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Abstract We use bounded cohomology to define a notion of volume of an SO(n,1)-
valued representation of a lattice Γ < SO(n,1) and, using this tool, we give a
complete proof of the volume rigidity theorem of Francaviglia and Klaff (Geom.
Dedicata 117, 111–124 (2006)) in this setting. Our approach gives in particular a
proof of Thurston’s version of Gromov’s proof of Mostow Rigidity (also in the non-
cocompact case), which is dual to the Gromov–Thurston proof using the simplicial
volume invariant.
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1 Introduction

Strong rigidity of lattices was proved in 1965 by Mostow [28] who, while searching
for a geometric explanation of the deformation rigidity results obtained by Selberg
[32], Calabi–Vesentini [14, 15] and Weil [35, 36], showed the remarkable fact that,
under some conditions, topological data of a manifold determine its metric. Namely,
he proved that if Mi = Γi\Hn, i = 1,2 are compact quotients of real hyperbolic n-
space and n� 3, then any homotopy equivalence ϕ :M1 →M2 is, up to homotopy,
induced by an isometry. Shortly thereafter, this was extended to the finite volume
case by G. Prasad [29].
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The methods introduced by Mostow emphasized the role of the quasi-isometries
of M̃i =H

n, their quasi-conformal extension to ∂Hn, ergodicity phenomena of the
Γi -action on ∂Hn, as well as almost everywhere differentiability results à la Egorov.

In the 1970’s, a new approach for rigidity in the real hyperbolic case was devel-
oped by Gromov. In this context he introduced 1-homology and the simplicial vol-
ume: techniques like smearing and straightening became important. This approach
was then further developed by Thurston [33, Chap. 6] and one of its consequences
is an extension to hyperbolic manifolds of Kneser’s theorem for surfaces [25]. To
wit, the computation of the simplicial volume ‖M‖ = Vol(M)/vn implies, for a
continuous map f :M1 →M2 between compact real hyperbolic manifolds, that

degf � Vol(M2)

Vol(M1)
.

If dimMi � 3, Thurston proved that equality holds if and only if f is homo-
topic to an isometric covering while the topological assertion in the case in which
dimMi = 2 is Kneser’s theorem [25].

The next step, in the spirit of Goldman’s theorem [20]—what now goes under
the theory of maximal representations—is to associate an invariant Vol(ρ) to an
arbitrary representation

ρ : π1(M)→ Isom
(
H

n
)

of the fundamental group of M , satisfying a Milnor–Wood type inequality

Vol(ρ)� Vol(i).

The equality should be characterized as given by the “unique” lattice embedding i

of π1(M), of course provided dimM � 3. This was carried out in dimM = 3 by
Dunfield [17], following Toledo’s modification of the Gromov–Thurston approach
to rigidity [34].

If M is only of finite volume, a technical difficulty is the definition of the volume
Vol(ρ) of a representation. Dunfield introduced for this purpose the notion of pseu-
dodeveloping map and Francaviglia proved that the definition is independent of the
choice of the pseudodeveloping map [18]. Then Francaviglia and Klaff [19] proved
a “volume rigidity theorem” for representations

ρ : π1(M)→ Isom
(
H

k
)
,

where now k is not necessarily equal to dimM . In their paper, the authors actually
succeed in applying the technology developed by Besson–Courtois–Gallot in their
seminal work on entropy rigidity [2]. An extension to representations of π1(M)

into Isom(Hn) for an arbitrary compact manifold M has been given by Besson–
Courtois–Gallot [3].

Finally, Bader, Furman and Sauer proved a generalization of Mostow Rigidity
for cocycles in the case of real hyperbolic lattices with some integrability condition,
using, among others, bounded cohomology techniques, [1].
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The aim of this paper is to give a complete proof of volume rigidity from the
point of view of bounded cohomology, implementing a strategy first described in
[24] and used in the work on maximal representations of surface groups [12, 13], as
well as in the proof of Mostow Rigidity in dimension 3 in [11].

Our main contribution consists on the one hand in identifying the top dimensional
bounded equivariant cohomology of the full group of isometries Isom(Hn), and on
the other in giving a new definition of the volume of a representation of π1(M),
when M is not compact; this definition, that uses bounded relative cohomology,
generalizes the one introduced in [13] for surfaces.

In an attempt to be pedagogical, throughout the paper we try to describe, in vary-
ing details, the proof of all results.

Let Voln(x0, . . . , xn) denote the signed volume of the convex hull of the points
x0, . . . , xn ∈ Hn. Then Voln is a G+ := Isom+(Hn)-invariant cocycle on Hn and
hence defines a top dimensional cohomology class ωn ∈Hn

c (G
+,R). Let i : Γ ↪→

G+ be an embedding of Γ as a lattice in the group of orientation preserving isome-
tries of Hn and let ρ : Γ →G+ be an arbitrary representation of Γ . Suppose first
that Γ is torsion free. Recall that the cohomology of Γ is canonically isomorphic to
the cohomology of the n-dimensional quotient manifold M := i(Γ )\Hn.

If M is compact, by Poincaré duality the cohomology groups Hn(Γ,R) ∼=
Hn(M,R) in top dimension are canonically isomorphic to R, with the isomorphism
given by the evaluation on the fundamental class [M]. We define the volume Vol(ρ)
of ρ by

Vol(ρ)= 〈ρ∗(ωn), [M]〉,
where ρ∗ : Hn

c (G
+,R)→Hn(Γ,R) denotes the pull-back via ρ. In particular the

absolute value of the volume of the lattice embedding i is equal to the volume of the
hyperbolic manifold M , Vol(M)= 〈i∗(ωn), [M]〉.

If M is not compact, the above definition fails since Hn(Γ,R)∼=Hn(M,R)= 0.
Thus we propose the following approach: since Voln is in fact a bounded cocycle, it
defines a bounded class ωb

n ∈Hn
b,c(G

+,R) in the bounded cohomology of G+ with
trivial R-coefficients. Thus associated to a homomorphism ρ : Γ →G+ we obtain
ρ∗(ωb

n) ∈Hn
b (Γ,R); since M̃ =H

n is contractible, it follows easily that Hn
b (Γ,R)

is canonically isomorphic to the bounded singular cohomology Hn
b (M,R) of the

manifold M (this is true in much greater generality [5, 21], but it will not be used
here). To proceed further, let N ⊂M be a compact core of M , that is the complement
in M of a disjoint union of finitely many horocyclic neighborhoods Ei , i = 1, . . . , k,
of cusps. Those have amenable fundamental groups and thus the map (N, ∂N)→
(M,∅) induces an isomorphism in cohomology, Hn

b (N, ∂N,R) ∼= Hn
b (M,R), by

means of which we can consider ρ∗(ωb
n) as a bounded relative class. Finally, the

image of ρ∗(ωb
n) via the comparison map c :Hn

b (N, ∂N,R)→Hn(N,∂N,R) is an
ordinary relative class whose evaluation on the relative fundamental class [N,∂N ]
gives the definition of the volume of ρ,

Vol(ρ) := 〈(c ◦ ρ∗
)(
ωb
n

)
, [N,∂N ]〉,
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which turns out to be independent of the choice of the compact core N . When M

is compact, we recover of course the invariant previously defined. We complete the
definition in the case in which Γ has torsion by setting

Vol(ρ) := Vol(ρ|Λ)

[Γ :Λ]
where Λ<Γ is a torsion free subgroup of finite index.

Theorem 1.1 Let n � 3. Let i : Γ ↪→ Isom+(Hn) be a lattice embedding and let
ρ : Γ → Isom+(Hn) be any representation. Then

∣∣Vol(ρ)
∣∣� ∣∣Vol(i)

∣∣= Vol(M), (1)

with equality if and only if ρ is conjugated to i by an isometry.

An analogous theorem, in the more general case of a representation ρ : Γ →
Isom+(Hm) with m � n, has been proven by Francaviglia and Klaff [19] with a
different definition of volume.

Taking in particular ρ to be another lattice embedding of Γ , we recover Mostow–
Prasad Rigidity theorem for hyperbolic lattices:

Corollary 1.2 [28, 29] Let Γ1, Γ2 be two isomorphic lattices in Isom+(Hn). Then
there exists an isometry g ∈ Isom(Hn) conjugating Γ1 to Γ2.

As a consequence of Theorem 1.1, we also reprove Thurston’s strict version of
Gromov’s degree inequality for hyperbolic manifolds. Note that this strict version
generalizes Mostow Rigidity [33, Theorem 6.4]:

Corollary 1.3 [33, Theorem 6.4] Let f : M1 → M2 be a continuous proper map
between two n-dimensional complete finite volume hyperbolic manifolds M1 and
M2 with n� 3. Then

deg(f )� Vol(M2)

Vol(M1)
,

with equality if and only if f is homotopic to a local isometry.

Our proof of Theorem 1.1 follows closely the steps in the proof of Mostow Rigid-
ity. In particular, the following result is the dual to the use of measure homology
and smearing in [33]. We denote by ε :G→{−1,1} the homomorphism defined by
ε(g)= 1 if g is orientation preserving and ε(g)=−1 if g is orientation reversing.

Theorem 1.4 Let M = Γ \Hn be a finite volume real hyperbolic manifold. Let ρ :
Γ → Isom(Hn) be a representation with non-elementary image and let ϕ : ∂Hn →
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∂Hn be the corresponding equivariant measurable map. Then for every (n+1)-tuple
of points ξ0, . . . , ξn ∈ ∂Hn,∫

Γ \ Isom(Hn)

ε
(
ġ−1)Voln

(
ϕ(ġξ0), . . . , ϕ(ġξn)

)
dμ(ġ)= Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn),

(2)
where μ is the invariant probability measure on Γ \ Isom(Hn).

This allows us to deduce strong rigidity properties of the boundary map ϕ from
the cohomological information about the boundary that, in turn, are sufficient to
show the existence of an element g ∈ Isom+(Hn) conjugating ρ and i.

To establish the theorem, we first prove the almost everywhere validity of the
formula in Theorem 1.4. Ideally, we would need to know that Hn

b,c(G
+,R) is 1-

dimensional and has no coboundaries in degree n in the appropriate cocomplex.
However in general we do not know how to compute Hn

b,c(G
+,R), except when

G+ = Isom+(H2) or Isom+(H3) and hence there is no direct way to prove the
formula in (2). To circumvent this problem, we borrow from [7] (see also [9]) the
essential observation that Voln is in fact a cocycle equivariant with respect to the
full group of isometries G= Isom(Hn), that is,

Voln(gx1, . . . , gxn)= ε(g)Voln(x1, . . . , xn).

This leads to consider R as a non-trivial coefficient module Rε for G and in this
context we prove that the comparison map

Hn
b,c(G,Rε)

∼=
Hn

c (G,Rε)

is an isomorphism. By a slight abuse of notation, we denote again by ωb
n ∈

Hn
b,c(G,Rε) and by ωn ∈Hn

c (G,Rε) the generator defined by Voln.
Using this identification and standard tools from the homological algebra ap-

proach to bounded cohomology, we obtain the almost everywhere validity of the
formula in Theorem 1.4. Additional arguments involving Lusin’s theorem are re-
quired to establish the formula pointwise. This is essential because one step of the
proof (see the beginning of Sect. 4) consists in showing that, if there is the equal-
ity in (1), the map ϕ maps the vertices of almost every positively oriented maximal
ideal simplex to vertices of positively (or negatively—one or the other, not both)
oriented maximal ideal simplices. Since such vertices form a set of measure zero in
the boundary, an almost everywhere statement would not be sufficient.

2 The Continuous Bounded Cohomology of G = Isom(Hn)

Denote by G = Isom(Hn) the full isometry group of hyperbolic n-space, and by
G+ = Isom+(Hn) its subgroup of index 2 consisting of orientation preserving
isometries. As remarked in the introduction there are two natural G-module struc-
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tures on R: the trivial one, which we denote by R, and the one given by multiplica-
tion with the homomorphism ε :G→G/G+ ∼= {+1,−1}, which we denote by Rε .

Recall that if q ∈N, the continuous cohomology groups H
q
c (G,R), respectively

H
q
c (G,Rε)—or in short H •

c (G,R(ε)) for both—of G with coefficient in R(ε), is by
definition given as the cohomology of the cocomplex

Cc

(
Gq+1,R(ε)

)G = {f :Gq+1 → R(ε)

∣∣f is continuous and

ε(g) · f (g0, . . . , gq)= f (gg0, . . . , ggq)
}

endowed with its usual homogeneous coboundary operator

δ : Cc

(
Gq+1,R(ε)

)G → Cc

(
Gq+2,R(ε)

)G
defined by

δf (g0, . . . , gq+1) :=
q+1∑
j=0

(−1)j f (g0, . . . , gj−1, gj+1, . . . , gq+1).

This operator clearly restricts to the bounded cochains

Cc,b

(
Gq+1,R(ε)

)G =
{
f ∈ Cc

(
Gq+1,R(ε)

)G ∣∣
‖f ‖∞ = sup

g0,...,gq∈G
∣∣f (g0, . . . , gq)

∣∣<+∞
}

and the continuous bounded cohomology H
q
c,b(G,R(ε)) of G with coefficients in

R(ε) is the cohomology of this cocomplex. The inclusion

Cc,b

(
Gq+1,R(ε)

)G ⊂ Cc

(
Gq+1,R(ε)

)G
induces a comparison map

c :Hq
c,b(G,R(ε))−→H

q
c (G,R(ε)).

We call cochains in Cc,(b)(G
q+1,R)G invariant and cochains in Cc,(b)(G

q+1,

Rε)
G equivariant and apply this terminology to the cohomology classes as well.

The sup norm on the complex of cochains induces a seminorm in cohomology

‖β‖ = inf
{‖f ‖∞ ∣∣f ∈ Cc,(b)

(
Gq+1,R(ε)

)G
, [f ] = β

}
,

for β ∈H
q

c,(b)(G,R(ε)).
The same definition gives the continuous (bounded) cohomology of any topologi-

cal group acting either trivially on R or via a homomorphism into the multiplicative
group {+1,−1}. A continuous representation ρ : H → G naturally induces pull-
backs

H •
c,(b)(G,R)−→H •

c,(b)(H,R) and H •
c,(b)(G,Rε)−→H •

c,(b)(H,Rρ),
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where Rρ is the H -module R with the H -action given by the composition of ρ :
H →G with ε :G→{+1,−1}. Note that ‖ρ∗(β)‖� ‖β‖.

Since the restriction to G+ of the G-action on R(ε) is trivial, there is a restriction
map in cohomology

H •
c,(b)(G,R(ε))−→H •

c,(b)

(
G+,R

)
. (3)

In fact, both the continuous and the continuous bounded cohomology groups can be
computed isometrically on the hyperbolic n-space H

n, as this space is isomorphic
to the quotient of G or G+ by a maximal compact subgroup. More precisely, set

Cc,(b)

((
H

n
)q+1

,R(ε)

)G = {f : (Hn
)q+1 → R

∣∣f is continuous (and bounded) and

ε(g) · f (x0, . . . , xq)= f (gx0, . . . , gxq)
}

and endow it with its homogeneous coboundary operator. Then the cohomology
of this cocomplex is isometrically isomorphic to the corresponding cohomology
groups ([22, Chap. III, Prop. 2.3] and [27, Cor. 7.4.10] respectively).

It is now easy to describe the left inverses to the restriction map (3) induced by
the inclusion. Indeed, at the cochain level, they are given by maps

p : Cc,(b)

((
H

n
)q+1

,R
)G+ −→ Cc,(b)

((
H

n
)q+1

,R
)G

and

p̄ : Cc,(b)

((
H

n
)q+1

,R
)G+ −→ Cc,(b)

((
H

n
)q+1

,Rε

)G
defined for x0, . . . , xq ∈H

n and f ∈ Cc,(b)((H
n)q+1,R)G

+
by

p(f )(x0, . . . , xq) = 1

2

(
f (x0, . . . , xq)+ f (τx0, . . . , τxq)

)
,

p̄(f )(x0, . . . , xq) = 1

2

(
f (x0, . . . , xq)− f (τx0, . . . , τxq)

)
,

where τ ∈ G�G+ is any orientation reversing isometry. In fact, it easily follows
from the G+-invariance of f that p(f ) is invariant, p̄(f ) is equivariant, and both
p(f ) and p̄(f ) are independent of τ in G�G+. The following proposition is im-
mediate:

Proposition 2.1 The cochain map (p, p̄) induces an isometric isomorphism

H •
c,(b)

(
G+,R

)∼=H •
c,(b)(G,R)⊕H •

c,(b)(G,Rε).

The continuous cohomology group H •
c (G

+,R) is well understood since it can,
via the van Est isomorphism [22, Corollary 7.2], be identified with the de Rham
cohomology of the compact dual to H

n, which is the n-sphere Sn. Thus it is gen-
erated by two cohomology classes: the constant class in degree 0, and the volume
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form in degree n. Recall that the volume form ωn can be represented by the cocycle
Voln ∈ Cc,b((H

n)n+1,Rε)
G (respectively Voln ∈ L∞((∂Hn)n+1,Rε)

G) given by

Voln(x0, . . . , xn)= signed volume of the convex hull of x0, . . . , xn,

for x0, . . . , xn ∈H
n, respectively ∂Hn. Since the constant class in degree 0 is invari-

ant, and the volume form is equivariant, using Proposition 2.1 we summarize this as
follows:

H 0
c

(
G+,R

)∼=H 0
c (G,R)∼= R and Hn

c

(
G+,R

)∼=Hn
c (G,Rε)∼= R ∼= 〈ωn〉.

All other continuous cohomology groups are 0. On the bounded side, the coho-
mology groups are still widely unknown, though they are conjectured to be iso-
morphic to their unbounded counterparts. The comparison maps for G and G+ are
easily seen to be isomorphisms in degrees 2 and 3 [11]. We show that the com-
parison map for the equivariant cohomology of G is indeed an isometric isomor-
phism up to degree n, based on the simple Lemma 2.2. Before we prove it, it will
be convenient to have yet two more cochain complexes to compute the continuous
bounded cohomology groups. If X = H

n or X = ∂Hn, consider the cochain space
L∞(Xq+1,R(ε))

G of G-invariant, resp. G-equivariant, essentially bounded mea-
surable function classes endowed with its homogeneous coboundary operator. It is
proven in [27, Cor. 7.5.9] that the cohomology of this cocomplex is isometrically
isomorphic to the continuous bounded cohomology groups. Note that the volume
cocycle Voln represents the same cohomology class viewed as continuous bounded
or L∞-cocycle on H

n, as an L∞-cocyle on ∂Hn or, by evaluation on x ∈ H
n or

x ∈ ∂Hn, as a continuous bounded or L∞-cocycle on G.

Lemma 2.2 For q < n we have

Cc

((
H

n
)q+1

,Rε

)G = 0,

L∞((
H

n
)q+1

,Rε

)G = 0,

L∞((∂Hn
)q+1

,Rε

)G = 0.

Proof Let f : (Hn)q+1 → Rε or f : (∂Hn)q+1 → Rε be G-equivariant. The lemma
relies on the simple observation that any q + 1 � n points x0, . . . , xq either in H

n

or in ∂Hn lie either on a hyperplane P ⊂ H
n or on the boundary of a hyperplane.

Thus there exists an orientation reversing isometry τ ∈G�G+ fixing (x0, . . . , xq)

pointwise. Using the G-equivariance of f we conclude that

f (x0, . . . , xq)=−f (τx0, . . . , τxq)=−f (x0, . . . , xq),

which implies f ≡ 0. �

It follows from the lemma that H
q
c,b(G,Rε) ∼= H

q
c (G,Rε) = 0 for q < n. Fur-

thermore, we can conclude that the comparison map for the equivariant cohomology
of G is injective:
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Proposition 2.3 The comparison map induces an isometric isomorphism

Hn
c,b(G,Rε)

∼=
Hn

c (G,Rε).

Proof Since there are no cochains in degree n − 1, there are no coboundaries in
degree n and the cohomology groups Hn

c,b(G,Rε) and Hn
c (G,Rε) are equal to the

corresponding spaces of cocycles. Thus, we have a commutative diagram

Hn
c,b(G,Rε) Ker

{
δ : Cc,b

((
H

n
)n+1

,Rε

)G → Cc,b

((
H

n
)n+2

,Rε

)G}

R ∼=Hn
c (G,Rε) Ker

{
δ : Cc

((
H

n
)n+1

,Rε

)G → Cc

((
H

n
)n+2

,Rε

)G}
.

The proposition follows from the fact that the lower right kernel is generated by the
volume form ωn which is represented by the bounded cocycle Voln, hence is in the
image of the vertical right inclusion. �

Since there are no coboundaries in degree n in Cc((H
n)q+1,Rε)

G, it follows that
the cohomology norm of ωn is equal to the norm of the unique cocycle representing
it. In view of [23], its norm is equal to the volume vn of an ideal regular simplex
in H

n.

Corollary 2.4 The norm ‖ωn‖ of the volume form ωn ∈Hn
c (G

+,R) is equal to the
volume vn of a regular ideal simplex in H

n.

As the cohomology norm ‖ωn‖ is the proportionality constant between simpli-
cial and Riemannian volume for closed hyperbolic manifolds [6, Theorem 2], the
corollary gives a simple proof of the proportionality principle ‖M‖ = Vol(M)/vn
for closed hyperbolic manifolds, originally due to Gromov and Thurston.

3 Relative Cohomology

3.1 Notation and Definitions

As mentioned in the introduction, we consider a compact core N of the complete
hyperbolic manifold M , that is a subset of M whose complement M �N in M is
a disjoint union of finitely many geodesically convex cusps of M . If q � 0 and σ :
Δq →M denotes a singular simplex, where Δq = {(t0, . . . , tq) ∈ Rq+1 :∑q

j=0 tj =
1, tj � 0 for all j} is a standard q-simplex, we recall that the (singular) cohomology
Hq(M,M �N) of M relative to M �N is the cohomology of the cocomplex

Cq(M,M �N)= {f ∈ Cq(M)
∣∣f (σ )= 0 if Im(σ )⊂M �N

}
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endowed with its usual coboundary operator. (Here, Cq(M) denotes the space of
singular q-cochains on M .) We emphasize that all cohomology groups, singular or
relative, are with R coefficients. The bounded relative cochains C

q
b (M,M �N) are

those for which f is further assumed to be bounded, meaning that sup{|f (σ )| | σ :
Δq →M} is finite. The coboundary restricts to bounded cochains and the cohomol-
ogy of that cocomplex is the bounded cohomology of M relative to M �N , which
we denote by H •

b (M,M � N). The inclusion of cocomplexes induces a compar-
ison map c : H •

b (M,M � N) → H •(M,M � N). Similarly, we could define the
cohomology of N relative to its boundary ∂N and it is clear, by homotopy invari-
ance, that H •

(b)
(N, ∂N) ∼= H •

(b)
(M,M �N). We can identify the relative cochains

on (M,M �N) with the Γ -invariant relative cochains Cq(Hn,U)Γ on the univer-
sal cover Hn relative to the preimage U = π−1(M � N) under the covering map
π : Hn → M of the finite union of horocyclic neighborhoods of cusps. We will
identify H •

(b)(N, ∂N) with the latter cohomology group. Note that U is a countable
union of disjoint horoballs.

The inclusion (M,∅) ↪→ (M,M �N) induces a long exact sequence on both the
unbounded and bounded cohomology groups

· · · −→H •−1
(b) (M�N)−→H •

(b)(M,M�N)−→H •
(b)(M)−→H •

(b)(M�N)−→ · · ·
Each connected component Ej of M � N , 1 � j � k, is a horocyclic neighbor-
hood of a cusp, hence homeomorphic to the product of R with an (n− 1)-manifold
admitting a Euclidean metric; thus its universal covering is contractible and its fun-
damental group is virtually abelian (hence amenable). It follows that (see the intro-
duction or [5, 21]) H •

b (Ej )∼=H •
b (π1(Ej ))= 0 and hence H •

b (M�N)= 0, proving
that the inclusion (M,∅) ↪→ (M,M �N) induces an isomorphism on the bounded
cohomology groups. Note that based on some techniques developed in [8] we can
show that this isomorphism is isometric—a fact that we will not need in this note.

3.2 Transfer Maps

In the following we identify Γ with its image i(Γ ) < G+ under the lattice embed-
ding i : Γ →G+. There exist natural transfer maps

H •
b (Γ )

transΓ
H •

c,b(G,Rε) and H •(N, ∂N)
τdR

H •
c (G,Rε),

whose classical constructions we briefly recall here. The aim of this section will then
be to establish the commutativity of the diagram (6) in Proposition 3.1. The proof is
similar to that in [8], except that we replace the compact support cohomology by the
relative cohomology, which leads to some simplifications. In fact, the same proof as
in [13] (from where the use of relative bounded cohomology is borrowed) would
have worked verbatim in this case, but we chose the other (and simpler) approach,
to provide a “measure homology-free” proof.
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3.2.1 The Transfer Map transΓ : H•
b (Γ ) → H•

c,b(G,Rε)

We can define the transfer map at the cochain level either as a map

transΓ : V Γ
q → VG

q ,

where Vq is one of Cb((H
n)q+1,R), L∞((Hn)q+1,R) or L∞((∂Hn)q+1,R). The

definition is the same in all cases. Let thus c be a Γ -invariant cochain in V Γ
q . Set

transΓ (c)(x0, . . . , xn) :=
∫
Γ \G

ε
(
ġ−1) · c(ġx0, . . . , ġxn) dμ(ġ), (4)

where μ is the invariant probability measure on Γ \G normalized so that
μ(Γ \G)= 1. Recall that Γ < G+, so that ε(ġ) is well defined. It is easy to check
that the resulting cochain transΓ (c) is G-equivariant. Furthermore, the transfer map
clearly commutes with the coboundary operator, and hence induces a cohomology
map

H •
b (Γ )

transΓ
H •

c,b(G,Rε).

Note that if the cochain c is already G-equivariant, then transΓ (c)= c, showing that
transΓ is a left inverse of i∗ :H •

c,b(G,Rε)→H •
b (Γ ).

3.2.2 The Transfer Map τdR : H•(N,∂N) → H•
c (G,Rε)

The relative de Rham cohomology H •
dR(M,M � N) is the cohomology of the

cocomplex of differential forms Ωq(M,M � N) which vanish when restricted to
M �N . Then, as for usual cohomology, there is a de Rham Theorem

Ψ :H •
dR(M,M �N)

∼=
H •(M,M �N)∼=H •(N, ∂N)

for relative cohomology. The isomorphism is given at the cochain level by integra-
tion. In order to integrate, we could either replace the singular cohomology by its
smooth variant (i.e. take smooth singular simplices), or we prefer here to integrate
the differential form on the straightened simplices. (The geodesic straightening of a
continuous simplex is always smooth.) Thus, at the cochain level, the isomorphism
is induced by the map

Ψ :Ωq(M,M �N)−→ Cq(M,M �N), (5)

sending a differential form ω ∈ Ωq(M,M � N) ∼= Ωq(Hn,U)Γ to the singular
cochain Ψ (ω) given by

σ �→
∫
π∗ straight(x0,...,xq )

ω,

where π :Hn →M is the canonical projection, the xi ∈H
n are the vertices of a lift

of σ to H
n, and straight(x0, . . . , xq) :Δq →H

n is the geodesic straightening. Ob-
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serve that if σ is in U , then the straightened simplex is as well, since all components
of U are geodesically convex.

The transfer map transdR : H •
dR(M,M � N) → H •

c (G,Rε) is defined through
the relative de Rham cohomology and the van Est isomorphism. At the cochain
level the transfer

transdR :Ωq
(
H

n,U
)Γ −→Ωq

(
H

n,Rε

)G
is defined by sending the differential q-form α ∈Ωq(Hn)Γ to the form

transdR(α) :=
∫
Γ \G

ε
(
ġ−1) · (ġ∗α)dμ(ġ),

where μ is chosen as in (4). It is easy to check that the resulting differential form
transdR(α) is G-equivariant. Furthermore, the transfer map clearly commutes with
the differential operator, and hence induces a cohomology map

H •(N, ∂N) H •
c (G,Rε)

H •
dR(M,M �N)

∼= Ψ

transdR
H •(Ω•(

H
n,Rε

)G) =
Ω•(

H
n,Rε

)G
,

∼=

where the vertical arrow on the right is the van Est isomorphism and the horizontal
arrow on the right follows from Cartan’s lemma to the extent that any G-invariant
differential form on H

n (or more generally on a symmetric space) is closed.
Let ωN,∂N ∈ Hn(M,M � N) be the unique class with 〈ωN,∂N , [N,∂N ]〉 =

Vol(M). It is easy to check that

transdR(ωN,∂N)= ωn ∈Ωn
(
H

n,Rε

)G ∼=Hn
c (G,Rε).

3.2.3 Commutativity of the Transfer Maps

Proposition 3.1 The diagram

H
q
b (Γ )

transΓ

H
q
b (N, ∂N)

∼=

c

H
q
c,b(G,Rε)

c

Hq(N, ∂N)
τdR

H
q
c (G,Rε)

(6)

commutes (here τdR = transdR ◦Ψ−1).
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Proof The idea of the proof is to subdivide the diagram (6) in smaller parts, by
defining transfer maps directly on the bounded and unbounded relative singular co-
homology of M and show that each of the following subdiagrams commute.

H
q
b (Γ )

transΓ

H
q
b (N, ∂N)

∼=
transb

c

H
q
c,b(G,Rε)

c

Hq(N, ∂N)
trans

H
q
c (G,Rε)

H
q
dR(N, ∂N)

transdR

∼= Ψ

Ωq(Hn,Rε)
G.

∼=Φ

(7)

3.2.4 Definition of the Transfer Map for Relative Cohomology

In order to define a transfer map, we need to be able to integrate our cochain on
translates of a singular simplex by elements of Γ \G. This is only possible if the
cochain is regular enough.

For 1 � i � k, pick a point bi ∈Ei in each horocyclic neighborhood of a cusp in
M and b0 ∈N in the compact core. Let β ′ :M →{b0, b1, . . . , bk} be the measurable
map sending N to b0 and each cusp Ei to bi . Lift β ′ to a Γ -equivariant measurable
map

β :Hn −→ π−1({b0, b1, . . . , bk}
)⊂H

n

defined as follows. Choose lifts b̃0, . . . , b̃k of b0, . . . , bk ; for each j = 1, . . . , k
choose a Borel fundamental domain Dj � b̃j for the Γ -action on π−1(Ej ) and
choose a fundamental domain D0 � b̃0 for the Γ -action on π−1(N). Now de-
fine β(γDj ) := γ b̃j . In particular β maps each horoball into itself. Given c ∈
Cq(Hn,U)Γ , define

β∗(c) : (Hn
)q+1 −→ R

by

β∗(c)(x0, . . . , xq)= c
(
straight

(
β(x0), . . . , β(xq)

))
. (8)

Remark that β∗(c) is Γ -invariant, vanishes on tuples of points that lie in the same
horoball in the disjoint union of horoballs π−1(Ei), and is independent of the chosen
lift of β ′ (but not of the points b0, . . . , bk). Thus, β∗(c) is a cochain in Cq(Hn,U)Γ
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which is now measurable, so that we can integrate it on translates of a given (q+1)-
tuple of point. We define

transβ(c) :
(
H

n
)q+1 −→ R

by

transβ(c)(x0, . . . , xq) :=
∫
Γ \G

ε
(
ġ−1) · (β∗(c)(ġx0, . . . , ġxq)

)
dμ(ġ),

where μ is as in (4). It is easy to show that the integral is finite. Indeed, let D

be the maximum of the distances between x0 and xi , for i = 1, . . . , q . Then for
ġ ∈ Γ \G such that ġx0 lies outside a D-neighborhood of the compact core N , each
ġxi clearly lies outside N and hence β∗(c)(ġx0, . . . , ġxq) vanishes for such ġ. It
follows that the integrand vanishes outside a compact set, within which it takes only
finitely many values. Furthermore, it follows from the Γ -invariance of c and β(c)

that transβ(c) is G-invariant.
Since transβ commutes with the coboundary operator, it induces a cohomology

map

trans :Hq(N,∂N)−→H
q
c (G,Rε).

As the transfer map transβ restricts to a cochain map between the corresponding
bounded cocomplexes, it also induces a map on the bounded cohomology groups

transb :Hq
b (N, ∂N)−→H

q
c,b(G,Rε),

and the commutativity of the middle diagram in (7) is now obvious.

3.2.5 Commutativity of the Lower Square

Denote by Φ :Ωq(Hn,Rε)−→ L∞((Hn)q+1,Rε) the map (analogous to the map
Ψ defined in (5)) sending the differential form α to the cochain Φ(α) mapping a
(q + 1)-tuple of points (x0, . . . , xq) ∈ (Hn)q+1 to

∫
straight(x0,...,xq )

α.

The de Rham isomorphism is realized at the cochain level by precomposing Φ with
the map sending a singular simplex in H

n to its vertices. To check the commutativity
of the lower square, observe that

transβ ◦Φ(α)(x0, . . . , xq) =
∫
Γ \G

ε
(
ġ−1) ·(∫

straight(β(ġx0),...,β(ġxq ))

α

)
dμ(ġ),
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while

Φ ◦ transdR(α)(x0, . . . , xq) =
∫
Γ \G

ε
(
ġ−1) ·(∫

straight(ġx0,...,ġxq )

α

)
dμ(ġ).

If dα = 0, the coboundary of the G-invariant cochain

(x0, . . . , xq−1) �−→
q−1∑
i=0

(−1)i
∫
Γ \G

ε
(
ġ−1)

·
(∫

straight(ġx0,...,ġxi ,β(ġxi ),...,β(ġxq−1))

α

)
dμ(ġ)

is equal to the difference of the two given cocycles.

3.2.6 Commutativity of the Upper Triangle

Observe that the isomorphism H •
b (M,M � N) ∼= H •

b (Γ ) can be induced at the
cochain level by the map β∗ : Cq

b (H
n,U)Γ → L∞((Hn)q+1,R)Γ defined in (8)

(and for which we allow ourselves a slight abuse of notation). It is immediate that
we now have commutativity of the upper triangle already at the cochain level,

L∞((
H

n
)q+1

,R
)Γ

transΓ

C
q
b

(
H

n,U
)Γ

β∗

transb
L∞((

H
n
)q+1

,Rε

)G
.

This finishes the proof of the proposition. �

3.3 Properties of Vol(ρ)

Lemma 3.2 Let i : Γ ↪→G be a lattice embedding. Then

Vol(i)= Vol(M).

Proof Both sides are multiplicative with respect to finite index subgroups. We can
hence without loss of generality suppose that Γ is torsion free. By definition, we
have

Vol(M) = 〈
ωN,∂N , [N,∂N ]〉,

Vol(i) = 〈(
c ◦ i∗

)(
ωb
n

)
, [N,∂N ]〉.
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The desired equality would thus clearly follow from ωN,∂N = (c ◦ i∗)(ωb
n). As the

transfer map τdR : Hn(N,∂N) → Hn
c (G) is an isomorphism in top degree and

sends ωN,∂N to ωn, this is equivalent to

ωn = τdR(ωN,∂N)= τdR ◦ c︸ ︷︷ ︸
c ◦ transΓ

◦ i∗(ωb
n

)= c ◦ transΓ ◦ i∗(ωb
n

)= c
(
ωb
n

)= ωn,

where we have used the commutativity of the diagram (6) in Proposition 3.1 and the
fact that transΓ ◦ i∗ = Id. �

Proposition 3.3 Let ρ : Γ →G be a representation. The composition

R ∼=Hn
c,b(G,Rε)

ρ∗
Hn

b (Γ )
transΓ

Hn
c,b(G,Rε)∼= R

is equal to λ · Id, where

|λ| = |Vol(ρ)|
Vol(M)

� 1.

Proof As the quotient is left invariant by passing to finite index subgroups, we can
without loss of generality suppose that Γ is torsion free. Let λ ∈ R be defined by

transΓ ◦ρ∗(ωb
n

)= λ ·ωb
n. (9)

We apply the comparison map c to this equality and obtain

c ◦ transΓ ◦ρ∗(ωb
n

)= λ · c(ωb
n

)= λ ·ωn = λ · τdR(ωN,∂N).

The first expression of this line of equalities is equal to τdR ◦ c ◦ ρ∗(ωb
n) by the

commutativity of the diagram (6). Since τdR is injective in top degree it follows that
(c ◦ ρ∗)(ωb

n)= λ ·ωN,∂N . Evaluating on the fundamental class, we obtain

Vol(ρ)= 〈(c ◦ ρ∗)(ωb
n

)
, [N,∂N ]〉= λ · 〈ωN,∂N , [N,∂N ]〉= λ ·Vol(i)= λ ·Vol(M).

For the inequality, we take the sup norms on both sides of (9), and get

|λ| = ‖ transΓ ◦ρ∗(ωb
n)‖

‖ωb
n‖

� 1,

where the inequality follows from the fact that all maps involved do not increase the
norm. This finishes the proof of the proposition. �

4 On the Proof of Theorem 1.1

The simple inequality |Vol(ρ)| � |Vol(i)| = Vol(M) follows from Proposition 3.3
and Lemma 3.2.
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The proof is divided into three steps. The first step, which follows essentially
Furstenberg’s footsteps [37, Chap. 4], consists in exhibiting a ρ-equivariant mea-
surable boundary map ϕ : ∂Hn → ∂Hn. In the second step we will establish that ϕ
maps the vertices of almost every positively oriented ideal simplex to vertices of
positively (or negatively—one or the other, not both) oriented ideal simplices. In the
third and last step we show that ϕ has to be the extension of an isometry, which will
provide the conjugation between ρ and i. The fact that n � 3 will only be used in
the third step.

4.1 Step 1: The Equivariant Boundary Map

We need to define a measurable map ϕ : ∂Hn → ∂Hn such that

ϕ
(
i(γ ) · ξ)= ρ(γ ) · ϕ(ξ), (10)

for every ξ ∈ ∂Hn and every γ ∈ Γ .
The construction of such boundary map is the sore point of many rigidity ques-

tions. In the rank one situation in which we are, the construction is well known and
much easier, and is recalled here for completeness.

Since ∂Hn can be identified with Isom+(Hn)/P , where P < Isom+(Hn) is a
minimal parabolic, the action of Γ on ∂Hn is amenable. Thus there exists a Γ -
equivariant measurable map ϕ : ∂Hn → M 1(∂Hn), where M 1(∂Hn) denotes the
probability measures on ∂Hn, [37]. We recall the proof here for the sake of the
reader familiar with the notion of amenable group but not conversant with that of
amenable action, although the result is by now classical.

Lemma 4.1 Let G be a locally compact group, Γ <G a lattice and P an amenable
subgroup. Let X be a compact metrizable space with a Γ -action by homeomor-
phisms. Then there exists a Γ -equivariant boundary map ϕ :G/P →M 1(X).

Proof Let C(X) be the space of continuous functions on X. The space

L1
Γ

(
G,C(X)

) := {f :G→ C(X)
∣∣f is measurable, Γ -equivariant and∫

Γ \G
∥∥f (ġ)

∥∥∞ dμ(ġ) <∞
}
,

is a separable Banach space whose dual is the space L∞
Γ (G,M (X)) of measur-

able Γ -equivariant essentially bounded maps from G into M (X), where M (X)=
C(X)∗ is the dual of C(X). (Notice that since C(X) is a separable Banach space,
the concept of measurability of a function G→ C(X)∗ is the same as to whether
C(X)∗ is endowed with the weak-* or the norm topology.) Then L∞

Γ (G,M 1(X)) is
a convex compact subset of the unit ball of L∞

Γ (G,M (X)) that is right P -invariant.
Since P is amenable, there exists a P -fixed point, that is nothing but the map
ϕ :G/P →M 1(X) we were looking for. �
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We are going to associate to every μ ∈ M 1(∂Hn) (in the image of ϕ) a point
in ∂Hn.

If the measure μ has only one atom of mass � 1
2 , then we associate to μ this

atom. We will see that all other possibilities result in a contradiction.
If the measure μ has no atoms of mass greater than or equal to 1

2 , we can apply
Douady and Earle’s barycenter construction [16, Sect. 2] that to such a measure as-
sociates equivariantly a point bμ ∈H

n. By ergodicity of the Γ -action on ∂Hn×∂Hn,
the distance d := d(bϕ(x), bϕ(x′)) between any two of these points is essentially con-
stant. It follows that for a generic x ∈ ∂Hn, there is a bounded orbit, contradicting
the fact that the action is not elementary.

If on the other hand there is more than one atom whose mass is at least 1
2 , then

the support of the measure must consist of two points (with an equally distributed
measure). Denote by gx the geodesic between the two points in the support of the
measure ϕ(x) ∈ M 1(∂Hn). By ergodicity of the Γ -action on ∂Hn × ∂Hn, the car-
dinality of the intersection supp(ϕ(x)) ∩ supp(ϕ(x′)) must be almost everywhere
constant and hence almost everywhere either equal to 0, 1 or 2.

If | supp(ϕ(x)) ∩ supp(ϕ(x′))| = 2 for almost all x, x′ ∈ ∂Hn, then the geodesic
gx is Γ -invariant and hence the action is elementary.

If | supp(ϕ(x)) ∩ supp(ϕ(x′))| = 1, then we have to distinguish two cases: ei-
ther for almost every x ∈ ∂Hn there is a point ξ ∈ ∂Hn such that supp(ϕ(x)) ∩
supp(ϕ(x′)) = {ξ} for almost all x′ ∈ ∂Hn, in which case again ξ would be Γ -
invariant and the action elementary, or supp(ϕ(x))∪supp(ϕ(x′))∪supp(ϕ(x′′)) con-
sists of exactly three points for almost every x′, x′′ ∈ ∂Hn. In this case the barycen-
ter of the geodesic triangle with vertices in these three points is Γ -invariant and the
action is, again, elementary.

Finally, if | supp(ϕ(x)) ∩ supp(ϕ(x′))| = 0, let D := d(gx, gx′). By ergodicity
on ∂Hn × ∂Hn, d is essentially constant. Let γ ∈ ρ(Γ ) be a hyperbolic element
whose fixed points are not the endpoints of gx or gx′ . Then iterates of γ send a
geodesic gx′ into an arbitrarily small neighborhood of the attractive fixed point of γ ,
contradicting that gx is at fixed distance from gx′ .

4.2 Step 2: Mapping Regular Simplices to Regular Simplices

The next step is to prove Theorem 1.4. Then if Vol(ρ)= Vol(M), it will follow that
the map ϕ in Step 1 sends almost all regular simplices to regular simplices.

From Proposition 3.3 we obtain that the composition of the induced map ρ∗ and
the transfer with respect to the lattice embedding i is equal to ± the identity on
Hn

c,b(G
+,Rε). In dimension 3, it follows from [4] that H 3

c,b(Isom+(H3),R) ∼= R
and the proof can be formulated using trivial coefficients; this has been done in [11],
which is the starting point of this paper. In higher dimension it is conjectured, but
not known, that Hn

c,b(G
+,R)∼= R.

We can without loss of generality suppose that transΓ ◦ρ∗ is equal to + Id. In-
deed, otherwise, we conjugate ρ by an orientation reversing isometry. We will now
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show that the isomorphism realized at the cochain level leads to the equality (11),
which is only an almost everywhere equality. Up to this point, the proof is elemen-
tary. The only difficulty in our proof is to show that the almost everywhere equality
is a true equality, which we prove in Proposition 4.2. Note however that there are
two cases in which Proposition 4.2 is immediate, namely 1) if ϕ is a homeomor-
phism, which is the case if Γ is cocompact and ρ is also a lattice embedding (which
is the case of the classical Mostow Rigidity Theorem), and 2) if the dimension n

equals 3. We give the alternative simple arguments below.
The bounded cohomology groups Hn

c,b(G,Rε) and Hn
b (Γ,R) can both be com-

puted from the corresponding L∞ equivariant cochains on ∂Hn. The induced map
ρ∗ : Hn

c,b(G,Rε) → Hn
b (Γ,R) is represented by the pullback by ϕ, although it

should be noted that the pullback in bounded cohomology cannot be implemented
with respect to boundary maps in general, unless the class to pull back can be
represented by a strict invariant Borel cocycle. This is our case for Voln and
as a consequence, ϕ∗(Voln) is also a measurable Γ -invariant cocycle. It hence
determines a cohomology class in Hn

b (Γ ) which, by [10, Corollary 3.7], repre-
sents ρ∗(ωn).

The composition of maps transΓ ◦ρ∗ is thus realized at the cochain level by

L∞((∂Hn
)n+1

,Rε

)Γ −→ L∞((∂Hn
)n+1

,Rε

)G
v �−→ {

(ξ0, . . . , ξn) �→
∫
Γ \G ε

(
ġ−1

)
v
(
ϕ
(
ġξ0, . . . , ġξn

))
dμ(ġ)

}
.

Since the composition transΓ ◦ρ∗ is the multiplication by Vol(ρ)
Vol(M)

at the cohomology
level and there are no coboundaries in degree n (Lemma 2.2), the above map sends
the cocycle Voln to Vol(ρ)

Vol(M)
Voln. Thus, for almost every ξ0, . . . , ξn ∈ ∂Hn we have

∫
Γ \G

ε
(
ġ−1) ·Voln

(
ϕ(ġξ0), . . . , ϕ(ġξn)

)
dμ(ġ)= Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn). (11)

Let (∂Hn)(n+1) be the G-invariant open subset of (∂Hn)n+1 consisting of (n+ 1)-
tuples of points (ξ0, . . . , ξn) such that ξi �= ξj for all i �= j . Observe that the vol-
ume cocycle Voln is continuous when restricted to (∂Hn)(n+1) and vanishes on
(∂Hn)n+1

� (∂Hn)(n+1). Observe moreover that the volume of ideal simplices is
a continuous extension of the volume of simplices with vertices in the interior Bn

of the sphere Sn−1 = ∂Hn.

Proposition 4.2 Let i : Γ →G be a lattice embedding, ρ : Γ →G a representation
and ϕ : ∂Hn → ∂Hn a Γ -equivariant measurable map. Identifying Γ with its image
i(Γ ) <G via the lattice embedding, if∫

Γ \G
ε
(
ġ−1) ·Voln

(
ϕ(ġξ0), . . . , ϕ(ġξn)

)
dμ(ġ)= Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)n+1, then the equality holds everywhere.
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Before we proceed with the proof, let us observe that it immediately follows from
the proposition that if ρ has maximal volume, then ϕ maps the vertices of almost
every regular simplex to the vertices of a regular simplex of the same orientation,
which is the conclusion of Step 2.

Proof if ϕ is a Homeomorphism Since ϕ is injective, both sides of the almost ev-
erywhere equality are continuous on (∂Hn)(n+1). Since they agree on a full measure
subset of (∂Hn)(n+1), the equality holds on the whole of (∂Hn)(n+1). As for its com-
plement, it is clear that if ξi = ξj for i �= j then both sides of the equality vanish. �

Proof if n = 3 Both sides of the almost equality are defined on the whole of
(∂H3)4, are cocycles on the whole of (∂H3)4, vanish on (∂H3)4

� (∂H3)(4) and
are Isom+(H3)-invariant. Let a, b : (∂H3)4 → R be two such functions and suppose
that a = b on a set of full measure. This means that for almost every (ξ0, . . . , ξ3) ∈
(∂H3)4, we have a(ξ0, . . . , ξ3) = b(ξ0, . . . , ξ3). Since Isom+(H3) acts transitively
on 3-tuples of distinct points in H

3 and both a and b are Isom+(H3)-invariant, this
means that for every (ξ0, ξ1, ξ2) ∈ (∂H3)(3) and almost every η ∈ ∂H3 the equality

a(ξ0, ξ1, ξ2, η)= b(ξ0, ξ1, ξ2, η)

holds. Let ξ0, . . . , ξ3 ∈ ∂H3 be arbitrary. If ξi = ξj for i �= j , we have a(ξ0, . . . , ξ3)=
b(ξ0, . . . , ξ3) by assumption. Suppose ξi �= ξj whenever i �= j . By the above, for ev-
ery i ∈ 0, . . . ,3 the equality

a(ξ0, . . . , ξ̂i , . . . , ξ3, η)= b(ξ0, . . . , ξ̂i , . . . , ξ3, η)

holds for η in a subset of full measure in ∂H3. Let η be in the (non empty) intersec-
tion of these four full measure subsets of ∂H3. We then have

a(ξ0, . . . , ξ3) =
3∑

i=0

(−1)ia(ξ0, . . . , ξ̂i , . . . , ξ3, η)

=
3∑

i=0

(−1)ib(ξ0, . . . , ξ̂i , . . . , ξ3, η)= b(ξ0, . . . , ξ3),

where we have used the cocycle relations for a and b in the first and last equality
respectively. �

Proof in the General Case Observe first of all that for all (ξ0, . . . , ξn) ∈ (∂Hn)n+1
�

(∂Hn)(n+1) the equality holds trivially.
Using the fact that ∂Hn ∼= Sn−1 ⊂ Rn, let us consider the function ϕ : ∂Hn →

∂Hn as a function ϕ : ∂Hn → Rn and for j = 1, . . . , n denote by ϕj its coordi-
nates. Since ∂Hn ∼= G/P , where P is a minimal parabolic, let ν be the quasi-
invariant measure on ∂Hn obtained from the decomposition of the Haar measure
μG with respect to the Haar measure μP on P , as in (17). According to Lusin’s
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theorem applied to the ϕj for j = 1, . . . , n (see for example [31, Theorem 2.24]),
for every δ > 0 there exist a measurable set Bδ,i ⊂ ∂Hn with measure ν(Bi,δ) � δ

and a continuous function f ′
j,δ : ∂Hn → R such that ϕj ≡ f ′

j,δ on ∂Hn
� Bj,δ .

Set f ′
δ := (f1,δ, . . . , fn,δ) → Rn and consider the composition fδ := r ◦ f ′

δ with
the retraction r : Rn → Bn to the closed unit ball Bn ⊂ Rn. Then, by setting
Bδ :=⋃n

j=1 Bj,δ , we see that ϕ coincides on ∂Hn
�Bδ with the continuous function

fδ : ∂Hn → Bn and ν(Bδ)� nδ.
Let D ⊂ G be a fundamental domain for the action of Γ on G. For every

measurable subset E ⊂ D , any measurable map ψ : ∂Hn → Bn and any point
(ξ0, . . . , ξn) ∈ (∂Hn)(n+1), we use the notation

I
(
ψ,E, (ξ0, . . . , ξn)

) := ∫
E

ε
(
g−1)Voln

(
ψ(gξ0), . . . ,ψ(gξn)

)
dμG(g),

so that we need to show that if

I
(
ϕ,D, (ξ0, . . . , ξn)

)= Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn) (12)

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)(n+1), then the equality holds everywhere.
Fix ε > 0 and let Kε ⊂ D be a compact set such that μG(D � Kε) < ε. The

proof is broken up in several lemmas, that we state and use here, but whose proof
we postpone.

Lemma 4.3 With the above notations,

μG

({g ∈Kε : gξ ∈ Bδ}
)
� σε(δ), (13)

where σε(δ) does not depend on ξ ∈ ∂Hn and σε(δ)→ 0 when δ→ 0.

Replacing ϕ with fδ results in the following estimate for the integral.

Lemma 4.4 With the notation as above, there exists a function Mε(δ) with the prop-
erty that limδ→0 Mε(δ)= 0, such that∣∣I (

ϕ,Kε, (ξ0, . . . , ξn)
)−I

(
fδ,Kε, (ξ0, . . . , ξn)

)∣∣�Mε(δ),

for all (ξ0, . . . , ξn+1) ∈ (∂Hn)n+1.

Observe that, although∣∣I (
ϕ,D, (ξ0, . . . , ξn)

)−I
(
ϕ,Kε, (ξ0, . . . , ξn)

)∣∣< ε‖Voln ‖, (14)

for all (ξ0, . . . , ξn+1) ∈ (∂Hn)(n+1), the estimate∣∣∣∣I (
ϕ,Kε, (ξ0, . . . , ξn)

)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
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�
∣∣I (

ϕ,Kε, (ξ0, . . . , ξn)
)−I

(
ϕ,D, (ξ0, . . . , ξn)

)∣∣
+
∣∣∣∣I (

ϕ,D, (ξ0, . . . , ξn)
)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣� ε‖Voln ‖, (15)

holds only for almost every (ξ0, . . . , ξn) ∈ (∂Hn)(n+1), since this is the case for (12).
From (15) and Lemma 4.4, it follows that∣∣∣∣I (

fδ,Kε, (ξ0, . . . , ξn)
)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
�
∣∣I (

fδ,Kε, (ξ0, . . . , ξn)
)−I

(
ϕ,Kε, (ξ0, . . . , ξn)

)∣∣
+
∣∣∣∣I (

ϕ,Kε, (ξ0, . . . , ξn)
)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
<Mε(δ)+ ε‖Voln ‖, (16)

for almost every (ξ0, . . . , ξn) ∈ (∂Hn)(n+1).
The following lemma uses the continuity of fδ to deduce that all of the almost

everywhere equality that propagated from the use of (12) in (15), can indeed be
observed to hold everywhere because of the use of Lusin theorem.

Lemma 4.5 There exist a function L(ε, δ) such that limε→0 limδ→0 L(ε, δ)= 0 and∣∣∣∣I (
fδ,Kε, (ξ0, . . . , ξn)

)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣� L(ε, δ)

for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1).

From this, and from Lemma 4.4, and using once again (14), now all everywhere
statements, we conclude that∣∣∣∣I (

ϕ,D, (ξ0, . . . , ξn)
)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
�
∣∣I (

ϕ,D, (ξ0, . . . , ξn)
)−I

(
ϕ,Kε, (ξ0, . . . , ξn)

)∣∣
+ ∣∣I (

ϕ,Kε, (ξ0, . . . , ξn)
)−I

(
fδ,Kε, (ξ0, . . . , ξn)

)∣∣
+
∣∣∣∣I (

fδ,Kε, (ξ0, . . . , ξn)
)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
<Mε(δ)+L(ε, δ)+ ε‖Voln ‖,

for all (ξ0, . . . , ξn+1) ∈ (∂Hn)n+1. This concludes the proof of Proposition 4.2, as-
suming the unproven lemmas. �

We now proceed to the proof of Lemmas 4.3, 4.4 and 4.5.
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Proof of Lemma 4.3 Recall that ∂Hn =G/P , where P <G is a minimal parabolic
and let η :G/P →G be a Borel section of the projection G→G/P such that F :=
η(G/P ) is relatively compact [26, Lemma 1.1]. Let B̃δ := η(Bδ) and, if ξ ∈ Bδ , set
ξ̃ := η(ξ) ∈ B̃δ . On the other hand, if g ∈Kε and gξ ∈ Bδ , there exists p ∈ P such
that gξ̃p ∈ B̃δ and, in fact, the p can be chosen to be in P ∩ F−1(Kε)

−1F =: Cε .
Thus we have

{g ∈Kε : gξ ∈ Bδ} =
{
g ∈Kε : there exists p ∈ Cε with gξ̃p ∈ B̃δ

}
= {g ∈Kε ∩ B̃δp

−1ξ̃−1 for some p ∈ Cε

}⊂Kε ∩ B̃δC
−1
ε ξ̃−1,

and hence

μG

({g ∈Kε : gξ ∈ Bδ}
)
� μG

(
Kεξ̃

−1 ∩ B̃δC
−1
ε

)
� μG

(
B̃δC

−1
ε

)
.

To estimate the measure, recall that there is a strictly positive continuous function
q :G→ R+ and a positive measure ν on ∂Hn such that

∫
G

f (g)q(g) dμG(g)=
∫
∂Hn

(∫
P

f (ġξ) dμP (ξ)

)
dν(ġ), (17)

for all continuous functions f on G with compact support, [30, Sect. 8.1].
We may assume that μG(B̃δC

−1
ε ) �= 0 (otherwise we are done). Then, since q is

continuous and strictly positive and the integral is on a relatively compact set, there
exists a constant 0 < α <∞ such that

αμG

(
B̃δC

−1
ε

)= ∫
∂Hn

(∫
P

χ
B̃δC

−1
ε

(ġξ ) dμP (ξ)

)
dν(ġ).

But, by construction, if g ∈ B̃δ , then gξ ∈ B̃δC
−1
ε if and only if ξ ∈ C−1

ε , so that

∫
P

χ
B̃δC

−1
ε

(ġξ ) dμP (ξ)= μP

(
C−1

ε

)
,

and hence

αμG

(
B̃δC

−1
ε

)= ν(Bδ)μP

(
C−1

ε

)
.

Since ν(Bδ) < δ, the inequality (13) is proven with σε(δ)= 1
α
μP (C−1

ε )δ. �

Proof of Lemma 4.4 Let us fix (ξ0, . . . , ξn) ∈ (∂Hn)n+1. Then we have∣∣I (
ϕ,Kε, (ξ0, . . . , ξn)

)−I
(
fδ,Kε, (ξ0, . . . , ξn)

)∣∣
�
∣∣I (

ϕ,Kε,0, (ξ0, . . . , ξn)
)−I

(
fδ,Kε,0, (ξ0, . . . , ξn)

)∣∣
+ ∣∣I (

ϕ,Kε,1, (ξ0, . . . , ξn)
)−I

(
fδ,Kε,1, (ξ0, . . . , ξn)

)∣∣,
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where

Kε,0 :=
n⋂

j=0

{
g ∈Kε : gξj ∈ ∂Hn

�Bδ

}
and Kε,1 :=Kε �Kε,0.

But ϕ(g) = fδ(g) for all g ∈ Kε,0, hence the difference of the integrals on Kε,0
vanishes. Since

μG(Kε,1)= μG

(
Kε ∩

n⋃
j=0

{g ∈Kε : gξj ∈ Bδ}
)
� (n+ 1)σε(δ),

we obtain the assertion with Mε(δ) := 2(n+ 1)‖Voln ‖σε(δ). �

Proof of Lemma 4.5 If the volume were continuous on (∂Hn)n+1 or if the function
fδ were injective, the assertion would be obvious.

Observe that ϕ is almost everywhere injective: in fact, by double ergodicity, the
subset of ∂Hn × ∂Hn consisting of pairs (x, y) for which ϕ(x) = ϕ(y) is a set of
either zero or full measure and the latter would contradict non-elementarity of the
action. Then on a set of full measure in ∂Hn

� Bδ the function fδ is injective and
hence Voln(fδ(gξ0), . . . , fδ(gξn)) is continuous provided the fδ(gξ0), . . . , fδ(gξn)

are pairwise distinct.
So, for any (ξ0, . . . , ξn) ∈ (∂Hn)(n+1) we define

E (ξ0, . . . , ξn) :=
{
g ∈Kε : fδ(gξ0), . . . , fδ(gξn) are pairwise distinct

}
.

Let F ⊂ (Bc
δ × Bc

δ )
(2) be the set of distinct pairs (x, y) ∈ (Bc

δ × Bc
δ )

(2) such that
fδ(x) = fδ(y). Then F is of measure zero, and given any (ξ0, ξ1) ∈ ∂Hn × ∂Hn

distinct, the set {g ∈G : g(ξ0, ξ1) ∈ F } is of μG-measure zero. This, together with
Lemma 4.3, implies that

μG

(
Kε � E (ξ0, . . . , ξn)

)
� μG

(
n⋃

j=0

{g ∈Kε : gξj ∈ Bδ}
)
� (n+ 1)σε(δ). (18)

Let S ⊂ (∂Hn)(n+1) be the set of full measure where the inequality (16) holds
and let (ξ0, . . . , ξn) ∈ (∂Hn)(n+1). Since νn+1((∂Hn)(n+1)

�S )= 0, there exists a
sequence of points (ξ

(k)
0 , . . . , ξ

(k)
n ) ∈ S with (ξ

(k)
0 , . . . , ξ

(k)
n )→ (ξ0, . . . , ξn). Then

for every g ∈ E (ξ)

lim
k→∞Voln

(
fδ

(
gξ

(k)
0

)
, . . . , fδ

(
gξ(k)

n

))= Voln
(
fδ(gξ0), . . . , fδ(gξn)

)
,

and, by the dominated convergence theorem applied to the sequence hk(g) :=
Voln(fδ(gξ

(k)
0 ), . . . , fδ(gξ

(k)
n )), we deduce that

lim
k→∞I

(
fδ,E (ξ0, . . . , ξn),

(
ξ
(k)
0 , . . . , ξ (k)

n

))=I
(
fδ,E (ξ0, . . . , ξn), (ξ0, . . . , ξn)

)
.

(19)
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But then∣∣∣∣I (
fδ,Kε, (ξ0, . . . , ξn)

)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣
�
∣∣I (

fδ,Kε, (ξ0, . . . , ξn)
)−I

(
fδ,E (ξ0, . . . , ξn), (ξ0, . . . , ξn)

)∣∣
+ ∣∣I (

fδ,E (ξ0, . . . , ξn),(ξ0, . . . , ξn)
)−I

(
fδ,E (ξ0, . . . , ξn),

(
ξ
(k)
0 , . . . , ξ (k)

n

))∣∣
+ ∣∣I (

fδ,E (ξ0, . . . , ξn),
(
ξ
(k)
0 , . . . , ξ (k)

n

))−I
(
fδ,Kε,

(
ξ
(k)
0 , . . . , ξ (k)

n

))∣∣
+
∣∣∣∣I (

fδ,Kε,
(
ξ
(k)
0 , . . . , ξ (k)

n

))− Vol(ρ)

Vol(M)
Voln

(
ξ
(k)
0 , . . . , ξ (k)

n

)∣∣∣∣
+
∣∣∣∣ Vol(ρ)

Vol(M)
Voln

(
ξ
(k)
0 , . . . , ξ (k)

n

)− Vol(ρ)

Vol(M)
Voln(ξ0, . . . , ξn)

∣∣∣∣,
for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1).

The first and third lines after the inequality sign are each � (n+ 1)‖Voln ‖σε(δ)

because of (18); the second line after the equality is less than δ if k is large
enough because of (19); the fourth line is � Mε(δ) + ε‖Voln ‖ by (16) since
(ξ

(k)
0 , . . . , ξ

(k)
n ) ∈S and finally the last line is also less than δ if k if large enough.

All of the estimate hold for all (ξ0, . . . , ξn) ∈ (∂Hn)(n+1), and hence the assertion is
proven with L(ε, δ) := 2δ + 2(n+ 1)‖Voln ‖σε(δ)+Mε(δ)+ ε‖Voln ‖. �

4.3 Step 3: The Boundary Map is an Isometry

Suppose now that the equality |Vol(ρ)| = |Vol(i)| holds. Then ϕ maps enough reg-
ular simplices to regular simplices. In this last step of the proof, we want to show
that then ϕ is essentially an isometry, and this isometry will realize the conjugation
between ρ and i.

In the case of a cocompact lattice Γ < Isom(Hn) and a lattice embedding ρ :
Γ → Isom+(Hn), the limit map ϕ is continuous and the proof is very simple based
on Lemma 4.6. This is the original setting of Gromov’s proof of Mostow rigidity for
compact hyperbolic manifolds.

If either the representation ρ is not assumed to be a lattice embedding, or if Γ is
not cocompact, then the limit map ϕ is only measurable and one needs a measurable
variant of Lemma 4.6 presented in Proposition 4.7 for n � 4. The case n = 3 was
first proven by Thurston for his generalization (Corollary 1.3 here) of Gromov’s
proof of Mostow rigidity. It is largely admitted that the case n= 3 easily generalizes
to n � 4, although we wish to point out that the proof is very much simpler for
n � 4 based on the fact that the reflection group of a regular simplex is dense in
the isometry group. For the proof of Proposition 4.7, we will omit the case n = 3
which is nicely written down in all necessary details by Dunfield [17, pp. 654–656],
following the original [33, two last paragraphs of Sect. 6.4].
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Let T denote the set of (n+ 1)-tuples of points in ∂Hn which are vertices of a
regular simplex,

T = {ξ = (ξ0, . . . , ξn) ∈
(
∂Hn

)n+1 ∣∣ ξ are the vertices of an ideal regular simplex
}
.

We shall call an (n + 1)-tuple in T a regular simplex. Note that the order of the
vertices ξ0, . . . , ξn induces an orientation on the simplex ξ . For ξ ∈ T , denote by
Λξ < Isom(Hn) the reflection group generated by the reflections in the faces of the
simplex ξ .

Lemma 4.6 Let n � 3. Let ξ = (ξ0, . . . , ξn) ∈ T . Suppose that ϕ : ∂Hn → ∂Hn is
a map such that for every γ ∈Λξ , the simplex with vertices (ϕ(γ ξ0), . . . , ϕ(γ ξn))

is regular and of the same orientation as (γ ξ0, . . . , γ ξn) ∈ T . Then there exists a
unique isometry h ∈ Isom(Hn) such that h(ξ)= ϕ(ξ) for every ξ ∈⋃n

i=0 Λξξi .

Note that this lemma and its subsequent proposition are the only places in the
proof where the assumption n� 3 is needed. The lemma is wrong for n= 2 since ϕ

could be any orientation preserving homeomorphism of ∂H2.

Proof If ξ = (ξ0, . . . , ξn) and (ϕ(ξ0), . . . , ϕ(ξn)) belong to T , then there exists a
unique isometry h ∈ Isom+(Hn) such that hξi = ϕ(ξi) for i = 0, . . . , n. It remains
to check that

h(γ ξi)= ϕ(γ ξi) (20)

for every γ ∈ Λξ . Every γ ∈ Λξ is a product γ = rk · . . . · r1, where rj is a re-
flection in a face of the regular simplex rj−1 · . . . · r1(ξ). We prove the equal-
ity (20) by induction on k, the case k = 0 being true by assumption. Set ηi =
rk−1 · . . . · r1(ξi). By induction, we know that h(ηi)= ϕ(ηi). We need to show that
h(rkηi)= ϕ(rkηi). The simplex (η0, . . . , ηn) is regular and rk is a reflection in one
of its faces, say the face containing η1, . . . , ηn. Since rkηi = ηi for i = 1, . . . , n, it
just remains to show that h(rkη0)= ϕ(rkη0). The simplex (rkη0, rkη1, . . . , rkηn)=
(rkη0, η1, . . . , ηn) is regular with opposite orientation to (η0, η1, . . . , ηn). This
implies on the one hand that the simplex (h(rkη0), h(η1), . . . , h(ηn)) is regular
with opposite orientation to (h(η0), h(η1), . . . , h(ηn)), and on the other hand that
the simplex (ϕ(rkη0), ϕ(η1), . . . , ϕ(ηn)) is regular with opposite orientation to
(ϕ(η0), . . . , ϕ(ηn)). Since (h(η0), h(η1), . . . , h(ηn))= (ϕ(η0), . . . , ϕ(ηn)) and there
is in dimension n� 3 only one regular simplex with face h(η1), . . . , h(ηn) and op-
posite orientation to (h(η0), h(η1), . . . , h(ηn)) it follows that h(rkη0)= ϕ(rkη0). �

If ϕ were continuous, sending the vertices of all positively (respectively nega-
tively) oriented ideal regular simplices to vertices of positively (resp. neg.) oriented
ideal regular simplices, then it would immediately follow from the lemma that ϕ is
equal to an isometry h on the orbits

⋃n
i=0 Λξξi of the vertices of one regular simplex

under its reflection group. Since the set
⋃n

i=0 Λξξi is dense in ∂Hn, the continuity
of ϕ would imply that ϕ is equal to the isometry h on the whole ∂Hn.
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In the setting of the next proposition, we first need to show that there exist enough
regular simplices for which ϕ maps every simplex of its orbit under reflections to a
regular simplex. Second, we apply the lemma to obtain that ϕ is equal to an isometry
on these orbits. Finally, we use ergodicity of the reflection groups to conclude that
it is the same isometry for almost all regular simplices. As mentioned earlier, the
proposition also holds for n= 3 (see [17, pp. 654-656] and [33, two last paragraphs
of Sect. 6.4]), but in that case the proof is quite harder, since the reflection group of
a regular simplex is discrete in Isom(Hn) (indeed, one can tile H

3 by regular ideal
simplices) and in particular does not act ergodically on Isom(Hn).

Proposition 4.7 Let n� 4. Let ϕ : ∂Hn → ∂Hn be a measurable map sending the
vertices of almost every positively, respectively negatively oriented regular ideal sim-
plex to the vertices of a positively, resp. negatively, oriented regular ideal simplex.
Then ϕ is equal almost everywhere to an isometry.

Proof Let T ϕ ⊂ T denote the following subset of the set T of regular simplices:

T ϕ = {ξ = (ξ0, . . . , ξn) ∈ T
∣∣ (ϕ(ξ0), . . . , ϕ(ξn)

)
belongs to T and has the same

orientation as (ξ0, . . . , ξn)
}
.

By assumption, T ϕ has full measure in T . Let T
ϕ
Λ ⊂ T ϕ be the subset consisting

of those regular simplices for which all reflections by the reflection group Λξ are
in T ϕ ,

T
ϕ
Λ = {ξ ∈ T

∣∣γ ξ ∈ T ϕ ∀γ ∈Λξ

}
.

We claim that T ϕ
Λ has full measure in T .

To prove the claim, we do the following identification. Since G= Isom(Hn) acts
simply transitively on the set T of (oriented) regular simplices, given a base point
η= (η0, . . . , ηn) ∈ T we can identify G with T via the evaluation map

Evη :G −→ T

g �−→ g(η).

The subset T ϕ is mapped to a subset Gϕ := (Evη)
−1(T ϕ)⊂G via this correspon-

dence. A regular simplex ξ = g(η) belongs to T
ϕ
Λ if and only if, by definition,

γ ξ = γgη belongs to T ϕ for every γ ∈ Λξ . Since Λξ = gΛηg
−1, the latter con-

dition is equivalent to gγ0η ∈ T ϕ for every γ0 ∈Λη, or in other words, g ∈Gϕγ−1
0 .

The subset T ϕ
Λ is thus mapped to

Gϕ =Ev−1
η

(
T

ϕ
Λ

)= ⋂
γ0∈Λη

Gϕγ−1
0 ⊂G

via the above correspondence. Since a countable intersection of full measure subsets
has full measure, the claim is proved.
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For every ξ ∈ T
ϕ
Λ and hence almost every ξ ∈ T there exists by Lemma 4.6 a

unique isometry hξ such that hξ (ξ)= ϕ(ξ) on the orbit points ξ ∈⋃n
i=0 Λξξi . By

the uniqueness of the isometry, it is immediate that hγ ξ = hξ for every γ ∈ Λξ .
We have thus a map h : T → Isom(Hn) given by ξ �→ hξ defined on a full measure
subset of T . Precomposing h by Evη, it is straightforward that the left Λξ -invariance
of h on Λξξ naturally translates to a global right invariance of h◦Evη on G. Indeed,
let g ∈G and γ0 ∈Λη. We compute

h ◦Evη(g · γ0)= hgγ0η = hgγ0g
−1gη = hgη = h ◦Evη(g),

where we have used the left Λgη-invariance of h on the reflections of gη in the third

equality. (Recall, gγ0g
−1 ∈ gΛηg

−1 = Λgη.) Thus, h ◦ Evη : G→ G is invariant
under the right action of Λη. Since the latter group is dense in G, it acts ergodically
on G and h ◦Evη is essentially constant. This means that also h is essentially con-
stant. Thus, for almost every regular simplex ξ ∈ T , the evaluation of ϕ on any orbit
point of the vertices of ξ under the reflection group Λξ is equal to h. In particular,
for almost every ξ = (ξ0, . . . , ξn) ∈ T and also for almost every ξ0 ∈ H

n, we have
ϕ(ξ0)= h(ξ0), which finishes the proof of the proposition. �

We have now established that ϕ is essentially equal to the isometry h ∈ Isom(Hn)

on ∂Hn. It remains to see that h realizes the conjugation between ρ and i. Indeed,
replacing ϕ by h in (10) we have(

h · i(γ )
)
(ξ)= (ρ(γ ) · h)(ξ),

for every ξ ∈ ∂Hn and γ ∈ Γ . Since all maps involved (h, i(γ ) and ρ(γ )) are isome-
tries of Hn and two isometries induce the same map on ∂Hn if and only if they are
equal it follows that

h · i(γ ) · h−1 = ρ(γ )

for every γ ∈ Γ , which finishes the proof of the theorem.
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