5)

which turns out to be, once again, an invariant alternating cocycle, which is also

bounded since

‖βX ‖∞ = πrX .

We refer to [29] for a justification of this heuristic formula.

2.3.7. Maslov index. — Let V be a real vector space with a symplectic form 〈 , 〉 :

V × V → R, G = Sp(V ) =
{
g ∈ GL(V ) : g preserves 〈 , 〉

}
and X the associated

symmetric space. Then X is a classical example of Hermitian symmetric space and

the Grassmannian L(V ) of Lagrangian subspaces is in a natural way identified with

the Shilov boundary of the bounded domain realization of X . The Bergmann cocycle

βX defined above is here equal to πiV , where iV (L1, L2, L3) is the Maslov index of

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



É
pr

eu
ve

SM
F

23
ja

nv
ie
r
20

08

254 M. BURGER & AL. IOZZI

three Lagrangians L1, L2, L3 ∈ L(V ) defined, following Kashiwara, as the index of the

quadratic form

L1 × L2 × L3 −→ R

(v1, v2, v3) 7→ 〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉 .

In fact, iV is defined for all triples of Lagrangians and it is an Sp(V )-invariant cocycle

taking integer values in the interval [−n, n], where 2n = dimV . For a more thorough

discussion of all objects involved see [21].

Here is finally an example of a cocycle with nontrivial coefficients.

2.3.8. Gromov–Sela–Monod cocycle. — Let T := (E ,V) be a tree with vertices V,

edges E , let G := Aut(T ) be its automorphism group and let d be the combinatorial

distance on T . For any n ∈ Z, we are going to construct a bounded cocycle with

values in `2
(
E(n)

)
, where E(n) is the set of oriented geodesic paths in T of length n.

For n ∈ N, define

ω(n) : G×G→ `2(E(n))

(g0, g1) 7→ ω(n)
g0,g1

to be

ω(n)
g0,g1

(γ) :=


1 if d(g0x, g1x) ≥ n and γ ⊂ γg0x,g1x

−1 if d(g0x, g1x) ≥ n and γ−1 ⊂ γg0x,g1x

0 otherwise ,

where, if x ∈ T is a basepoint and γy,z denotes the oriented geodesic path from y to

z. By definition of coboundary operator, and by observing that ω(n) is alternating,

one has

dω(n)(g0, g1, g2) = ω(n)(g0, g1) + ω(n)(g1, g2) + ω(n)(g2, g0) ,

and it is easy to verify that

dω(n) = 0 if and only if n = 1 .

In fact, the support of dω(n)(g0, g1, g2) is contained in the tripod with vertices

g0x, g1x, g2x and center o,

SÉMINAIRES & CONGRÈS 18
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g0x g1x

g2x

o

and the total contributions of a path γ ∈ E(n) which does not meet o or which meets

o at one of its endpoints is zero, while dω(n)(g0, g1, g2)(γ) 6= 0 if and only if γ is a

path which contains the center o of the tripod in its interior. However, since

sup
g0,g1,g2

‖dω(n)(g0, g1, g2)‖2 <∞ ,

then

c(n) := dω(n) : G×G×G→ `2
(
E(n)

)
is a bounded G-invariant cocycle, even though ω(n) is not a bounded cochain – in fact,

‖ω(n)
g0,g1‖2

2 = 2(d(g0x, g1x) − n). Let c
(n)
GSM := [c(n)] ∈ H2

b

(
Aut(T ), `2(E(n))

)
be the

bounded cohomology class so defined, which is independent of the chosen basepoint

x. These classes turn out to be nontrivial in the following rather strong sense:

Theorem 2.3 (Monod–Shalom [58]). — Let Γ be a finitely generated group and ρ : Γ →
Aut(T ) an action of Γ by automorphisms on T . Then the following are equivalent:

(i) the action of Γ is not elementary;

(ii) the pullback ρ(2)
(
c
(2)
GSM

)
∈ H2

b

(
Γ, `2(E(2))

)
is nonzero;

(iii) the pullback ρ(2)
(
c
(n)
GSM

)
∈ H2

b

(
Γ, `2(E(n))

)
is nonzero for every n ≥ 2.

A similar but more elaborate construction for Gromov hyperbolic graphs of boun-

ded valency due to Mineyev, Monod and Shalom gives the following general nonvani-

shing result:

Theorem 2.4 (Mineyev–Monod–Shalom [55]). — Let Γ be a countable group admitting

a proper nonelementary action on a hyperbolic graph of bounded valency. Then

H2
b

(
Γ, `2(Γ)

)
is nontrivial.

Remark 2.5. — Another illustration of the relevance of bounded cohomology with

coefficients is provided by the result of Monod and Shalom already alluded to in the

introduction. They proved that if two groups Γ1 and Γ2 are finitely generated and

measure equivalent, then H2
b

(
Γ1, `

2(Γ1)
)
6= 0 if and only if H2

b

(
Γ2, `

2(Γ2)
)
6= 0.

Recall that two groups are measure equivalent if there exists a space X with a

σ-finite measure µ, such that the actions of the Γi’s on (X,µ) are measure preserving,
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É
pr

eu
ve

SM
F

23
ja

nv
ie
r
20

08

256 M. BURGER & AL. IOZZI

commute, and admit a finite volume fundamental domain. The typical example of

measure equivalent groups are lattices Γ1,Γ2 in a locally compact second countable

group G, where one can take (X,µ) = (G, dg), where dg is the Haar measure on G.

It is interesting to compare this with a result of Gaboriau [33, 34] asserting the

equality of `2 Betti numbers if Γ1 and Γ2 are orbit equivalent. Recall that `2-Betti

numbers of Γ are computed using the ordinary cohomology groups H•(Γ, `2(Γ)
)

[35],

and that two actions are orbit equivalent if there exists a measure class preserving

measurable isomorphism of the underlying spaces which sends almost every Γ1-orbit

to a Γ2-orbit.

Now that we have some examples at hand, it is clear that, just like in the case

of continuous cohomology, there is the need of more flexibility than allowed by the

bar resolution as, for instance, some of the cocycles defined above – e. g. the Dupont

cocycle in (2.3) – are not continuous.

2.4. Homological Algebra Approach to Continuous Bounded Cohomology. — Let V be

a Banach G-module. As for ordinary continuous cohomology, there is a notion of

relatively injective Banach G-module appropriate in this context.

Definition 2.6. — A Banach G-module V (that is a Banach space with an action of G

by linear isometries) is relatively injective if it satisfies an extension property, namely:

– given two continuous Banach G-modules A and B and a G-morphism i : A→ B

between them (that is a continuous linear G-map), such that there exists a left

inverse σ : B → A with norm ‖σ‖ ≤ 1 (which is linear but not necessarily a

G-map), and

– given any G-morphism α : A→ V ,

there exists a G-morphism β : B → V such that the diagram

A
� �

ı
//

α
��
@@
@@
@@
@ B

∃β~~

V

commutes, and ‖β‖ ≤ ‖α‖.

We remark that the existence of such σ is a rather severe restriction on ı, as it

implies that there exists a splitting of B = A+ C, where C is a Banach complement

of A in B; if however we were to require that σ is a G-morphism, then the splitting

would be G-invariant and hence all Banach G-modules would be relatively injective.
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Example 2.7. — For any coefficient G-module E, let L∞w∗,alt(G
n+1, E) be the sub-

space of (equivalence classes of) alternating functions in L∞w∗(G
n+1, E), that is f ∈

L∞w∗(G
n+1, E) and for any permutation σ on n+ 1 symbols, we have that

f
(
σ(g0, . . . , gn)

)
= sign(σ)f(g0, . . . , gn) .

It is not difficult to show that the Banach G-modules Cb(Gn+1, E), L∞w∗(G
n+1, E)

and L∞w∗,alt(G
n+1, E) are relatively injective. In fact, if V is any of the above function

spaces, α : A→ V is a G-morphism, and B, σ, ı are as in Definition 2.6, then one can

define β(b)(g0, . . . , gn) := α
(
g0σ(g−1

0 b)
)
(g0, . . . , gn) and verify that it has the desired

properties.

Definition 2.8. — Let E be a coefficient G-module.

1. A resolution (E•, d•) of E is an exact complex of Banach G-modules such that

E0 = E and En = 0 for all n ≤ −1

0 // E
d0 // E1

d1 // . . .
dn−2
// En−1

dn−1
// En

dn // . . .

2. The continuous submodule CE of E is the submodule defined as the subspace

of E of vectors on which the action of G is norm-continuous, that is v ∈ CE if

and only if ‖gv − v‖ → 0 as g → e. Then a strong resolution of E by relatively

injective G-modules is a resolution where the Ejs are relatively injective G-

modules, with a contracting homotopy defined on the subcomplex (CE•, d•) of

continuous vectors, that is a map hn+1 : CEn+1 → CEn such that:

– ‖hn+1‖ ≤ 1, and

– hn+1dn + dn−1hn = IdEn
for all n ≥ 0.

Given two strong resolutions of a coefficient Banach G-module E by relatively

injective G-modules, the extension property in Definition 2.6 allows to extend the

identity map of the coefficients to a G-morphism of the resolutions, which in turn re-

sults in an isomorphism of the corresponding cohomology groups. In general however,

the isomorphism that one thus obtains is only an isomorphism of topological vector

spaces, not necessarily isometric. More precisely,

Exercise 2.3. — 1. Let (E•, d•) be a strong resolution of a coefficient module E,

and (F•, d
′
•) a strong resolution of E by relatively injective modules. Then there

exists a G-morphism of complexes α• : CE• → CF• which extends the identity
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Id : E → E and such that η0 = Id.

0 // E
d0 //

Id
��

E1

d1 //

η1
��

. . .
dn−2
// En−1

dn−1
// En

dn // . . .

0 // E
d′0 // F1

d′1 // . . .
d′n−2
// Fn−1

d′n−1
// Fn

d′n // . . .

Note that the existence of η1 = d0Id is just an application of the definition of

relative injectivity while, for j ≥ 2, in the construction of ηj one has to use the

contracting homotopy to deal with the kernel of dj−1.

2. If in addition also (E•, d•) is by relatively injective modules, then there exists a

G-homotopy equivalence between G-morphisms of complexes which induces an

isomorphism in cohomology.

Recall that if α• and η• are G-morphisms of complexes (E•, d•) and (F•, d
′
•),

a G-homotopy σ• : α• → η•−1 is a sequence of G-morphisms σn : En → Fn−1,

En−1

dn−1
//

�� ��

En

dn //

αn

��

ηn

��

σn

}}{{
{{
{{
{{
{{
{{
{{
{{
{

En+1

����

σn+1

}}{{
{{
{{
{{
{{
{{
{{
{{
{

Fn−1

d′n−1
// Fn

d′n // Fn+1

such that

σn+1dn + d′n−1σn = αn − ηn .

Corollary 2.9. — The continuous bounded cohomology of a locally compact group G

with coefficients in the coefficient module E is isomorphic (as a topological vector

space) to the cohomology of the subcomplex of invariants of any strong resolution of

E by relatively injective G-modules.

We want to present a case in which the isomorphism is indeed isometric, together

with providing a realization of bounded cohomology which turns out to be very useful

from the geometric point of view.

2.5. Amenable Actions. — The notion of amenable action is a relativized notion of

that of an amenable group and we refer to [68, Chapter 4] and [56] for details and

proofs (see also [3, Chapter 4] for a groupoid point of view). We start our discussion

with the definition most useful for us, although not necessarily the most transparent

among those available.
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Definition 2.10. — A locally compact group G is amenable if and only if there exists

a (left) G-invariant mean on L∞(G), that is a norm-continuous G-invariant linear

functional m : L∞(G) → R such that m(f) ≥ 0 if f ≥ 0, m(1) = 1, and hence has

norm ‖m‖ = 1.

Analogously, one has:

Definition 2.11. — Let (S, µ) be a G-space with a quasiinvariant measure. The action

of G on (S, µ) is amenable if and only if there exists a G-equivariant projection

m : L∞(G × S) → L∞(S) which is L∞(S)-linear and such that m(1G×S) = 1S ,

m(f) ≥ 0 if f ≥ 0 and hence m has norm ‖m‖ = 1.

Examples of amenable groups include Abelian, compact, and solvable groups as

well as all extensions of amenable groups by amenable groups and inductive limits of

amenable groups. For example, let P be a minimal parabolic subgroup in a Lie group

G: since P is a compact extension of a solvable group, then P is amenable. Moreover

one can show that, although a noncompact semisimple Lie group G is never amenable,

it acts amenably on the homogeneous space G/P [68, Chapter 4].

This is not by chance, in fact:

Proposition 2.12 (Zimmer [68, Proposition 4.3.2]). — Let G be a locally compact group

and H ≤ G any closed subgroup. The action of G on G/H is amenable (with respect

to the quotient class of the Haar measure) if and only if H is an amenable group.

Corollary 2.13. — A group acts amenably on a point if and only if it is amenable.

We want to illustrate now a characterization of amenable action (which was actually

the original definition [68, Chapter 4]) modeled on the characterization of amenable

groups by a fixed point property. Namely a locally compact group G is amenable if

and only if there is a fixed point on any G-invariant compact convex subset in the

unit ball (in the weak∗-topology) of the dual of a separable Banach space. on which

G acts continuously by linear isometries. The concept of amenable action once again

relativizes that of amenable group. We start illustrating it in terms of bundles in the

case of a transitive action .

Let us consider the principal H-bundle G→ G/H. For any separable Banach space

E and any continuous isometric action H → Iso(E), we can consider the associated

bundle with fiber the dual E∗ of E endowed with the weak∗-topology. Since the group

G acts by bundle automorphisms on the bundle G→ G/H it preserves the subbundle

of the associated bundle with fiber the unit ball E∗1 ⊂ E∗. Let A be a G-invariant

weak∗-measurable subset of G×H E∗1 which is fiberwise weak∗-compact and convex.

Then we say that G acts amenably on G/H if and only if whenever in the above
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situation, there exists an A-valued measurable section of the associated bundle which

is G-invariant.

The following definition is just the translation of the above picture in the more

general case of “virtual group actions” (see [50] and [60] for a description of the

philosophy behind it and [69] for the explicit correspondence between principal bundle

automorphisms and measurable cocycles – see the next definition).

Definition 2.14 (Zimmer [68]). — Let G be a locally compact group acting conti-

nuously and by linear isometries on a separable Banach space E, and let (S, ν) be

a (right) G-space with a quasiinvariant measure. Let α : S × G → Iso(E) be a

measurable cocycle (that is a measurable map such that α(s, gh) = α(s, g)α(sg, h)

for almost all s ∈ S and for all g, h ∈ G) and let s 7→ As a Borel assignment of a

compact convex subset of the unit ball E∗1 of the dual such that α(s, g)∗As = Asg.

Let

F
(
S, {As}s∈S

)
:=

{
f : S → E∗1 : f is measurable and

f(s) ∈ As for a. e.s ∈ S
}

be endowed with the G-action (gf)(s) := α(s, g)∗f(sg). The above data
(
S, {As}s∈S

)
is an affine action of G over (S, ν).

Proposition 2.15 (Zimmer [66], Adams [1], Adams–Elliott–Giordano [2])
A locally compact group G acts amenably on S if and only if for every affine action

of G over S there is a fixed point, that is a measurable function f ∈ F
(
S, {As}s∈S

)
such that f(s) = α(s, g)∗f(sg) for almost every s ∈ S and g ∈ G.

Example 2.16. — Any action of an amenable group is amenable. We saw already

that a (nonamenable) group acts amenably on a homogeneous space with amenable

stabilizer. Another important example of an amenable action of a (nonamenable)

group is that of a free group Fr in r-generators (r ≥ 2) on the boundary ∂Tr of the

associated tree Tr, with respect to the measure m
(
C(x)

)
=

(
2r(2r− 1)n−1

)−1
, where

x is a reduced word of length n and C(x) is the subset of ∂Tr consisting of all infinite

reduced words starting with x.

The relevance (as well as a new characterization) of amenability of an action with

respect to bounded cohomology is given by the following:

Theorem 2.17 (Burger–Monod [27]). — Let (B, ν) be a regular G-space with a quasi-

invariant measure. Then the following are equivalent:

(i) The G-action on B is amenable;

(ii) L∞(B) is relatively injective;

(iii) L∞w∗(B
n, E) is relatively injective for every coefficient G-module E and every

n ≥ 1.
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We precede the proof with the following observation. Let θ : V → W be a G-

morphism of Banach G-modules V , W such that there is a left inverse G-morphism

ζ : W → V with ‖ζ‖ ≤ 1; assume moreover that W is relatively injective. Then V is

also relatively injective as one can easily see from the diagram

A
� �

ı
//

α
��
@@
@@
@@
@ B

σ
ss

~~ !!

V
θ // W .

ζ

kk

Proof. — We give an idea of the proof of the equivalence of the first two statements.

Since L∞(G × B) ∼= L∞w∗
(
G,L∞(B)

)
, and because we have already observed that

L∞w∗
(
G,L∞(B)

)
is relatively injective (Example 2.7), by the above observation with

V = L∞(B) and W = L∞w∗
(
G,L∞(B)

)
it is enough to find a left inverse G-morphism

of norm one of the inclusion L∞(B) ↪→ L∞(G×B); but this is implied by the definition

we gave of amenable action.

Conversely, consider the diagram

L∞(B) �
�

ı
//

Id $$J
JJ
JJ
JJ
JJ

L∞(B ×G)

L∞(B)

and observe that ı admits a left inverse of norm one given by

σ(F )(b) :=

∫
G

F (b, g)ψ(g)dg ,

where ψ ≥ 0 is some continuous function with compact support and integral one. If

L∞(B) is injective, there is a G-map β : L∞(B ×G) → L∞(B) of norm one making

the above diagram commutative; in particular β(f ⊗ 1G) = f for all f ∈ L∞(B),

which, together with the G-equivariance implies that β is L∞(B)-linear.

This gives us yet another characterization of the amenability of a group.

Corollary 2.18. — Let G be a locally compact group. The following are equivalent:

(i) The group G is amenable;

(ii) The trivial G-module R is relatively injective;

(iii) Every coefficient G-module is relatively injective.

Exercise 2.4. — Show that if G is amenable, then Hn
cb(G,E) = 0 for any n ≥ 1 and

any coefficient G-module E.
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Putting together Theorem 2.17, Corollary 2.9 and some extra work finally one

obtains the following

Corollary 2.19 (Burger–Monod [27]). — There is a canonical isometric isomorphism

H•
cb(G,E) ∼= H•(L∞w∗,alt(B•, E)G

)
.

The first important application of the above corollary is in degree 2. Let Ξ be a

class of coefficient Banach G-modules. In our case, we shall be mostly concerned with

the case in which either Ξ consists of all separable Hilbert G-modules ΞsepH, or, more

simply, of the trivial module Ξ = {R}.

Definition 2.20 (Burger–Monod [27]). — Let (S, ν) be a G-space with a quasiinvariant

measure ν. We say that B is a doubly Ξ-ergodic space if for every coefficient G-module

E ∈ Ξ, every measurable G-equivariant map f : B ×B → E is essentially constant.

Note that in the case in which Ξ consists only of the trivial module, a doubly

ergodic action is nothing but the classical concept of a “mixing” action.

The following are then fundamental examples of doubly Ξ-ergodic spaces.

Examples 2.5. — 1. If G is a semisimple Lie group with finite center and Q < G

is any parabolic subgroup, the action of G on G/Q is doubly ΞsepH-ergodic;

2. If Γ < G is a lattice in a locally compact group G and (B, ν) is a doubly ΞsepH-

ergodic G-space, then (B, ν) is a doubly ΞsepH-ergodic Γ-space;

3. The action of Aut(Fr) – and hence, by the previous example, of Fr – on ∂Tr is

doubly ΞsepH-ergodic.

These examples are just a reformulation of the Mautner property [56, Corol-

lary 11.2.3 and Proposition 11.2.2].

While we shall make essential use in practice of the double ΞsepH-ergodicity of the

G-action on G/P , where P is a minimal parabolic, the double ΞsepH-ergodicity in

the second example is used in an essential way in the proof of the following result (at

least for finitely generated groups, as we shall indicate). Its proof is due to Burger and

Monod for compactly generated groups [27] and to Kaimanovich [46] in the general

case.

Theorem 2.21 (Burger–Monod [27], Kaimanovich [46]). — Let G be a σ-compact locally

compact group. Then there always exists a G-space (B, ν) with a quasiinvariant mea-

sure such that the action of G is both amenable and doubly ΞsepH-ergodic.
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Before we start, we recall here Mackey’s point realization construction which is

used in the proof. Let (X,µ) be a measure space. Associated to any weak∗-closed

C∗-subalgebra A of L∞(X,µ) there is a measure space (Y, ν) and a map p : (X,µ) →
(Y, ν) such that p∗µ = ν and A = p∗

(
L∞(Y, ν)

)
. If in addition X is a G-space, the

measure µ is quasiinvariant, and the subalgebra A is G-invariant, then the space Y

inherits a G-action and the map p is a G-map [49].

Proof. — We sketch here the proof in the case in which the group is discrete and

finitely generated. Fix a set of r generators of G and a presentation τ : Fr → G

with kernel N . Then the space of N -invariant functions L∞(∂Tr)
N is contained in

L∞(∂Tr) as a weak∗-closed subalgebra whose point realization is a measure G-space

(B, ν) with a quasiinvariant measure. Hence L∞(B) ∼= L∞(∂Tr)
N and there is a

measure preserving Fr-map (∂Tr,m) → (B, ν), so that double ΞsepH-ergodicity and

amenability follow from the corresponding properties of the Fr-action on ∂Tr.

As an immediate consequence of the above results, we have the following:

Corollary 2.22 (Burger–Monod [27]). — Let G be a σ-finite locally compact group and

(B, ν) any G-space on which G acts amenably and doubly ΞsepH-ergodically. For any

separable Hilbert G-module H ∈ ΞsepH, we have an isometric isomorphism

H2
cb(G,H) ∼= ZL∞w∗,alt(B

3,H)G .

Proof. — The double ΞsepH-ergodicity implies that L∞(B2,H)G = R and hence

L∞w∗,alt(B
2,H)G = 0, so that the assertion follows from Corollary 2.19.

In particular,

Corollary 2.23. — For every separable Hilbert G-module H ∈ ΞsepH, the second conti-

nuous bounded cohomology space H2
cb(G,H) is a Banach space.

2.6. Toolbox of Useful Results. — We briefly recall here without proof some results

from [27] and [26], the first two of which will be used in disguise in the sequel, while the

others are here for illustration for the reader more inclined toward the cohomological

aspects than their applications. For example, using an appropriate resolution one can

prove:

Theorem 2.24. — Let G be a locally compact group and N E G a closed amenable

normal subgroup. Then there is an isometric isomorphism

H•
cb(G,E) ∼= H•

cb

(
G/N,EN

)
.

If we restrict our attention to degree two and trivial coefficients, then one has:
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Theorem 2.25. — Let Gj, j = 1, . . . , n, be locally compact groups. Then

H2
cb

Å n∏
j=1

Gj ,R
ã
∼=

n⊕
j=1

H2
cb(Gj ,R) .

Theorem 2.26. — Let G1, G2 be locally compact groups, let Γ < G1 × G2 be a lattice

with dense projection in each factor, and let H be a Hilbert Γ-module. Then

H2
b(Γ,H) ∼= H2

cb(G1,H1)⊕H2
cb(G2,H2) ,

where Hi is the maximal Γ-invariant subspace of H such that the restricted action

extends continuously to G1 ×G2 factoring via Gj, where i 6= j, 1 ≤ i, j ≤ 2.

The last results are an analog of a Lyndon–Hochschild–Serre exact sequence.

Theorem 2.27. — Let 1 → N → G → Q → 1 be an exact sequence of locally com-

pact second countable groups, with N compactly generated, and let H be a coefficient

Banach G-module. If ZG(N) denotes the centralizer of N in G, the sequence

0 // H2
cb

(
Q,HN

)
// H2

cb(G,H) // H2
cb

(
N,HZG(N)

)Q //

// H3
cb

(
Q,HN

)
// H3

cb(G,H)

is exact.

An analog of the Eckmann–Shapiro lemma is available also in bounded cohomology:

Theorem 2.28. — Let G be a locally compact second countable group, H < G a closed

subgroup and H a separable Hilbert G-module. Then induction of cocycles induces the

following isomorphism in all degrees

Hn
cb(H,H)

∼= //Hn
cb

(
G,L∞(G/H,H)

)
.

If H = Γ is a lattice in G, one can show that the inclusion of coefficient G-modules

L∞(G/H,H) ↪→ L2(G/H,H)

induces an injection in cohomology in degree two. Together with Theorem 2.28, this

implies the following

Corollary 2.29. — With the above hypotheses there is an injection

H2
b(Γ,H)

� � //H2
cb

(
G,L2(G/H,H)

)
.

Moreover, if we restrict our attention to Lie groups and to cohomology with trivial

coefficients, we have:
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É
pr

eu
ve

SM
F

23
ja

nv
ie
r
20

08

A USEFUL FORMULA 265

Theorem 2.30. — Let G be a connected Lie group with finite center. Then H2
cb(G,R) ∼=

H2
c(G,R).

Notice that the surjectivity of the comparison map follows from the arguments used

in the discussion of the examples at the beginning of this section. The injectivity fol-

lows from the interplay between Mautner property and properties of quasimorphisms.

If however we consider lattices even in semisimple Lie groups, then the comparison

map is definitely not an isomorphism. In fact we have the following:

Theorem 2.31 (Epstein–Fujiwara [32]). — If Γ is a nonelementary Gromov hyperbolic

group, then H2
b(Γ,R) is an infinite dimensional Banach space.

This applies for instance to the case where Γ is a cocompact lattice in a connected

Lie group G of real rank one and with finite center. In contrast, lattices in higher rank

Lie groups exhibit, once again, strong rigidity phenomena:

Theorem 2.32 (Burger–Monod [26, 27]). — Let Γ < G be an irreducible lattice in a

connected semisimple Lie group with finite center and real rank at least two. Then the

comparison map

H2
b(Γ,R) → H2(Γ,R)

is injective in degree two and its image coincides with the restriction to Γ of G-

invariant classes.

This is somehow a perfect example which illustrates how the cohomology theory

for discrete groups and with trivial coefficients does not suffice, as the proof of the

above result depends in an essential way on the Corollary 2.29 where the cohomology

of Γ with trivial coefficients is related to the cohomology of the ambient (nondiscrete)

group G with coefficients in the induced Hilbert G-module L2(G/Γ).

There is however also a version of Theorem 2.32 with coefficients, namely:

Theorem 2.33 (Monod–Shalom [58]). — Assume that Γ is a lattice in a connected

simple Lie group G with finite center and real rank at least two and E is any

separable coefficient Γ-module. Then

dim H2
b(Γ, E) =

{
dimEΓ if π1(G) is infinite

0 otherwise.

2.7. An Easy Version of “The Formula”

2.7.1. The Pullback. — The use of resolutions consisting of L∞ functions, although

very useful, has its side effects. For example, given a continuous homomorphism
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ρ : G → G′ of locally compact groups, it is obvious that the induced pullback in

bounded cohomology ρ• : H•
cb(G′, E) → H•

cb(G,E) could be implemented simply by

pulling back cocycles if we were using the bar resolution: however the pullback, even

via a continuous map, of a function in L∞ (hence an equivalence class of functions)

does not necessarily give a well defined equivalence class of functions. We recall here

how it is however possible to implement the pullback in a rather natural way in the

case of cocycles which arise in geometric situations, once again using homological

algebra.

In fact, if X is a measurable G′-space, it is shown in [18, Proposition 2.1] that

the complex B∞(X•) of bounded measurable functions is a strong resolution of R.

Not knowing whether the modules are relatively injective, we cannot conclude that

the cohomology of the subcomplex of G′-invariants computes the continuous bounded

cohomology of G′, however we can deduce the existence of a functorially defined map

ε•X : H•(B∞(X•)G′
)
→ H•

cb(G′,R)

such that to any bounded measurable G′-invariant cocycle c : Xn+1 → R corresponds

canonically a class [c] ∈ Hn
cb(G′,R), [18, Corollary 2.2].

Let us now assume that there exists a Γ-equivariant measurable map ϕ : G/P → X,

where P < G is a closed amenable subgroup.

Example 2.34. — An example of such situation occurs when X is the space

M1(G′/P ′) of probability measures on the homogeneous space G′/P ′ with G′ a

semisimple Lie group and P ′ a minimal parabolic subgroup, in which case the

existence of the map ϕ follows immediately from the characterization of amenability

given in Proposition 2.15, as one can easily see by taking E to be the space of

continuous functions on G′/P ′, As = M1(G′/P ′) (hence constant with respect to

s ∈ S), and α(s, h) = ρ(h).

The main point of [18] is to show that the map ϕ can be used to implement the

composition

H•(B∞(X•)G′
) ε•X //H•

cb(G′,R)
ρ•b //H•

cb(L,R) .(2.6)

More specifically, we recall here the following definition

Definition 2.35. — Let X be a measurable G′-space. We say that the measurable map

c : Xn+1 → R is a strict measurable cocycle if c is defined everywhere and satisfies

everywhere the relation dc = 0.

Then we have:
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Theorem 2.36 (Burger–Iozzi [18]). — Let G,G′ be locally compact groups, let ρ : L →
G′ be a continuous homomorphism from a closed subgroup L < G, let P < G be a

closed amenable subgroup and let ϕ : G/P → X a ρ-equivariant measurable map into a

measurable G′-space X. If κ ∈ Hn
cb(G′,R) is a bounded cohomology class representable

by a G-invariant bounded strict measurable cocycle c ∈ B∞(Xn+1)G′ , then the image

of the pullback ρ
(n)
b (κ) ∈ Hn

cb(L,R) can be represented canonically by the cocycle in

ZL∞((G/P )n+1)L defined by

(x0, . . . , xn) 7→ c
(
ϕ(x0), . . . , ϕ(xn)

)
.(2.7)

Exercise 2.6. — Let Γ < PU(1, 1) be a (cocompact) surface group and (∂D2, λ) the

boundary of the hyperbolic disk D2 with the round measure λ. Then (Corollary 2.19)

H2
b(Γ,R) ∼= ZL∞alt

(
(∂D2)3,R

)Γ
.

Give an example of a class in H2
b(Γ,R) which cannot be represented by a strict point-

wise Γ-invariant Borel cocycle on (∂D2)3.

This illustrates the fact that given a measurable G-invariance cocycle, while it

is easy to make the cocycle either strict (see [68, Appendix B]) or everywhere G-

invariant, obtaining both properties at the same time is sometimes not possible.

2.7.2. The Transfer Map. — We need only one last bounded cohomological ingre-

dient. If L < G is a closed subgroup the injection L ↪→ G induces by contravariance

in cohomology the restriction map

r•R : H•
cb(G,R) → H•

cb(L,R) .

If we assume that L\G has a G-invariant probability measure µ, then the transfer

map

T• : Cb(G•)L → Cb(G•)G ,

defined by integration

T(n)f(g1, . . . , gn) :=

∫
L\G

f(gg1, . . . , ggn)dµ(g) ,(2.8)

for all (g1, . . . , gn) ∈ Gn, induces in cohomology a left inverse of r•R of norm one

T•b : H•
cb(L,R) → H•

cb(G,R) ,

(see [56, Proposition 8.6.2, pp.106-107]).

Notice that the functorial machinery does not apply directly to the transfer map,

as it is not a map of resolutions but it is only defined on the subcomplex of invariant

vectors. However, the following result, which will be obtained in greater generality in

§ 4.1.2, allows us anyway to use the resolution of L∞ functions on amenable spaces.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



É
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Lemma 2.37 (Monod [56]). — Let P,L < G be closed subgroups with P amenable, and

let

T•G/P :
(
L∞

(
(G/P )•

)L
, d•

)
→

(
L∞

(
(G/P )•

)G
, d•

)
(2.9)

be defined by

T
(n)
G/P f(x1, . . . , xn) :=

∫
L\G

f(gx1, . . . , gxn)dµ(g) ,(2.10)

for (x1, . . . , xn) ∈ (G/P )n, where µ is the G-invariant probability measure on L\G.

Then the diagram

H•
cb(L,R)

T•b //

∼=
��

H•
cb(G,R)

∼=
��

H•
cb(L,R)

T•G/P
// H•

cb(G,R)

(2.11)

commutes, where the vertical arrows are the canonical isomorphisms in bounded co-

homology extending the identity R → R.

Putting together all of these ingredients, one has a general formula which has

several applications to rigidity questions.

Proposition 2.38. — Let G,G′ be locally compact second countable groups and let L <

G be a closed subgroup such that L\G carries a G-invariant probability measure µ.

Let ρ : L→ G′ be a continuous homomorphism, X a measurable G′-space and assume

that there exists an L-equivariant measurable map ϕ : G/P → X, where P < G is

a closed subgroup. Let κ′ ∈ Hn
cb(G′,R) and let κ := T

(n)
b

(
ρ
(n)
b (κ′)

)
∈ Hn

cb(G,R). Let

c ∈ L∞
(
(G/P )n+1

)G
and c′ ∈ B∞(Xn+1)G′ be alternating cocycles representing κ

and κ′ respectively. If we assume that c′ is strict and that P is amenable then we have

that ∫
L\G

c′
(
ϕ(gx0), . . . , ϕ(gxn)

)
dµ(g) = c(x0, . . . , xn) + coboundary,(2.12)

for almost every (x0, . . . , xn) ∈ (G/P )n+1.

3. First Applications of “The Formula”

The above proposition is really just a careful reformulation of the implementation

of the bounded Toledo map, defined as the composition

T•b(ρ) := T• ◦ ρ•b : H•
cb(G′,R) → H•

cb(G,R)

of the pullback followed by the transfer map in continuous bounded cohomology. Like-

wise, its generalization (Proposition 4.9) will be a reformulation of the implementation
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of the pullback followed by the transfer map and by an appropriate change of coeffi-

cients. While for these two statements there is a unified treatment, in the applications

– which require that both Hn
c (G,R) and Hn

cb(G,R) are one dimensional – we have

to resort to a case by case study. The situation can be however summarized in the

following:

Principle 3.1. — Let G,G′ be locally compact second countable groups and let L < G

be a closed subgroup such that L\G carries a G-invariant probability measure µ. Let

ρ : L→ G′ be a continuous homomorphism, X a measurable G′-space and assume that

there exists an L-equivariant measurable map ϕ : G/P → X, where P < G is a closed

subgroup. Let κ′ = [c′] ∈ Hn
cb(G′,R) and let Hn

c (G,R) ∼= Hn
cb(G,R) = Rκ = R[c],

where c ∈ ZL∞
(
(G/P )n+1

)G
and c′ ∈ B∞(Xn+1)G′ are alternating cocycles and c′ is

strict. If P is amenable, then there exists an explicit constant λκ′ ∈ R such that∫
L\G

c′
(
ϕ(gx0), . . . , ϕ(gxn)

)
dµ(g) = λκ′c(x0, . . . , xn) + coboundary,(3.1)

for almost every (x0, . . . , xn) ∈ (G/P )n+1.

Remark 3.1. — 1. Notice that if for example the action of G on (G/P )n is ergodic,

then there is no coboundary term, as ergodicity is equivalent to the nonexistence

of G-invariant measurable maps (G/P )n → R which are not constant. This is

going to be the case in all of our applications.

2. Clearly the above formula would not be useful as is if we were interested in the

values of the measurable function ϕ on sets of measure zero. It is for this purpose

that in the application to deformation rigidity of lattices in complex hyperbolic

spaces, where we need to gather information about the “values” of ϕ on a chain

in the boundary of complex hyperbolic space (see § 5), we need to recur to the

use of coefficients coupled with the use of fibered products. This will be done

in § 4, after that we illustrate in the next section some of the applications of

Proposition 2.38 and Principle 3.1.

While there is no general proof of this principle, in each case the identification of

the constant λκ′ will follow from the interplay between the bounded Toledo map and

the corresponding map in continuous cohomology, that is from the commutativity of

the following diagram
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Hn
cb(G′,R) //

ρ•b
��

Hn
c (G′,R)

ρ•

��

Hn
cb(L,R)

T•b
��

Hn
c (L,R)

T•
��

Hn
cb(G,R)

∼= // Hn
c (G,R)

(3.2)

where the horizontal arrows are the obvious comparison maps between continuous

bounded and continuous cohomology, the map ρ• is the pullback in ordinary conti-

nuous cohomology, and the transfer map T• : H•
c(L,R) → H•

c(G,R) is defined by

integration on L\G if in addition this space is compact. This is the case in the appli-

cations we present in this section, and we refer the reader to § 5 for a further discussion

on this important point.

We give now a very short list of some situations in which the above formula is of

use. (Note that in all our examples, as remarked before. one can conclude that there

are no coboundaries.) Not all results are new, and our method does not even provide

a new proof in some cases. Nevertheless, we deem appropriate to discuss here possible

applicability of this method, as well as its present limitations.

3.1. Mostow Rigidity Theorem. — The celebrated theorem of Mostow asserts that,

in dimension n ≥ 3, any two compact hyperbolic manifolds M1 and M2 which are

homotopy equivalent are isometric. In his notes [62], Thurston provides a new proof

of this result, using measure homology (a generalization of `1-homology) as well as the

determination of the maximal ideal simplices in hyperbolic geometry. Since this last

result (later obtained by Haagerup and Munkholm [42]) was available at that time

only for n = 3, Thurston’s proof of Mostow Rigidity Theorem is limited to this case.

However, the proof contains in disguise exactly our formula (2.12) for all n ≥ 3, while

with our method we succeed only in proving the formula in the case in which n = 3,

because in the general case we do not have enough information about the comparison

map in higher degrees. In fact, while Hn
c

(
SO(1, n)

) ∼= R, in general it is not known

whether the comparison map Hn
cb

(
SO(1, n)

)
→ Hn

c

(
SO(1, n)

)
is injective for all n: if

n = 3 this follows from a result of Bloch, [8, 7].

So let M1,M2 be compact hyperbolic 3-manifolds with isomorphic fundamental

groups, set Γ := π1(M1) < SO(1, 3) =: G which is a cocompact lattice and let

Γ′ := π1(M2) < SO(1, 3) =: G′. Let G/P = X = S2 = ∂H3
R and let ϕ : S2 → S2 be

the ρ-equivariant boundary homeomorphism, where ρ : Γ → Γ′ is an isomorphism.

Let c = c′ be the volume 3-cocycle on ideal 3-simplices defining cohomology classes
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É
pr

eu
ve

SM
F

23
ja

nv
ie
r
20

08

A USEFUL FORMULA 271

κ = κ′ ∈ H3
cb

(
SO(1, 3),R

)
. Then one obtains that λκ′ = vol(M2)

vol(M1)
, and hence the

formula (2.12) reads∫
Γ\SO(1,3)

vol(ϕ(gξ0), . . . , ϕ(gξ3))dµ(g) =
vol(M2)

vol(M1)
vol(ξ0, . . . , ξ3) ,(3.3)

where vol(ξ0, . . . , ξ3) is the volume of the ideal simplex inH3
R with vertices ξ0, . . . , ξ3, µ

is the normalized Haar measure on Γ\SO(1, 3) and equality holds almost everywhere.

Because the measure µ is a probability measure, it follows that vol(M2) ≤ vol(M1),

from which, interchanging the role of M1 and M2 one obtains that M1 and M2 have

the same volume. Now observe that both sides of (3.3) are continuous functions

on (S2)4 which, coinciding almost everywhere, are therefore equal for all values of

(ξ0, . . . , ξ3) ∈ (S2)4. Thus, whenever vol(ξ0, . . . , ξ3) is maximal, we deduce from (3.3)

taking into account that vol(M1) = vol(M2) and µ is a probability measure, that

vol
(
ϕ(ξ0), . . . , ϕ(ξ3)

)
is maximal as well. From this, one deduces like in [62], that the

isomorphism between the fundamental groups extends to an isomorphism between

the ambient connected groups.

Let us relate this to the `1-homology approach of Gromov–Thurston. If f : H3
R →

H3
R denotes a lift of a homotopy equivalence associated to the isomorphism ρ : Γ → Γ′,

then Thurston’s smearing technique implies that if σ : ∆3 → H3
R is any straight

simplex, then∫
Γ\SO(1,3)

vol
(
f
(
gσ(0)

)
, . . . , f

(
gσ(3)

))
dµ(g) = vol(σ)

vol(M2)

vol(M1)
.

One can then follow an idea of Pansu, using the fact that f extends continuously to the

boundary with extension f : S2 → S2 and let the vertices of σ tend to (ξ0, . . . , ξ3) ∈
(S2)4 to obtain (3.3).

The strength of this argument is that it extends to all real hyperbolic spaces Hn
R.

Its limitation however lies in the fact that it requires very strong conditions on ρ in

order to have a map extending “nicely” to the boundary. Besides, it cannot be applied

for example in Matsumoto’s theorem since there is no symmetric space associated to

Homeo+(S1).

3.2. Matsumoto’s Theorem. — Let Γg be the fundamental group of a compact oriented

surface Σg of genus g ≥ 2 and let ρ : Γg → Homeo+(S1) be an action of Γg on the

circle by orientation preserving homeomorphisms. Let e ∈ H2(Homeo+(S1),Z) be the

Euler class defined by the central extension

0 //Z // HomeoZ(R) // Homeo+(S1) //0 ,

where HomeoZ(R) is the group of homeomorphisms of the real line which commute

with the integral translations. Then ρ(2)(e) ∈ H2(Γg,Z) and, since Σg is aK(Γg, 1) and

hence H2(Γg,Z) ∼= H2(Σg,Z), we can evaluate ρ(2)(e) on the fundamental class [Σg] ∈
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É
pr

eu
ve

SM
F

23
ja

nv
ie
r
20

08

272 M. BURGER & AL. IOZZI

H2(Σg,Z) of Σg. We thus obtain a numerical invariant attached to the representation

ρ, called the Euler number eu(ρ) of ρ,

eu(ρ) :=
〈
ρ(2)(e), [Σg]

〉
,

which turns out to be uniformly bounded with respect to the representation. In fact,

we have the Milnor–Wood inequality [52, 65]

|eu(ρ)| ≤ |χ(Σg)| ,

and we say that a representation is maximal if |eu(ρ)| = |χ(Σg)|. Examples of maximal

representations are for instance hyperbolizations (that is, faithful representations into

PU(1, 1) such that the image ρ(Γg) is a lattice in PU(1, 1). Matsumoto’s theorem

provides some kind of converse to this statement, namely:

Theorem 3.2 (Matsumoto [51]). — If ρ is maximal, then ρ is semiconjugate to a hy-

perbolization.

Recall that a semiconjugacy in this context is the map given on S1 by a mono-

tone increasing map from the real line to itself which commutes with translations by

integers.

Our proof in [44] follows once again from the formula in (2.12), where we take

G = PU(1, 1), G′ = Homeo+(S1), PU(1, 1)/P = S1, X = M1
(
PU(1, 1)/P

)
, c the

orientation cocycle and c′ its restriction to PU(1, 1). Then one can prove that λ =
eu(ρ)
χ(Σg) and thus one obtains that (2.12) reads∫

Γ\PU(1,1)

(
ϕ(gb0)ϕ(gb1)ϕ(gb2)

)
(c)dµ(g) =

eu(ρ)

χ(Σg)
c(b0, b1, b2) ,

for almost every b0, b1, b3 ∈ S1 and where dµ is the normalized measure on Γ\PU(1, 1).

Since µ is a probability measure, once again we obtain the Milnor–Wood inequality

|eu(ρ)| ≤
∣∣χ(Σg)

∣∣. Moreover, if we have equality, then the above formula implies that

the boundary map ϕ takes values in S1 itself. It follows that ϕ is “almost” order

preserving, in the sense that it preserves the order of almost all triples of points in S1.

An“inverse” of ϕ in an appropriate sense provides the explicit semiconjugacy between

the representation ρ and an hyperbolization [44].

3.3. Maximal Representations. — Before Matsumoto, Goldman proved in his thesis

the full converse of the above statement for a representation into PU(1, 1), namely he

showed that if ρ : Γg → PU(1, 1) is maximal, then it is indeed a hyperbolization. The

generalization of this result to representations into the (connected component of the)

isometry group of a Hermitian symmetric space was the starting point of the results

exposed in this section.
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So let, as above, Σg be a compact oriented surface of genus g ≥ 2 and fundamental

group Γg := π1(Σg), and let ρ : Γg → G′ be a homomorphism into the connected

component G′ = Iso(X ′)◦, of the isometry group of a Hermitian symmetric space X ′.

Associated to ρ we can define an invariant τρ as follows: let f : Σg → Σg ×ρ X ′ be a

smooth section of the flat bundle with fiber X ′ associated to the principal Γg-bundle

Σ̃g → Σg, and let f̃ : Σ̃g → X ′ be a smooth Γg-equivariant lift of f . The Kähler form

ωX ′ on X ′ pulls back to a Γg-invariant closed two-form f̃∗ωX ′ on Σ̃g, which hence

descends to a closed two form on Σg. Since the map f̃ is unique up to Γg-equivariant

homotopy, the integral

τρ :=

∫
Σg

f̃∗ωX ′

depends only on ρ and defines the Toledo invariant of ρ. Moreover, while the above

definition would not have been possible in the case of a representation of Γg into

Homeo+(S1), we could have defined τρ analogously to § 3.2 as

τρ :=
〈
ρ(2)(κ), [Σg]

〉
and in fact it can be proven that the two definitions coincide. For more interpretations

of the Toledo invariant see for instance [21]. At any rate, we also have an analogue of

the Milnor–Wood inequality, namely

|τρ| ≤
∣∣χ(Σg)

∣∣rX ′ ,(3.4)

where rX ′ is the rank of the symmetric space X ′ [30, 29], and we say that ρ is maximal

if |τρ| =
∣∣χ(Σg)

∣∣rX ′ .
Before we state the next result, recall that an important subclass of Hermitian

symmetric spaces consists of those of tube type, that is those, like for instance the

Poincaré disk, which are biholomorphically equivalent to Rn × iC, where C ⊂ Rn is

a convex open cone. There are several characterizations of the Hermitian symmetric

spaces of tube type, but the relevant one here lies in the fact that it is only for these

Hermitian symmetric spaces that the cocycle βX ′ in (2.5) takes a finite number of

values [24]. Then we have:

Theorem 3.3 (Burger-Iozzi-Wienhard [22, 23]). — Let ρ : Γg → G′ be a maximal repre-

sentation. Then ρ is faithful with discrete image. Moreover the Zariski closure of the

image of ρ is reductive and the associated symmetric space is of tube type.

A thorough study of maximal representations has been carried out in several papers,

see [63, 43, 22, 23, 10] for example, and many additional interesting properties have

been proven. We have limited ourselves here to present the features which are a direct

consequence of Proposition 2.38 and Corollary 3.1. To illustrate the technique, we

suppose here that the image of the representation ρ is Zariski dense in G’. In this case
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we have that G = SU(1, 1), and Γ is the image of the compact surface group via a

hyperbolization, SU(1, 1)/P ∼= S1, X is the Shilov boundary of X ′ (that is the unique

closed G′-orbit in the topological boundary of the bounded domain realization of X ′),

while c′ = βX ′ and c = βD2 as defined in (2.5). Then one obtains that λκ′ =
τρ∣∣χ(Σg)

∣∣
and hence (2.12) reads∫

Γ\PU(1,1)

βX ′
(
ϕ(gx0), ϕ(gx1), ϕ(gx2)

)
dµ(g) =

τρ∣∣χ(Σg)
∣∣βD2(x0, x1, x2) .

Once again, since µ is a probability measure, we obtain the inequality (3.4), and if ρ

is maximal we have that

βX ′
(
ϕ(x0), ϕ(x1), ϕ(x2)

)
= rX ′βD2(x0, x1, x2)(3.5)

for almost all (x0, x1, x2) ∈ (S1)3.

The equality (3.5) has then far reaching consequences. In fact, e2πiβX is on Š(3) a

rational function and tube type domains are characterized by the property that this

rational function is constant (Burger–Iozzi [19] and Burger–Iozzi–Wienhard [24]); but

the equality (3.5) implies, taking into account that ρ(Γ) is Zariski dense, that e2πiβX

is constant on a Zariski dense subset of Š(3), hence constant, which implies that X ′

is of tube type. Using then that if X ′ is of tube type the level sets of βX ′ on Š(3) are

open, one deduces easily that ρ(Γ) is not dense and, being Zariski dense, is therefore

discrete. The fact that ρ is injective requires more elaborate arguments in which (3.5)

enters essentially [22, 23].

4. Toward “The Formula” with Coefficients

In this section we develop some tools in bounded cohomology for locally compact

groups and their closed subgroups which will be applied to our specific situation. In

particular we prove a formula in § 4.2 of which Proposition 2.38 is a particular case.

4.1. With the Use of Fibered Products. — The invariants we consider in this paper

are bounded classes with trivial coefficients; however applying a judicious change of

coefficients – from R to the L∞ functions on a homogeneous space – we capture

information which otherwise would be lost by the use of measurable maps (see the

last paragraph of § 2 and Remark 5.6).

In doing so, we first find ourselves to have to deal with a somewhat new situation.

More precisely, while the functorial machinery developed in [27], [56] and [18] ap-

plies in theory to general strong resolutions, in practice one ends up working mostly

with spaces of functions on Cartesian products. In this section we deal with spaces

of functions on fibered products (of homogeneous spaces), whose general framework
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would be that of complexes of functions on appropriate sequences (Sn, νn) of (ame-

nable) spaces which would be analogues of simplicial sets in the category of measured

spaces.

In particular we shall first show in § 4.1.1 that we can compute the continuous

bounded cohomology with some L∞ coefficients as the cohomology of the complex of

L∞ functions on appropriate fibered products, then in § 4.1.2 and § 4.1.3 respectively

we shall see how to implement the transfer map and the pullback using this particular

resolution.

4.1.1. Realization on Fibered Products. — The goal of this section is to define the

fibered product of homogeneous spaces and prove that the complex of L∞ functions

on fibered products satisfies all properties necessary to be used to compute bounded

cohomology. Observe that because of the projection in (4.1), we shall deal here with

cohomology with coefficients.

Let G be a locally compact, second countable group and P,H closed subgroups

of G such that P ≤ H. We define the n-fold fibered product (G/P )n
f of G/P with

respect to the canonical projection p : G/P → G/H to be, for n ≥ 1, the closed subset

of (G/P )n defined by

(G/P )n
f :=

{
(x1, . . . , xn) ∈ (G/P )n : p(x1) = · · · = p(xn)

}
,

and we set (G/P )n
f = G/H if n = 0. The invariance of (G/P )n

f for the diagonal

G-action on (G/P )n induces a G-equivariant projection

pn : (G/P )n
f → G/H(4.1)

whose typical fiber is homeomorphic to (H/P )n.

A useful description of (G/P )n
f as a quotient space may be obtained as follows.

Considering H/P as a subset of G/P , the map

qn : G× (H/P )n → (G/P )n
f

(g, x1, . . . , xn) 7→ (gx1, . . . , gxn)
(4.2)

is well defined, surjective, G-equivariant (with respect to the G-action on the first

coordinate on G × (H/P )n and the product action on (G/P )n
f ) and invariant under

the right H-action on G× (H/P )n defined by

(g, x1, . . . , xn)h := (gh, h−1x1, . . . , h
−1xn) .(4.3)

It is then easy to see that qn induces a G-equivariant homeomorphism(
G× (H/P )n

)
/H → (G/P )n

f ,

which hence realizes the fibered product (G/P )n
f as a quotient space.
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Let now µ and ν be Borel probability measures respectively on G and H/P , such

that µ is in the class of the Haar measure on G and ν is in the H-invariant measure

class on H/P . The pushforward νn = (qn)∗(µ×νn) of the probability measure µ×νn

under qn is then a Borel probability measure on (G/P )n
f whose class is G-invariant

and thus gives rise to Banach G-modules L∞((G/P )n
f ) and G-equivariant (norm)

continuous maps

dn : L∞
(
(G/P )n

f

)
→ L∞

(
(G/P )n+1

f

)
, for n ≥ 0 ,

defined as follows:

• d0f(x) := f(p(x)), for f ∈ L∞(G/H), and

• dnf(x) =
∑n+1

i=1 (−1)i−1f
(
pn,i(x)

)
, for f ∈ L∞

(
(G/P )n

f

)
and n ≥ 1,

where

pn,i : (G/P )n+1
f → (G/P )n

f(4.4)

is obtained by leaving out the i-th coordinate. Observe that from the equality

(pn,i)∗(νn+1) = νn, it follows that dn is a well defined linear map between L∞ spaces.

Then:

Proposition 4.1. — Let L ≤ G be a closed subgroup.

(i) The complex

0 //L∞(G/H) // . . . //L∞
(
(G/P )n

f

) dn //L∞
(
(G/P )n+1

f

)
// . . .

is a strong resolution of the coefficient L-module L∞(G/H) by Banach L-

modules.

(ii) If P is amenable and n ≥ 1, then the G-action on (G/P )n
f is amenable and

L∞
(
(G/P )n

f

)
is a relatively injective Banach L-module.

Using [27, Theorem 2] (see also § 2), this implies immediately the following:

Corollary 4.2. — Assume that P is amenable. Then the cohomology of the complex of

L-invariants

0 // L∞(G/P )L // L∞
(
(G/P )2f

)L // . . .

is canonically isomorphic to the bounded continuous cohomology

H•
cb

(
L,L∞(G/H)

)
of L with coefficients in L∞(G/H).
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Remark 4.3. — Just like for the usual resolutions of L∞ functions on the Cartesian

product of copies of an amenable space (see § 2 or [27]), it is easy to see that the

statements of Proposition 4.1 and of Corollary 4.2 hold verbatim if we consider instead

the complex
(
L∞alt

(
(G/P )•

)
, d•

)
, where L∞alt

(
(G/P )n

f

)
is the subspace consisting of

functions in L∞
(
(G/P )n

f

)
which are alternating (observe that the symmetric group

in n letters acts on (G/P )n
f ).

Proof of Proposition 4.1. — The proof of Proposition 4.1(i) consists in the construc-

tion of appropriate contracting homotopy operators. Since it is rather long and tech-

nical, it will be given in the appendix at the end of this paper.

To prove Proposition 4.1(ii), we start by observing that if n ≥ 1 we have by

definition the inclusion (G/P )n
f ⊂ (G/P )n and hence there is a map of G-spaces

π : (G/P )n
f → G/P,

obtained by projection on the first component. Since π∗(νn) = ν, π realizes the mea-

sure G-space (G/P )n
f as an extension of the measure G-space G/P . If P is amenable,

the latter is an amenable G-space and hence the G-space (G/P )n
f is also amenable

[67]. Since L is a closed subgroup, (G/P )n
f is also an amenable L-space [68, Theo-

rem 4.3.5] and hence L∞
(
(G/P )n

f

)
is a relatively injective L-module, (Theorem 2.17

or [27]).

4.1.2. An Implementation of the Transfer Map. — We recalled in (2.8) the definition

of the transfer map, and remarked that the functorial machinery does not apply

directly because T• is not a map of resolutions but is defined only on the subcomplex

of invariant vectors. The point of this subsection is to see how the transfer map can

be implemented, in a certain sense, on the resolution by L∞ functions on the fibered

product defined in § 4.1.1.

LetH,P be closed subgroups of G such that P < H. We assume that P is amenable

so that, by Proposition 4.1, the complex
(
L∞

(
(G/P )•f

)
, d•

)
is a strong resolution

of the coefficient module L∞(G/H) by relatively injective L-modules. For n ≥ 1,

φ ∈ L∞
(
(G/P )n

f

)L
, and (x1, . . . , xn) ∈ (G/P )n

f , let

(τ
(n)
G/Pφ)(x1, . . . , xn) :=

∫
L\G

φ(gx1, . . . , gxn)dµ(ġ) .(4.5)

This defines a morphism of complexes

τ•G/P :
(
L∞

(
(G/P )•f

)L)
→

(
L∞

(
(G/P )•f

)G)
and gives a left inverse to the inclusion(

L∞
(
(G/P )•f

)G)
↪→

(
L∞

(
(G/P )•f

)L)
.
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The induced map in cohomology

τ•G/P : H•
cb

(
L,L∞(G/H)

)
→ H•

cb

(
G,L∞(G/H)

)
is thus a left inverse of the restriction map r•L∞(G/H).

Lemma 4.4. — With the above notations, and for any amenable group P , the diagram

H•
cb(L,R)

T•b //

θ•L
��

H•
cb(G,R)

θ•G
��

H•
cb

(
L,L∞(G/H)

) τ•G/P
// H•

cb

(
G,L∞(G/H)

)
(4.6)

commutes, where θ• is the canonical map induced in cohomology by the morphism of

coefficients θ : R → L∞(G/H).

Observe that if in the above lemma we take H = G, then the fibered product

(G/P )n
f becomes the usual Cartesian product (G/P )n, and the cohomology of the

complex of L-invariants
(
L∞

(
(G/P )•

)L
, d•

)
computes as usual the bounded cohomo-

logy of L with trivial coefficients. Hence we obtain once again Lemma 2.37.

Proof of Lemma 4.4. — Let Gn
f be the n-fold fibered product with respect to the

projection G → G/H. The restriction of continuous functions defined on Gn to the

subspace Gn
f ⊂ Gn induces a morphism of strong L-resolutions by L-injective modules

R• : Cb(G•) → L∞(G•f )

extending θ : R → L∞(G/H), so that the diagram

Cb(Gn)L T(n)
//

R
(n)
L
��

Cb(Gn)G

R
(n)
G

��

L∞(Gn
f )L

τ
(n)
G // L∞(Gn

f )G

(4.7)

commutes.

Likewise, the projection βn : Gn
f → (G/P )n

f , for n ≥ 1, gives by precomposition a

morphism of strong L-resolutions by L-injective modules

β• : L∞((G/P )•f ) → L∞(G•f )
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extending the identity L∞(G/H) → L∞(G/H) and, as before, the diagram

L∞(Gn
f )L

τ
(n)
G // L∞(Gn

f )G

L∞
(
(G/P )n

f

)L

β
(n)
L

OO

τ
(n)
G/P
// L∞

(
(G/P )n

f

)G
,

β
(n)
G

OO
(4.8)

commutes.

The composition of the map induced in cohomology by R• with the inverse of the

isomorphism induced by β• in cohomology realizes therefore the canonical map

θ•L : H•
cb(L,R) → H•

cb

(
L,L∞(G/H)

)
(4.9)

induced by the change of coefficient θ : R → L∞(G/H), [56, Proposition 8.1.1]. Hence

the commutative diagrams induced in cohomology by (4.7) and (4.8) can be combined

to obtain a diagram

H•
cb(L,R)

T•b //

R•L
��

θ•L

((

H•
cb(G,R)

R•G
��

θ•G

vv

H•
cb

(
L,L∞(G/H)

) τ•G //

(β•L)−1 ∼=
��

H•
cb

(
G,L∞(G/H)

)
(β•G)−1∼=
��

H•
cb

(
L,L∞(G/H)

) τ•G/P
// H•

cb

(
G,L∞(G/H)

)
whose commutativity completes the proof.

4.1.3. An Implementation of the Pullback. — In this section we shall use the results

of § 2.7.1 (see also [18]) to implement the pullback in bounded cohomology followed

by the change of coefficients, by using the resolution by L∞ functions on the fibered

product.

We saw already in § 2.7.1 how to implement the composition (2.6) with the use

of a boundary map ϕ : G/Q → X, where Q < G is an amenable subgroup and X is

a measurable G′-space. The point of this section is to move one step further and to

show how to represent canonically the composition of the above maps with the map

θ•L in (4.9).

To this purpose, let P,H,Q be closed subgroups of G such that P ≤ H ∩ Q, and

let us consider the map

G×H/P → G/Q

(g, xP ) 7→ gxQ
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which, composed with ϕ, gives a measurable map ϕ̃ : G ×H/P → X which has the

properties of being:

– L-equivariant with respect to the action by left translations on the first variable:

ϕ̃(γg, ẋ) = ρ(γ)ϕ̃(g, ẋ) for all γ ∈ L and a. e. (g, ẋ) ∈ G×H/P ;

– H-invariant with respect to the right action considered in (4.3), namely

ϕ̃(gh−1, hẋ) = ϕ̃(g, ẋ) for all h ∈ H and all (g, ẋ) ∈ G×H/P .

For every n ≥ 1, the measurable map

ϕ̃n
f : G× (H/P )n −→ Xn

(g, ẋ1, . . . , ẋn) 7→
(
ϕ̃(g, ẋ1), . . . , ϕ̃(g, ẋn)

)
gives, in view of (4.2), (i) and (ii), a measurable L-equivariant map ϕn

f : (G/P )n
f → Xn

defined by the composition

ϕn
f : (G/P )n

f

q−1
n //

(
G× (H/P )n

)
/H

ϕ̃n
f
//Xn ,(4.10)

such that for every 1 ≤ i ≤ n+ 1 the diagram

(G/P )n+1
f

ϕn+1
f
//

pn,i

��

Xn+1

��
(G/P )n

f

ϕn
f

// Xn

commutes, where pn,i was defined in (4.4) and the second vertical arrow is the map

obtained by dropping the i-th coordinate. Precomposition by ϕn
f gives thus rise to a

morphism of strong L-resolutions

0 // R� _

��

// . . . // B∞(Xn)

ϕ
(n)
f
��

// . . .

0 // L∞(G/H) // . . . // L∞
(
(G/P )n

f

)
// . . .

extending the inclusion R ↪→ L∞(G/H). Let us denote by

ϕ•f : H•(B∞(X•)G′
)
→ H•

cb

(
L,L∞(G/H)

)
(4.11)

the map obtained in cohomology.

One more technical result which collects many functoriality statements needed in

this paper is a small modification of a lemma in [56].

Lemma 4.5. — Let G,G′ be locally compact groups, ρ : G → G′ a continuous homo-

morphism, E a G-coefficient module and F a G′-coefficient module. Let α : F → E

be a morphism of G-coefficient modules, where the G-module structure on F is via

ρ. Let (E•) be a strong G-resolution of E by relatively injective G-modules, and let
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(F•) be a strong G′-resolution of F . Then any two extensions of the morphism α to a

morphism of G-complexes induce the same map in cohomology

H•(FG′

•
)
→ H•(EG

•
)
.

Proof. — By [56, Lemma 7.2.6] any two extensions of α are G-homotopic and hence

induce the same map in cohomology

H•(F ρ(G)
•

)
→ H•(EG

•
)
.

Moreover, the inclusion of complexes FG′

• ⊂ F
ρ(G)
• induces a unique map in cohomo-

logy

H•(FG′

•
)
→ H•(F ρ(G)

•
)
,

hence proving the lemma.

Proposition 4.6. — Assume that P is amenable. Then the map ϕ•f defined in (4.11)

coincides with the composition

H•(B∞(X•)G′
) ε•X //H•

cb(G′,R)
ρ•b //H•

cb(L,R)
θ•L //H•

cb

(
L,L∞(G/H)

)
.

Proof. — By Proposition 4.1
(
L∞

(
(G/P )•f

)
, d•

)
is a strong resolution by relatively

injective L-modules, so it is enough to apply Lemma 4.5 with G = L, E = L∞(G/H),

F = R the trivial coefficient G′-module, F• = B∞(X•), and E• =
(
L∞(G/P )•f

)
.

For further use we record the explicit reformulation of the above proposition:

Corollary 4.7. — Let G,G′ be locally compact second countable groups, L, H, P ,

Q ≤ G closed subgroups with P ≤ H ∩ Q, and assume that P is amenable. Let

ρ : L → G′ be a continuous homomorphism, X a measurable G′-space and assume

that there is an L-equivariant measurable map ϕ : G/Q→ X. Let κ′ ∈ Hn
cb(G′,R) be a

bounded cohomology class which admits as representative a bounded strict G′-invariant

measurable cocycle c′ : Xn+1 → R. Then the class

θ
(n)
L

(
ρ
(n)
b (κ′)

)
∈ Hn

cb

(
L,L∞(G/H)

)
is represented by the L-invariant essentially bounded measurable cocycle

c̃′ : (G/P )n+1
f → R

defined by

c̃′(x0, x1, . . . , xn) := c′
(
ϕn

f (x0, x1, . . . , xn)
)
,(4.12)

where ϕn
f is defined in (4.10).
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Remark 4.8. — Consider now that case in which L = G = G′, ρ = Id (so that we can

take ϕ = Id) and X = G/Q; if the class κ ∈ Hn
cb(G,R) admits as representative a

bounded strict G-invariant Borel cocycle c : (G/Q)n+1 → R, then under the change

of coefficients R → L∞(G/H), the class

θ
(n)
G (κ) ∈ H

(n)
cb

(
G,L∞(G/H)

)
is represented by the bounded strict G-invariant Borel cocycle

c̃ : (G/P )n+1
f → R

defined by

c̃(x1, . . . , xn+1) := c(x1Q, . . . , xn+1Q) .(4.13)

4.2. “The Formula”, finally. — We apply now all the results obtained so far to prove

finally a generalization of the Formula in Proposition 2.38. In this section we have the

following standing assumptions:

• G and G′ are locally compact second countable groups,

• L,H,P,Q ≤ G are closed subgroups with P ≤ H ∩Q,

• L\G carries a G-invariant probability measure µ,

• X is a measurable G′-space,

• there is a ρ-equivariant measurable map ϕ : G/Q→ X, where ρ : L→ G′ be a

continuous homomorphism, and ϕn+1
f is the map defined in (4.10),

• κ′ ∈ Hn
cb(G′,R) is represented by an alternating strict cocycle c′ ∈ B∞(Xn+1)G′ ,

and c̃′ : (G/P )n+1
f → R is the corresponding alternating cocycle defined in

(4.12).

• κ ∈ Hn
cb(G,R) is represented by an alternating G-invariant cocycle c ∈

ZL∞
(
(G/Q)n+1

)G
and c̃ : (G/P )n+1

f → R is the corresponding alternating

cocycle defined in (4.13).

Proposition 4.9. — If κ := T
(n)
b

(
ρ
(n)
b (κ′)

)
∈ Hn

cb(G,R) and P is amenable, we have∫
L\G

c̃′
(
ϕn+1

f (gx0, . . . , gxn+1)
)
dµ(ġ) = c̃(x1, . . . , xn+1) + coboundary

for a. e. (x1, . . . , xn+1) ∈ (G/P )n+1
f .

Remark 4.10. — If H were to be ergodic on (H/P )n, as for instance it is often the

case if n = 2, then there would be no coboundary. In fact, in this case G would act

ergodically on (G/P )2f because it acts on the basis of the fibration (G/P )2f → G/H

transitively with stabilizer H, which then by hypothesis acts ergodically on the typical

fiber homeomorphic to (H/P )2. Hence L∞((G/P )2f )G = R. Thus any coboundary

would be constant and hence zero, being the difference of two alternating functions.
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Principle 4.1. — If Hn
c (G,R) ∼= Hn

cb(G,R) = Rκ = R[c], and P is amenable, there

exists an explicit constant λκ′ ∈ R such that∫
L\G

c̃′
(
ϕn+1

f (gx0, . . . , gxn+1)
)
dµ(ġ) = λκ′ c̃(x1, . . . , xn+1) + coboundary

for a. e. (x1, . . . , xn+1) ∈ (G/P )n+1
f .

Proof of Proposition 4.9. — The commutativity of the square in the following dia-

gram (see Lemma 4.4)

Hn
(
B∞(Xn+1)G′

) ω
(n)
X // Hn

cb(G′,R)
ρ
(n)
b // Hn

cb(L,R)
θ
(n)
L //

T
(n)
b

��

Hn
cb

(
L,L∞(G/H)

)
τ

(n)
G/P
��

Hn
(
B∞((G/Q)n+1)G

) ω
(n)
G/Q

// Hn
cb(G,R)

θ
(n)
G // Hn

cb

(
G,L∞(G/H)

)
applied to the class ρ

(n)
b (κ′) ∈ Hn

cb(L,R) reads

τ
(n)
G/P

(
θ
(n)
L

(
ρ
(n)
b (κ′)

))
= θ

(n)
G

(
T

(n)
b

(
ρ
(n)
b (κ′)

))
= θ

(n)
G (κ) .

Hence the representatives for the classes θ
(n)
G (κ) and θ

(n)
L

(
ρ
(n)
b (κ′)

)
chosen according

to Corollary 4.7 satisfy the relation

τ
(n)
G/P (c̃′) = c̃+ db ,

where b ∈ L∞
(
(G/P )n

f

)G
, which, using the definition of τ

(n)
G/P in (4.5) implies that∫

L\G
c̃′

(
ϕn+1

f (gx0, . . . , gxn)
)
dµ(ġ) = c̃(x0, . . . , xn) + db

for a. e. (x0, . . . , xn) ∈ (G/P )n+1
f .

Notice that if G = H and Q = P , we obtain Proposition 2.38.

5. One More Application of “The Formula”:
Deformation Rigidity of Lattices of Hyperbolic Isometries

As alluded to at the beginning of § 3, the transfer map

T• : H•
c(L,R) → H•

c(G,R)(5.1)

makes sense only if L\G is compact as the restriction map (of which the transfer

map would be a left inverse) is often not injective if L is only of finite covolume,

(see [20]). So the diagram (3.2) is not complete, but in some cases, as for instance

if G is a connected semisimple Lie group, the missing arrow can be replaced by

a more complicated diagram involving the complex of L2 differential forms on the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008



É
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corresponding symmetric space. For a very thorough discussion of this point we refer

the reader to [20] from where we extract what we need in the following discussion.

The Kähler form ωp on complex hyperbolic spaces Hp
C is the unique (up to scalars)

two-form on Hp
C which is invariant for the action of SU(1, p). Let κp be the Kähler

class, that is the continuous cohomology class in H2
c

(
SU(1, p),R

)
corresponding to ωp

under the Van Est isomorphism

H2
c

(
SU(1, p)

) ∼= Ω2(Hp
C)SU(1,p) .

If Γ < SU(1, p) is a (torsionfree) lattice, let H•
2(M) denote the L2-cohomology of

the finite volume hyperbolic manifold M := Γ\Hp
C, that is the cohomology of the

complex of smooth differential forms α on M such that α and dα are in L2. Under

the assumption that p ≥ 2, Zucker proved [70] that H2
2(M) injects into the de Rham

cohomology H2
dR(M) ∼= H2(Γ,R), while if Γ is cocompact (and p is arbitrary) we

have by Hodge theory that H2
2(M) = H2

dR(M). Furthermore, if ρ
(2)
dR(κp) denotes the

class in H2
dR(M) which corresponds to the pullback ρ(2)(κp) ∈ H2(Γ,R), we have the

following:

Proposition 5.1. — [20, Corollary 4.2] Let ρ : Γ → PU(1, q) be a homomorphism of

a lattice Γ < SU(1, p). The pullback ρ
(2)
dR(κp) of the Kähler class is in H2

2(M) ↪→
H2

dR(M).

Denoting by 〈 , 〉 the scalar product in H2
2(M) and by ωM ∈ H2

2(M) the L2-

cohomology class defined by the Kähler form on M induced by ωp, we define an

invariant associated to the homomorphism ρ : Γ → PU(1, q), by

iρ :=
〈ρ(2)

dR(κq), ωM 〉
〈ωM , ωM 〉

.(5.2)

Proposition 5.2. — [16] If either Γ is cocompact or p ≥ 2, the map ρ 7→ iρ is constant

on connected components of the representation variety Rep
(
Γ,PU(1, q)

)
.

We have then the following global rigidity result:

Theorem 5.1 (Burger–Iozzi [17, 16], Koziarz–Maubon [47]). — Assume that Γ <

SU(1, p) is a lattice and p ≥ 2. Then |iρ| ≤ 1 and equality holds if and only if

there is an isometric embedding of the corresponding complex hyperbolic spaces

Hp
C → Hq

C which is ρ-equivariant.

Corollary 5.2 (Burger–Iozzi [17, 16], Koziarz–Maubon [47]). — There are no nontrivial

deformations of the restriction to Γ of the standard embedding SU(1, p) ↪→ SU(1, q).
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Our proof of the above theorems relies on the techniques developed in this paper

(Proposition 4.9 in particular), on [20] and on [16]. An alternative proof using har-

monic maps, as well as an overview of the history and context of the topic, can be

found in the paper by Koziarz and Maubon [47]. The above corollary in the case in

which Γ is cocompact is a result of Goldman and Millson [38]. If on the other hand

p = 1, Gusevskii and Parker [41] constructed nontrivial quasi-Fuchsian deformations

of a noncocompact lattice Γ < SU(1, 1) into PU(1, 2); however, it is still possible

to conclude the following result which generalizes the case in which Γ is a compact

surface group, [63]:

Theorem 5.3 ([15, 20]). — Let Γ < SU(1, 1) be a lattice and ρ : Γ → PU(1, q) a repre-

sentation such that |iρ| = 1. Then ρ(Γ) leaves a complex geodesic invariant.

We turn now to a short description of how Theorem 5.1 follows from Proposition 4.9

(using also results from [20] and [16]).

The ideal boundary ∂Hp
C of complex hyperbolic p-space Hp

C is identified with the

projectivized cone of null vectors

∂Hp
C = C×\

{
x ∈ Cp+1 : (x, x) = 0

}
.

and carries a rich geometry whose “lines”are the chains, namely boundaries of com-

plex geodesics in Hp
C. The “geometry of chains” was first studied by E. Cartan who

showed that, analogously to the Fundamental Theorem of Projective Geometry [4,

Theorem 2.26], any automorphism of the incidence graph of the geometry of chains

comes, for p ≥ 2, from an isometry of Hp
C, [28]. Closely connected to this is Cartan’s

invariant angulaire cp introduced in the same paper [28] and recalled in (2.4) in § 2.3.

Observe that |cp| = 1 exactly on triples of points which belong to a chain; moreo-

ver it represents the multiple of the bounded Kähler class 1
πκ

b
p ∈ H2

cb

(
SU(1, p),R)

)
[19], that is of the bounded cohomology class which corresponds to the Kähler class

κp ∈ H2
c

(
SU(1, p),R

)
under the isomorphism in Theorem 2.30.

Let us assume now that L = Γ < SU(1, p) is a lattice and move to the main formula,

which will be an implementation of Proposition 4.9 in our concrete situation. Let Cp

be the set of all chains in ∂Hp
C and, for any k ≥ 1, let

C{k}p :=
{
(C, ξ1, . . . , ξk) : C ∈ Cp, (ξ1, . . . , ξk) ∈ Ck

}
be the space of configurations of k-tuples of points on a chain. Both Cp and C{1}p are

homogeneous spaces of SU(1, p). In fact, the stabilizer H in G of a fixed chain C0 ∈ Cp

is also the stabilizer of a plane of signature (1, 1) in SU(1, p) and hence isomorphic

to S
(
U(1, 1)×U(p− 1)

)
. Then SU(1, p) acts transitively on Cp (for example because

it acts transitively on pairs of points in ∂Hp
C and any two points in ∂Hp

C determine

uniquely a chain) and H acts transitively on C0, so that, if P = Q ∩H, where Q is
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the stabilizer in SU(1, p) of a fixed basepoint ξ0 ∈ C0, there are SU(1, p)-equivariant

(hence measure class preserving) diffeomorphisms

SU(1, p)/H → Cp

gH 7→ gC0

and

SU(1, p)/P → C{1}p

gP 7→ (gC0, gξ0) .

Moreover, the projection π : C{1}p → Cp which associates to a point (C, ξ) ∈ C{1}p the

chain C ∈ Cp is a SU(1, p)-equivariant fibration, the space C{k}p appears then naturally

as k-fold fibered product of C{1}p with respect to π, and for every k ≥ 1, the map(
SU(1, p)/P

)k

f
→ C{k}p

(x1P, . . . , xkP ) 7→ (gC0, x1ξ0, . . . , xkξ0)
(5.3)

where xiH = gH, 1 ≤ i ≤ k, is a SU(1, p)-equivariant diffeomorphism which preserves

the SU(1, p)-invariant Lebesgue measure class. Using Fubini’s theorem, one has that

for almost every C ∈ Cp the restriction

ϕC : C → ∂Hq
C

of ϕ to C is measurable and for every γ ∈ Γ and almost every ξ ∈ C

ϕγC(γξ) = ρ(γ)ϕC(ξ) .

This allows us to define

ϕ{3} : C{3}p → (∂Hq
C)3

(C, ξ1, ξ2, ξ3) 7→
(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
.

Then Proposition 4.9 can be reinterpreted as follows:

Theorem 5.4. — Let iρ be the invariant defined in (5.2). Then for almost every chain

C ∈ Cp and almost every (ξ1, ξ2, ξ3) ∈ C3,∫
Γ\SU(1,p)

cq
(
ϕ{3}(gC, gξ1, gξ2, gξ3)

)
dµ(g) = iρcp(ξ1, ξ2, ξ3) ,

where cp is the Cartan invariant and µ is the SU(1, p)-invariant probability measure

on Γ\SU(1, p).

Corollary 5.5. — Assume that iρ = 1. Then for almost every C ∈ Cp and almost every

(ξ1, ξ2, ξ3) ∈ C3

cq
(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
= cp(ξ1, ξ2, ξ3) .
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Proof of Theorem 5.4. — Let H,Q,P < SU(1, p) such as in the above discussion.

Since Q is the stabilizer of a basepoint ξ0 ∈ ∂Hp
C, it is a minimal parabolic subgroup

and hence the closed subgroup P is amenable. Moreover, H acts ergodically on H/P×
H/P since in H/P × H/P there is an open H-orbit of full measure. We can hence

apply Proposition 4.9 with G = SU(1, p), G′ = PU(q, 1) and κ′ = κb
q . Moreover,

by [20, (5.1), (5.4), and Lemma 5.3] we have that κ = iρκ
b
p. Set G/Q = ∂Hp

C,

c′ = iρcp ∈ B∞
(
(∂Hp

C)3
)SU(1,p)

, X = ∂Hp
C and c′ = cq ∈ B∞

(
(∂Hp

C)3
)PU(q,1)

. Then

the conclusion of the theorem is immediate if we observe that the identification in

(5.3) transforms the map ϕ3
f defined in (4.10) into the map ϕ{3} defined above.

Remark 5.6. — It is now clear what is the essential use of the fibered product: the

triples of points that lie on a chain form a set of measure zero in
(
∂Hp

C
)3

, and hence

we would not have gained any information on these configuration of points by the

direct use of the more familiar formula as in Principle 3.1.

Corollary 5.5 states that if the invariant takes its maximal value then the boundary

map ϕ maps chains into chains. A modification of a theorem of Cartan [16] allows

then to conclude the existence of the embedding in Theorem 5.1.

Appendix A

Proof of Proposition 4.1

For the proof of Proposition 4.1(i) we need to show the existence of norm one

contracting homotopy operators from L∞
(
(G/P )n+1

f

)
to L∞

(
(G/P )n

f

)
sending L-

continuous vectors into L-continuous vectors.

To this purpose we use the map qn which identifies the complex of Banach G-

modules
(
L∞(G/P )•f

)
with the subcomplex

(
L∞(G× (H/P )•)H

)
of H-invariant vec-

tors of the complex
(
L∞(G× (H/P )•)

)
, where now the differential dn is given by

dnf(g, x1, . . . , xn) =
n∑

i=0

(−1)if(g, x1, . . . , x̂i, . . . , xn) ,

and we show more generally that:

Lemma A.1. — For every n ≥ 0 there are linear maps

hn : L∞
(
G× (H/P )n+1

)
→ L∞

(
G× (H/P )n

)
such that:

(i) hn is norm-decreasing and H-equivariant;

(ii) for any closed subgroup L < G, the map hn sends L-continuous vectors into

L-continuous vectors, and
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(iii) for every n ≥ 1 we have the identity

hndn + dn−1hn−1 = Id .

The Lemma A.1 and the remarks preceding it imply then Proposition 4.1.

The construction of the homotopy operator in Lemma A.1 requires the following

two lemmas, the first of which showing that the measure ν on H/P can be chosen

to satisfy certain regularity properties, and the second constructing an appropriate

Bruhat function for H < G.

Let dh and dξ be the left invariant Haar measures on H and P .

Lemma A.2. — There is an everywhere positive continuous function q : H → R+ and

a Borel probability measure ν on H/P such that∫
H/P

∫
P

f(xξ)dξ dν(x) =

∫
H

f(h)q(h)dh ,

for every f ∈ C00(H), where C00(H) denotes the space of continuous functions on H

with compact support.

Proof. — Let q1 : H → R+ be an everywhere positive continuous function satisfying

q1(xη) = q1(x)
∆P (η)

∆H(η)
,∀η ∈ P and ∀x ∈ H ,

where ∆P , ∆H are the respective modular functions (see [61]), and let ν1 be the

corresponding positive Radon measure on H/P such that the above formula holds.

Then choose q2 : H/P → R+ continuous and everywhere positive, such that q2dν1 is

a probability measure. Then the lemma holds with q = q1q2 and ν = q2dν1.

A direct computation shows that∫
H/P

f(y−1x)dν(x) =

∫
H/P

f(x)λy(x)dν(x) ,(A.1)

where λy(x) = q(yx)/q(x), for all f ∈ C00(H/P ) and h ∈ H. In particular, the class

of ν is H-invariant since λy is continuous and everywhere positive on H/P .

Lemma A.3. — There exists a function β : G→ R+ such that

(i) for every compact set K ⊂ G, β coincides on KH with a continuous function

with compact support;

(ii)
∫

H
β(gh)dh = 1 for all g ∈ G, and

(iii) limg0→e supg∈G

∫
H

∣∣β(g0gh)− β(gh)
∣∣dh = 0
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Proof. — Let β0 be any function satisfying (i) and (ii) (see [61]) and let f ∈ C00(G)

be any nonnegative function normalized so that∫
G

f(x)drx = 1 ,

where drx is a right invariant Haar measure on G. Define

β(g) =

∫
G

f(gx−1)β0(x)drx , g ∈ G .

It is easy to verify that also β satisfies (i) and (ii), and, moreover, it satisfies (iii) as

well. In fact, we have that for all g0, g ∈ G, h ∈ H

β(g0gh)− β(gh) =

∫
G

(
f(g0gx

−1)− f(gx−1)
)
β0(xh)drx ,

which implies, taking into account that
∫

G
β0(xh)dh = 1 and the invariance of drx,

that ∫
H

∣∣β(g0gh)− β(gh)
∣∣dh ≤ ∫

G

∣∣f(g0x
−1)− f(x−1)

∣∣drx ,

so that

lim
g0→e

sup
g∈G

∫
H

∣∣β(g0gh)− β(gh)
∣∣dh ≤ lim

g0→e

∫
G

∣∣f(g0x
−1)− f(x−1)

∣∣drx = 0 .

Proof of Lemma A.1. — Let ν be as in Lemma A.2 and β as in Lemma A.3. define

a function

ψ : G×H/P → R+

by

ψ(g, x) :=

∫
H

β(gh)λh−1(x)dh ,

where λh(x) is as in (A.1). The following properties are then direct verifications:

– ψ(gh−1, hx)λh(x) = ψ(g, x) for all g ∈ G, h ∈ H and x ∈ H/P ;

–
∫

H/P
ψ(g, x)dν(x) = 1, for all g ∈ G;

– ψ ≥ 0 and is continuous.

This being, define for n ≥ 0 and f ∈ L∞(G× (H/P )n+1):

hnf(g, x1, . . . , xn) =

∫
H/P

ψ(g, x)f(g, x1, . . . , xn, x)dν(x) .

Then, hnf ∈ L∞
(
G× (H/P )n

)
and (ii) implies that ‖hnf‖∞ ≤ ‖f‖∞. The fact that

hn is an H-equivariant homotopy operator is a formal consequence of (i) and (ii).
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Finally, let L < G be a closed subgroup and f ∈ L∞
(
G × (H/P )n+1

)
an L-

continuous vector, that is

lim
l→e

‖θ(l)f − f‖∞ = 0 ,

where (
θ(l)f

)
(g, x1, . . . , xn+1) = f(lg, x1, . . . , xn) .

Then

hnf(lg, x1, . . . , xn)− hnf(g, x1, . . . , xn)

=

∫
H/P

ψ(lg, x)
(
f(lg, x1, . . . , xn, x)− f(g, x1, . . . , xn, x)

)
dν(x)

+

∫
H/P

(
ψ(lg, x)− ψ(g, x)

)
f(g, x1, . . . , xn, x)dν(x) .

The first term is bounded by ‖θ(l)f − f‖∞ taking into account (ii), while the second

is bounded by ‖f‖∞
∫

H/P

(
ψ(lg, x)− ψ(g, x)

)
dν(x). Now

ψ(lg, x)− ψ(g, x) =

∫
H

(
β(lgh)− β(gh)

)
λh−1(x)dh ,

which, taking into account that
∫

H/P
λh−1(x)dν(x) = 1, implies that∫

H/P

∣∣ψ(lg, x)− ψ(g, x)
∣∣dν(x) ≤ ∫

H/P

∣∣β(lgh)− β(gh)
∣∣dh .

Thus

‖θ(l)hnf − hnf‖∞ ≤‖θ(l)f − f‖∞

+‖f‖∞ sup
g∈G

∫
H

∣∣β(lgh)− β(gh)
∣∣dh

which, using Lemma A.3, implies that

lim
l→e

‖θ(l)hnf − hnf‖∞ = 0

and shows that hnf is an L-continuous vector.
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