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This paper is devoted to the construction of norm-preserving maps between bounded
cohomology groups. For a graph of groups with amenable edge groups, we construct an
isometric embedding of the direct sum of the bounded cohomology of the vertex groups in
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the bounded cohomology of the fundamental group of the graph of groups. With a similar
technique we prove that if (X, Y ) is a pair of CW-complexes and the fundamental group

of each connected component of Y is amenable, the isomorphism between the relative
bounded cohomology of (X, Y ) and the bounded cohomology of X in degree at least 2
is isometric. As an application we provide easy and self-contained proofs of Gromov’s
Equivalence Theorem and of the additivity of the simplicial volume with respect to
gluings along π1-injective boundary components with amenable fundamental group.

Keywords: Relative bounded cohomology; isometries in bounded cohomology; simplicial
volume; graph of groups; additivity of the simplicial volume; Dehn filling; �1-homology;
Gromov Equivalence Theorem.

AMS Subject Classification: 55N10, 57N65

1. Introduction

Bounded cohomology of groups and spaces was introduced by Gromov in the mid-
70s [24] and can be dramatically different from their usual cohomology. For exam-
ple, in the context of bounded cohomology, the lack of a suitable Mayer–Vietoris
sequence prevents the use of the usual “cut and paste” techniques exploited in the
computation of singular cohomology. Another peculiarity of bounded cohomology
is that, in positive degree, the bounded cohomology of any amenable group (or of
any space with amenable fundamental group) vanishes.

Using the Mayer–Vietoris sequence it is easy to show that, in positive degree,
the cohomology of a free product of groups is isomorphic to the direct sum of the
cohomologies of the factors. The main result of this paper provides an analogous
result in the context of bounded cohomology. Since amenable groups are somewhat
invisible to bounded cohomology, it is natural to extend the object of our study
from free products to amalgamated products (or HNN extensions) along amenable
subgroups. In order to treat both these cases at the same time, we will exploit
notions and results coming from the Bass–Serre theory of graphs of groups (we
refer the reader to Sec. 4 for a brief account on this topic).

For every group Γ we denote by H•
b(Γ) the bounded cohomology of Γ with

trivial real coefficients, endowed with the �∞-seminorm. If G is a graph of groups
based on the graph G, we denote by V (G) the set of vertices of G, and by Γv,
v ∈ V (G), the vertex groups of G. Moreover, if G is finite, then for every element
(ϕ1, . . . , ϕk) ∈

⊕
v∈V (G) Hn

b(Γv) we set

‖(ϕ1, . . . , ϕk)‖∞ = max{‖ϕ1‖∞, . . . , ‖ϕk‖∞}.

We denote by Γ the fundamental group of G, by iv : Γv ↪→ Γ the inclusion of Γv into
Γ, and by H(inv ) : Hn

b(Γ) → Hn
b(Γv) the map induced by iv on bounded cohomology.

The main result of our paper is the following:

Theorem 1.1. Let Γ be the fundamental group of a graph of groups G based on the
finite graph G. Suppose that every vertex group of G is countable, and that every
edge group of G is amenable. Then for every n ∈ N\{0} there exists an isometric
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embedding

Θn :
⊕

v∈V (G)

Hn
b(Γv) → Hn

b(Γ)

which provides a right inverse to the map⊕
v∈V (G)

H(inv ) : Hn
b(Γ) →

⊕
v∈V (G)

Hn
b(Γv).

The isometric embedding Θn is in general far from being an isomorphism: for
example, the real vector spaces H2

b(Z ∗ Z) and H3
b(Z ∗ Z) are infinite-dimensional

(the case of degree 2 is dealt with in [9,16] — see also [42] for a beautiful and slick
proof, and H3

b(Z ∗ Z) is computed in [37, 48]), while Hn
b(Z) ⊕ Hn

b(Z) = 0 for every
n ≥ 1, since Z is amenable.

Moreover, the hypothesis that edge groups are amenable is necessary, as the
following example shows. Let Γ < PSL(2,Qp) × PSL(2,Qq) be an irreducible tor-
sionfree co-compact lattice, so that Γ projects densely on each of the factors. From
this it follows that since PSL(2,Qq) is simple, Γ acts faithfully on the Bruhat–Tits
tree Tp+1 associated to PSL(2,Qp). Furthermore, the action of Γ inherits also the
property that PSL(2,Qp) acts without inversion on Tp+1 and with an edge as fun-
damental domain. Thus Γ is the amalgamated product Fa∗Fc Fb of two non-Abelian
free groups over a common finite index subgroup. It follows from [15, Theorem 1.1]
that H2

b(Γ) is finite dimensional, while H2
b(Fa) is infinite dimensional.

Our construction of the map Θ in Theorem 1.1 relies on the analysis of the action
of Γ on its Bass–Serre tree, which allows us to define a projection from combinatorial
simplices in Γ to simplices with values in the vertex groups. Our construction is
inspired by [24, p. 54] and exploits the approach to bounded cohomology developed
by Ivanov [25], Burger and Monod [16,38].

Surprisingly enough, the proof of Theorem 1.1 runs into additional difficulties in
the case of degree 2. In that case, even to define the map Θ, it is necessary to use the
fact that bounded cohomology can be computed via the complex of pluriharmonic
functions [15], and that such a realization has no coboundaries in degree 2 due to
the double ergodicity of the action of a group on an appropriate Poisson boundary
[28, 16].

A simple example of a situation to which Theorem 1.1 applies is the one in which
G consists only of one edge e with vertices v and w. In this case, we can realize
Γv ∗Γe Γw as the fundamental group of a space X that can be decomposed as X =
Xv ∪Xw, where Xv ∩Xw has amenable fundamental group. A fundamental result
by Gromov implies that the bounded cohomology of a CW-complexa is isometrically
isomorphic to the bounded cohomology of its fundamental group [24, p. 49]. Using
this, Theorem 1.1 specializes to the statement that there is an isometric embedding

Hn
b(Xv) ⊕ Hn

b(Xw) ↪→ Hn
b(X)

aSee [13] for a more general version for all path connected spaces.
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that is a right inverse to the restriction map. This forces classes in the image of
the map to have some compatibility condition on Xv ∩Xw and leads naturally to
considering the bounded cohomology of Xv and Xw relative to Xv ∩Xw.

To this purpose, let (X,Y ) be a pair of countable CW-complexes, and denote by
jn : Cnb(X,Y ) → Cnb(X) the inclusion of relative bounded cochains into bounded
cochains.

Theorem 1.2. Let X ⊇ Y be a pair of countable CW-complexes. Assume that each
connected component of Y has amenable fundamental group. Then the map

H(jn) : Hn
b(X,Y ) ��Hn

b(X)

is an isometric isomorphism for every n ≥ 2.

The amenability of π1(Y ) insures immediately, using the long exact sequence
in relative bounded cohomology, the isomorphism of Hnb(X,Y ) and Hn

b(X), but
the fact that this isomorphism is isometric is, to our knowledge, not contained in
Gromov’s paper and requires a proof. This result was obtained independently by
Kim and Kuessner [29], using the rather technical theory of multicomplexes. Our
proof of Theorem 1.2 uses instead in a crucial way the construction of an amenable
π1(X)-space thought of as a discrete approximation of the pair (X̃, p−1(Y )), where
p : X̃ → X is a universal covering. The same technique is at the basis of the proof
of Theorem 1.1.

Applications. In the second part of the paper we show how Theorems 1.1 and 1.2
can be used to provide simple, self-contained proofs of two theorems in bounded
cohomology due to Gromov and some new consequences. The proofs of Gromov’s
results available in the literature rely on the theory of multicomplexes [24, 32].

The first of our applications is Gromov’s additivity theorem for the simplicial
volume, from which we deduce the behavior of the simplicial volume under gener-
alized Dehn fillings, thus generalizing a result of Fujiwara and Manning. We then
establish Gromov’s Equivalence Theorem, which states that various seminorms on
the relative homology of a pair (X,Y ) actually coincide, provided that the fun-
damental group of every component of Y is amenable. Moreover, we give an �1-
homology version of Theorem 1.2 due to Thurston.

Additivity of the simplicial volume. The simplicial volume is a homotopy invariant
of manifolds introduced by Gromov in his seminal paper [24]. If M is a connected,
compact and oriented manifold with (possibly empty) boundary, then the simplicial
volume of M is equal to the �1-seminorm of the fundamental class of M (see Sec. 6
for the precise definition). It is usually denoted by ‖M‖ if M is closed, and by
‖M,∂M‖ if ∂M 
= ∅. The simplicial volume may also be defined in the context
of open manifolds [24], but in this paper we will restrict our attention to compact
ones. More precisely, unless otherwise stated, every manifold will be assumed to be
connected, compact and oriented.
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The explicit computation of nonvanishing simplicial volume is only known for
complete finite-volume hyperbolic manifolds (see [24, 50] for the closed case and
e.g. [20, 21, 23, 11] for the cusped case) and for manifolds locally isometric to the
product of two hyperbolic planes [10] (see also [34,12] for the non-compact case with
amenable cusp groups). Gromov’s Additivity Theorem can be used to establish more
computations of the simplicial volume by taking connected sums or gluings along
π1-injective boundary components with amenable fundamental group. For example
the simplicial volume of a closed 3-manifold M equals the sum of the simplicial
volumes of its hyperbolic pieces [46].

Furthermore, without aiming at being exhaustive, here we just mention that
Gromov Additivity Theorem has also been exploited in studying the possible
degrees of maps between manifolds [43,51,17,8,18,19], in establishing results about
the behavior of manifolds under collapse [7, 5], and in various other areas of low-
dimensional topology [1, 39, 6, 4, 26, 49, 35, 31, 3].

Theorem 1.3. (Gromov Additivity Theorem) Let M1, . . . ,Mk be n-dimensional
manifolds, n ≥ 2, suppose that the fundamental group of every boundary component
of every Mj is amenable, and let M be the manifold obtained by gluing M1, . . . ,Mk

along (some of ) their boundary components. Then

‖M,∂M‖ ≤ ‖M1, ∂M1‖ + · · · + ‖Mk, ∂Mk‖.

In addition, if the gluings defining M are compatible, then

‖M,∂M‖ = ‖M1, ∂M1‖ + · · · + ‖Mk, ∂Mk‖.

Here a gluing f : S1 → S2 of two boundary components Si ⊆ ∂Mji is called
compatible if f∗(K1) = K2 where Ki is the kernel of the map π1(Si) → π1(Mji)
induced by the inclusion.

An immediate consequence of this theorem is the fact that the simplicial volume
is additive with respect to connected sums: given two n-dimensional manifolds M1,
M2, if n ≥ 3 and the fundamental group of every boundary component of Mi is
amenable, then

‖M1#M2, ∂(M1#M2)‖ = ‖M1, ∂M1‖ + ‖M2, ∂M2‖,

where M1#M2 is constructed by removing an open ball from the interior of Mi and
gluing the obtained manifolds along the boundary spheres.

According to the preprint [32], Theorem 1.3 holds even if the amenability of the
fundamental group is required only for those boundary components of the Mj that
are indeed glued in M (and not for the ones still appearing in ∂M). Unfortunately,
our argument does not apply to this more general case. In fact, if N is a compact n-
manifold with boundary, then the bounded cohomology modules Hn

b (N, ∂N) and
Hn
b (N) are not isomorphic in general. In order to circumvent this difficulty, one

should define the bounded cohomology of a group relative to a family of subgroups,
and prove that the relative bounded cohomology of a pair of spaces is isometrically
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isomorphic to the corresponding relative bounded group cohomology. However, this
approach seems to run into several technical difficulties (see e.g. [22, p. 95, Theo-
rem 1.8 and Remark 4.9] for a discussion of this issue).

Generalized Dehn fillings. A consequence of the first part of Theorem 1.3 is an easy
proof of a result of Fujiwara and Manning [23] about generalized Dehn fillings. Let
n ≥ 3 and let M be a compact orientable n-manifold such that ∂M = N1∪· · ·∪Nm,
where Ni is an (n−1)-torus for every i. For each i ∈ {1, . . . ,m} we put on Ni a flat
structure, and we choose a totally geodesic ki-dimensional torus Ti ⊆ Ni, where
1 ≤ ki ≤ n − 2. Each Ni is foliated by parallel copies of Ti with leaf space Li
homeomorphic to an (n − 1 − ki)-dimensional torus. The generalized Dehn filling
R = M(T1, . . . , Tm) is defined as the quotient of M obtained by collapsing Ni on Li
for every i ∈ {1, . . . ,m}. Observe that unless ki = 1 for every i, the quotient R is
not a manifold. However, as observed in [23, p. 2240], R is always a pseudomanifold
in the sense of [52, Definition 2.1], so it admits a fundamental class, whence a
well-defined simplicial volume [52, Proposition 2.2]. Fujiwara and Manning proved
that, if the interior of M admits a complete finite-volume hyperbolic structure,
then the inequality ‖R‖ ≤ ‖M,∂M‖ holds. Their argument easily extends to the
case in which the fundamental group of M is residually finite and the inclusion of
each boundary torus in M induces an injective map on fundamental groups. Our
proof of Theorem 1.3 works verbatim when each Mi is just a pseudomanifold, so
we obtain the following generalization of Fujiwara and Manning’s result:

Corollary 1.4. Let M be a compact orientable n-manifold with boundary given by
a union of tori, and let R be a generalized Dehn filling of M . Then

‖R‖ ≤ ‖M,∂M‖.

Equivalence of Gromov norms. In [24] Gromov introduced a one-parameter family
of seminorms on Hn(X,Y ). More precisely, let θ ∈ [0,∞) and consider the norm ‖ ·
‖1(θ) on Cn(X) defined by ‖c‖1(θ) = ‖c‖1+θ‖∂nc‖1. Every such norm is equivalent
to the usual norm ‖ · ‖1 = ‖ · ‖1(0) for every θ ∈ [0,∞) and induces a quotient
seminorm on relative homology, still denoted by ‖·‖1(θ). Since ‖·‖1(θ) is increasing
as a function of θ, by passing to the limit one can also define a seminorm ‖ · ‖1(∞)
that, however, may be nonequivalent to ‖ · ‖1 (in fact, ‖ · ‖1(∞) may even have
values in [0,+∞]). The following result is stated by Gromov in [24].

Theorem 1.5. (Equivalence Theorem, [24, p. 57]) Let X ⊇ Y be a pair of countable
CW-complexes, and let n ≥ 2. If the fundamental groups of all connected compo-
nents of Y are amenable, then the seminorms ‖ · ‖1(θ) on Hn(X,Y ) coincide for
every θ ∈ [0,∞].

In order to prove Theorem 1.5, we establish two isometric isomorphisms of
independent interest (see Lemma 5.1 and Proposition 5.3), using the homological

J.
 T

op
ol

. A
na

l. 
20

14
.0

6:
1-

25
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
IS

S 
FE

D
E

R
A

L
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 Z
U

R
IC

H
 (

E
T

H
) 

on
 0

9/
02

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



February 5, 2014 15:42 WSPC/243-JTA 1450005

Isometric embeddings in bounded cohomology 7

construction of a mapping cone complex and considering a one-parameter family
of seminorms in bounded cohomology introduced by Park [41].

As noticed by Gromov, Theorem 1.5 admits the following equivalent formula-
tion, which is inspired by Thurston [50, Sec. 6.5] and plays an important role in
several results about the (relative) simplicial volumes of gluings and fillings:

Corollary 1.6. Let X ⊇ Y be a pair of countable CW-complexes, and suppose
that the fundamental groups of all the components of Y are amenable. Let α ∈
Hn(X,Y ), n ≥ 2. Then, for every ε > 0, there exists an element c ∈ Cn(X) with
∂nc ∈ Cn−1(Y ) such that [c] = α ∈ Hn(X,Y ), ‖c‖1 < ‖α‖1 + ε and ‖∂nc‖1 < ε.

Proof. Let θ = (‖α‖1 + ε)/ε. By Theorem 1.5 we know that ‖ · ‖1(θ) induces the
norm ‖ · ‖1 in homology, so we can find a representative c ∈ Cn(X) of α with
‖c‖1(θ) = ‖c‖1 + θ‖∂nc‖1 ≤ ‖α‖1 + ε. This implies that ‖c‖1 ≤ ‖α‖1 + ε and
‖∂nc‖1 ≤ (‖α‖1 + ε)/θ = ε.

2. Resolutions in Bounded Cohomology

This section is devoted to recalling some results on bounded cohomology to be used
in the proof of Theorems 1.1 and 1.2. Let X be a space, where here and in the sequel
by a space we will always mean a countable CW-complex. We denote by C•

b(X) the
complex of bounded real valued singular cochains onX and, if Y ⊂ X is a subspace,
by C•

b(X,Y ) the subcomplex of those bounded cochains that vanish on simplices
with image contained in Y . All these spaces are endowed with the �∞-norm and
the corresponding cohomology groups are equipped with the corresponding quotient
seminorm.

For our purposes, it is important to observe that the universal covering map
p : X̃ → X induces an isometric identification of the complex C•

b(X) with the
complex C•

b(X̃)Γ of Γ := π1(X)-invariant bounded cochains on X̃. Similarly, if
Y ′ := p−1(Y ), we obtain an isometric identification of the complex C•

b(X,Y ) with
the complex C•

b(X̃, Y ′)Γ of Γ-invariants of C•
b(X̃, Y ′).

The main ingredient in the proof of Theorem 1.2 is the result of Ivanov that the
complex of Γ-invariants of

0 �� C0
b(X̃) �� C1

b(X̃) �� . . .

computes the bounded cohomology of Γ (as C•
b(X̃)Γ coincides with C•

b(X), this
implies in particular that the bounded cohomology of X is isometrically isomorphic
to the bounded cohomology of Γ). In fact, we will use the more precise statement
that the obvious augmentation of the complex above is a strong resolution of R by
relatively injective Banach Γ-modules (see [25, proof of Theorem 4.1]). We refer the
reader respectively to [25, Sec. 3.2] and [25, Sec. 3.3] for the definitions of relatively
injective module and of strong resolution.
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By [25, Theorem 3.6], it follows from the fact that Cnb(X̃) is a strong resolution
by Γ-modules that there exists a Γ-morphism of complexes

gn : Cnb(X̃) ���∞(Γn+1) (♦)

extending the identity of R, and such that gn is norm nonincreasing, i.e. ‖gn‖ ≤ 1,
for n ≥ 0. This map induces the isometric isomorphism H•

b(X) → H•
b(Γ) (see [25,

Theorem 4.1]), and will be referred to as Ivanov’s map.
The second result we need lies at the basis of the fact that the bounded coho-

mology of Γ can be computed isometrically from the complex of bounded functions
on any amenable Γ-space. The notion of amenable space was introduced by Zim-
mer [53] in the context of actions of topological groups on standard measure spaces
(see e.g. [38, Sec. 5.3] for several equivalent definitions). In our case of interest,
i.e. when Γ is a discrete countable group acting on a countable set S (which may be
thought as endowed with the discrete topology), the amenability of S as a Γ-space
amounts to the amenability of the stabilizers in Γ of elements of S [2, Theorem 5.1].
Recall that, if Γ acts on a set S, then a map f : Sn+1 → R is alternating if

f(sσ(0), . . . , sσ(n)) = ε(σ) · f(s0, . . . , sn)

for every (s0, . . . , sn) ∈ Sn+1 and every permutation σ of {0, . . . , n}, where ε(σ) =
±1 is the sign of σ. We denote by �∞alt(S

•+1) the complex of alternating bounded
functions on S•+1.

Proposition 2.1. Let S be an amenable Γ-set, where Γ is a discrete countable
group. Then:

(1) There exists a Γ-morphism of complexes

µ• : �∞(Γ•+1) �� �∞alt(S
•+1)

extending IdR : R → R that is norm nonincreasing in every degree.
(2) The cohomology of the complex

0 �� �∞alt(S)Γ �� �∞alt(S
2)Γ �� �∞alt(S

3)Γ �� · · ·

is canonically isometrically isomorphic to H•
b(Γ).

Proof. Point (1) is proved in [38, Lemma 7.5.6] (applied to the case T = Γ), point
(2) in [38, Theorem 7.5.3].

Perhaps it is worth mentioning that, in the particular case at hand, the map
µ• admits the following easy description. Since alternation gives a contracting Γ-
morphism of complexes, it suffices to construct µn : �∞(Γn+1) → �∞(Sn+1). Let
us fix the obvious componentwise action of Γn+1 on Sn+1. Since S is an amenable
Γ-space, for every s ∈ S we may fix a mean µs on the stabilizer Γs of s. Let f
be a bounded function on Γn+1, and let us consider an orbit Γn+1 · s0 ⊆ Sn+1,
where s0 = (s0, . . . , sn) is an element of Sn+1. For every s ∈ Γn+1 · s0, the set
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of elements of Γn+1 taking s0 to s is a left coset gsΓ0 of the stabilizer Γ0 of s0 in
Γn+1. Being the finite product of amenable groups, Γ0 is amenable, and the product
µ = µs0 ⊗ · · · ⊗ µsn is a mean on Γ0. We define µn(f)(s) as the average of f on
gsΓ0 with respect to µ. We have thus defined µn(f) on every orbit, whence on the
whole of Sn+1, and this concludes the construction of µn.

We point out that the computation of bounded cohomology via alternating
cochains on amenable spaces is natural in the following sense:

Lemma 2.2. Let i : Γ1 → Γ be an inclusion of countable groups, let S1 be a discrete
amenable Γ1-space, and S a discrete amenable Γ-space. If ϕ : S1 → S is equivariant
with respect to i, then the following diagram commutes:

Z�∞alt(S•+1)Γ ��

ϕ∗

��

H•
b(Γ)

i∗

��
Z�∞alt(S•+1

1 )Γ1 �� H•
b(Γ1).

The third and last ingredient we need is a result from [15] where it is shown
that the bounded cohomology of Γ is realized by yet another complex, namely the
resolution via µ-pluriharmonic functions.

Let µ be a symmetric probability measure on Γ and denote by �∞µ,alt(Γ
n+1) the

subcomplex of �∞alt(Γ
n+1) consisting of µ-pluriharmonic functions on Γn+1, i.e. of

elements f ∈ �∞alt(Γ
n+1) such that

f(g0, . . . , gn) =
∫

Γn+1
f(g0γ0, . . . , gnγn)dµ(γ0) . . . dµ(γn)

for every (g0, . . . , gn) ∈ Γn+1. By [15, Lemma 3.13], the inclusion �∞µ,alt(Γ
•) ↪→

�∞alt(Γ
•) induces isometric isomorphisms in cohomology.

Moreover, if (B, ν) is the Poisson boundary of (Γ, µ), it is proven in [15, Propo-
sition 3.11] that the Poisson transform

P : L∞
alt(B

n+1, ν⊗n+1) → �∞µ,alt(Γ
n+1)

P(f)(g0, . . . , gn) =
∫
Bn+1

f(g0ξ0, . . . , gnξn)dν(ξ0) . . . dν(ξn)

is a Γ-equivariant isometric isomorphism.
The main theorem of [28] (see also [16, Theorem 0.2] and [14, Proposition 4.2]

for the case of finitely generated groups) implies that, if the support of µ generates
Γ, then the action of Γ on B is doubly ergodic, in particular

�∞µ,alt(Γ
2)Γ = L∞

alt(B
2, ν⊗2)Γ = 0,
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and the projection of Z(�∞alt(Γ
3)Γ) onto H2

b(Γ) restricts to an isometric isomorphism
between the space of Γ-invariant µ-pluriharmonic alternating cocycles Z�∞µ,alt(Γ3)Γ

and the second bounded cohomology module of Γ. This implies

Proposition 2.3. Let Γ be a countable group and µ a symmetric probability mea-
sure whose support generates Γ. Then there is an isometric linear section

σ : H2
b(Γ) → Z�∞(Γ3)Γ.

of the projection defining bounded cohomology.

3. Relative Bounded Cohomology: Proof of Theorem 1.2

Let (X,Y ) be a pair of countable CW-spaces. Assume that X is connected and the
fundamental group of every component of Y is amenable. Let p : X̃ → X be the
universal covering map, set Γ := π1(X) and let Y =

⊔
i∈I Ci be the decomposition

of Y into the union of its connected components. If Či is a choice of a connected
component of p−1(Ci) and Γi denotes the stabilizer of Či in Γ, then

p−1(Ci) =
⊔

γ∈Γ/Γi

γČi.

The group Γ acts by left translations on the set

S := Γ �
⊔
i∈I

Γ/Γi.

Being a quotient of π1(Ci), the group Γi is amenable, so S is an amenable Γ-
space. We define a Γ-equivariant measurable retraction r : X̃ → S as follows:
let F ⊂ X̃ � Y ′ be a fundamental domain for the Γ-action on X̃ � Y ′, where
Y ′ = p−1(Y ). Define the map r as follows:

r(γx) :=

{
γ ∈ Γ if x ∈ F ,

γΓi ∈ Γ/Γi if x ∈ Či.

For every n ≥ 0 define

rn : �∞alt(S
n+1) ��Cnb(X̃)

by

rn(c)(σ) = c(r(σ0), . . . , r(σn)),

where c ∈ �∞alt(S
n+1) and σ0, . . . , σn ∈ X̃ are the vertices of a singular simplex

σ : ∆n → X̃ . Clearly (rn)n≥0 is a Γ-morphism of complexes extending the identity
of R and ‖rn‖ ≤ 1 for all n ≥ 0.
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Observe that if n ≥ 1 and σ(∆n) ⊂ Y ′, then there are i ∈ I and γ ∈ Γ such
that σ(∆n) ⊂ γČi. Thus

r(σ0) = · · · = r(σn) = γΓi

and

rn(c)(σ) = c(γΓi, . . . , γΓi) = 0,

since c is alternating. This implies that the image of rn is in Cnb(X̃, Y ′). Thus
we can write rn = jn ◦ rn1 , where jn : Cnb(X̃, Y ′) ↪→ Cnb(X̃) is the inclusion and
rn1 : �∞alt(S

n+1) → Cnb(X̃, Y ′) is a norm nonincreasing Γ-morphism that induces a
norm nonincreasing map in cohomology

H(rn1 ) : Hn(�∞alt(S
•+1)Γ) ��Hn

b(X,Y ) ,

for n ≥ 1.
Using the map gn defined in (♦) and the map µn provided by Proposition 2.1,

we have the following diagram

Cnb(X̃)

extends IdR

��������������������
gn

�� �∞(Γn+1)
µn

�� �∞alt(S
n+1)

rn

������������

rn
1

for n≥1
�� Cnb(X̃, Y ′)

jn

��
Cnb(X̃),

where the dashed map is the composition rn ◦ µn ◦ gn which is a Γ-morphism of
strong resolutions by relatively injective modules extending the identity, and hence
induces the identity on Hnb(X) = Hn(C•

b(X̃)Γ).
We proceed now to show that, for n ≥ 2, the map

H(jn) : Hn
b(X,Y ) ��Hn

b(X)

induced by jn is an isometric isomorphism in cohomology. In view of the long exact
sequence for pairs in bounded cohomology and the fact that H•

b(Y ) = 0 in positive
degree, we already know that H(jn) is an isomorphism. Let us set ψn = rn1 ◦µn ◦gn.
From the above we have

H(jn) ◦ H(ψn) = IdHn
b (X).

The conclusion follows from the fact that the maps H(jn) and H(ψn) are norm
nonincreasing.

4. Graphs of Groups: Proof of Theorem 1.1

In order to fix the notation, we recall some definitions concerning graphs of groups,
closely following [44]. A graph G is a pair (V (G), E(G)) together with a map
E(G) → V (G)2, e �→ (o(e), t(e)) and a fixed point free involution e �→ ē of E(G)
satisfying o(e) = t(ē). The set Ē(G) of geometric edges of G is defined by setting
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Ē(G) = {{e, ē} | e ∈ E(G)}. The geometric realization |G| of a graph G is the 1-
dimensional CW-complex with one vertex for every element in V (G) and one edge
for every geometric edge. Its first baricentric subdivision G′ has as vertices the set
V (G′) = V (G) � Ē(G).

Let G be a graph of groups based on the finite graph G. Recall that to every
vertex v ∈ V (G) is associated a group Γv and to every edge e ∈ E(G) is associated
a group Γe together with an injective homomorphism he : Γe → Γt(e). Moreover, it
is required that Γe = Γē. Let Γ = π1(G) denote the fundamental group of G. By the
universal property of the fundamental group of a graph of groups [44, Corollary 1,
p. 45], for every v ∈ V (G), e ∈ E(G), there exist inclusions Γv → Γ and Γe → Γ.
Henceforth we will regard each Γv and each Γe just as a subgroup of Γ. Observe that,
since Γe = Γē, it makes sense to speak about the subgroup Γe also for e ∈ Ē(G).

A fundamental result in Bass–Serre theory [44, Theorem 12, p. 52] implies that
Γ acts simplicially on a tree T = (V (T ), E(T )), where

V (T ) =
⊔

v∈V (G)

Γ/Γv, E(T ) =
⊔

e∈Ē(G)

Γ/Γe.

The action of Γ on V (T ) and E(T ) is by left multiplication. The tree T is known
as the Bass–Serre tree of G (or of Γ, when the presentation of Γ as the fundamental
group of a graph of group is understood). There is an obvious projection V (T ) →
V (G) which sends the whole of Γ/Γv to v. This projection admits a preferred
section that takes any vertex v ∈ V (G) to the coset 1 · Γv ∈ Γ/Γv. This allows us
to canonically identify V (G) with a subset of V (T ).

Now we consider the space

SG = (Γ × V (G)) �
⊔

e∈Ē(G)

Γ/Γe.

We may define an action of Γ on SG by setting g0 · (g, v) = (g0g, v) for every
(g, v) ∈ Γ × V (G) and g0 · (gΓe) = (g0g)Γe for every gΓe ∈ Γ/Γe, e ∈ Ē(G).

There exists a Γ-equivariant projection p : SG → V (T ′) defined as follows:
p(g, v) = gΓv for (g, v) ∈ Γ × V (G), and p is the identity on each Γ/Γe, e ∈ Ē(G).

Let us now suppose that our graph of groups G satisfies the hypothesis of Theo-
rem 1.1, i.e. every Γv is countable and every Γe is amenable. Under this assumption,
both Γ and SG are countable, and Γ acts on SG with amenable stabilizers. As a
consequence of Proposition 2.1, the bounded cohomology of Γ can be isometrically
computed from the complex �∞alt(S

•+1
G ).

For every vertex v ∈ V (G), let Sv be the set

Sv = Γv �
⊔

t(e)=v

Γv/Γe,

where we identify Γe with a subgroup of Γv via the map he. We have an obvious
action of Γv on Sv by left multiplication. Since every Γe is amenable, this action
turns Sv into an amenable Γv-space.
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The inclusion ϕv : Sv → SG defined by ϕv(g) = (g, v) and ϕv(gΓe) = gΓe,
induces a chain map

ϕ•
v : �∞alt(S

•+1
G ) → �∞alt(S

•+1
v ).

By construction, ϕ•
v is equivariant with respect to the inclusion Γv → Γ, so

Lemma 2.2 implies that ϕ•
v induces the restriction map in bounded cohomology.

The following result establishes the existence of a partial retraction of the chain
map ϕ• =

⊕
v∈V (G) ϕ

•
v, and plays a fundamental role in the proof of Theorem 1.1.

Theorem 4.1. There is a (partial) norm nonincreasing chain map

ψn :
⊕

v∈V (G)

�∞alt(S
n+1
v )Γv → �∞alt(S

n+1
G )Γ, n ≥ 2

such that the composition ϕn ◦ψn is the identity of
⊕

v∈V (G) �
∞
alt(S

n+1
v )Γv for every

n ≥ 2.

Proof. To define the map ψn we need the notion of a barycenter of an (n+1)-tuple
(y0, . . . , yn) in V (T ′)n+1. Given a vertex v ∈ V (T ′), let N(v) ⊆ V (T ′) be the set
of vertices having combinatorial distance (in T ′) at most one from v. The vertex
ȳ ∈ V (T ) ⊆ V (T ′) is a barycenter of (y0, . . . , yn) ∈ V (T ′)n+1 if for any yi, yj in
V (T ′)\{ȳ}, i 
= j, the points yi and yj belong to different connected components
of |T ′|\{ȳ}. It follows readily from the definitions that there exists at most one
barycenter for any n-tuple provided that n ≥ 3.

Let p : SG → V (T ′) be the projection defined above. For v ∈ V (G), let us
identify Sv with ϕv(Sv) ⊆ SG , and recall that V (G) is canonically identified with
a subset of V (T ) ⊆ V (T ′). Under these identifications we have Sv = p−1(N(v)) for
every v ∈ V (G), and we coherently set Sw = p−1(N(w)) ⊆ SG for every w ∈ V (T ).

Let us fix w ∈ V (T ). We define a retraction r0w : SG → Sw as follows: if
x0 ∈ Sw, then r0w(x0) = x0; otherwise, if y0 is the endpoint of the first edge of
the combinatorial path [w, p(x0)] in T ′, then r0w(x0) is the unique preimage of
y0 via p. We extend r0w to a chain map r•w : S•+1

G → S•+1
w by setting rnw(x) =

(r0w(x0), . . . , r0w(xn)) for x = (x0, . . . , xn). Notice that if w is not a barycenter of
(p(x0), . . . , p(xn)), then the (n + 1)-tuple rnw(x) has at least two coordinates that
are equal, so any alternating cochain vanishes on rnw(x).

We are now ready to define the (partial) chain map ψ•. Recall that every vertex
w ∈ V (T ) is a coset in Γ/Γv for some v ∈ V (G). For every w ∈ V (T ) we choose a
representative σ(w) ∈ Γ of w, and we observe that σ(w)−1w ∈ V (G) ⊆ V (T ). Let
x ∈ Sn+1

G , n ≥ 2. We have σ(w)−1rnw(x) ∈ Sn+1
σ(w)−1w, so for every (

⊕
v∈V (G) fv) ∈⊕

v∈V (G) �
∞
alt(S

n+1
v ) it makes sense to set

ψn

 ⊕
v∈V (G)

fv

 (x) =
∑

w∈V (T )

fσ(w)−1w(σ(w)−1rnw(x)).

Since the fv are alternating there is at most one nonzero term in the sum, corre-
sponding to the barycenter (if any) of (p(x0), . . . , p(xn)). Moreover ψn, n ≥ 2, is
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a (partial) chain map and it is easy to check that ψn(
⊕

v∈V (G) fv) is Γ-invariant
provided that fv is Γv-invariant for every v ∈ V (G).

We are now ready to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Since the first bounded cohomology of any group vanishes
in degree one, it is sufficient to consider the case n ≥ 2. Being a norm nonincreasing
chain map defined for every degree n ≥ 2, ψn induces a norm nonincreasing map
Θn = H(ψn) in bounded cohomology for every n ≥ 3. Moreover, being induced by
a right inverse of ϕn, the map Θn is a right inverse of

⊕
v∈V (G) H(inv ) for every

n ≥ 3. This implies that Θn is an isometric embedding.
If n = 2, it is not clear why ψ2 should send coboundaries of bounded 1-cochains

to coboundaries of bounded 1-cochains. In fact, we will show in the last part of this
section that this is not the case in general. This difficulty may be circumvented by
exploiting the fact, proved in Sec. 2, that every element in every H2

b(Γv) admits a
special norm-minimizing representative.

In fact let us define the map Θ2 as the composition of the maps

⊕H2
b(Γv)

⊕σv �� ⊕Z�∞µ,alt(Γ3
v)Γv

⊕µv �� ⊕Z�∞alt(S3
v )

Γv
ψ2

�� Z�∞alt(S3
G)Γ �� H2

b(Γ)

where σv : H2
b(Γv) → Z�∞µ,alt(Γ3

v)
Γv is the map described in Proposition 2.3, µv is

the morphism constructed in Proposition 2.1, and ψ2 is the map of Theorem 4.1.
All the maps involved are norm nonincreasing, hence the same holds for Θ2.

Moreover, Θ2 induces a right inverse of the restriction since the following diagram
is commutative

Z�∞alt(S3
G)Γ ��

ϕ2

��

H2
b(Γ)

��⊕
Z�∞µ,alt(Γ3

v)
Γv

⊕µv ��

ψ2◦⊕µv

��������������� ⊕
Z�∞alt(S3

v)
Γv �� ⊕H2

b(Γv).

⊕σv

��

This finishes the proof of the theorem.

Remark 4.2. Let us now briefly comment on the fact that the map ψ2 does not
send, in general, coboundaries of bounded 1-cochains to coboundaries of bounded
1-cochains. We will only be considering free products, that is the case in which
the graph G is a tree and all edge groups are trivial. In [42, Proposition 4.2], Rolli
constructed a linear map ⊕

v∈V (G)

�∞odd(Γv) → H2
b(Γ) (4.1)

and showed that this map is injective. Here �∞odd(Γv) is the set of bounded functions
on Γv such that f(g−1) = −f(g).
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We denote by (C̄•(Γ), d̄•) (respectively, (C̄•
b(Γ), d̄•)) the space of inhomo-

geneous (respectively, bounded inhomogeneous) cochains on Γ, and recall that
C̄•(Γ) (respectively, C̄•

b(Γ)) is isometrically isomorphic to the corresponding
module of homogeneous Γ-invariant cochains via the chain map h• given by
hn(f)(x0, . . . , xn) = f(x−1

0 x1, . . . , x
−1
n−1xn). We denote by C̄nalt(Γ) (respectively,

C̄nb,alt(Γ)) the subspace of C̄n(Γ) (respectively, C̄nb(Γ)) corresponding via hn to
alternating cochains on Γn+1.

Let α : ⊕�∞odd(Γv) → C̄1
alt(Γ) be defined by α(⊕fv)(x) =

∑
fvi(xi), where

x0 . . . xn is the reduced expression for x and xi ∈ Γvi . Even if the image of α is
not contained in C̄1

b,alt(Γ) in general, it is proved in [42] that the image of the
composition R = d̄1 ◦ α consists of bounded cocycles. Moreover, R admits the
explicit expression

R(⊕fv)(x, y) = fv(γ2) − fv(γ1γ2) + fv(γ1), (4.2)

where aγ1b and b−1γ2c are reduced expressions for x and y with γ1 and γ2 maximal
subwords belonging to the same vertex group Γv and γ1 
= γ−1

2 .
Let us now consider the following diagram:

⊕�∞odd(Γv)
R ��

µ◦h2◦d̄1
��

ZC̄2
b(Γ) ��

µ◦h2

��

H2
b(Γ)

��
⊕Z�∞alt(S3

v)
Γv

ψ2
�� Z�∞alt(S3

G)Γ �� H2
b(Γ).

Rolli’s map (4.1) is defined as the composition of the horizontal arrows on the top.
We claim that the diagram is commutative. Since we are in the case of a free product,
we have an obvious identification between SG and Γ × V (G′), and the map µ• :
C•

b(Γ) → C•
b(SG) is induced by the projection Γ × V (G′) → Γ. The commutativity

of the square on the right is now a consequence of Lemma 2.2. To show that the left
square commutes, let us consider a triple ((x0, v0), (x1, v1), (x2, v2)) ∈ S3

G . Then one
may verify that the barycenter of the triple (p(x0, v0), p(x1, v1), p(x2, v2)) ∈ V (T ′)3

is the vertex aΓv where x−1
0 x1 = aγ1b, x−1

1 x2 = b−1γ2c, and γ1, γ2 ∈ Γv satisfy
γ1 
= γ−1

2 . Using this fact and equality (4.2) it is easy to verify that the square on
the left is also commutative.

Summarizing, as a corollary of Rolli’s result we have shown that the image of
µ ◦ h2 ◦ d1

is a big subspace of coboundaries in ⊕�∞alt(S3
v)

Γv that are not taken by
ψ2 to coboundaries in �∞alt(S

3
G)Γ. In particular, the restriction of ψ2 to bounded

cocycles does not induce a well-defined map in bounded cohomology.

Remark 4.3. The assumption that G is finite did not play an important role in
our proof of Theorem 1.1. Let us suppose that G is countable, and take an element
ϕ ∈ Hn

b(Γ). Then the restriction H(inv )(ϕ) ∈ Hn
b(Γv) can be non-null for infinitely

many v ∈ V (G). However, we have ‖H(inv )(ϕ)‖∞ ≤ ‖ϕ‖∞ for every v ∈ V (G), so
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there exists a well-defined map

∏
v∈V (G)

H(inv ) : Hn
b(Γ) →

 ∏
v∈V (G)

Hn
b(Γv)

ub

,

where (
∏
v∈V (G) Hn

b(Γv))ub is the subspace of uniformly bounded elements of∏
v∈V (G) Hn

b(Γv). Our arguments easily extend to the case when G is countable
to prove that, for every n ≥ 2, there exists an isometric embedding

Θn :

 ∏
v∈V (G)

Hn
b(Γv)

ub

→ Hn
b(Γ)

which provides a right inverse to
∏
v∈V (G) H(inv ).

5. Mapping Cones and Gromov Equivalence Theorem

Let (X,Y ) be a topological pair. As mentioned in the Introduction, Gromov con-
sidered in [24] the one-parameter family of norms on Cn(X) defined by ‖c‖1(θ) =
‖c‖1 + θ‖∂nc‖1. All these norms are equivalent but distinct, and Cn(Y ) is a closed
subspace of Cn(X) with respect to any of these norms. Therefore, the norm ‖·‖1(θ)
descends to a quotient norm on Cn(X,Y ), and to a quotient seminorm on Hn(X,Y ).
All these (semi)norms will be denoted by ‖ · ‖1(θ). They admit a useful description
that exploits a cone construction for relative singular homology analogous to Park’s
cone construction for relative �1-homology [41] (see also [33]).

Let us denote by in : Cn(Y ) → Cn(X) the map induced by the inclusion i :
Y → X . The homology mapping cone complex of (X,Y ) is the complex

(Cn(Y → X), dn)) =
(

Cn(X) ⊕ Cn−1(Y ),
(
∂n in−1

0 −∂n−1

))
,

where ∂• denotes the usual differential both of C•(X) and of C•(Y ). The homology
of the mapping cone (C•(Y → X), d•) is denoted by H•(Y → X). For every n ∈ N,
θ ∈ [0,∞) one can endow Cn(Y → X) with the norm

‖(u, v)‖1(θ) = ‖u‖1 + θ‖v‖1,

which induces in turn a seminorm, still denoted by ‖ · ‖1(θ), on Hn(Y → X).b

The chain map

βn : Cn(Y → X) → Cn(X,Y ), βn(u, v) = [u] (5.1)

induces a map H(βn) in homology.

Lemma 5.1. The map

H(βn) : (Hn(Y → X), ‖ · ‖1(θ)) → (Hn(X,Y ), ‖ · ‖1(θ))

is an isometric isomorphism for every θ ∈ [0,+∞).

bIn [40], Park restricts her attention only to the case θ ≥ 1.
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Proof. It is immediate to check that H(βn) admits the inverse map

Hn(X,Y ) → Hn(Y → X), [u] �→ [(u,−∂nu)].

Therefore, H(βn) is an isomorphism, and we are left to show that it is norm-
preserving.

Let us set

β′
n : Cn(Y → X) → Cn(X), β′

n(u, v) = u.

By construction, βn is the composition of β′
n with the natural projection Cn(X) →

Cn(X,Y ). Observe that an element (u, v) ∈ Cn(Y → X) is a cycle if and only if
∂nu = −in−1(v). As a consequence, although the map β′

n is not norm nonincreasing
in general, it does preserve norms when restricted to ZCn(Y → X). Moreover, every
chain in Cn(X) representing a relative cycle is contained in β′

n(ZCn(Y → X)), and
this concludes the proof.

As is customary when dealing with seminorms in homology, in order to control
the seminorm ‖ · ‖1(θ) it is useful to study the topological dual of (Cn(Y → X),
‖ · ‖1(θ)), and exploit duality. If (C•, d•) is a normed chain complex (i.e. a chain
complex of normed real vector spaces), then for every n ∈ N one may consider
the topological dual Dn of Cn, endowed with the dual norm. The differential
dn : Cn → Cn−1 induces a differential dn−1 : Dn−1 → Dn, and we say that (D•, d•)
is the dual normed chain complex of (C•, d•). The homology (respectively, cohomol-
ogy) of the complex (C•, d•) (respectively, (D•, d•)) is denoted by H•(C•) (respec-
tively, H•

b(D•)). We denote the norms on Cn and Dn and the induced seminorms on
Hn(C•) and Hn

b(D•) respectively by ‖ · ‖C and ‖ · ‖D. The duality pairing between
Dn and Cn induces the Kronecker product

〈·, ·〉 : Hn
b(D•) × Hn(C•) → R.

By the Universal Coefficient Theorem, taking (co)homology commutes with tak-
ing algebraic duals. However, this is no more true when replacing algebraic duals
with topological duals, so Hn

b(D•) is not isomorphic to the topological dual of
Hn(C•) in general (see e.g. [33] for a thorough discussion of this issue). Neverthe-
less, the following well-known consequence of Hahn–Banach Theorem establishes
an important relation between Hnb(D•) and Hn(C•). We provide a proof for the
sake of completeness (and because in the available formulations of this result the
maximum is replaced by a supremum).

Lemma 5.2. Let (C•, ‖ · ‖C) be a normed chain complex with dual normed chain
complex (D•, ‖ · ‖D). Then, for every α ∈ Hn(C•) we have

‖α‖C = max{〈β, α〉 |β ∈ Hn
b(D•), ‖β‖D ≤ 1}.

Proof. The inequality ≥ is obvious. Let a ∈ Cn be a representative of α. In order to
conclude it is enough to find an element b ∈ Dn such that dnb = 0, b(a) = ‖α‖C and
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‖b‖D ≤ 1. If ‖α‖C = 0 we may take b = 0. Otherwise, let V ⊆ Cn be the closure of
dn−1Cn−1 in Cn, and put on the quotient W := Cn/V the induced seminorm ‖·‖W .
Since V is closed, such seminorm is in fact a norm. By construction, ‖α‖C = ‖[a]‖W .
Therefore, Hahn–Banach Theorem provides a functional b : W → R with operator
norm one such that b([a]) = ‖α‖C . We obtain the desired element b ∈ Dn by
pre-composing b with the projection Cn →W .

Let us come back to the mapping cone for the homology of a pair (X,Y ). For
θ ∈ (0,∞), the dual normed chain complex of (Cn(Y → X), ‖ · ‖1(θ)) is Park’s
mapping cone for relative bounded cohomology [41], that is the complex

(Cnb(Y → X), d
n
) =

(
Cnb(X) ⊕ Cn−1

b (Y ),
(
dn 0
in −dn−1

))
endowed with the norm

‖(f, g)‖∞(θ) = max{‖f‖∞, θ−1‖g‖∞}.

We endow the cohomology Hn
b(Y → X) of the complex (Cnb(Y → X), d

n
) with the

quotient seminorm, which will still be denoted by ‖ · ‖∞(θ). We denote by β• the
chain map dual to the chain map β• defined in (5.1), i.e. we set

βn : Cnb(X,Y ) → Cnb(Y → X), βn(f) = (f, 0)

for every n ∈ N. Then βn induces an isomorphism between Hn
b(X,Y ) and Hn

b(Y →
X) (see [41], or the first part of the proof of Proposition 5.3). If we assume that
the fundamental group of every component of Y is amenable, then we can improve
this result as follows:

Proposition 5.3. Suppose that the fundamental group of every component of Y is
amenable. Then, for every n ≥ 2, θ ∈ (0,∞), the map

H(βn) : (Hn
b(X,Y ), ‖ · ‖∞) → (Hn

b(Y → X), ‖ · ‖∞(θ))

is an isometric isomorphism.

Proof. Let us first prove that H(βn) is an isomorphism (here we do not use any
hypothesis on Y ). To this aim, it is enough to show that the composition

ZCnb(X,Y )
βn

�� ZCnb(Y → X) �� Hn
b(Y → X) (5.2)

is surjective with kernel dCn−1
b (X,Y ). For any g ∈ C•

b(Y ) we denote by g′ ∈ C•
b(X)

the extension of g that vanishes on simplices with image not contained in Y . Let
us take (f, g) ∈ ZCnb(Y → X). From d

n
(f, g) = 0 we deduce that f − dn−1g′ ∈

ZCnb(X,Y ). Moreover, (f−dn−1g′, 0)−(f, g) = −dn−1
(g′, 0), so the map (5.2) above

is surjective. Finally, if f ∈ ZCnb(X,Y ) and (f, 0) = d
n−1

(α, β), then α − dn−2β′

belongs to Cn−1
b (X,Y ) and d(α−dn−2β′) = f . This concludes the proof that H(βn)

is an isomorphism.
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Let us now suppose that the fundamental group of each component of Y is
amenable. We consider the chain map

γ• : C•
b(Y → X) → C•

b(X), (f, g) �→ f.

For every n ∈ N the composition γn ◦ βn coincides with the inclusion jn :
Cnb(X,Y ) → Cnb(X). By Theorem 1.2, for every n ≥ 2 the map H(jn) is an isomet-
ric isomorphism. Moreover, both H(γn) and H(βn) are norm nonincreasing, so we
may conclude that the isomorphism H(βn) is isometric for every n ≥ 2.

Putting together Proposition 5.3 and the main theorem of [33] we obtain
the following result (which may be easily deduced also from Proposition 5.3 and
Lemma 5.2).

Corollary 5.4. Suppose that the fundamental group of every component of Y is
amenable. Then, for every n ≥ 2, θ ∈ (0,∞), the map

H(βn) : (Hn(Y → X), ‖ · ‖1(θ)) → (Hn(X,Y ), ‖ · ‖1)

is an isometric isomorphism.

We are now ready to conclude the proof of Gromov’s Equivalence Theorem
(Theorem 1.5 here). Under the assumption that the fundamental group of every
component of Y is amenable, Lemma 5.1 and Corollary 5.4 imply that the identity
between (Hn(X,Y ), ‖ · ‖1) and (Hn(X,Y ), ‖ · ‖1(θ)) is an isometry for every θ > 0.
The conclusion follows from the fact that, by definition, ‖ · ‖1(0) = ‖ · ‖1 and
‖ · ‖1(∞) = limθ→∞ ‖ · ‖1(θ).

6. Additivity of the Simplicial Volume

Let us recall that if M is a compact connected orientable n-manifold, the simplicial
volume of M is defined as

‖M,∂M‖ = ‖[M,∂M ]‖1,

where [M,∂M ] ∈ Cn(M,∂M) is the image of the integral fundamental class of M
via the change of coefficients homomorphism induced by the inclusion Z ↪→ R.

Let G be a finite graph. We associate to any vertex v ∈ V (G) a compact oriented
n-manifold (Mv, ∂Mv) such that the fundamental group of every component of
∂Mv is amenable, and to any edge e ∈ E(G) a closed oriented (n − 1)-manifold
Se together with an orientation preserving homeomorphism fe : Se → ∂eMt(e),
where ∂eMt(e) is a connected component of ∂Mt(e). We also require that Se is equal
to Se with reversed orientation, and that the images of fe and fe′ are distinct
whenever e, e′ are distinct edges of G. We denote by M the quotient of the union
(
⋃
v∈V (G)Mv) ∪ (

⋃
e∈Ē(G) Se) with respect to the identifications induced by the

maps fe, e ∈ E(G). Of course, M is just the manifold obtained by gluing the Mv

along the maps fe ◦ f−1
e , e ∈ Ē(G). We also assume that M is connected.
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For every e ∈ E(G) we identify Se with the corresponding hypersurface in M ,
and we denote by S the union

⋃
e∈Ē(G) Se ⊆ M . The inclusion iv : (Mv, ∂Mv) →

(M,S ∪ ∂M) is a map of pairs inducing a norm nonincreasing map in cohomology

inv : Hn
b(M,S ∪ ∂M) → Hn

b(Mv, ∂Mv).

We consider now the setting of Theorem 1.3, therefore any component of ∂M ∪ S
has amenable fundamental group. Moreover, since every compact manifold has the
homotopy type of a finite CW-complex [30], we may compose the isomorphisms
Hn

b(M,∂M) ∼= Hn
b(M), Hn

b(M) ∼= Hn
b(M,∂M ∪ S) provided by Theorem 1.2, thus

getting an isometric isomorphism

ζn : Hn
b(M,∂M) → Hn

b(M,∂M ∪ S).

This map is the inverse of the map induced by the inclusion of pairs (M,∂M) →
(M,∂M ∪ S). Finally, we define the norm nonincreasing map

ζnv = inv ◦ ζn : Hn
b(M,∂M) → Hn

b(Mv, ∂Mv).

Lemma 6.1. For every ϕ ∈ Hn
b(M,∂M) we have

〈ϕ, [M,∂M ]〉 =
∑

v∈V (G)

〈ζnv (ϕ), [Mv, ∂Mv]〉.

Proof. Let cv ∈ Cn(Mv) be a real chain representing the fundamental class of
Mv. We identify any chain in Mv with the corresponding chain in M , and we set
c =

∑
v∈V (G) cv ∈ Cn(M). We now suitably modify c in order to obtain a relative

fundamental cycle for M . It is readily seen that ∂cv is the sum of real fundamental
cycles of the boundary components of Mv. Therefore, since the gluing maps defining
M are orientation-reversing, we may choose a chain c′ ∈

⊕
e∈Ē(G) Cn(Se) such that

∂c− ∂c′ ∈ Cn−1(∂M). We set c′′ = c− c′. By construction c′′ is a relative cycle in
Cn(M,∂M), and it is immediate to check that it is in fact a relative fundamental
cycle forM . Let now ψ ∈ Cnb(M,S∪∂M) be a representative of ζn(ϕ). By definition
we have

ψ(c) =
∑

ψ(cv) =
∑

〈ζnv (ϕ), [Mv, ∂Mv]〉.

On the other hand, since ψ vanishes on chains supported on S, we also have

ψ(c) = ψ(c′′ + c′) = ψ(c′′) = 〈ϕ, [M,∂M ]〉,

and this concludes the proof.

Let us now proceed with the proof of Theorem 1.3. In order to match the
notation with the statement of Theorem 1.3, we henceforth denote by {1, . . . , k}
the set of vertices of G. By Lemma 5.2 we may choose an element ϕ ∈ Hn

b(M,∂M)
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such that

‖M,∂M‖ = 〈ϕ, [M,∂M ]〉, ‖ϕ‖∞ ≤ 1.

Observe that ‖ζnv (ϕ)‖∞ ≤ ‖ϕ‖∞ ≤ 1 for every v ∈ V (G), so by Lemma 6.1

‖M,∂M‖ = 〈ϕ, [M,∂M ]〉 =
k∑
v=1

〈ζnv (ϕ), [Mv, ∂Mv]〉 ≤
k∑
v=1

‖Mv, ∂Mv‖. (6.1)

This proves the first part of Theorem 1.3.

Remark 6.2. Inequality (6.1) may also be proved by using Matsumoto–Morita’s
boundary condition [36, Definition 2.1 and Theorem 2.8] and Corollary 1.6.

To conclude the proof of Theorem 1.3 we now consider the case when M is
obtained via compatible gluings. Therefore, if Ke is the kernel of the map induced
by fe on fundamental groups, thenKe = Ke for every e ∈ E(G) (recall that Se = Se,
so both Ke and Ke are subgroups of π1(Se) = π1(Se)). If we consider the graph of
groups G with vertex groups Gv = π1(Mv) and edge groups Ge = π1(Se)/Ke, then
van Kampen Theorem implies that π1(M) is the fundamental group of the graph
of groups G (see [45] for full details).

Proposition 6.3. For every (ϕ1, . . . , ϕk) ∈
⊕k

v=1 Hn
b(Mv, ∂Mv), there exists ϕ ∈

Hn
b(M,∂M) such that

‖ϕ‖∞ ≤ ‖(ϕ1, . . . , ϕk)‖∞, ζnv (ϕ) = ϕv, v = 1, . . . , k.

Proof. The proposition follows at once from Theorem 4.1 and the commutativity
of the following diagram:

Hn
b(M,∂M) ��

⊕ζn
v

��

Hn
b(M) ��

��

Hn
b(π1(M))

⊕inv
��

⊕Hn
b(Mv, ∂Mv) �� ⊕Hn

b(Mv) �� ⊕Hn
b(π1(Mv)),

where the horizontal arrows are, respectively, the isometric isomorphisms con-
structed in Theorem 1.2 and Ivanov’s maps, and the vertical arrows are given by
restrictions.

By Lemma 5.2, for every v = 1, . . . , k, we may choose an element ϕv ∈
Hn

b(Mv, ∂Mv) such that

‖Mv, ∂Mv‖ = 〈ϕv, [Mv, ∂Mv]〉, ‖ϕv‖∞ ≤ 1,
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and Proposition 6.3 implies that there exists ϕ ∈ Hn
b(M,∂M) such that

‖ϕ‖∞ ≤ 1, ζnv (ϕ) = ϕv, v = 1, . . . , k.

Using Lemma 6.1 we get∑
v∈V (G)

‖Mv, ∂Mv‖ =
∑

v∈V (G)

〈ϕv, [Mv, ∂Mv]〉 = 〈ϕ, [M,∂M ]〉 ≤ ‖M,∂M‖,

which finishes the proof of Theorem 1.3.

Remark 6.4. The following examples show that the hypotheses of Theorem 1.3
should not be too far from being the weakest possible.

Let M be a hyperbolic 3-manifold with connected geodesic boundary. It is well-
known that the genus of ∂M is bigger than one, and that ∂M is π1-injective in M .
We fix a pseudo-Anosov homeomorphism f : ∂M → ∂M , and for every m ∈ N we
denote by DmM the twisted double obtained by gluing two copies of M along the
homeomorphism fm : ∂M → ∂M (so D0M is the usual double of M). It is shown
in [27] that

‖D0M‖ < 2 · ‖M,∂M‖.

On the other hand, by [47] we have limm→∞ VolDmM = ∞. But VolN = v3 · ‖N‖
for every closed hyperbolic 3-manifold N , where v3 is a universal constant [24, 50],
so limm→∞ ‖DmM‖ = ∞, and the inequality

‖DmM‖ > 2 · ‖M,∂M‖

holds for infinitely many m ∈ N. This shows that, even in the case when each Se is
π1-injective in Mt(e), no inequality between ‖M,∂M‖ and

∑k
v=1 ‖Mv, ∂Mv‖ holds

in general if one drops the requirement that the fundamental group of every Se is
amenable.

On the other hand, let M1 be (the natural compactification of) the once-
punctured torus. The interior of M1 admits a complete finite-volume hyperbolic
structure, so ‖M1, ∂M1‖ = Area(M1)/v2, where v2 = π denotes the maximal area of
hyperbolic triangles. By Gauss–Bonnet Theorem, this implies that ‖M1, ∂M1‖ = 2.
If M2 is the 2-dimensional disk, then the manifold M obtained by gluing M1 with
M2 along ∂M1

∼= ∂M2
∼= S1 is a torus, so ‖M‖ = 0 and

‖M‖ < ‖M1, ∂M1‖ + ‖M2, ∂M2‖.

This shows that, even in the case when the fundamental group of every Se is
amenable, the equality ‖M,∂M‖ =

∑k
j=1 ‖Mj, ∂Mj‖ does not hold in general if

one drops the requirement that the gluings are compatible.
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