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FUNDAMENTAL GROUPS OF KÄHLER MANIFOLDS

AND GEOMETRIC GROUP THEORY

by Marc BURGER

INTRODUCTION

The aim of this note is to report on some recent progress in the problem of

characterizing fundamental groups of compact Kähler manifolds, henceforth called

Kähler groups. More precisely we will illustrate, by means of a specific result, the

program outlined by Delzant and Gromov in [DG05]: “Identify the constraints imposed

by the Kähler nature of the space on the asymptotic invariants of its fundamental

group and then express these invariants in terms of algebraic properties”.

The result we have in mind is the theorem of T. Delzant [Del10] which says that

a solvable Kähler group contains a nilpotent subgroup of finite index. This is based

on the explicit description of the Bieri–Neumann–Strebel invariant of a Kähler group

π1(M) in terms of factorizations of M over hyperbolic Riemann surfaces.

Before we come to this main topic we will recall what a Kähler manifold is, then

list in telegraphic style results giving restrictions on Kähler groups and give a series of

examples. For a more complete account of the theory of Kähler groups up to 1995, see

[ABC+96].

Let M be a complex manifold with a Hermitian metric h, that is a collection of

Hermitian metrics hx on each tangent space TxM , varying smoothly with x. Then the

real part g := ℜh gives a Riemannian metric on the underlying real manifold and the

imaginary part ω := ℑh gives a real two-form. Together with the complex structure J

we have

(1) ω(X, Y ) = g(X, JY ) .

The Hermitian manifold (M, h) is Kähler if dω = 0. An elementary consequence of this

relation is that at each point of M there exist holomorphic coordinates such that the

Hermitian metric equals the flat metric on Cn up to and including terms of first order,

[Voi02, 3.14]. This readily implies the Kähler identities ([Voi02, 6.1]) which are at the

basis of the Hodge decomposition of the cohomology of compact Kähler manifolds. The

compatibility condition (1) implies that ωn = n!d volg, in particular ω is non-degenerate

at each point, i. e. it is a symplectic form and, when M is compact, defines therefore a

non-zero class in H2(M,R).

The following two observations lead to an important class of Kähler manifolds:
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– the induced Hermitian structure on a complex submanifold N ⊂ M of a Kähler

manifold is Kähler;

– up to a positive multiple, there is a unique SU(n+1)-invariant Hermitian metric on

CPn; since its imaginary part ω is an invariant two-form, it is closed. Normalizing

the metric so that
∫
CP1 ω = 1, one obtains the Fubini–Study metric.

Thus every smooth projective manifold is a Kähler manifold. In our context this leads

to the question whether every Kähler group is also the fundamental group of a smooth

projective variety, to which we do not know the answer. Remarkably, concerning ho-

motopy type, we have, thanks to Voisin [Voi04], examples of compact Kähler manifolds

which do not have the homotopy type of a smooth projective variety. Finally, it is

a natural question whether the existence of a complex structure and/or a symplectic

structure on a compact manifold imposes additional restrictions on its fundamental

group, beyond being finitely presentable. In fact, every finitely presentable group is

the fundamental group of a complex threefold which is also symplectic ([Gom95], see

also [MS98, 7.2]); it is thus the compatibility between these two structures, that is the

defining property of a Kähler structure, which will give restrictions on its fundamental

group.

1. RESTRICTIONS

In this section Γ = π1(M) is the fundamental group of a compact Kähler manifold M

with Kähler form ω.

1.1. The first Betti number b1(Γ) is even

The vector space Hom(Γ,R) = H1(Γ,R) is isomorphic to the space H1(M) of real

harmonic 1-forms on M ; precomposition of 1-forms with J gives a complex structure

on H1(M) and hence its dimension b1(Γ) is even.

1.2. There is a non-degenerate skew-structure on H1(Γ,R)

On H1(Γ,R) the form (α, β) 7→
∫

M
α∧β∧ωn−1 is skew-symmetric and non-degenerate

(Hard Lefschetz Theorem). Noting that the classifying map M → BΓ induces in

cohomology an isomorphism in degree 1 and an injection in degree 2 shows that this

skew-symmetric form factors through the cup product Λ2H1(Γ,R) → H2(Γ,R), which

is therefore not zero if b1(Γ) > 0, [JR87]. In this context there is a conjecture of Carlson

and Toledo, namely that if Γ is infinite, there is Γ′ < Γ of finite index with b2(Γ
′) > 0.

For more on this see [Kol95, 18.16], [Klia], [Klib], [KKM].
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1.3. The Malcev Lie algebra LΓ of Γ is quadratically presented

Associated to Γ there is a tower of nilpotent Lie algebras

. . . //LnΓ //Ln−1Γ // . . . ,

say over R, where LnΓ is the Lie algebra of the R-unipotent algebraic group deter-

mined by the quotient Γ/CnΓ, where CnΓ is the n-term of the descending central series.

“Quadratic presentation” then means loosely that this tower of Lie algebras is deter-

mined by the map H2(Γ) → Λ2H1(Γ) (see [ABC+96, Chap.3] and references therein).

1.4. A Kähler group has zero or one end(1)

The ideas and methods introduced by Gromov [Gro89] leading to this result have

been very influential in this field in the last twenty years. Here are some highlights.

Recall that for the number e(Γ) of ends of a finitely generated group we have e(Γ) ∈

{0, 1, 2,∞}, with e(Γ) = 0 precisely when Γ is finite and e(Γ) = 2 precisely when Γ is

virtually Z; then Stallings’ theorem says that e(Γ) = ∞ precisely when Γ is a nontrivial

amalgam or an HNN-extension, both over a finite group. This theorem will however not

be used in the proofs. The first step, which has nothing to do with Kähler manifolds,

is the following

Proposition 1.1. — If Γ = π1(M), where M is a compact Riemannian manifold and

e(Γ) = +∞, then the space H1
(2)(M̃) of square integrable harmonic 1-forms on M̃ is

non-trivial, and in fact infinite dimensional. In particular, the reduced L2-cohomology

group H
1(

Γ, ℓ2(Γ)
)

does not vanish, as it is isomorphic to H1
(2)(M̃) by a variant of

Dodziuk’s de Rham theorem.

The central result is then the following factorization theorem:

Theorem 1.2 ([ABR92]). — Let X be a complete Kähler manifold with bounded

geometry and H1(X,R) = 0. Assume that H1
(2)(X) 6= 0. Then there exists a proper

holomorphic map with connected fibers h : X → D to the Poincaré disk; moreover the

fibers of h are permuted by Aut(X).

We obtain then the following purely group theoretical consequence:

Corollary 1.3 ([ABR92], [Gro89]). — Let Γ be a Kähler group with H
1(

Γ, ℓ2(Γ)
)
6= 0.

Then Γ is commensurable to the fundamental group Γg of a compact orientable surface

of genus g ≥ 2.

More precisely there is a subgroup Γ′ < Γ of finite index and an exact sequence

1 //F //Γ′
//Γg

//1

with F finite. In particular e(Γ) = e(Γ′) = e(Γg) = 1 and thus a Kähler group has zero

or one end.

(1)A general reference for this section is [ABC+96, Ch. 4]
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The factorization Theorem 1.2 follows from a general stability theorem for compact

leaves in singular holomorphic foliations, which also plays a central role in the work of

Delzant and Gromov on “Cuts in Kähler groups”, [DG05] (see also § 1.5). Recall that

the singular holomorphic foliation Fη associated to a closed holomorphic 1-form η on

a complex manifold X is generated by the relations x ∼U y, where U is an open set

on which η = df with f holomorphic and x, y are in U and are in the same connected

component of a fiber of f .

Theorem 1.4 ([DG05, 4.1]). — Let X be a complete Kähler manifold of bounded

geometry, η a closed holomorphic 1-form on X and Fη the associated singular

holomorphic foliation. If Fη has one compact leaf, all leaves are compact.

One important principle here, which is an immediate consequence of the volume

monotonicity property of analytic subsets of Cn leading to the definition of Lelong

numbers [Chi89, 15.1, Prop. 1], is the following uniform boundedness property of sub-

manifolds of finite volume.

Proposition 1.5. — If X is Kähler, complete and of bounded geometry, then for every

T > 0 and ǫ > 0 there is N(T, ǫ) ∈ N such that every closed (as a subset of Y ) complex

submanifold Y ⊂ X with vol(Y ) ≤ T can be covered by N(T, ǫ) balls of radius ǫ. In

particular Y is compact.

The proof of Theorem 1.2 then proceeds as follows: let α ∈ H1
(2)(X) and ηα be the

L2-holomorphic 1-form with α = ℜηα. Let f : X → C be holomorphic with df = ηα;

the co-area formula together with the L2-condition implies that f has a fiber of finite

volume. This implies by the above fact that Fηα
has a compact leaf and by Theorem 1.4

that all leaves are compact, so that one can apply Stein factorization. The final point

consists in showing that Fηα
does not depend on the particular choice of α; this follows

from a tricky argument in L2-Hodge theory, using the boundedness of ηα ([Gro91] or

[ABC+96, lemma 4.16]) which gives that ηα ∧ ηβ = 0 for any choice α, β ∈ H1
(2)(X),

and hence Fηα
= Fηβ

.

1.5. A Kähler group with at least three relative (stable) ends “fibers”

We have seen that if M is compact Kähler, then the number e(M̃) of ends of the

universal covering M̃ is 0 or 1. By taking M to be a Riemann surface of genus g ≥ 2, one

sees that the number of ends e(X) of an arbitrary covering X → M can take any value

in N∪{∞}. This leads naturally to the question whether the existence of a many ended

covering X → M of a compact Kähler manifold imposes restrictions on its fundamental

group Γ. An answer is given by Delzant and Gromov under a stability condition: let

Λ < Γ be the subgroup corresponding to X; then the Γ-space Γ/Λ is stable if Γ/Λ

is infinite and H1
(
Γ, ℓ2(Γ/Λ)

)
is reduced, equivalently, if there is no asymptotically

invariant sequence of unit vectors in ℓ2(Γ/Λ). Recall also that e(X) equals e(Γ/Λ),

where the latter is the number of ends of the quotient by Λ of any Cayley graph of Γ
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relative to a finite generating set. The following result says that if e(Γ/Λ) ≥ 3 and Γ/Λ

is stable, then Λ comes essentially from a Riemann surface situation. More precisely:

Theorem 1.6 ([DG05]). — Let Γ = π1(M) be a Kähler group and Λ < Γ a subgroup

such that the Γ-space Γ/Λ is stable and e(Γ/Λ) ≥ 3. Then there are a finite covering

M ′ → M and a holomorphic map with connected fibers h : M ′ → S to a compact

Riemann surface of genus g ≥ 2 such that Ker h∗ ⊂ Λ ∩ π1(M
′).

Remark 1.7. — Napier and Ramachandran recently showed that, without the stability

condition, the covering X associated to Λ admits a proper holomorphic mapping onto

a Riemann surface, [NR08].

The number of relative ends e(Γ/Λ) introduced by Houghton had been studied by

Scott [Sco78] in the context of obtaining a relative version of Stallings’ theorem. It was

then realized by Sageev [Sag95] that the proper context for this problem is the one of

group actions on CAT(0) cubical complexes; he showed that for a finitely generated

group Γ there is Λ < Γ with e(Γ/Λ) ≥ 2 if and only if Γ admits an essential action on

a CAT(0) cubical complex. Since this result, the question of cubing natural classes of

groups has become a center of attention for geometric group theorists. In particular,

right angled Artin groups and groups satisfying certain specific small cancellation prop-

erties have been shown to act properly and cocompactly on finite dimensional CAT(0)

cubical complexes (see Example 5 in § 2).

When Γ is word hyperbolic, the condition on the number of ends in Theorem 1.6 can

be somehow relaxed, but then a geometric condition has to be imposed on Λ.

Corollary 1.8. — Assume that Γ is Kähler, word hyperbolic and that Λ < Γ is

quasiconvex with e(Γ/Λ) ≥ 2. Then Γ is commensurable to Γg for some g ≥ 2.

Remark 1.9. — The case in which e(Γ/Λ) = 2 can be reduced to the situation of

Theorem 1.6 after a rather involved argument which fully exploits hyperbolicity (see

5.5 and 6.5 in [DG05]).

This corollary has striking consequences in complex hyperbolic geometry. Let H
n
C

be

the complex hyperbolic n-space and Γ < Aut(Hn
C
) a cocompact lattice; the quasicon-

vexity assumption on a subgroup Λ < Γ means that the quotient by Λ of the closed

convex hull in H
n
C

of the limit set L(Λ) ⊂ ∂H
n
C

of Λ is compact, that is, Λ is convex

cocompact.

Corollary 1.10. — Let Γ < Aut(Hn
C
) be a cocompact lattice and assume that n ≥ 2.

1. If Λ < Γ is convex cocompact, then ∂H
n
C
\ L(Λ) is connected.

2. The space Γ\H
n
C

does not have the homotopy type of a locally CAT(0) cubical

complex.

The second assertion follows from Corollary 1.8 and a result of Sageev [Sag95] saying

that if Γ acts on a finite dimensional CAT(0) cubical complex with an unbounded orbit,

then there is a hyperplane I ⊂ X with e
(
Γ/ StabΓ(I)

)
≥ 2.
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2. EXAMPLES

The following is a list of examples of Kähler groups. All of them are actually funda-

mental groups of smooth projective varieties.

1. Finite groups are Kähler, [Ser58].

2. Let H2k+1 be the real Heisenberg group of dimension 2k + 1; this group can be

seen as the central extension of a 2k-dimensional real vector space V by R where

the cocycle is given by a symplectic form. Then a lattice Γ < H2k+1 is Kähler if

and only if k ≥ 4 ([Cam95], [ABC+96, Ch. 8, 4.1]).

3. The group given by the presentation

Γg =

〈
α1, . . . , αg, β1, . . . , βg :

g∏

i=1

[αi, βi] = e

〉

is Kähler. It is the fundamental group of a smooth projective curve of genus

g. These groups are ubiquitous in the theory of Kähler groups as they appear

often in factorization theorems (see e. g. Corollary 1.3) and are usually referred

to as surface groups. Incidentally, let Γg be the central extension by Z generating

H2(Γg,Z), that is

Γg =

〈
α1, . . . , αg, β1, . . . , βg, z :

g∏

i=1

[αi, βi] = z, z is central

〉
.

Then the cup product map ΛH1(Γg,R) → H2(Γg,R) is the zero map, while

b1(Γg) > 0 and hence Γg is not Kähler by § 1.2; observe that in this example

b2(Γg) > 0.

4. A Kähler group is the fundamental group of a real compact 3-manifold if and only

if it is finite and hence a finite subgroup of O(4), [DS09].

5. If a Kähler group is a C ′(1
6
)-small cancellation group then it is commensurable to

Γg ([DG05], [Wis04]).

6. Let Γ×X → X be a properly discontinuous action by automorphisms of a Kähler

manifold X such that Γ\X is compact. If there is Γ′ < Γ of finite index acting

freely on X then Γ is Kähler; this observation is due to J. Kollár.

7. The class of Kähler groups is closed under taking finite products and passing to

subgroups of finite index.

8. Let G be a semisimple connected Lie group without compact factors and with

finite center. Assume that the associated symmetric space X has a G-invariant

complex structure; combining the Riemannian metric with the complex structure

gives a G-invariant two-form on X (see (1)) which is therefore closed. Thus X

is Kähler. If now G is linear and Γ < G is a cocompact lattice, it follows from

Selberg’s lemma and Example 6 that Γ is Kähler. The fact that if Γ is torsion free

and cocompact, then Γ\X is biholomorphic to a projective manifold, is a theorem.

This leads to the following natural questions:
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(A) What about the case when Γ\X is not compact, but just has finite volume?

Then, unless X is the Siegel upper half space of genus 1, 2 or the complex

two-ball, Γ is Kähler (see [Tol90] for more details also on these exceptional

cases).

(B) What about the case when X is not Hermitian? Then it is conjectured

that Γ is not Kähler. This is now established in many cases for instance if

Γ is cocompact and G is almost simple of rank at least 20 (see [Klib] and

[ABC+96]).

(C) What about the case when G is not linear? This leads in very specific cases

to examples of Kähler groups which are not residually finite (see [ABC+96,

Ch. 8] and [Tol93]).

3. THE BIERI–NEUMANN–STREBEL INVARIANT OF A KÄHLER

GROUP

In this section we will illustrate the interplay between geometric group theory and

Kähler geometry by explaining some aspects of the description of the Bieri–Neumann–

Strebel invariant – hereafter called the BNS invariant – of Kähler groups.

3.1. THE BNS INVARIANT(2) Σ1(Γ)

Let Γ be a group, T a set endowed with a fixed point free involution x 7→ x and a map

ℓ : T → Γ with ℓ(x) = ℓ(x)−1. The associated Cayley graph Ca(Γ, T ) has Γ as its set of

vertices and E = {(g, x) : g ∈ Γ, x ∈ T} as its set of edges with origin and terminus maps

o, t : E → Γ given by o(g, x) = g, t(g, x) = gℓ(x); see [Ser77] for conventions concerning

this notion. We say, by abuse of language, that T is generating if ℓ(T ) generates Γ.

Given a homomorphism χ : Γ → R, hereafter called character, let Ca(Γ, T )χ denote the

subgraph of Ca(Γ, T ) whose set of vertices is the submonoid Γχ = {g ∈ Γ : χ(g) ≥ 0}

and whose set of edges is {(g, x) ∈ E : χ(g) ≥ 0, χ
(
gℓ(x)

)
≥ 0}. The following fact is

then the starting point of the theory of BNS-invariants:

Proposition 3.1 ([BS, Theorem 2.1]). — Let T, T ′ be finite generating sets of Γ and

χ : Γ → R a homomorphism. Then Ca(Γ, T )χ is connected if and only if Ca(Γ, T ′)χ is.

For a finitely generated group Γ we say that χ ∈ Hom(Γ,R) \ {0} is regular if

Ca(Γ, T )χ is connected and exceptional otherwise. Let S(Γ) denote the sphere consist-

ing of all half-rays in Hom(Γ,R)\{0}; the BNS invariant of Γ is the subset Σ1(Γ) ⊂ S(Γ)

represented by regular characters, that is:

Definition 3.2. — Σ1(Γ) :=
{
[χ] = R>0χ : χ ∈ Hom(Γ,R)\{0}, Ca(Γ, T )χ is connected

}

and E1(Γ) denotes the complement of Σ1(Γ) in S(Γ).

(2)For a comprehensive treatment see [BNS87] or [BS].
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The following examples are obtained by direct computation:

Examples 1. — 1. For a finitely generated abelian group A, Σ1(A) = S(A).

2. For the free group Fn on n ≥ 2 generators, Σ1(Fn) = ∅.

3. For the solvable group Γ =

{(
2n x

0 1

)
: n ∈ Z, x ∈ Z[1

2
]

}
, Σ1(Γ) =

{
[−χ]

}
,

where χ

(
2 0

0 1

)
= 1, whereas S(Γ) =

{
[χ], [−χ]

}
.

A fundamental aspect of the theory for a finitely generated group Γ is the connection

between the finiteness properties of the kernel N of a surjective group homomorphism

π : Γ → Q and the BNS invariants of Γ and Q. We start with the following simple

observations. A finite generating set T for Γ, and hence for Q, leads to a Galois

covering π∗ : Ca(Γ, T ) → Ca(Q, T ) with Galois group N and, for any non-zero character

χ : Q → R, to a Galois covering

(2) π∗,χ : Ca(Γ, T )χ◦π → Ca(Q, T )χ .

This implies at once that if S(Γ, N) ⊂ S(Γ) denotes the great sphere cut out by the

non-zero characters of Γ vanishing on N , then π∗
(
E1(Q)

)
⊂ E1(Γ) ∩ S(Γ, N). If now

N is finitely generated, in which case one can choose T finite so that ℓ(T ) contains a

generating set of N , the covering map (2) has connected fibers, and thus

S(Γ, N) ∩ Σ1(Γ) = π∗
(
Σ1(Q)

)
.

If in addition Q is abelian we deduce, using Example 1.1, that S(Γ, N) ⊂ Σ1(Γ). We

have then the fundamental

Theorem 3.3 ([BS, Theorem 4.2]). — Let 1 → N → Γ → Q → 1 be an exact se-

quence where Γ is finitely generated and Q is abelian. The group N is finitely generated

if and only if S(Γ, N) ⊂ Σ1(Γ). In particular the commutator subgroup [Γ, Γ] is finitely

generated if and only if Σ1(Γ) = S(Γ).

An important point in the proof is a characterization of Σ1(Γ) in terms of a “locally

finite set of inequalities” implying in particular that Σ1(Γ) is open. Thus:

Proposition 3.4. — E1(Γ) ⊂ S(Γ) is a closed Aut(Γ)-invariant subset.

Recall that a group Q is metabelian if its first commutator subgroup [Q, Q] is abelian;

example (iii) above is metabelian. The invariant Σ1 is particularly relevant for the study

of metabelian groups: for example a metabelian group Q is finitely presented if and

only if S(Q) = Σ1(Q) ∪ (−Σ1(Q)) (cf. [BS80]). Also in our context metabelian groups

will play an essential role. For the moment we wish to have the following application

of the results stated so far:

Proposition 3.5. — Let Qg be the largest metabelian quotient of the surface group Γg

and assume that g ≥ 2. Then E1(Qg) = S(Qg).
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The largest metabelian quotient Q of a group Γ is the quotient of Γ by D(2)Γ, where

DΓ := [Γ, Γ] and D(2)Γ = [DΓ,DΓ].

Proof. — The group DΓg is not finitely generated since it is the first homology group

of a connected surface which is an infinite, non-simply connected Galois covering of a

compact surface. By means of a symplectic basis, indentify S(Qg) with P(R2g); then

every element in Sp(2g,Z) lifts to Aut Qg, since it even lifts to Aut Γg. Using that every

Sp(2g,Z)-orbit in P(R2g) is dense and that E1(Qg) is closed (Proposition 3.4) and not

empty, one concludes that E1(Qg) = S(Qg).

3.2. A FINITENESS THEOREM OF BEAUVILLE

An important ingredient in the study of solvable quotients of Kähler groups is the

following structure theorem of their metabelian quotients, in a situation which is quite

opposite to the one of surface groups.

Corollary 3.6 ([Bea92]). — Let Q = Γ/D(2)Γ be the largest metabelian quotient of

a Kähler group Γ. Assume that E1(Q) = ∅. Then Q is virtually nilpotent.

Recall that the condition E1(Q) = ∅ is equivalent to the condition that DQ is finitely

generated; under this condition the solvable group Q acts linearly in the finite dimen-

sional space DQ ⊗ C and it is therefore clear that the set

E1(Γ,C×) =
{
ρ ∈ Hom(Γ,C×) : H1(Γ,Cρ) 6= 0

}

has to play an important role. This set is the Green–Lazarsfeld set of Γ and has been

the topic of numerous investigations (see [Ara97], [Bea92], [Cam01], [GL87], [GL91],

[PR04], [Sim93b]) culminating in [Del08], where the precise structure of E1(Γ, K×) –

where K is an arbitrary field – is described; it relies on the description of the BNS

invariant of Γ.

We have:

Proposition 3.7 ([Bea92]). — Let Γ be a Kähler group and Q = Γ/D(2)Γ its largest

metabelian quotient. Assume that DQ is finitely generated. Then E1(Γ,C×) is finite

and consists of torsion characters.

Proof Consider the restriction map
⊕

16=ρ∈E1

H1(Q,Cρ) → Hom(DQ,C)

obtained by restricting cocycles to DQ. It is a linear algebra exercise involving the Van-

dermonde determinant, that this map is injective. In particular if DQ is finitely gen-

erated, then E1(Q,C×) is finite. Since elements in E1(Γ,C×) correspond to homomor-

phisms of Γ into the affine group of C which is metabelian, then E1(Γ,C×) = E1(Q,C×).

By Corollary 3.6 of [Bea92], we know that isolated points in E1(Γ,C×) are unitary, thus

E1(Γ,C×) consists of a finite number of unitary homomorphisms; since Aut(C) acts by

postcomposition on E1(Γ,C×), a theorem of Kronecker then implies the proposition.
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Proof of Corollary 3.6 The subgroup Q◦ =
⋂

χ∈E1 Kerχ is of finite index in Q

and its action on DQ ⊗C is by unipotent endomorphisms.

3.3. THE FACTORIZATION THEOREM

Here we will discuss the central result which is a description of the set of exceptional

characters of the fundamental group Γ = π1(X) of a compact Kähler manifold. This

description is in terms of factorizations of X over certain Riemann surfaces, but leads

ultimately to a purely group theoretical description of E1(Γ).

We use the notation χ 7→ ωχ for the canonical isomorphism between Hom(Γ,R) and

the space H1(X) of harmonic real 1-forms on X.

Theorem 3.8 ([Del10]). — The homomorphism χ : Γ → R is exceptional if and only

if there is a holomorphic map with connected fibers f : X → Sorb onto a hyperbolic

orbi-Riemann surface Sorb of genus g ≥ 1 and a closed holomorphic 1-form η on Sorb

with ωχ = ℜ(f ∗η).

In the case χ(Γ) = Z, the result is due to Napier and Ramachandran (see [NR01,

Thm 4.3]).

The object Sorb consists of an underlying Riemann surface S and finitely many marked

points p1, . . . , pn in S each having an integer “multiplicity” mi ≥ 2; then Sorb is hyper-

bolic if

χ(Sorb) := (2 − 2g) −
n∑

i=1

(
1 −

1

mi

)
< 0 .

In this case Sorb can be uniformized by the Poincaré disk D and occurs as the quotient

of D by a faithful proper action of the orbifold fundamental group

π1(S
orb) =

〈
α1, . . . , αg, β1, . . . , βg, f1, . . . , fn :

g∏

i=1

[αi, βi]

n∏

i=1

fi = e, fmi

i = e

〉
.

The marked points form the set of critical values of f ; in this context for f to be

holomorphic means that if x is a critical point with f(x) = pi, then locally f lifts to a

holomorphic map into a cover with a branching point of multiplicity mi above pi. In this

situation the mapf in Theorem3.8 induces a surjective homomorphism f∗ :Γ→π1(S
orb).

For the “easy” implication in Theorem 3.8 observe that if χ(Sorb) < 0 then every

(nonzero) character of π1(S
orb) is exceptional. If Sorb is a genuine surface of genus g ≥ 2,

this follows from Proposition 3.5; the general case can be reduced to the previous one

by passing to an appropriate subgroup Γ of finite index in π1(S
orb) and using that a

character χ of π1(S
orb) is regular if and only if χ|Γ is as well ([BNS87, Prop. 3.2(ii)]).

We now indicate the strategy for the proof of the factorization statement in Theo-

rem 3.8, which relies on the the following theorem of Simpson.

Theorem 3.9 ([Sim93a]). — Let X be a compact Kähler manifold, θ a closed holo-

morphic 1-form on X which is non-zero, p : Y → X a covering such that p∗(θ) is exact,

and let g : Y → R be a primitive of ℜ(p∗θ). Then either
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1. the fiber g−1(v) is connected and π1

(
g−1(v)

)
→ π1(Y ) surjects for all v ∈ R,

or

2. there is a hyperbolic orbi-Riemann surface Sorb, a holomorphic map f : X → Sorb

with connected fibers and a closed holomorphic 1-form η on S with f ∗(η) = θ.

With this at hand we can sketch a proof of Theorem 3.8. Let χ : Γ → R be an

exceptional character, p : Y → X the maximal abelian cover of X and g : Y → X a

primitive of p∗(ωχ). Then

(3) g(γy) = χab(γ) + g(y)

for all y ∈ Y and γ ∈ Γab := Γ/DΓ, where χab ∈ Hom(Γab,R) corresponds to χ. Since

Γab is finitely generated abelian, χab is regular (see § 3.1) and thus Ca(Γab, T )χab is

connected; here T is some finite generating set of Γ. From this and the equivariance

property (3) one deduces easily that the set g−1
(
[0,∞]

)
has a unique connected com-

ponents, say Y0, on which g is unbounded. Consider now g ◦ π, where π : X̃ → Y is

the universal covering projection. Clearly any connected component of (g ◦π)−1
(
[0,∞

]

on which g ◦ π is unbounded is a connected component of π−1(Y0); since X is excep-

tional, Ca(Γ, T )χ is not connected and hence there are several connected components of

(g ◦ π)−1
(
[0,∞]

)
on which g ◦ π is unbounded, which, by the preceding remark, implies

that π−1(Y0) is not connected. This implies that the morphism π1(Y0) → π1(Y ) is not

surjective. Now pick y ∈ Y0 and v = g(y). Then either g−1(v) ⊂ Y is not connected,

or g−1(v) ⊂ Y0 and thus π1

(
g−1(v)

)
→ π1(Y ) is not surjective. At any rate, it is the

second alternative of Simpson’s theorem which applies.

3.4. SOLVABLE GROUPS AND METABELIAN QUOTIENTS

What allows one to get applications of the factorization theorem (Theorem 3.8) is

a very efficient way to detect solvable groups which are not virtually nilpotent. Such

groups must have special quotients. We will in the sequel say that a group R is just

not virtually nilpotent if every proper quotient of R is virtually nilpotent but R itself

is not. We observe the following:

Proposition 3.10. — Every finitely generated group which is not virtually nilpotent

admits a quotient which is just not virtually nilpotent.

This follows easily from the fact that finitely generated nilpotent groups are finitely

presented and Zorn’s lemma. The following result is based essentially on arguments of

Groves [Gro78] and a proof can be found in [Bre07]. Here we present a sketch, with a

few simplifications.

Theorem 3.11. — Let Q be finitely generated, solvable and just not virtually nilpotent.

Then Q is virtually metabelian.
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If Q is such a group, it has the Noetherian property: every ascending chain

N1 ⊂ N2 ⊂ . . . of normal subgroups stabilizes: indeed, if Nj 6= e, G/Nj is finitely

generated nilpotent and has this property. In particular the Fitting subgroup Fit(Q),

which is the subgroup of Q generated by all normal nilpotent subgroups is nilpotent as

well. Then in the situation of Theorem 3.11 we have

Lemma 3.12. — The subgroup Fit(Q) is abelian, and it is either torsion-free or

p-torsion for some prime p.

Proof (1) If N ⊳ Q is a normal nilpotent subgroup with DN 6= e, let H < Q be

of finite index with H/DN nilpotent. Clearly HN/DN ⊂ G/DN is nilpotent and

N < HN is nilpotent, so that by Hall’s criterion, [Rob96, 5.2.10], HN is nilpotent; this

is a contradiction and hence DN = (e).

(2) Any pair N1, N2 of nontrivial normal subgroups must intersect since Q/N1 ∩ N2

is a subgroup of the virtually nilpotent group Q/N1 × Q/N2. Thus if Fit(Q) is not

torsion free, it can only have p-torsion for a unique prime.

Without loss of generality, assume that L := Q/Fit(Q) is nilpotent (instead of

virtually nilpotent). Let A = Z or Fp[T ]; if Fit(Q) is p-torsion we make it into an

A-module by letting T act via conjugation of some fixed central element of infinite

order in L. At any rate one verifies that Fit(Q) is a torsion free A-module and a

finitely generated A[L]-module; the latter follows again from the Noetherian property.

By applying a theorem of Hall (see [Rob96, 15.4.3]), one shows:

Proposition 3.13. — If K = Q or Fp(T ), Fit(G)⊗AK is finite dimensional over K.

Let ρ : Q → GL
(
Fit(Q) ⊗A K

)
be the resulting n-dimensional representation.

Then, since ρ(Q) = ρ(L) is linear nilpotent, ρ(DQ) acts unipotently and thus for

every v ∈ Fit(Q) and g1, . . . , gn ∈ DQ, one has that
[
g1, . . . , [gn, v]

]
= e. Thus DQ is

nilpotent and hence in Fit(Q).

3.5. SOLVABLE QUOTIENTS AND FACTORIZATION

We are now in a position to deduce:

Corollary 3.14 ([Del10]). — Let Γ = π1(X) be the fundamental group of a compact

Kähler manifold. Then either

(1) Any solvable quotient of Γ is virtually nilpotent

or

(2) there is a subgroup Γ′ < Γof finite index and a surjection Γ′ → Γg onto a surface

group of genus g ≥ 2.

Remark 3.15. — This result had been obtained previously in the case of solvable linear

quotients by Campana [Cam01], following previous work by Arapura and Nori for fun-

damental groups of projective varieties [AN99]; see also [Kat97] and [Bru03].
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Observe that we can deduce now from Corollary 3.14 the result announced in the

introduction, namely:

Corollary 3.16 ([Del10]). — A Kähler group which is solvable is virtually nilpotent.

Proof. Assume that S is a quotient of Γ which is solvable but not virtually nilpotent.

Let R be a just non virtually nilpotent quotient (see Proposition 3.10). Since R is

solvable, let R′ be a metabelian subgroup of finite index (Theorem 3.11) and Γ′ its

inverse image in Γ which is of finite index again and hence Kähler. Then R′ is a quotient

of Q′ := Γ′/D(2)(Γ′) and Q′ cannot be virtually nilpotent, which by Corollary 3.6 implies

that DQ′ and hence DΓ′ is not finitely generated; but then Theorem 3.3 implies that

E1(Γ′) 6= ∅ and the factorization theorem (Theorem 3.8) applies.
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