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0 Introduction

The present article derives an upper bound on the disconnection time TN of a discrete
cylinder with base a d-dimensional torus of large side-length N . It explores some of
the connections of this question with the percolative properties of the model of random
interlacements recently introduced in [12]. A variety of results concerning the disconnec-
tion time by simple random walk of discrete cylinders with various large bases has been
obtained, cf. [3], [4], [11]. In particular it appears that with broad generality the discon-
nection time has a rough order of magnitude comparable to the square of the number of
points in the base. In all the above quoted references upper bounds on the disconnection
time hinge on the fact that once the walk has covered the “zero level” of the cylinder,
disconnection has occurred. This causes the appearance in the resulting upper bounds
of spurious factors involving some power of the logarithm of the cardinality of the base.
The present work departs from this approach and builds on the results of [12] concerning
percolation for the vacant set left by random interlacements. Notably we show here that
when d ≥ 2, the laws of TN/N

2d are tight. Together with the results of [4] this implies
that when d is sufficiently large, i.e. d ≥ 17, TN “lives in scale N2d”. Moreover this work
leads to a natural guess concerning the convergence and characterization of the limit of
the distributions of TN/N

2d in term of Brownian local times.

Before discussing these matters any further let us first present the model more pre-
cisely. For d ≥ 2 and N ≥ 1 we consider the discrete cylinder

(0.1) E = T× Z, where T = (Z/NZ)d .

A finite subset S ⊆ E is said to disconnect E if for largeM , T×[M,∞) and T×(−∞,−M ]
are contained in distinct connected components of E\S. For x in E we denote with Px

the canonical law on EN of simple random walk on E starting at x, and write Ex for the
corresponding expectation. We let X. = (Y., Z.) stand for the canonical process with Y.
and Z. its respective T- and Z-components. A key object of interest in this article is the
disconnection time

(0.2) TN = inf{n ≥ 0; X[0,n] disconnects E} .

We write ρk, k ≥ 0, for the times of successive displacements of the “vertical” component
Z. of X., i.e. ρ0 = 0 and ρk = inf{n > ρk−1; Zn 6= Zρk−1}, for k ≥ 1, as well as Ẑ. for
the time changed process

(0.3) Ẑk = Zρk
, k ≥ 0 ,

which is distributed as a one-dimensional simple random walk. The local time of Ẑ is
defined as

(0.4) L̂z
k =

∑
0≤m<k

1{Ẑm = z}, with k ≥ 0, z ∈ Z .

We also consider γz
v , the first time when the number of distinct visits of the walk X to

T× {z}, the “level z” in the cylinder, reaches an amount v:

(0.5) γz
v = inf{ρk; k ≥ 0 and L̂z

k ≥ v}, with v ≥ 0, z ∈ Z .
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A further ingredient is the so-called random interlacement at level u ≥ 0, introduced in
[12]. It is the trace left on Zd+1, (here d+ 1, with d ≥ 2, plays the role of d ≥ 3 in [12]),
by a cloud of paths constituting a Poisson point process in the space of doubly infinite
trajectories modulo time-shift, tending to infinity at positive and negative infinite times.
We refer to Section 1 for precise definitions. The non-negative parameter u is in essence a
multiplicative factor of the intensity measure of this point process. In a standard fashion
one constructs on the same space (Ω,A,P), see (1.25) and below (1.26), the family Iu,
u ≥ 0, of random interlacements at level u, see (1.32). They are the traces on Zd+1 of the
cloud of trajectories modulo time-shift, “up to level u”. The random subsets Iu increase
with u and for u > 0, they are infinite random connected subsets of Zd+1, ergodic under
space translations, cf. Theorem 2.1, and Corollary 2.3 of [12]. The complement of Iu,
denoted by Vu, is the so-called vacant set at level u, see (1.34). An important role is
played here by the critical parameter

(0.6)
u∗∗ = inf{u ≥ 0, α(u) > 0}, with

α(u) = sup{α ≥ 0, lim
L→∞

Lα P
[
B(0, L)

Vu

←→ S(0, 2L)
]

= 0}, for u ≥ 0,

where the supremum is by convention 0 if the set in the second line of (0.6) is empty,

and {B(0, L)
Vu

←→ S(0, 2L)} denotes the event where there is a nearest neighbor path in
Vu starting in B(0, L), the closed ball of radius L and center 0 for the ℓ∞-distance, and
ending in S(0, 2L) the ℓ∞-sphere with radius 2L and center 0. We show in Lemma 1.4
that for all d ≥ 2,

(0.7) u∗ ≤ u∗∗ <∞ ,

where u∗ is the critical parameter introduced in [12], such that P-a.s., Vu has an infinite
connected component, i.e. percolates, when u < u∗, and only finite components when
u > u∗. Among the key results of [12] are the facts that when d ≥ 2, u∗ <∞, cf. Theorem
3.5 of [12] and u∗ > 0, at least when d ≥ 6, cf. Theorem 4.3 of [12], (we recall that here
d + 1 plays the role of d in [12]). This has later been extended to all d ≥ 2 in Theorem
3.4 of [10]. It is a natural question whether actually u∗ = u∗∗.

The main results of this article relate TN to u∗∗. Specifically we show in Theorem 4.1,
that when d ≥ 2,

(0.8) lim
N

P0

[
TN > inf

z∈Z

γz
Nd

(d+1)
u

]
= 0, when u > u∗∗ .

Loosely speaking, this says that given u > u∗∗, when N is large, once the number of
distinct visits of the walk to some level T × {z} of the cylinder exceeds Nd

(d+1)
u, then

typically disconnection must have occurred. This result has some similar flavor to [13],
where the trace left by random walk in the neighborhood of points of the cylinder by
times of order N2d is compared to random interlacements. As a consequence of the key
property (0.8) we show in Corollary 4.6 that

(0.9) lim
N

P0[TN ≥ sN2d] ≤W
[
ζ
(

u∗∗√
d + 1

)
≥ s

]
, for all s > 0 ,

where W stands for the Wiener measure and

(0.10) ζ(u) = inf{t ≥ 0; sup
v∈R

L(v, t) ≥ u}, for u ≥ 0 ,
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with L(v, t) a jointly continuous version of the local time of the canonical Brownian
motion. In particular this shows that the laws of TN/N

2d under P0 are tight. With the
results of [4], it also proves that when d is large, i.e. d ≥ 17,

(0.11) the laws on (0,∞) of TN/N
2d under P0, with N ≥ 2, are tight,

i.e. “TN lives in scale N2d”. It is natural to wonder whether more than (0.9) holds and

TN/N
2d actually converges in distribution towards ζ( u∗∗√

d+1
)

law
= u2

∗∗

d+1
ζ(1), see Remark 4.7,

(and a related question whether u∗ = u∗∗). Let us also mention that thanks to the works
[1] and [5], the Laplace transform of ζ(u) is known and can be expressed as:

(0.12) EW [e−
θ2

2
ζ(u)] =

θu

[sinh( θu
2 )]2

I1(
θu
2 )

I0(
θu
2 )
, for θ, u > 0 ,

with Iν the modified Bessel function of index ν.

We will now briefly sketch the strategy of the proof of the main Theorem 4.1. The
rough idea we use in order to show (0.8) is that once sufficiently many distinct visits of a

given level z of the cylinder have taken place, i.e. more than Nd

d+1
(u∗∗ + δ) distinct visits,

then the trace left by the walk in a box with center at level z and side-length N1−ε, where
ε can be chosen arbitrarily small, dominates the trace left by random interlacements at
level u∗∗ + δ′ in such a box, where 0 < δ′(= δ

8
) < δ. With a straightforward covering

argument and the definition of the critical exponent u∗∗, cf. (0.6), one finds by adjusting
parameters that the probability of existence of a nearest neighbor path in the cylinder
between levels z −N1−ε and z +N1−ε, avoiding the trajectory of the walk, tends to 0 as
N goes to infinity. In order to take care of the infimum over z which appears in (0.8),
the above rough scheme is combined with an argument relying on the spatial regularity
of the local time of the simple random walk Ẑ. It enables to simply consider a large but
finite number of levels, regularly spaced at heights which differ by a small multiple of Nd.

The above mentioned scheme crucially involves a stochastic domination argument,
see in particular Proposition 4.2 and its proof. Its implementation goes through several
steps. It begins with the extraction of excursions of the walk, which roughly correspond
to successive returns to the box B(z) = T× [z −N, z +N ] and departures from the box

B̃(z) = T×(z−hN , z+hN), where the height hN = [N(logN)2] is large enough so that the
T-component of the walk has time to homogenize between various excursions of the walk.
There is however a special recipe in the precise specification of the excursions, cf. (2.2), and
it plays an important role. With the coupling techniques developed in Proposition 2.2 we
are able to replace the true excursions of the walk with a collection of i.i.d. excursions for
which the starting point is uniformly distributed on the union of the two levels T×{z+N}
and T × {z − N}, and the path otherwise evolves as simple random walk on E stopped

when exiting B̃(z). The specific choice of this starting distribution leads to a key identity
for the entrance law of the excursion in a subset A of T × (z − N, z + N) ⊆ B(z), see
Lemma 1.1.

Via a Poissonization argument, the above mentioned identity induces a very handy
comparison of the trace left by a Poisson number of i.i.d. excursions in a box of E with
center in T × {z} and size N1−ε, and the trace left in a box of same size by trajectories
of a random interlacement at a suitably calibrated level u, when the trajectories entering
the box are stopped once they leave a concentric box of side-length N

2
, see (4.22). To
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handle the truncation involved in stopping trajectories, we use Theorem 3.1, which shows
that in essence the trace of the truncated trajectories in the box of size N1−ε dominates
the untruncated trace in the same box of a random interlacement at a slightly lower
level u′, (which in the application in Section 4 can be chosen equal to u∗∗ + δ

8
). The

important Theorem 3.1 solely pertains to the model of random interlacements. Its proofs
uses a “sprinkling technique” with a similar flavor to some of the arguments employed in
Section 3 of [12], when showing that u∗ < ∞. These are some of the main ingredients
entering the proof of Theorem 4.1.

Let us now describe how the article is organized.

In Section 1 we introduce further notation and recall various useful facts concerning
random walks and random interlacements. The key identity of the entrance law in sets
interior to B(z) of the specially tailored excursions appears in Lemma 1.1. The finiteness
of u∗∗ is shown in Lemma 1.4.

In Section 2 we develop the coupling technique, which enables to work with i.i.d. ex-
cursions in the sequel. The main result appears in Proposition 2.2.

In Section 3 we develop the sprinkling technique which shows that the trace left in
a box of size of order N1−ε by trajectories of an interlacement at level u stopped when
exiting a concentric box of side-length N

2
, in essence dominates the trace left in the box

of size of order N1−ε by an interlacement at a slightly lower level u′. The main result is
Theorem 3.1.

In Section 4 we prove the key statement (0.8) in Theorem 4.1, and its consequence (0.9)
in Corollary 4.6. The proof of Theorem 4.1 is split into Proposition 4.2, where the key
domination argument shows that once at a given level z in the cylinder, sufficiently many
distinct visits have occurred, then with high probability disconnection of the cylinder has
taken place, and into Proposition 4.3, where the spatial regularity of the local time of Ẑ
is used to replace the infimum over all levels z, which appears in (0.8), with an infimum
over a large but finite number of levels.

Finally the convention concerning constants we use in the text is the following. Through-
out c or c′ denote positive constants, which solely depend on d, with values changing from
place to place. The numbered constants c0, c1, . . . are fixed and refer to the value at their
first appearance in the text. Dependance of constants on additional parameters appears
in the notation, for instance c(ε) denotes a positive constant depending on d and ε.

1 Notation and some useful properties

In this section we introduce additional notation and present some useful results concerning
random walks and random interlacements. In particular the key identity for the hitting
distribution of the excursions of the walk on the cylinder appears in Lemma 1.1, and the
proof of the finiteness of the critical value u∗∗ of (0.6) is presented in Lemma 1.4.

We write N = {0, 1, 2, . . .} for the set of natural numbers. Given a non-negative real
number a, we write [a] for the integer part of a. We let | · | and | · |∞ respectively stand
for the Euclidean and ℓ∞-distances on Zd+1 or for the corresponding distances induced
on E. Throughout the article we assume d ≥ 2. We say that two points of Zd+1 or E are
neighbors if their | · |-distance equals 1. With B(x, r) and S(x, r) we denote the closed
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| · |∞-ball and | · |∞-sphere with radius r ≥ 0 and center x in Zd+1 or E. For A,B subsets
of Zd+1 or E we write A + B for the set of elements x + y with x in A and y in B, and
d(A,B) = inf{|x − y|∞; x ∈ A, y ∈ B} for the mutual ℓ∞-distance of A and B; when
A = {x} is a singleton we write d(x,B) for simplicity. We also write U ⊂⊂ Zd+1 or
U ⊂⊂ E to indicate that U is a finite subset of Zd+1 or E. Given U subset of Zd+1 or
E we denote with |U | the cardinality of U , with ∂U the boundary of U and ∂intU the
interior boundary of U :

(1.1) ∂U = {x ∈ U c; ∃x′ ∈ U, |x− x′| = 1}, ∂intU = {x ∈ U ; ∃x′ ∈ U c, |x− x′| = 1} .

The canonical shift on EN is denoted with (θn)n≥0, i.e. θn stands for the map from EN

into EN such that (θnw)(·) = w(·+n) for w ∈ EN, and we write (Fn)n≥0 for the canonical

filtration. Given a subset U of E we denote with HU , H̃U and TU , the entrance time, the
hitting time of U , and the exit time from U :

HU = inf{n ≥ 0;Xn ∈ U}, H̃U = inf{n ≥ 1;Xn ∈ U} ,
TU = inf{n ≥ 0;Xn /∈ U} .

(1.2)

In the case of a singleton U = {x}, we simply write Hx or H̃x. We denote with P Z
d+1

x the
canonical law of simple random walk on Zd+1 starting at x and with EZd+1

x the correspond-
ing expectation. We otherwise keep the same notation as for the walk on E concerning
the canonical process, the canonical shift and other natural objects such as in (1.2).

Given K ⊂⊂ Zd+1 and U ⊇ K, the equilibrium measure and capacity of K relative to
U are defined by:

eK,U(x) =

{
P Zd+1

x [H̃K > TU ], for x ∈ K ,

0, for x /∈ K, and
(1.3)

capU(K) =
∑

x∈K

eK,U(x), (note that capU(K) ≤ |K|) .(1.4)

The Green function of the walk killed outside U is defined as

(1.5) gU(x, x′) = EZd+1

x

[ ∑
n≥0

1{Xn = x′, n < TU}
]
, for x, x′ ∈ Zd+1 .

When U = Zd+1, we drop U from the notation in (1.3) - (1.5). The Green function is
symmetric in its two variables and the probability to enter K before exiting U can be
expressed as:

(1.6) P Zd+1

x [HK < TU ] =
∑

x′∈Zd+1

gU(x, x′) eK,U(x′), for x ∈ Zd+1 .

One also has the bounds:

(1.7)

∑
x′∈K

gU(x, x′)/ sup
y∈K

∑
x′∈K

gU(y, x′) ≤ P Z
d+1

x [HK < TU ] ≤
∑

x′∈K

gU(x, x′)/ inf
y∈K

∑
x′∈K

gU(y, x′) .
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These inequalities for instance follow from the L1(P Zd+1

x )-convergence of the bounded mar-
tingale Mn =

∑
x′∈K gU(Xn∧HK∧TU

, x′), n ≥ 0, towards 1{HK < TU}
∑

x′∈K gU(XHK
, x′).

In the case of the discrete cylinder E, when U ( E is a strict subset of E, we define
the corresponding objects just as in (1.3) - (1.5) with Px and Ex in place of P Zd+1

x and
EZ

d+1

x . We then have a similar identity and bounds as in (1.6), (1.7).

We will sometimes find it useful to consider the continuous time random walks X.,
Y ., and Z. on E, T and Z with respective jump rates equal to 2(d + 1), 2d, and 2. We
denote (with some abuse of notation) by Px, P

T

y , and P Z

z the corresponding canonical

laws starting at x ∈ E, y ∈ T, and z ∈ Z. We otherwise use notation such as (θt)t≥0,
(F t)t≥0 or HU to refer to the natural continuous time objects. The continuous time walks
are convenient because on the one hand the discrete skeleton of X. is distributed as the
discrete time walk X., and on the other hand for x = (y, z) ∈ E,

(1.8) under P T

y × P Z

z , (Y ., Z.) has the canonical law Px governing X. .

One should however note that the discrete time processes Y and Z, respective T- and
Z-projections of X, cf. above (0.2), are not distributed as the discrete skeletons of Y and
Z; indeed they need not jump at each integer time.

As mentioned in the introduction we will consider certain concentric boxes in the
cylinder E and certain excursions of the walk related to these boxes. More precisely we
introduce the height scales:

(1.9) rN = N < hN = [N(2 + (logN)2)] ,

as well as the boxes in E centered at level z ∈ Z:

(1.10)
B(z) = T× (z + I) ⊆ B̃(z) = T× (z + Ĩ), where

I = [−rN , rN ] and Ĩ = (−hN , hN) .

When z = 0, we simply write B and B̃. We also introduce the probability q which is the
equidistribution on the union of levels rN , and −rN in E:

(1.11) q =
1

2Nd

∑
x∈T×{−rN ,rN}

δx .

We now come to an identity which will be applied to the entrance distribution in subsets
of B\∂intB prior to exit from B̃ for the walk in E with starting distribution q. This
identity plays a crucial role in comparing the trace left by the walk in the neighborhood
of points of B away from ∂intB, with random interlacements. For the sake of clarity we
state the result in a slightly more general form than needed. We consider

(1.12)
ã > a > b > b̃ in Z with

a + b

2
=

ã + b̃

2
,

2h = ã− b̃, 2r = a− b ,
so h+ r and h− r are integers, but h and r are possibly half-integers. We then define the
probability

(1.13) qa,b =
1

2Nd

∑
x∈T×{a,b}

δx .

For a measure µ on E we write Pµ in place of
∑
x∈E

µ(x)Px. We can now state
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Lemma 1.1. (N ≥ 3)

If U = T× (̃b, ã), one then has

(1.14)
∑

x′∈E

qa,b(x
′) gU(x′, x) = (d+ 1)

(h− r)
Nd

, for all x ∈ T× [b, a] .

Moreover for K ⊆ T× (b, a) one also has

(1.15) Pqa,b
[XHK

= x,HK < TU ] = (d+ 1)
(h− r)
Nd

eK,U(x), for x ∈ K .

Proof. We begin with the proof of (1.14). With the help of the continuous time process
X. and the symmetry of gU(·, ·) we can write for x = (y, z) ∈ T× [b, a]:

(1.16)

∑
x′∈E

qa,b(x
′) gU(x′, x) =

∑
x′∈E

qa,b(x
′) gU(x, x′) =

∑
x′∈E

qa,b(x
′) 2(d+ 1)Ex

[ ∫ TU

0

1{Xt = x′} dt
]

(1.8),(1.13)
=

∑
y′∈T

(d+ 1)

Nd
ET

y × EZ

z

[ ∫ ∞

0

1{Y t = y′} 1{Zt = a, T (eb,ea) > t} dt +

∫ ∞

0

1{Y t = y′} 1{Zt = b, T (eb,ea) > t} dt
]

=

(d+ 1)

Nd

(
EZ

z

[ ∫ T
(eb,ea)

0

1{Zt = a} dt
]

+ EZ

z

[ ∫ T
(eb,ea)

0

1{Zt = b} dt
])

=

(d+ 1)

2Nd

(P Z

z [Ha < T(eb,ea)]

P Z
a [H̃a > T(eb,ea)]

+
P Z

z [Hb < T(eb,ea)]

P Z

b [H̃b > T(eb,ea)]

)
,

using again the link between the continuous time and discrete walk, as well as a classical
identity for the Green function of the discrete walk in the last step. Using symmetry

around a+b
2

= ea+eb
2

, we see that

(1.17) P Z

a [H̃a > T(eb,ea)] = P Z

b [H̃b > T(eb,ea)] =
1

2
(h− r)−1 +

1

2
(h + r)−1 .

Moreover we also have

(1.18) P Z

z [Ha < T(eb,ea)] + P Z

z [Hb < T(eb,ea)] =
z − b̃
h+ r

+
ã− z
h+ r

=
2h

h+ r
.

Inserting these identities in the last line of (1.16) we find that

∑
x′∈E

qa,b(x
′) gU(x′, x) =

(d+ 1)

2Nd

[
1

2
(h− r)−1 +

1

2
(h+ r)−1

]−1 2h

h + r

=
(d+ 1)

Nd
(h− r) .

This proves (1.14).
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We now turn to the proof of (1.15). For x ∈ K(⊆ T× (b, a)) we have

(1.19)

Pqa,b
[XHK

= x,HK < TU ] =
∑
n≥1

Pqa,b
[Xn = x, n = TU\K ] =

∑
n≥1

Pqa,b
[TU\K > n− 1, X1 ◦ θn−1 = x]

Markov
=

∑
x′∈E

∑
x′′:|x′′−x|=1

qa,b(x
′)gU\K(x′, x′′)

1

2(d+ 1)
.

Note that for x′, x′′ in E, the application of the strong Markov property at time HK in
the formula corresponding to (1.5) yields that

(1.20) gU(x′′, x′) = gU\K(x′′, x′) + Ex′′ [HK < TU , gU(XHK
, x′)] .

Coming back to the last line of (1.19), using the symmetry of the Green functions as well
as (1.14) we see that for x′′ ∈ T× [b, a]:

∑
x′∈E

qa,b(x
′)gU\K(x′, x′′) = (d+ 1)

(h− r)

Nd
(1− Px′′[HK < TU ])

= (d+ 1)
(h− r)

Nd
Px′′ [HK > TU ] .

(1.21)

Inserting this identity in the last line of (1.19) we find after the application of the Markov
property at time 1 that

(1.22) Pqa,b
[XHK

= x,HK < TU ] = (d+ 1)
(h− r)

Nd
Px[H̃K > TU ], for x ∈ K,

and this proves (1.15).

Remark 1.2. In what follows the above lemma will be applied to the special case ã = hN ,
b̃ = −hN , a = rN , b = −rN , see (1.9), so that qa,b = q in (1.11), and U = T× (̃b, ã) = B̃,

see below (1.10). If one considers the time of the last visit to K ⊆ B̃ of the walk prior to

the exit from B̃:
L

eB
K = sup{n ≥ 0, Xn ∈ K,n < T eB} ,

where the supremum is by convention equal to −1, when the set in parenthesis is empty,
an application of the simple Markov property classically yields that for x ∈ K:

Pq

[
X

L
eB
K

= x,HK < T eB

]
=

∑
x′∈E

q(x′) g eB(x′, x)Px[H̃K > T eB]

=
∑

x′∈E

q(x′) g eB(x′, x) eK, eB(x) .
(1.23)

When K ⊆ B\∂intB = T × (−rN , rN), Lemma 1.1 shows that this expression remains

the same when L
eB
K is replaced with HK . In fact for any nearest neighbor B̃-valued path

τ(n), 0 ≤ n ≤ Nτ , having its starting point xs = τ(0) and its endpoint xe = τ(Nτ ) in the
support of eK, eB(·), one has with the help of (1.15) and the strong Markov property:

(1.24)

Pq

[
HK < T eB, (XHK+ ·)0≤·≤L

eB
K−HK

= τ
]

=

(d+ 1)
(hN − rN)

Nd
eK, eB(xs)Pxs[Xn = τ(n), 0 ≤ n ≤ Nτ ] eK, eB(xe) .
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This identity has a strong flavor of (1.29) below and underlies the link between excursions
with entrance distribution q on the cylinder E and random interlacements on Zd+1. This
will play a crucial role in Section 4. �

We now recall some notation and results from [12] concerning random interlacements.
We denote with W the space of doubly infinite nearest neighbor Zd+1-valued trajectories
which tend to infinity at positive and negative infinite times, and with W ∗ the space of
equivalence classes of trajectories in W modulo time-shift. The canonical projection from
W onto W ∗ is denoted by π∗. We endow W with its canonical σ-algebra W and denote
by Xn, n ∈ Z, the canonical coordinates.

We endow W ∗ with W∗ = {A ⊆ W ∗; (π∗)−1(A) ∈ W}, the largest σ-algebra on W ∗

for which π∗ : (W,W) → (W ∗,W∗) is measurable. We also consider W+ the space of
nearest neighbor Zd+1-valued trajectories defined for non-negative times and tending to
infinity. We denote with W+ and Xn, n ≥ 0, the canonical σ-algebra and the canonical
process. Since d ≥ 2, simple random walk (on Zd+1) is transient and W+ has full measure
for any P Z

d+1

x , x ∈ Zd+1, see above (1.3), and we view whenever convenient the law of
simple random walk on Zd+1 starting from x as a probability on (W+,W+). We consider
the space of point measures on W ∗ ×R+:

Ω =
{
ω =

∑
i≥0

δ(w∗
i ,ui), with (w∗

i , ui) ∈W ∗ × R+, i ≥ 0, and

ω(W ∗
K × [0, u]) <∞, for any K ⊂⊂ Zd+1, u ≥ 0

}
,

(1.25)

where for K ⊂⊂ Zd+1, W ∗
K ⊆ W ∗ is the subset of trajectories modulo time-shift which

enter K:

(1.26) W ∗
K = π∗(WK), and WK = {w ∈W ; for some n ∈ Z, Xn(w) ∈ K} .

We endow Ω with the σ-algebra A generated by the evaluation maps ω → ω(D), where
D runs over the product σ-algebra W∗ × B(R+). We denote with P the probability on
(Ω,A) which is the Poisson point measure with intensity ν(dw∗)du, giving finite mass to
the sets W ∗

K × [0, u], for K ⊂⊂ Zd+1, u ≥ 0, where ν is the unique σ-finite measure on
(W ∗,W∗) such that for any K ⊂⊂ Zd+1, cf. Theorem 1.1 of [12]:

(1.27) 1W ∗
K
ν = π∗ ◦QK ,

with QK the finite measure on W 0
K , the subset of WK of trajectories which enter K for

the first time at time 0, such that for A,B in W+, x ∈ Zd+1:

(1.28)
QK [(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B] =

P Z
d+1

x [A | H̃K =∞] eK(x)P Z
d+1

x [B] ,

where we recall eK(·) stands for the equilibrium measure of K, cf. (1.3) and below (1.5).

Remark 1.3. It is also shown in Theorem 1.1 of [12] that for A,B ∈ W+, LK(w) the time
of the last visit of K by the trajectory w ∈ W 0

K , and τ(n), 0 ≤ n ≤ Nτ , a finite nearest
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neighbor trajectory on Zd+1 with starting point xs = τ(0) and endpoint xe = τ(Nτ ) both
in the support of eK(⊆ ∂intK)

(1.29)

QK [(X−n)n≥0 ∈ A, (X.)0≤·≤LK
= τ, (Xn+LK

)n≥0 ∈ B] =

P Z
d+1

xs
[A | H̃K =∞] eK(xs)P

Z
d+1

xs
[Xn = τn, 0 ≤ n ≤ Nτ ]

eK(xe)P
Z

d+1

xe
[B | H̃K =∞] .

In the case A = B =W+ the above formula has a very similar flavor to (1.24). It is also
shown in Theorem 1.1 of [12] that ν is invariant under time reversal of trajectories in W ∗

and under translation of trajectories by a constant vector. �

Given K ⊂⊂ Zd+1, u ≥ 0 one further defines on (Ω,A) the random point process with
state space the set of finite point measures on (W+,W+):

(1.30) µK,u(ω) =
∑
i≥0

δ(w∗
i )K,+ 1{w∗

i ∈W ∗
K , ui ≤ u}, for ω =

∑
i≥0

δ(w∗
i ,ui),

where (w∗)K,+ stands for the trajectory in W+ which follows step by step w∗ ∈ W ∗
K from

the time it first enters K. One then has the fact that, cf. Proposition 1.3 of [12], for
K ⊂⊂ Zd+1, u ≥ 0,

(1.31) µK,u is a Poisson point process on (W+,W+) with intensity measure uP Zd+1

eK
,

where the notation is similar to below (1.13).

Given ω ∈ Ω, the interlacement at level u ≥ 0, is the subset of Zd+1:

(1.32) Iu(ω) =
⋃

ui≤u

range (w∗
i ), if ω =

∑
i≥0

δ(w∗
i ,ui) ,

where for w∗ ∈ W ∗, range(w∗) = w(Z), for any w ∈ W with π∗(w) = w∗. One readily
sees that

(1.33) Iu(ω) =
⋃

K⊂⊂Zd+1

⋃

w∈SuppµK,u(ω)

w(N) .

The vacant set at level u is then defined as:

(1.34) Vu(ω) = Zd+1\Iu(ω), for ω ∈ Ω, u ≥ 0 .

One has

(1.35) P[Vu ⊇ K] = exp{−u cap(K)}, for all K ⊂⊂ Zd+1 ,

and this property leads to a characterization of the law Qu on {0, 1}Zd+1
of the random

subset Vu, see Remark 2.2 2) of [12]. As recalled in the introduction Qu is ergodic under
spatial translations, cf. Theorem 2.1 of [12] and for u > 0, Iu(ω) is P-a.s. an infinite
connected subset of Zd+1, cf. Corollary 2.3 of [12]. To measure the percolative properties
of Vu one introduces the non-increasing function on R+:

(1.36) η(u) = P[0 belongs to an infinite connected component of Vu] ,
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and the critical value

(1.37) u∗ = inf{u ≥ 0; η(u) = 0} ∈ [0,∞] .

The main results of [12] show in Theorem 3.5 that Vu does not percolate for large u and
in Theorem 4.3 that for d ≥ 6, (recall we work here on Zd+1), Vu percolates for small u,
i.e.

(1.38) u∗ <∞, and for d ≥ 6, u∗ > 0 .

We will now deduce from the controls derived in [12] the finiteness of the critical parameter
u∗∗ introduced in (0.6).

Lemma 1.4.

(1.39) u∗ ≤ u∗∗ <∞ ,

(it is a natural question whether u∗ = u∗∗, see Remark 1.5 below).

Proof. The left-hand inequality is straightforward. Indeed with similar notation as in
(0.6) if u > u∗∗ then for L ≥ 1

(1.40) η(u) ≤ P[B(0, L)
Vu

←→ S(0, 2L)] ,

and the right-hand side tends to 0 with L from the definition of u∗∗ in (0.6). Hence u ≥ u∗,
and the left-hand inequality of (1.39) follows by letting u tend to u∗∗. We will now prove
that u∗∗ is finite. Define for L0 > 1 and a = (100(d+ 1))−1, the sequence of length scales

(1.41) Ln+1 = ℓnLn, where ℓn = 100[La
n], n ≥ 0 .

If we now introduce for n ≥ 0

(1.42) C(n) = [0, Ln)d+1 ∩ Zd+1 and C̃(n) =
⋃

i

(i Ln + C(n)) ,

where the union is over indexes i in Zd+1 such that d(C(n), i Ln+C(n)) ≤ 1, in the notation
from the beginning of this section, then with (3.16), (3.67), (3.68) of [12], one can choose
L0 and u > 0 such that

(1.43) P[Au,n] ≤ c L−1
n , for all n ≥ 0, where Au,n =

{
C(n) Vu

←→ ∂int C̃
(n)

}
.

When L is large we can find a unique n ≥ 0 such that Ln ≤ L < Ln+1, and we can cover
B(0, L) by at most c ℓd+1

n possibly overlapping translates of C(n) contained in B(0, L),

with the corresponding translate of C̃(n) included in B(0, 2L). As a result of translation
invariance of Qu, we see that for large L

(1.44)
P
[
B(0, L)

Vu

←→ B(0, 2L)] ≤ c ℓ
(d+1)
n P[Au,n] ≤ c ℓ

(d+1)
n L−1

n

(1.41)

≤

c L
−(1−a(d+1))
n

(1.41)

≤ c L
− (1−a(d+1))

1+a

n+1 ≤ c L− (1−a(d+1))
1+a .

This shows that in the notation of (0.6), α(u) ≥ 1−a(d+1)
1+a

> 0, and hence u∗∗ < ∞. This
completes the proof of (1.39).

Remark 1.5. In the case of Bernoulli percolation it is well-known that in the sub-critical
phase, the probability that the origin is connected by an open path to S(0, L) decays
exponentially with L, cf. Theorem 5.4, p. 88 of [6]. So far no quantitative estimate for
percolation in the vacant set of random interlacements showing for instance that α(u) > 0
for u > u∗ is known. It is a natural question whether in fact u∗ = u∗∗. �
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2 The coupling Construction

In this section we introduce in (2.2) excursions of the walk in the cylinder E which take

place sometimes during the return to B(z) and the departure from B̃(z), cf. (1.10). Due to
translation invariance we will only need to focus on the case z = 0 in the sequel. With the
choice of hN in (1.9), the T-component of the walk has enough time to homogenize between
one excursion and the next. At the beginning of the next excursion the distribution of
the location of the starting point of the path is close to q in (1.11), cf. Lemma 2.1. This
enables to construct in Proposition 2.2 a coupling of the excursions of the path with a
sequence of i.i.d. excursions with starting distribution q. Although simpler this coupling
has a similar flavor to what was needed in Section 3 of [13]. It will be very handy when
comparing the percolative properties of the vacant set left by the walk on E with that of
the vacant set of random interlacements on Zd+1 in Section 4.

We begin with some notation. Given z ∈ Z, we consider the stopping time σz which
is the first time when the walk visits one of the two levels z ± rN after reaching level z:

(2.1) σz = HT×(z+{−rN ,rN}) ◦ θHT×{z}
+HT×{z} ,

as well as the successive times

σz
0 = σz, τ z

0 = T eB(z) ◦ θσz + σz, and for k ≥ 0

σz
k+1 = σz ◦ θτz

k
+ τ z

k , τ
z
k+1 = T eB(z) ◦ θσz

k+1
+ σz

k+1 ,
(2.2)

so that P0-a.s., 0 < σz
0 < τ z

0 < · · · < σz
k < τ z

k < · · · <∞.

When z = 0 we drop the superscript z for simplicity. We begin with

Lemma 2.1. (N ≥ 1)

For all x′ /∈ B̃ and x ∈ T× {−rN , rN} one has

(2.3) |Px′[Xσ = x]− q(x)| ≤ cN−4d .

Proof. The argument has a similar flavor to what appears in the proof of Lemma 3.1 of
[13]. With (1.8) and the fact that the discrete skeleton of X. is distributed as X., we
see that the distribution of Xσ under Px′ , for x′ = (y′, z′), coincides with the distribution
of (Y σ, Zσ) under P T

y′ × P Z

z′, if σ is the first time Z. reaches {−rN , rN} after reaching 0.
Thus using reflection of the path after HT×{0}, we see that for x = (y, rN)

Px′[Xσ = x] =
1

2
Px′[Yσ = y] =

1

2
P T

y′ × P Z

z′[Y σ = y]

=
1

2
EZ

z′ [µ
y′

σ (y)] ,
(2.4)

where for t ≥ 0 we have set µy′

t (·) = P T

y′ [Y t = ·].
Since σ ≥ H0, and |z′| ≥ hN > N(logN)2, standard estimates on the displacement of

simple random walk in continuous time on Z, see for instance (2.22) of [11] show that

(2.5) P Z

z′[σ ≤ N2(logN)2] ≤ cN−4d .
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We thus see coming back to (2.4) and (1.11) that

(2.6) |Px′[Xσ = x]− q(x)| ≤ 1

2
EZ

z′ [|µy′

σ (y)−N−d|, σ > N2(logN)2] + cN−4d .

Let λT stand for the spectral gap of the walk Y . on T, cf. (1.8) of [11], Lemma 1.1 in [11]

states that for t ≥ tT
def
= λ−1

T
log(2|T|), one has:

(2.7) |µy′

t (y)Nd − 1| ≤ 1

2
exp{−(t− tT)λT}, for t ≥ tT .

One can see that λT ≥ cN−2, for N ≥ 2, and hence tT ≤ cN2 log(2Nd), see for instance
the end of the proof of Lemma 3.1 of [13]. Coming back to (2.6) we see that for N ≥ c, the
right-hand side is smaller than cN−4d. The case of x = (y,−rN) is treated analogously
and adjusting constants, this completes the proof of Lemma 2.1.

We now come to the coupling construction which is the main object of this section.

Proposition 2.2. (N ≥ 1)

One can construct on an auxiliary probability space (Ω̃, Ã, P̃ ) two sequences Xk
. , k ≥ 1,

and X̃k
. , k ≥ 1, of E-valued processes such that

Xk
. , k ≥ 1, under P̃ has same distribution as X(σk+ ·)∧τk

, k ≥ 1, under P0,(2.8)

X̃k
. , k ≥ 1, under P̃ are independent and each distributed as X· ∧T eB

under Pq ,(2.9)

P̃ [Xk
. 6= X̃k

. ] ≤ cN−3d, for k ≥ 1 .(2.10)

Proof. The distributions of Xσ under Px′ , with x′ ∈ E, and under Pq are concentrated

on T × {−rN , rN}. It follows from Lemma 2.1 that when x′ belongs to B̃c their total
variation distance is smaller than cNd−4d = cN−3d. With Theorem 5.2, p. 19 of [8], we

can construct for any x′ in B̃c a probability ρx′(dx, dx̃) on E2 such that under ρx′ :

the first component has same distribution as Xσ under Px′,(2.11)

the second component has distribution q, and(2.12)

ρx′({x 6= x̃}) ≤ cN−3d .(2.13)

Let us denote with TE the countable set of E-valued trajectories which reach B̃c after a
finite time and are constant from then on, and are nearest neighbor prior to that time. The
auxiliary space we consider is Ω̃ = (TE × TE)[1,∞) endowed with the canonical σ-algebra

Ã. We denote with Xk
. , X̃

k
. , k ≥ 1, the canonical coordinates on Ω̃. The probability P̃

on (Ω̃, Ã) is constructed as follows. We introduce the kernel Rx′ from B̃c to TE ×TE such

that for x′ in B̃c, and w, w̃ in TE

Rx′

(
(w, w̃)

)
=

∫

{x=ex}
ρx′(dx, dx̃)Px[X· ∧T eB

= w(·) = w̃(·)] +

∫

{x 6=ex}
ρx′(dx, dx̃)Px[X· ∧T eB

= w(·)]Px′[X· ∧T eB
= w̃(·)] .

(2.14)
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In other words under Rx′ the ordered pair of starting points of the two trajectories has
distribution ρx′ and conditionally on these starting points, when both points coincide the
two trajectories coincide as well and evolve as the walk on E stopped when exiting B̃,
and when the starting points differ the two trajectories evolve as independent copies of
the walk stopped when exiting B̃. We then construct P̃ as the law of the Markov chain
on (TE × TE)[1,∞) such that

(X1
. , X̃

1
. ) has distribution

∑
x′∈ eBc P0[Xτ0 = x′]Rx′, and(2.15)

RXk
T eB

is the conditional law of (Xk+1
. , X̃k+1

. ) given Xk′

. , X̃k′

. , 1 ≤ k′ ≤ k .(2.16)

With (2.13), (2.14), it is immediate that (2.10) holds. With (2.12) and (2.14) under any

Rx′ , x′ ∈ B̃c, the second component is distributed as X· ∧T eB
under Pq, and (2.9) follows.

On the other hand under Rx′ the first component is distributed as X(σ0+ ·)∧τ0 under Px′

and (2.8) is a consequence of the strong Markov property for the walk on E and (2.2).

With the help of Proposition 2.2 we will be able to replace the excursions X(σk+ ·)∧τk
,

k ≥ 1, under P0 by the collection of i.i.d excursions X̃k
. , k ≥ 1, under P̃ which have same

law as X· ∧T eB
under P̃ . Together with Lemma 1.1 this will facilitate the task of comparing

the trace left by the excursions of the walk X. in a sub-box A of B\∂intB with center
at level 0 and side-length of order N1−ǫ with the trace left by a well calibrated random
interlacement on A (suitably identified to a subset of Zd+1).

3 Truncation, sprinkling and random interlacements

The object of this section is to develop a stochastic domination result showing that when
A and C̃ are boxes in Zd+1 centered at the origin with respective side-length of order
N1−ǫ and N , then for large N one can in essence dominate the trace on A of the random
interlacement at level u′ by the trace on A left by all trajectories in the support of µA,u

stopped at the exit time of C̃, if u is slightly bigger than u′. We refer to (1.30) for
the notation. Thus sprinkling, i.e. choosing u slightly bigger than u′, compensates the
truncation of trajectories. Our main result Theorem 3.1 directly pertains to random
interlacements and will play an important role in the next section when relating the
critical parameter u∗∗ of (0.6) to the disconnection of the discrete cylinder by simple
random walk. We begin with some notation.

We consider 0 < ε < 1 and denote with A ⊆ C̃ the boxes in Zd+1:

(3.1) A = B
(
0, 2

[
N1−ε

8

])
⊆ C̃ = B

(
0,

[
N

4

])
.

Given u > 0, we introduce for ω ∈ Ω, cf. (1.25), the truncated interlacement

(3.2) Iu
eC
(ω) =

⋃

w∈SuppµA,u(ω)

w([0, T eC]) ,

where the notation appears in (1.30). We will now compare when u′ is “sufficient smaller”
than u the trace on A of Iu′

(ω), the random interlacement at level u′, cf. (1.32), to the
trace on A of Iu

eC
(ω). Our main result is:
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Theorem 3.1. (d ≥ 2, u > u′ > 0, 0 < ε < 1)

For N ≥ c(ε), whenever

(3.3) u ≥ u′ exp
{

c0

ε
e−

√
log N

}
,

then there exist I∗, I random subsets of A such that

Iu′ ∩ A = I∗ ∪ I ,(3.4)

I∗, I are independent under P ,(3.5)

P[I 6= ∅] ≤ u′N−d ,(3.6)

I∗ is stochastically dominated by Iu
eC
∩ A .(3.7)

Proof. We now define the integer M and the subbox C of C̃ via

(3.8) M =
[
exp

{√
logN

}]
+ 1, C = B

(
0,

[
N

4M

])
,

so that for N ≥ c(ε),

(3.9) A ⊆ B(0, 100[N1−ε]) ⊆ C ⊆ B
(
0, 100

[
N

4M

])
⊆ C̃ .

Throughout the proof we will write for simplicity Px and Ex in place of P Zd+1

x and EZd+1

x ,
with x in Zd+1, to denote the law on (W+,W+) of simple random walk starting from x
and its corresponding expectation. We introduce the sequence of successive returns to A
and departures from C of the walk, i.e. with similar notation as in (1.2)

R1 = HA, D1 = TC ◦ θR1 +R1 and for k ≥ 1 ,

Rk+1 = R1 ◦ θDk
+Dk, Dk+1 = D1 ◦ θDk

+Dk ,
(3.10)

so that 0 ≤ R1 ≤ D1 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞, and Px-a.s. these inequalities, except
maybe for the first one, are strict if the left-hand side is finite. Note that for ω ∈ Ω,
see (1.25), the finitely many trajectories of W+ in the support of µA,u′(ω) have a starting
point in ∂intA ⊆ A, and D1 is finite for such trajectories. We can thus consider the index
of the last finite exit from C for the various trajectories in the support of µA,u′ and write

µA,u′ =
∑

1≤ℓ≤r

µ′
ℓ + µ, where r =

[
8

ε

]
+ 1 and

µ′
ℓ = 1{Dℓ <∞ = Rℓ+1}µA,u′, µ = 1{Dr+1 <∞} µA,u′ .

(3.11)

Similarly in the case of µA,u considering the last return to A before exiting C̃ we can write

(3.12) µA,u =
∑
ℓ≥1

µℓ, where µℓ = 1{Dℓ < T eC < Rℓ+1}µA,u .

As a direct consequence of (1.31) and the above decompositions we see that under P

(3.13)

µ′
ℓ, 1 ≤ ℓ ≤ r, µ are independent Poisson point processes on (W+,W+) with

respective intensity measures ζ ′ℓ = u′ 1{Dℓ <∞ = Rℓ+1}PeA
, 1 ≤ ℓ ≤ r, and

ζ = u′ 1{Dr+1 <∞}PeA
,
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and that

(3.14)
µℓ, ℓ ≥ 1, are independent Poisson point processes on (W+,W+) with

respective intensity measures ζℓ = u 1{Dℓ < T eC < Rℓ+1}PeA
.

Moreover we can express the respective traces of Iu′
and Iu

eC
on A as follows

(3.15)

Iu′ ∩A = I∗ ∪ I, where

I∗ =
⋃

1≤ℓ≤r

( ⋃

w∈Suppµ′

ℓ

w(N) ∩A
)
, I =

⋃

w∈Suppµ

w(N) ∩A ,

and

(3.16) Iu
eC
∩A =

⋃

ℓ≥1

( ⋃

w∈Suppµℓ

w([0, T eC ]) ∩A
)
.

Note that the successive application of the Markov property at times Dr, Dr−1, . . .D1

yields for N ≥ c(ε)

(3.17)

ζ(W+) = u′ PeA
[Rr+1 <∞] ≤ u′ ( sup

x∈∂C
Px[HA <∞])r × cap(A) ≤

u′
{
c
(N ε

M

)−(d−1)}r

× cN (1−ε)(d−1) ≤ u′ cr+1N− 3
4

ε(d−1) r+(d−1) ≤ u′N−d ,

where we have used the inequality in the right-hand side of (1.7) combined with standard
bounds on the Green function, cf. [7], p. 31, to estimate supx∈∂C Px[HA <∞], a standard
upper bound on the capacity of A, cf. (2.16), p. 53 of [7], the fact that M grows slower
than N

ε
4 , see (3.8), and the definition of r in (3.11).

We now introduce the measurable maps φ′
ℓ, for ℓ ≥ 1, from {Dℓ <∞ = Rℓ+1}(⊆W+)

into W×ℓ
f , where Wf stands for the countable set of finite nearest neighbor trajectories on

Zd+1 as well as the measurable maps φℓ, ℓ ≥ 1, from {Dℓ < T eC < Rℓ+1} into W×ℓ
f defined

through:

(3.18)
φ′

ℓ(w) =
(
(w(Rk + ·)0≤·≤Dk−Rk

)
1≤k≤ℓ

, for w ∈ {Dℓ <∞ = Rℓ+1} ,
φℓ(w) =

(
(w(Rk + ·)0≤·≤Dk−Rk

)
1≤k≤ℓ

, for w ∈ {Dℓ < T eC < Rℓ+1} .

In other words φ′
ℓ(w), resp. φℓ(w), keep track of the ℓ portions of the trajectory w cor-

responding to times between the successive returns to A up to the next departure from
C. With (3.11), (3.12), we can view µ′

ℓ and µℓ, for ℓ ≥ 1, as Poisson point processes on
{Dℓ < ∞ = Rℓ+1} and {Dℓ < T eC < Rℓ+1} respectively. We denote with ρ′ℓ and ρℓ their
respective images under the maps φ′

ℓ, and φℓ. Hence ρ′ℓ and ρℓ are Poisson point processes
on W×ℓ

f , and we write ξ′ℓ and ξℓ for their respective intensity. Note that as direct result
of (3.13) and (3.14) we have:

ρ′ℓ, 1 ≤ ℓ ≤ r, and µ are independent Poisson point processes,(3.19)

ρℓ, ℓ ≥ 1, are independent Poisson point processes,(3.20)
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and moreover for ℓ ≥ 1,

(3.21)

ξ′ℓ(dw1, . . . , dwℓ) =
u′ PeA

[
Dℓ < Rℓ+1 =∞, (XRk+ ·)0≤·≤Dk−Rk

∈ dwk, 1 ≤ k ≤ ℓ
]
,

ξℓ(dw1, . . . , dwℓ) =
uPeA

[
Dℓ < T eC < Rℓ+1, (XRk+ ·)0≤·≤Dk−Rk

∈ dwk, 1 ≤ k ≤ ℓ
]
.

The next lemma will be useful in comparing ξ′ℓ to ξℓ.

Lemma 3.2. (d ≥ 2, 0 < ε < 1)

For N ≥ c(ε), one has for x ∈ ∂C and y ∈ ∂intA

(3.22) Px[T eC < R1 <∞, XR1 = y] ≤ c1
Md−1

Px[R1 < T eC , XR1 = y] .

Proof. We implicitly assume (3.9). Note that for y ∈ ∂intA one has

(3.23)

sup
z∈∂C

Pz[T eC < R1 <∞, XR1 = y] ≤ sup
z∈∂C

Ez

[
PXT

eC

[R1 <∞, XR1 = y]
]
≤

sup
z∈∂ eC

Pz[H∂C <∞] sup
z∈∂C

Pz[R1 <∞, XR1 = y] ≤
c

Md−1
sup
z∈∂C

Pz[R1 <∞, XR1 = y] ,

where in the last step we have used the rightmost inequality in (1.7) combined with
standard bounds on the Green function just as in (3.17). Then observe that the function
z → Pz[R1 < ∞, XR1 = y] = Pz[HA < ∞, XHA

= y] is positive harmonic on Ac. With
Harnack inequality, cf. [7], p. 42, and a standard covering argument we find that

(3.24) sup
z∈∂C

Pz[R1 <∞, XR1 = y] ≤ c inf
z∈∂C

Pz[R1 <∞, XR1 = y] .

Therefore coming back to (3.23) we see that

(3.25)
sup
z∈∂C

Pz[T eC < R1 <∞, XR1 = y] ≤ c

Md−1
inf
∂C

Pz[R1 <∞, XR1 = y] ≤
c

Md−1
inf
∂C

(Pz[T eC < R1 <∞, XR1 = y] + Pz[R1 < T eC , XR1 = y]) .

Assume that N ≥ c(ε) is such that c
Md−1 ≤ 1

2
, with c the constant appearing in the last

member of (3.25), then one finds that for x ∈ ∂C and y ∈ ∂intA

Px[T eC < R1 <∞, XR1 = y] ≤ 2c

Md−1
Px[R1 < T eC , XR1 = y] ,

and this completes the proof of Lemma 3.2.

Our next step in the proof of Theorem 3.1 is

Lemma 3.3. (d ≥ 2, 0 ≤ ε < 1)

For N ≥ c(ε), one has

(3.26) ξ′ℓ ≤
u′

u

(
1 +

c1
Md−1

)ℓ−1

ξℓ, for ℓ ≥ 1 .
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Proof. With (3.21) we see that for ℓ ≥ 1, w1, . . . , wℓ ∈ Wf , writing ws and we for the
respective starting point and endpoint of w ∈Wf , one has:

(3.27)

ξ′ℓ
(
(w1, . . . , wℓ)

)
=

u′ PeA
[Dℓ <∞ = Rℓ+1, (XRk+ ·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k ≤ ℓ] =
∑

B⊆{1,...,ℓ−1}
u′PeA

[
Dℓ < T eC < Rℓ+1 =∞, (XRk+ ·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k ≤ ℓ ,

T eC ◦ θDk
+Dk < Rk+1, exactly when k ∈ B, for 1 ≤ k ≤ ℓ− 1

]
.

Note that the above expression vanishes unless ws
k ∈ ∂intA, we

k ∈ ∂C, and wk takes values
in C except for its endpoint we

k, for each 1 ≤ k ≤ ℓ. If these conditions are fulfilled we
can use the strong Markov property repeatedly at times Dℓ, Rℓ, Dℓ−1, . . . , D1, and find
that the last member of (3.27) equals

(3.28)

∑
B⊆{1,...,ℓ−1}

u′ PeA
[(X.)0≤·≤D1 = w1(·)]Ewe

1

[
1{1 /∈ B} 1{T eC > R1} +

1{1 ∈ B} 1{T eC < R1}, R1 <∞, XR1 = ws
2

]
Pws

2
[(X.)0≤·≤D1 = w2(·)] . . .

Ewe
ℓ−1

[
1{ℓ− 1 /∈ B} 1{T eC > R1}+ 1{ℓ− 1 ∈ B} 1{T eC < R1},

R1 <∞, XR1 = ws
ℓ

]
Pws

ℓ
[(X.)0≤·≤D1 = wℓ(·)]Pwe

ℓ
[T eC < R1 =∞]

(3.22)

≤
∑

B⊆{1,...,ℓ−1}

( c1
Md−1

)|B|
u′ PeA

[(X)0≤·≤D1 = w1(·)]

Pwe
1
[R1 < T eC , XR1 = ws

2]Pws
2
[(X.)0≤·≤D1 = w2(·)] . . .

Pwe
ℓ−1

[R1 < T eC , XR1 = ws
ℓ ]Pws

ℓ
[(X.)0≤·≤D1 = wℓ(·)]Pwe

ℓ
[T eC < R1 =∞] .

Using the strong Markov property we see that the above expression equals

(3.29)

u′
(
1 +

c1
Md−1

)ℓ−1

PeA

[
T eC ◦ θDk

+Dk > Rk+1, for 1 ≤ k ≤ ℓ− 1,

(XRk+ ·)0≤·≤Dk−Rk
= wk(·), 1 ≤ k ≤ ℓ, Dℓ < T eC ◦ θDℓ

+Dℓ < Rℓ+1 =∞] ≤

u′
(
1 +

c1
Md−1

)ℓ−1

PeA
[Dℓ < T eC < Rℓ+1, (XRk+ ·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k ≤ ℓ]

(3.21)
=

u′

u

(
1 +

c1

Md−1

)ℓ−1

ξℓ
(
(w1, . . . , wℓ)

)
,

and this concludes the proof of Lemma 3.3.

We now assume that

(3.30) u ≥ u′ exp
{8

ε

c1
Md−1

} (
≥ u′

(
1 +

c1
Md−1

)ℓ−1

, for all 1 ≤ ℓ ≤ r, see (3.11)
)
,

and find as a consequence of Lemma 3.3 that

(3.31) ξ′ℓ ≤ ξℓ, for 1 ≤ ℓ ≤ r .

In view of (3.13) and (3.15) we see that

(3.32) I∗ and I are independent under P ,
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and that with notation above (3.19)

(3.33) I∗ =
⋃

1≤ℓ≤r

⋃

(w1,...,wℓ)∈Suppρ′

ℓ

range w1 ∪ · · · ∪ range wℓ .

We also see that with (3.16)

(3.34) Iu
eC
∩A ⊇

⋃

1≤ℓ≤r

⋃

(w1,...,wℓ)∈Suppρℓ

range w1 ∪ · · · ∪ range wℓ .

In view of the independence stated in (3.19), (3.20), and of the domination stated in
(3.31), we see that under P

(3.35) Iu
eC
∩ A stochastically dominates I∗ .

Together with the fact that

(3.36) P[I 6= 0] ≤ ζ(W+)
(3.17)

≤ u′N−d ,

and recalling (3.15), (3.32), Theorem 3.1 now follows by choosing c0 = 8c1, see (3.30),
(3.8).

Remark 3.4. It is clear from the proof of Theorem 3.1 that the specific choice of the
factor e−

√
log N inside the exponential in the right-hand side of (3.3) is not essential. One

could just as well use a factor 1/ψ(N), where ψ(·) is a positive function on [1,∞) tending
to infinity such that ψ(t) = o(tγ) for all γ > 0, and assuming N ≥ c(ε, ψ) in the statement
of Theorem 3.1. The present choice will be sufficient for our purpose.

4 Upper bound on the disconnection time

We now come to the main object of the present article, namely the derivation of the upper
bound (0.8) on the disconnection time TN of the discrete cylinder E, cf. Theorem 4.1, and
its Corollary 4.6 relating the asymptotic behavior of TN to the Brownian stopping time
ζ( u∗∗√

d+1
), see (0.9), (0.10). The strategy employed to show Theorem 4.1 roughly goes as

follows. We will show that once for some z ∈ Z the local time at z of Ẑ., see (0.3), exceeds
Nd

(d+1)
u0 with u0 > u∗∗, then typically all excursions X[σz

k,τz
k ], with k ≤ Nd

(d+1)hN
u1, have

already occurred, where u∗∗ < u1 < u0. In addition an argument based on the spatial
regularity of the local time will allow to only consider a large but finite number of levels
z′s in the cylinder as N goes to infinity, see Proposition 4.3. With the coupling technique
of Section 2 we will be able to replace the excursions X[σz

k
,τz

k
], 1 ≤ k ≤ Nd

(d+1)hN
u1, by a

collection of i.i.d. excursions with starting distribution, the vertical translation to level
z of q in (1.11). With a Poissonization argument it will suffice to consider a Poisson

number of such i.i.d. excursions with parameter Nd

(d+1)hN
u2 where u∗∗ < u2 < u1. The

special character of these excursions, see Lemma 1.1 and Remark 1.2, and the domination
results for the trace of random interlacements of Section 3 will allow to compare the
trace left by this Poisson number of excursions in a box of the cylinder with side-length
N1−ε and center at level z, to the trace left by a random interlacement at level u3, with
u∗∗ < u3 < u2, in a box of Zd+1 of same side-length, where ε will be chosen as a function
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of α(u3), in the notation of (0.6). It will follow that disconnection of the cylinder typically
must have occurred, see Proposition 4.2. Combining Propositions 4.2 and 4.3 will yield
Theorem 4.1.

We recall the notation (0.5). Our main result is

Theorem 4.1. (d ≥ 2)

For any δ > 0 one has

(4.1) lim
N

P0

[
TN > inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

]
= 0 .

Proof. We begin with a reduction step which shows that (4.1) is the consequence of two
claims that will be subsequently proved in Propositions 4.2 and 4.3 below. Indeed we can
write for L,N ≥ 1, in the notation of (2.2):

(4.2)

P0

[
TN > inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

]
≤ P0

[
TN > inf

z= ℓ
L

Nd,|ℓ|≤L2
τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]

]
+

P0

[
inf

z= ℓ
L

Nd,|ℓ|≤L2
τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]
> inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

]
.

As a result we see that (4.1) will follow from the two propositions:

Proposition 4.2. (d ≥ 2, δ > 0)

(4.3) for all z ∈ Z, lim
N

P0

[
TN > τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]

]
= 0 .

Proposition 4.3. (d ≥ 2, δ > 0)

(4.4) lim
L

lim
N

P0

[
inf

z= ℓ
L

Nd,|ℓ|≤L2
τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]
> inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

] = 0 .

We start with the

Proof of Proposition 4.2: The application of the strong Markov property at the entrance
time of the walk in T×{z}, together with translation invariance shows that it suffices to
consider the case z = 0 when proving (4.3). With (2.10) of Proposition 2.2, bringing the

i.i.d. excursions X̃k, k ≥ 1, into play we see that (4.3) will follow once we show that

(4.5) lim
N

P̃ [range(X̃1
. ) ∪ · · · ∪ range

(
X̃

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]

.
)

does not disconnect E] = 0 .

If we now introduce an independent Poisson random variable Kλ with intensity

(4.6) λ =
Nd

(d+ 1)hN

(
u∗∗ +

δ

4

)
,

then with a slight abuse of notation we have

lim
N

P̃
[
Kλ >

[
Nd

(d + 1)hN

(
u∗∗ +

δ

2

)]]
= 0 ,

and hence the claim (4.3) follows from

(4.7) lim
N

P̃ [range(X̃1
. ) ∪ · · · ∪ range(X̃Kλ. ) does not disconnect E] = 0 .
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We now choose, see (0.6) for the notation,

(4.8) ε =
1

2d

(
α
(
u∗∗ +

δ

8

)
∧ 1

)
∈

(
0,

1

4

]
.

We can cover T × {0} by cN εd closed | · |∞-balls of radius R = [N1−ε

8
] with center in

T× {0}. Hence using translation invariance, (4.7) follows from

lim
N

N εd P̃
[
there is a nearest neighbor path from B(0, R) to S(0, 2R)(4.9)

not intersecting range(X̃1
. ) ∪ · · · ∪ range(X̃Kλ. )] = 0 .

We will write

(4.10) A = B(0, 2R) ⊆ C̃ = B
(
0,

[
N

4

])
⊆ E ,

and for sufficiently large N , we will tacitly identify C̃ ∪ ∂C̃ with a subset of Zd+1, so that
the notation agrees with (3.1). Given X̃k

. , k ≥ 1, entering A, we can define the nearest-

neighbor trajectory X
k

. , which starts when X̃k
. enters A, follows X̃k

. and is stopped when

X̃k
. exits C̃. Then

(4.11) µ̃ =
∑

1≤k≤Kλ

1{X̃k
. enters A} δ

X
k.

is a point process on the space of nearest neighbor C̃ ∪ ∂C̃-valued trajectories which are
constant after a finite time. The key observation in view of (1.15) of Lemma 1.1 when

U = B̃, (2.9) of Proposition 2.2, (and the main interest in introducing the independent
Poisson variable Kλ) is that

(4.12)
µ̃ is a Poisson point process with intensity measure
λ(d + 1)

Nd
(hN − rN)Pe

A, eB
[X.∧T eC

∈ ·] =
(
u∗∗ +

δ

4

)(
1− rN

hN

)
Pe

A, eB
[X.∧T eC

∈ ·] .

We will now use the next

Lemma 4.4. (d ≥ 2, δ > 0)

For N ≥ c(δ), one has

(4.13) for all x ∈ ∂intA, eA, eB(x) ≥ eA(x)
(
1− c2 (log N)2

N (d−1)ε

)
,

(see below (1.5) for the notation and recall A ⊆ C̃ are viewed as subsets of both E and
Zd+1).

Proof. It is plain from (1.3) that for N ≥ c,

(4.14) eA, eC(x) ≥ eA(x), for x ∈ ∂intA .

It is therefore sufficient to prove (4.13) with eA, eC(x) in place of eA(x). On the other hand
with the analogue of (1.3) for the walk on E, we see that

(4.15)
eA, eC(x)− eA, eB(x) = Px[T eB > H̃A > T eC ]

strong Markov
=

Ex

[
H̃A > T eC , PXT

eC

[T eB > HA]
]
≤ eA, eC(x) sup

x∈∂ eC

Px[HA < T eB], for x ∈ ∂intA .
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Note that ∂C̃ ⊆ S(0, [N
4
] + 1)

def
= S, and the claim (4.13) will follow once we show that

(4.16) sup
x∈S

Px[HA < T eB] ≤ c
(log N)2

N (d−1)ε
, for N ≥ c(δ) .

To this end consider the probability that the walk starting in S reaches B(0, [1
2
[N

4
]]) before

hitting S, and then enters A before entering S. We see with standard estimates on the
one-dimensional simple random walk and the right-hand inequality of (1.7) combined with
standard estimates on the Green function, cf. [7], p. 31, that for N ≥ c(δ),

(4.17) sup
x∈S

Px[HA < H̃S ∧ T eB] ≤ cN−1 cN−(d−1)ε = cN−1−(d−1)ε .

On the other hand using estimates on the one-dimensional simple random walk to bound
from below the probability to move at distance [N

10
] of C̃ ∪ S = B(0, [N

4
] + 1) without

hitting S, the invariance principle to bound from below the probability to reach level
[N

4
]+N in E without entering S, and once again estimates on the one-dimensional simple

random walk to bound from below the probability to reach level hN before level [N
4
] + 1,

we see that for N ≥ c(δ):

(4.18) inf
x∈S

Px[T eB < H̃S ∧HA] ≥ c

N
× c× N − 1

hN − [N
4 ]− 1

(1.9)

≥ cN−1(logN)−2 .

We can then introduce the successive hitting times of S

(4.19) V0 = 0, Vk+1 = H̃S ◦ θVk
+ Vk, k ≥ 0 ,

which are Px-a.s. finite for all x in S (and in E). Considering the pairwise disjoint events

where θ−1
Vm

({HA∧T eB < H̃S}), m ≥ 0, first occurs when m = k, with k ≥ 0, the application

of the strong Markov property at time Vk shows that for N ≥ c(δ), for all x ∈ S:

(4.20)

Px[HA < T eB] ≤
sup
x∈S

Px[HA < H̃S ∧ T eB]

sup
x∈S

Px[HA < H̃S ∧ T eB] + inf
x∈S

Px[T eB < H̃S ∧HA]

(4.17),(4.18)

≤ c(logN)2N−(d−1)ε .

This shows (4.16) and concludes the proof of Lemma 4.4.

We now proceed with the proof of (4.9). Note that with (4.11) one has

(4.21)
(
range(X̃1

. ) ∪ · · · ∪ range(X̃Kλ. )
)
∩ A ⊇

⋃

w∈Supp eµ

(
range(w)

)
∩ A ,

and in view of (4.12) and (4.13), for N ≥ c(δ),

(4.22)
under P̃ ,

(
range(X̃1

. ) ∪ · · · ∪ range(X̃Kλ. )
)
∩ A stochastically dominates

Iu
eC
∩ A under P, with u =

(
u∗∗ +

δ

4

)(
1− rN

hN

)(
1− c2 (log N)2

N (d−1)ε

)
,
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where we have used the fact stemming from (3.2) and (1.31) that

Iu
eC
(ω) ∩ A =

⋃

w∈Supp
≈

µ

(range w) ∩A, where

≈
µ (ω) =

∑
w∈SuppµA,u(ω)

δw(·∧T eC
) is a Poisson point process with intensity

measure uP Z
d+1

eA
[X·∧T eC

∈ ·].

Hence returning to the expression in (4.9), we see that its lim sup over N is smaller than,
(see (0.6) for notation):

(4.23) lim
N

N εd P
[
a nearest neighbor path in (Iu

eC
∩A)c joins B(0, R) with S(0, 2R)

]
.

If we now define

(4.24) u′ = u exp
{
− c0

ε
e−

√
log N

}
≥ u∗∗ +

δ

8
, for N ≥ c(δ) ,

it follows from (3.7) that the above expression with a similar notation as in (0.6) is smaller
than

(4.25)

lim
N

N εd P[B(0, R)
(I∗)c

←→ S(0, 2R)]
(3.4)

≤ lim
N

N εd(P[B(0, R)
(Vu′

)←→ S(0, 2R)] +

P[I 6= φ])
(3.6),(4.24)

≤ lim
N

N εd (P[B(0, R)
Vu∗∗+ δ

8←→ S(0, 2R)] + u′N−d)
(0.6),(4.8)

≤

lim
N

N εdN−α(u∗∗+ δ
8
)+ε (4.8)

= 0 .

This concludes the proof of (4.9) and hence of Proposition 4.2.

We now turn to the

Proof of Proposition 4.3: Our first step is

Lemma 4.5. (d ≥ 2, δ > 0)

(4.26) lim
N

P0

[
τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]
≥ γz

Nd

(d+1)
(u∗∗+ 3

4
δ)

]
= 0, for all z ∈ Z .

Proof. Denote with Hz
k , k ≥ 1, the successive times of entrance of X at level z after

departure from B̃(z), i.e.

(4.27) Hz
0 = HT×{z}, and Hz

k+1 = HT×{z} ◦ θT eB(z)
◦ θHz

k
+ T eB(z) ◦ θHz

k
+Hz

k , for k ≥ 0 .

It follows from (2.2) that τ z
k coincides with the exit time of B̃(z) after Hz

k :

(4.28) τ z
k = T eB(z) ◦ θHz

k
+Hz

k , for k ≥ 0 .

Notice also that under Px, for x ∈ T× {z}, the number of visits of Ẑℓ, ℓ ≥ 0, cf. (0.3), to

z before exiting z + Ĩ = z + (−hN , hN), i.e.
∑

ℓ≥0 1{Ẑℓ = z, ρℓ < T eB(z)} is distributed as
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a geometric variable with success probability h−1
N . The application of the strong Markov

property at the successive times Hz
m, 0 ≤ m ≤ k, and (4.28) then shows that

(4.29)
under P0,

∑
ℓ≥0 1{Ẑℓ = z, ρℓ < τ z

k } is distributed as the sum of k + 1
independent geometric variables with success parameter h−1

N .

Thus choosing k = [ Nd

(d+1)hN
(u∗∗+ δ

2
)] and α = Nd

(d+1)
(u∗∗+ 3

4
δ), we see that the probability

which appears in (4.26) is equal to:

(4.30)
P0

[ ∑
ℓ≥0

1{Ẑℓ = z, ρℓ < τ z
k} ≥ α

]
≤ e

− λ
hN

α
(

eλ/hN

hN

1

1− eλ/hN (1− 1
hN

)

)k+1

,

if λ > 0, and eλ/hN

(
1− 1

hN

)
< 1 ,

where we have used (4.29) and the exponential Chebyshev inequality. If λ < 1 is small
and fixed, for large N the logarithm of the right member of (4.30) is equivalent to

− λ

hN

Nd

(d + 1)

(
u∗∗ +

3

4
δ
)

+
Nd

(d + 1)hN

(
u∗∗ +

δ

2

)
log

(
1

1− λ

)
,

and this expression tends to −∞. This concludes the proof of (4.26).

With Lemma 4.5 we see that for given L ≥ 1, the limsup over N of the probability
in (4.4) is bounded above by the lim sup over N of the corresponding probability where
τ z

[ Nd

(d+1)hN
(u∗∗+ δ

2
)]

is replaced by γz

[ Nd

(d+1)
(u∗∗+ 3

4
δ)]

. Hence the claim (4.4) will follow once we

show that

(4.31) lim
L

lim
N

P0

[
inf

z= ℓ
L

Nd,|ℓ|≤L2
γz

Nd

(d+1)
(u∗∗+ 3

4
δ)
> inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

]
= 0 .

If we now introduce an integer K ≥ 1, and write l̃im in place of limK limL limN , we see
that the above expression is smaller than

(4.32)

l̃im P0[ρKN2d ≥ inf
z= ℓ

L
Nd,|ℓ|≤L2

γz
Nd

(d+1)
(u∗∗+ 3

4
δ)
> inf

z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

]
+

l̃im P0

[
γ0

Nd

(d+1)
(u∗∗+ 3

4
δ)
> ρKN2d

]
≤

l̃im P0

[
sup

k≤KN2d

sup
z∈Z

inf
z′∈{ ℓ

L
Nd;|ℓ|≤L2}

|L̂z
k − L̂z′

k | ≥
Nd

(d + 1)

δ

8

]
+

l̃im
K

lim
N

P0

[
L̂0

KN2d <
Nd

(d + 1) (u∗∗+ 3
4

δ)

]
.

With (1.20) of [2] one can construct on an auxiliary probability space (Ω,A, P ) a coupling

of the local time L̂ of Ẑ with a jointly continuous version L(·, ·) of the Brownian local
time so that

(4.33) P -a.s., sup
z∈Z,k≥1

|L̂z
k − L(z, k)|

k
1
4
+η

<∞, for all η > 0 .
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As a result we see that the last member of (4.32) is smaller than

l̃im P
[

sup
t≤KN2d

sup
z∈Z

inf
z′∈{ ℓ

L
Nd;|ℓ|≤L2}

|L(z, t)− L(z′, t)| ≥ Nd

(d + 1)

δ

16

]
+

lim
K

lim
N

P
[
L(0, KN2d) ≤ Nd

(d + 1)
(u∗∗ + δ)

] scaling

≤

lim
K

lim
L
P

[
sup
s≤K

sup
v∈R

inf
v′∈{ ℓ

L
,|ℓ|≤L2}

|L(v, s)− L(v′, s)| ≥ δ

16(d + 1)

]
+

lim
K

P
[
L(0, K) ≤ u∗∗ + δ

d + 1

]
.

Since lims→∞ L(0, s) =∞, P -a.s., the last term vanishes, and since P -a.s. the restriction
to R× [0, K] of L(v, s) is continuous and compactly supported, the lim sup over L of the
probability in the previous line equals 0. Combining our estimates we see that we have
shown (4.31) and hence Proposition 4.3. �

As mentioned above (4.3), with Proposition 4.2 and 4.3, coming back to (4.2), we see
that we have proved (4.1). This completes the proof of Theorem 4.1. �

As an application of Theorem 4.1 we will now derive an upper bound on TN , which
will in particular show that the variables TN/N

2d are tight. We recall from (0.10) the
notation

ζ(u) = inf{t ≥ 0; sup
v∈R

L(v, t) ≥ u}, for u ≥ 0 ,

with L(·, ·) a jointly continuous version of the local time of the canonical Brownian motion.
Denoting with W the Wiener measure, one has the scaling property:

(4.34) for u ≥ 0, ζ(u) and u2 ζ(1) have same law under W .

With [1] or [5], cf. Proposition 5, p. 89, as recalled in (0.12) one knows that for θ, u ≥ 0

(4.35) EW
[
e−

θ2

2
ζ(u)

]
=

θu
(
sinh( θu

2 )
)2

I1(
θu
2 )

I0(
θu
2 )
,

with Iν the modified Bessel function of order ν, cf. [9], p. 60.

Corollary 4.6. (d ≥ 2)

(4.36) for γ > 0, lim
N

P0[TN ≥ γ N2d] ≤W
[
ζ
(

u∗∗√
d + 1

)
≥ γ

]
,

and in particular the laws of TN/N
2d are tight.

Proof. Consider 0 < γ′ < γ, and δ > 0. With Theorem 4.1 we see that

(4.37) lim
N

P0

[
TN ≥ γN2d] ≤ lim

N
P0

[
inf
z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

≥ γ N2d
]
.

When N ≥ 3, the sequence ρk, k ≥ 0, cf. below (0.2), has the same distribution under P0

as the partial sums of independent geometric variables with success probability 1
d+1

, (this
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distribution is independent of N). It follows from the strong law of large numbers that
P0-a.s., limk

ρk

k
= d+ 1, and hence the right-hand side of (4.37) is smaller than

(4.38)

lim
N

P0

[
inf
z∈Z

γz
Nd

(d+1)
(u∗∗+δ)

> ρ
[ γ′

d+1
N2d]

]
≤

lim
N

P0

[
sup
z∈Z

L̂z

[ γ′

d+1
N2d]

<
Nd

d + 1
(u∗∗ + δ)

] (4.33)

≤

lim
N

W
[
sup
z∈Z

L
(
z,

[
γ′

d + 1
N2d

])
<

Nd

d + 1
(u∗∗ + 2δ)

]
scaling

=

lim
N

W
[
sup
z∈Z

L
(

z

Nd
,
[

γ′

d + 1
N2d

]
/N2d

)
<

u∗∗ + 2δ

d + 1

] continuity

≤

W
[
sup
v∈R

L
(
v,

γ′

d + 1

)
≤ u∗∗ + 2δ

d + 1

]
.

Letting γ′ tend to γ and δ tend to 0, the above expression tends to

W
[
sup
v∈R

L
(
v,

γ

d + 1

)
≤ u∗∗
d+ 1

]
scaling

= W
[
sup
v∈R

L(v, γ) ≤ u∗∗√
d + 1

]
.

One also knows, cf. [5], p. 89 above Proposition 5, that for u ≥ 0,

(4.39) W -a.s., ζ(u) = inf{t ≥ 0; sup
v∈R

L(v, t) > u} ,

and therefore the above expression equals W [ζ( u∗∗√
d+1

) ≥ γ], and this is an upper bound

on the left-hand side of (4.37). This concludes the proof of Corollary 4.6.

Remark 4.7.

1) Combined with the results of [4], Corollary 4.6 implies that when d is large enough,
i.e., d ≥ 17, the laws of TN/N

2d under P0 with N ≥ 2, are tight on (0,∞), see also (0.11).

2) A natural question stemming from the present work is whether in fact

(4.40) TN/N
2d converges in distribution to ζ( u∗√

d+1
), as N →∞ .

This question should be complemented by the further question whether it also holds that

(4.41) u∗∗ = u∗ ,

(one knows that 0 < u∗ < ∞ for d + 1 ≥ 3, cf. [12], [10], and that u∗ ≤ u∗∗ < ∞, for
d + 1 ≥ 3, as shown in Lemma 1.4). These are just a few examples of natural questions
pertaining to the interplay between disconnection by random walk of discrete cylinders
and percolation for the vacant set of random interlacements. �
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