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Abstract

The vacant set of random interlacements on Z
d, d ≥ 3, has non-trivial percolative

properties. It is known from [18], [16], that there is a non-degenerate critical value
u∗ such that the vacant set at level u percolates when u < u∗ and does not percolate
when u > u∗. We derive here an asymptotic upper bound on u∗, as d goes to infinity,
which complements the lower bound from [21]. Our main result shows that u∗ is
equivalent to log d for large d, and thus has the same principal asymptotic behavior
as the critical parameter attached to random interlacements on 2d-regular trees,
which has been explicitly computed in [23].
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0 Introduction

Random interlacements have proven useful in understanding how trajectories of random
walks can create large separating interfaces, see [19], [20], [4]. In the case of Zd, d ≥ 3, it is
known that the interlacement at level u ≥ 0, is a random subset of Zd, which is connected,
ergodic under translations, and infinite when u is positive, see [18]. The density of this set
monotonically increases from 0 to 1, as u goes from 0 to ∞. Its complement, the vacant
set at level u, displays non-trivial percolative properties. There is a critical value u∗ in
(0,∞), such that for u < u∗, the vacant set at level u has an infinite connected component,
which is unique, see [16], [22], and for u > u∗, only has finite connected components, see
[18]. Little is known about u∗, and only recently was it shown that u∗ diverges when the
dimension d tends to infinity, see [21]. The object of the present article is to establish
that u∗ is equivalent to log d as d tends to infinity. In particular this result shows that
u∗ has the same principal asymptotic behavior for large d as the corresponding critical
parameter, (which has been explicitly computed in [23]), attached to the percolation of
the vacant set of random interlacements on 2d-regular trees.

We now describe the model. Precise definition and pointers to the literature appear in
Section 1. Random interlacements are made of a cloud of paths, which constitute a Poisson
point process on the space of doubly infinite Z

d-valued trajectories modulo time-shift,
tending to infinity at positive and negative infinite times. The non-negative parameter u
mentioned above, roughly comes as a multiplicative factor of the intensity measure of the
Poisson point process. Actually, one simultaneously constructs on a suitable probability
space (Ω,A,P), the whole family Iu, u ≥ 0, of random interlacements at level u ≥ 0,
cf. (1.30). They are the traces on Z

d of the trajectories modulo time-shift in the cloud
having labels at most u. The complement Vu of Iu in Z

d is the vacant set at level u. It
satisfies the identity:

(0.1) P[Vu ⊇ K] = exp{−u cap(K)}, for all finite K ⊆ Z
d .

In fact this formula provides a characterization of the law on {0, 1}Zd
of the indicator

function of Vu, cf. (2.16) of [18]. From Theorem 3.5 of [18] and Theorem 3.4 of [16], one
knows that there is a critical value u∗ in (0,∞) such that

i) for u > u∗, P-a.s., all connected components of Vu are finite,

ii) for u < u∗, P-a.s., there exists an infinite connected component in Vu.
(0.2)

From Theorem 0.1 of [21], one has the following asymptotic lower bound on u∗, as d tends
to infinity:

(0.3) lim inf
d

u∗/ log d ≥ 1 .

The main object of the present article is to show that the above lower bound does
capture the correct asymptotic behavior of u∗, and the following statement holds

Theorem 0.1.

(0.4) lim
d

u∗/ log d = 1 .
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As a by-product this result shows that u∗ has the same principal asymptotic behavior as
the critical value attached to random interlacements on 2d-regular trees, when d goes to
infinity, see Proposition 5.2 of [23]. We refer the reader to Remark 4.1 for more on this
matter. In addition the proof of Theorem 0.1 also shows, cf. Remark 4.1, that

(0.5) lim
d
u∗∗/ log d = 1 ,

where u∗∗ ∈ [u∗,∞) is another critical value introduced in [19]. Informally, u∗∗ is the
critical level above which there is a polynomial decay in L, for the probability of existence
of a vacant crossing between a box of side-length L and the complement of a concentric
box of double side-length. It is an important and presently unresolved question whether
u∗ = u∗∗ actually holds. However it is known that the connectivity function of the vacant
set at level u, i.e. the probability that 0 and a (far away) x are linked by a path in Vu,
(i.e. the probability of a vacant crossing at level u between 0 and x), has a stretched
exponential decay in x, when u is bigger than u∗∗, see Theorem 0.1 of [17].

We will briefly comment on the proof of Theorem 0.1. In view of (0.3), we only need
to show that

(0.6) lim sup
d

u∗/ log d ≤ 1 .

As for Bernoulli bond or site percolation, similarities between what happens on Z
d and

on 2d-regular trees for large d, lurk in the background of the proof. The statement
corresponding to (0.6) for Bernoulli percolation is an asymptotic lower bound for the
critical probability, (a lower bound, and not an upper bound, because the density of Vu

decreases with u). Whereas the required lower bound in the Bernoulli percolation context
follows from a short Peierls-type argument, cf. [3], p. 640, [11], p. 222, or [8], p. 25, the
proof of (0.6) for random interlacements is quite involved. The long range dependence
present in the model is deeply felt.

An important feature of working in high dimension is that the ℓ1-, the Euclidean, and
the ℓ∞-distances, all behave very differently on Z

d, see (1.1). At large enough scale (i.e.
Euclidean distance at least d), the Green function of the simple random walk “feels the
invariance principle”, and is well-controlled by expressions of the type (c

√
d/|·|)d−2, where

c does not depend on d and | · | stands for the Euclidean norm, see Lemma 1.1. However
at shorter range the walk feels more of the tree-like nature of the space, and the use of
bounds involving the ℓ1-distance becomes more pertinent, cf. (1.14) and Remark 1.2.

The above dichotomy permeates throughout the proof of (0.6). We use a modification
of the renormalization scheme (“for fixed d”) employed in [17]. The renormalization
scheme enables us to transform certain local controls on the probability of vacant crossings
at level u0 = (1+5ε) log d, ε > 0 small, into controls on the probability of vacant crossings
at arbitrary large scales at a bigger level u∞ < (1 + 10ε) log d.

The local estimates entering the initial step of the renormalization scheme are devel-
oped in Section 3. They involve controls on the existence of vacant crossings moving at
ℓ1-distance c(ε)d from a box of side-length L0 = d, for the interlacement at level u0. The
2d-regular tree model lurks behind the control of these local crossings. The key estimates
appear in Theorem 3.1 and Corollary 3.4. They result from an enhanced Peierls-type
argument involving the consideration of what happens in c

ε2
many ℓ1-balls, having each
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an ℓ1-radius c′εd, and lying at mutual ℓ1-distances at least c′′d. For this step part of the
difficulty stems from the fact that the local estimates need to be strong enough to beat
the combinatorial complexity involved in the selection of the dyadic trees entering the
renormalization scheme.

The renormalization scheme is developed in Section 2. It propagates along an in-
creasing sequence of levels un, with initial value u0 = (1 + 5ε) log d and limiting value
u∞ < (1 + 10ε) log d, uniform estimates on the probability of events involving the pres-
ence of certain vacant crossings at level un. Roughly speaking these events correspond
to the presence in 2n boxes of side-length L0(= d) of paths in Vun . The boxes can be
thought of as the “bottom leaves” of a dyadic tree of depth n, and are well “spread-out”
within a box of side-length 3Ln, where Ln = ℓn0 L0, and ℓ0 = d. The paths start in
each of the 2n boxes of side-length L0, and move at Euclidean (and hence ℓ1-) distance
of order c(ε)d from the boxes. The estimates are conducted uniformly over the possible
dyadic trees involved, cf. Propositions 2.1 and 2.3. The main induction step in the above
procedure, cf. Proposition 2.1, relies on the sprinkling technique introduced in [18], to
control the long range interactions. The rough idea is to introduce more trajectories in
the interlacement by letting the levels slightly increase along the convergent sequence
un. In this fashion one dominates the long range dependence induced by trajectories of
the interlacement traveling between far away boxes. In the present context the method
uses in an essential way quantitative estimates on Harnack constants in large Euclidean
balls, when the dimension d goes to infinity. These estimates crucially enter the proof
of Proposition 2.3. The bounds on the Harnack constants are derived in Proposition 1.3
with the help of the general Lemma A.2 from the Appendix, which is an adaptation of
Lemma 10.2 in Grigoryan-Telcs [7].

Let us now describe how this article is organized.

In Section 1 we introduce notation and recall several useful facts concerning random
walks and random interlacements. An important role is played by the Green function
bounds, see Lemma 1.1, and by the bounds on Harnack constants, see Proposition 1.3.

In Section 2 we develop the renormalization scheme. It follows with a number of
changes the general line of [17]. The key induction step appears in Proposition 2.1. The
main consequences of the renormalization scheme for the proof of Theorem 0.1 are stated
in Proposition 2.3.

In Section 3 we derive the crucial local control on the existence of vacant crossings at
level u0 traveling at ℓ1-distance of order some suitable multiple of d. This local control
is stated in Theorem 3.1. It enables to produce the required estimate to initiate the
renormalization scheme. This estimate can be found in Corollary 3.4.

Section 4 gives the proof of (0.6). Combined with the lower bound (0.3) from [21],
it yields Theorem 0.1. We discuss some further questions concerning the asymptotic
behavior of u∗ for large d in Remark 4.1.

In the Appendix, we first derive in Lemma A.1 an elementary inequality entering the
proof of the Green function bounds from Lemma 1.1. We then present in Lemma A.2 a
general result of independent interest providing controls on Harnack constants in terms
of killed Green functions, for general nearest neighbor Markov chains on graphs.

Finally let us explain the convention we use concerning constants. Throughout the
text c or c′ denote positive constants with values changing from place to place. These
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constants are independent of d. The numbered constants c0, c1, . . . are fixed and refer
to the value pertaining to their first appearance in the text. Dependence of constants
on additional parameters appears in the notation. For instance c(ε) denotes a constant
depending on ε.

1 Notation and random walk estimates

In this section we introduce further notation and gather various useful estimates on simple
random walk on Z

d, for large d. Controls on the Green function and on Harnack constants
in Euclidean balls play an important role in the sequel. They can be found in Lemma 1.1
and Proposition 1.3. We also recall several useful facts concerning random interlacements.

We let N = {0, 1, 2, . . .} stand for the set of natural numbers. Given a non-negative
real number a, we let [a] stand for the integer part of a. We denote with | · |1, | · |, and
| · |∞, the ℓ1-, the Euclidean, and the ℓ∞-norms on R

d. One has the inequalities:

(1.1) | · |∞ ≤ | · | ≤ | · |1 , | · | ≤
√
d | · |∞ , | · |1 ≤

√
d | · | .

Unless explicitly stated otherwise, we tacitly assume that d ≥ 3.

By finite path we mean a sequence x0, . . . , xN in Z
d, with N ≥ 1, which is such that

|xi+1 − xi|1 = 1, for 0 ≤ i < N . We sometimes write path in place of finite path, when
this causes no confusion. We denote by B(x, r) and S(x, r), the closed ball and the closed
sphere with radius r ≥ 0 and center x ∈ Z

d. In the case of the ℓp-distance, with p = 1 or∞,
the corresponding objects are denoted by Bp(x, r) and Sp(x, r). For A,B ⊆ Z

d, we write
A+B for the set of x+y with x in A and y in B, and d(A,B) = inf{|x−y|; x ∈ A, y ∈ B},
for the mutual Euclidean distance between A and B. We write dp(A,B), with p = 1 or
∞, when the ℓp-distance is used instead. The notation K ⊂⊂ Z

d, expresses that K is
a finite subset of Zd. When U is a subset of Zd, we write |U | for the cardinality of U ,
∂U = {x ∈ U c; ∃y ∈ U , |x−y|1 = 1} for the boundary of U and ∂int U = {x ∈ U ; ∃y ∈ U c,
|x− y|1 = 1}, for the interior boundary of U . We also write U in place of U ∪ ∂U .

We denote with W+ the set of nearest neighbor Zd-valued trajectories defined for non-
negative times and tending to infinity. We write W+ and Xn, n ≥ 0, for the canonical
σ-algebra and the canonical process on W+. We denote by θn, n ≥ 0, the canonical shift
on W+, so that θn(w) = w(· + n), for w ∈ W+ and n ≥ 0. Since d ≥ 3, the simple
random walk on Z

d is transient and we write Px for the restriction to the set W+ of full
measure of the canonical law of the walk starting at x ∈ Z

d. When ρ is a measure on
Z
d, we denote by Pρ the measure

∑
x∈Zd ρ(x)Px and by Eρ the corresponding expectation.

Given U ⊆ Z
d, we write HU = inf{n ≥ 0;Xn ∈ U}, H̃U = inf{n ≥ 1;Xn ∈ U}, and

TU = inf{n ≥ 0;Xn /∈ U}, for the entrance time in U , the hitting time of U , and the exit

time from U . In case of a singleton {x}, we simply write Hx and H̃x for simplicity.

We let g(·, ·) stand for the Green function:

(1.2) g(x, x′) =
∑
n≥0

Px[Xn = x′], for x, x′ in Z
d .

The Green function is symmetric in its two variables, and due to translation invariance
g(x, x′) = g(x′ − x) = g(x− x′), where

(1.3) g(x) = g(x, 0) = g(0, x), for x ∈ Z
d .
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Whereas the ℓ1-distance is relevant for the description of the short range behavior of g(·)
in high dimension, cf. Remark 1.3 1) of [21], and Remark 1.2 below, the Euclidean distance
becomes relevant in the description of the “mid-to-long-range” behavior of g(·). The next
lemma will be repeatedly used in the sequel. We recall that the convention concerning
constants is stated at the end of the Introduction.

Lemma 1.1.

g(x) ≤ (c0
√
d/|x|)d−2, for |x| ≥ d,(1.4)

g(x) ≥ (c1
√
d/|x|)d−2, for |x|2 ≥ d |x|∞ > 0, (and in particular when |x| ≥ d),(1.5)

Px[HB(0,L) <∞] ≤
(cL
|x|

)d−2

∧ 1, for L ≥ d, x ∈ Z
d, (with c ≥ 1) .(1.6)

Proof. We begin with the proof of (1.4), (1.5). To this end we denote with pt(u, v), t ≥ 0,
u, v ∈ Z, the transition probability of the simple random walk in continuous time on Z

with exponential jumps of parameter 1. The transition probability of the simple random
walk on Z

d with exponential jumps of parameter d can then be expressed as the product
of one-dimensional transition probabilities. Relating the continuous and the discrete time
random walks on Z

d, we thus find that

(1.7) g(x) = d

∫ ∞

0

d∏

i=1

pt(0, xi)dt, for x = (x1, . . . , xd) ∈ Z
d .

From Theorem 3.5 of [15], and the fact that the function

F (γ) = − log
(
γ +

√
γ2 + 1

)
+

1

γ

(√
γ2 + 1− 1

)
, γ > 0 ,

that appears in Theorem 3.5 of [15], has derivative −(1+
√
γ2 + 1)−1, tends to 0 in γ = 0,

and thus satisfies the inequality log(1 + γ
2
) ≤ −F (γ) ≤ log(1 + γ), for γ ≥ 0, we see that

for suitable constants 0 < κ < 1 < κ′, we have

(1.8)

1

κ′
(1 ∨ t ∨ |u|)− 1

2 exp
{
− |u| log

(
1 + κ′

|u|
t

)}
≤ pt(0, u) ≤

1

κ
(1 ∨ t ∨ |u|)− 1

2 exp
{
− |u| log

(
1 + κ

|u|
t

)}
, for t > 0, u ∈ Z.

We now prove (1.4) and thus assume |x| ≥ d. By (1.7), (1.8), we bound g(x) from above
as follows, (we also use the inequality d ≤ 2d and Lemma A.1 in the Appendix):

g(x) ≤ cd
∫ ∞

0

(1 ∨ t)− d
2 exp

{
−

d∑
i=1

|xi| log
(
1 + κ

|xi|
t

)}
dt

(A.1)

≤ cd
∫ ∞

0

(1 ∨ t)− d
2 exp

{
− |x| log(1 + κ

|x|
t

)}
dt

≤ cd
∫ κ|x|

0

(1 ∨ t)− d
2 exp

{
− |x| log

(
1 + κ

|x|
t

)}
dt

+ cd
∫ ∞

κ|x|
t−

d
2 exp

{
− κ|x|2

2t

}
dt ,

(1.9)
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where in the last step we used the inequality log(1 + γ) ≥ γ
2
, for 0 ≤ γ ≤ 1. Performing

the change of variable s = κ|x|2
2t

in the last integral, we see that the last term of (1.9) is
smaller than

(1.10) cd |x|2−d

∫ |x|
2

0

s
d
2
−2 e−s ds ≤ cd |x|2−d Γ

(
d

2
− 1

)
≤ (c

√
d / |x|)d−2 ,

using the asymptotic behavior of the Gamma function in the last step, cf. [14], p. 88.

As for the first integral in the last line of (1.9), we note that for 1 ≤ s ≤ κ|x|, the
function s→ −d

2
log s− |x| log(1 + κ |x|

s
) has derivative

− d

2s
+
|x|
s

κ|x|
s+ κ|x|

s≤κ|x|
≥ − d

2s
+
|x|
2s

|x|≥d

≥ 0 ,

and hence is non-decreasing. Thus the first term in the last line of (1.9) is smaller than

cd(κ|x|)−(d
2
−1)2−|x|.

Observe that for a ≥ d, d−2
2

log a + a log 2 ≥ (d − 2) log a√
d
, (indeed this inequality

holds for a = d and d−2
2a

+ log 2 ≥ d−2
a
, for a ≥ d). It follows that the first term in the

last line of (1.9) is at most (c
√
d/|x|)d−2. Together with (1.10) this concludes the proof

of (1.4).

We now prove (1.5), and assume x 6= 0. Since log(1 + γ) ≤ γ, for γ ≥ 0, and κ′ > 1,
it follows from (1.7), (1.8) that

g(x) ≥ cd
∫ ∞

κ′|x|∞
t−

d
2 exp

{
− κ′ |x|

t

2}
dt

s=κ′|x|2

t≥ cd|x|2−d

∫ |x|2

|x|∞

0

s
d
2
−2e−sds

≥
(
c
√
d

|x|

)d−2

, when |x|2 ≥ d |x|∞ ,

(1.11)

and (1.5) follows.

Finally (1.6) is a routine consequence of the identity

(1.12) g(x) = Ex[g(XHB(0,L)
), HB(0,L) <∞], for L ≥ 0 and x ∈ Z

d ,

combined with (1.4), (1.5), and the fact that infB(0,L) g ≥ inf∂B(0,L) g.

Remark 1.2.

1) Although we will not need this fact in the sequel, let us mention that the following
lower bound complementing (1.6) holds as well:

(1.13) Px[HB(0,L) <∞] ≥
(
cL

|x|

)d−2

∧ 1, for L ≥ d, x ∈ Z
d, (with c ≤ 1) .

Indeed one uses (1.12) together with (1.4), (1.5), and when d+1 ≥ L(≥ d), the inequality
sup∂intB(0,L) g ≤ 2d sup∂B(0,L) g, which follows from the fact that g is harmonic outside

the origin, (the factor 2d can then be dominated by c̃ d−2).
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2) Let us point out that when x = ([dα], 0, . . . , 0), with 1
2
< α < 1, the upper bound (1.4)

does not hold when d ≥ c(α). Indeed it follows from (1.7), (1.8) that

g(x) ≥ d

∫ 2

1

pt(0, [d
α]) pt(0, 0)

d−1dt
(1.8)

≥ cd d−
α
2 exp{−dα log(1 + κ′dα)} ,

which is much bigger than (c0
√
d/|x|)d−2 ≤ cd−2 exp{−(α− 1

2
)(d− 2) log d}, for d ≥ c(α).

3) We recall from (1.11) of [21], that when d ≥ 5,

(1.14) g(x) ≤
(
c2d

|x|1

) d
2
−2

, for x ∈ Z
d .

The inequality is for instance useful when |x| < d, but |x|1 ≥ c2d, a situation where
(1.4) is of no help. We will use (1.14) in Section 3, when deriving local bounds on the
connectivity function of random interlacements at a level u0 close to log d, see the proof
of Theorem 3.1.

4) The asymptotic behavior of g(x) for d fixed and large x is well-known, see for instance
[10], p. 313, or [12], p. 31:

lim
x→∞

g(x)

|x|d−2
=

d

2
Γ
(
d

2
− 1

)
π− d

2 .

The asymptotic behavior of g(·) at the origin, or close to the origin when d tends to
infinity is also well-known, see for instance [13], p. 246, or [21], Remark 1.3 1). On the
other hand the behavior of g(·) at intermediate scales when d tends to infinity seems much
less explored. �

The bounds on the Green function of Lemma 1.1 together with Lemma A.2 from the
Appendix enable us to derive quantitative controls on Harnack constants in suitably large
Euclidean balls. These bounds will be instrumental for the renormalization scheme devel-
oped in the next section, see the proof of Lemma 2.2. First we recall some terminology.
When U ⊆ Z

d, we say that a function u defined on U is harmonic in U , if for all x ∈ U ,
u(x) = 1

2d

∑
|e|=1 u(x+ e). We can now state:

Proposition 1.3. (L ≥ d)

Setting c3 = 4 + 10 c0
c1

(where c0 ≥ c1, see (1.4), (1.5)), there exists c > 1, such that

when u is a non-negative function defined on B(0, c3L) harmonic in B(0, c3L), one has

(1.15) max
B(0,L)

u ≤ cd min
B(0,L)

u .

Proof. We define U1 = B(0, L) ⊆ U2 = B(0, 4L) ⊆ U3 = B(0, c3L). In view of Lemma
A.2 from the Appendix, any u as above satisfies the inequality

max
U1

u ≤ Kmin
U1

u ,

where

(1.16) K = max
x,y∈U1

max
z∈∂intU2

GU3(x, z)/GU3(y, z) ,
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and GU3(·, ·) stands for the Green function of the walk killed outside U3, cf. (A.8). Ap-
plying the strong Markov property at time TU3 and (1.2) we obtain the identity:

GU3(y, z) = G(y, z)−Ey[G(XTU3
, z)], for y, z ∈ Z

d .

Hence when x, y ∈ U1 and z ∈ ∂intU2, we see that

GU3(x, z) ≤ G(x, z)
(1.4)

≤ (c0
√
d/(2L))d−2, and(1.17)

GU3(y, z) ≥ (c1
√
d/(5L))d−2 − {c0

√
d/((c3 − 4)L)}d−2(1.18)

=
(√

d

L

)d−2((c1
5

)d−2

−
(

c0
c3 − 4

)d−2)

=
(√

d

L

)d−2(c1
5

)d−2(
1−

(
1

2

)d−2)
.

We thus find that K ≤ 2(5
2

c0
c1
)d−2, and the claim (1.15) follows.

We now briefly review some notation and basic properties concerning the equilibrium
measure and the capacity. Given K ⊂⊂ Z

d, we write eK for the equilibrium measure of
K, and cap(K) for its total mass the capacity of K:

(1.19) eK(x) = Px[H̃K =∞] 1K(x), x ∈ Z
d, cap(K) =

∑
x∈K

Px[H̃K =∞] .

The capacity is subadditive (a straightforward consequence of (1.19)):

(1.20) cap(K ∪K ′) ≤ cap(K) + cap(K ′), for K,K ′ ⊂⊂ Z
d.

One can also express the probability to enter K in the following well-known fashion:

(1.21) Px[HK <∞] =
∑
y∈K

g(x, y) eK(y), for x ∈ Z
d .

Further we have the bound on the capacity of Euclidean balls

(1.22) cap(B(0, L)) ≤
( cL√

d

)d−2

, for L ≥ d ,

which follows from (1.5), (1.6), and (1.21), by letting x tend to infinity.

Remark 1.4. Although we will not need this estimate in the sequel, let us mention that
in an analogous way with (1.4), (1.13), and (1.21), one finds that

(1.23) cap(B(0, L)) ≥
( cL√

d

)d−2

, for L ≥ d .

�

We then turn to the description of random interlacements. We refer to Section 1 of
[18] for details. We denote withW the space of doubly infinite nearest-neighbor Zd-valued
trajectories, which tend to infinity at positive and negative infinite times, and by W ∗ the
space of equivalence classes of trajectories inW modulo time-shift. We let π∗ stand for the
canonical map fromW into W ∗. We writeW for the canonical σ-algebra onW generated
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by the canonical coordinates Xn, n ∈ Z, and by W∗ = {A ⊆ W ∗; (π∗)−1(A) ∈ W}, the
largest σ-algebra on W ∗ for which π∗ : (W,W)→ (W ∗,W∗) is measurable. The canonical
probability space for random interlacements is now the following.

We consider the space of point measures on W ∗ × R+:

Ω =
{
ω =

∑
i≥0

δ(w∗
i ,ui), with (w∗

i , ui) ∈ W ∗ × R+, i ≥ 0, and u ≥ 0,

w(W ∗
K × [0, u]) <∞, for any K ⊂⊂ Z

d, and u ≥ 0
}
,

(1.24)

where for K ⊂⊂ Z
d, W ∗

K ⊆ W ∗ stands for the set of trajectories modulo time-shift that
enter K, i.e. W ∗

K = π∗(WK), where WK is the subset of W of trajectories that enter K.

We endow Ω with the σ-algebra A generated by the evaluation maps: ω → ω(D),
where D runs over the σ-algebraW∗×B(R+), and with the probability P on (Ω,A), which
is the Poisson measure with intensity ν(dω∗)du giving finite mass to the sets W ∗

K × [0, u],
for K ⊂⊂ Z

d, u ≥ 0, with ν the unique σ-finite measure on (W ∗,W∗) such that for any
K ⊂⊂ Z

d, see Theorem 1.1. of [18]:

(1.25) 1W ∗
K
ν = π∗ ◦QK ,

where QK denotes the finite measure on W 0
K , the subset of WK of trajectories, which are

for the first time in K at time 0, and such that for A,B ∈ W+, (we recall that W+ is
defined above (1.2)),and x ∈ Z

d:

(1.26) QK [(X−n)n≥0 ∈ A, X0 = x, (Xn)n≥0 ∈ B] = Px[A|H̃K = x] eK(x)Px[B] .

For K ⊂⊂ Z
d, u ≥ 0, one defines on (Ω,A) the random variable valued in the set of finite

point measures on (W+,W+):

(1.27) µK,u(dw) =
∑
i≥0

δ(w∗
i )

K,+1{w∗
i ∈ W ∗

K , ui ≤ u}, for ω =
∑
i≥0

δ(w∗
i ,ui) ∈ Ω ,

where for w∗ ∈ W ∗
K , (w

∗)K,+ stands for the trajectory in W+, which follows step by step
w∗ from the first time it enters K.

When 0 ≤ u′ < u, one defines µK,u′,u(dw) in an analogous fashion as in (1.27), replacing
the condition ui ≤ u with u′ < ui ≤ u, in the right-hand side of (1.27). Then for
0 ≤ u′ < u, K ⊂⊂ Z

d, one finds that

(1.28)
µK,u′,u and µK,u′ are independent Poisson point processes
with respective intensity measures (u− u′)PeK and u′PeK .

In addition one has the identity

(1.29) µK,u = µK,u′ + µK,u′,u .

Given ω ∈ Ω, the interlacement at level u ≥ 0 is the subset of Zd:

Iu(ω) =
⋃

ui≤u

range (w∗
i ), if ω =

∑
i≥0

δ(w∗
i ,ui)

=
⋃

K⊂⊂Zd

⋃

w∈SuppµK,u(ω)

w(N) ,
(1.30)
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where for w∗ ∈ W ∗, range(w∗) = w(N), for any w ∈ W , with π∗(w) = w∗, and
Supp µK,u(ω) refers to the support of the point measure µK,u(ω). The vacant set at
level u is the complement of Iu(ω):

(1.31) Vu(ω) = Z
d\Iu(ω), for u ∈ Ω, u ≥ 0 .

One also has, cf. (1.54) of [18],

(1.32) Iu(ω) ∩K =
⋃

w∈SuppµK′ ,u(ω)

w(N) ∩K, for K ⊂ K ′ ⊂⊂ Z
d, u ≥ 0 .

From (1.28) one readily finds that as mentioned in (0.1):

(1.33) P[Vu ⊇ K] = exp{−u cap(K)}, for all K ⊂⊂ Z
d ,

an identity that characterizes the law Qu on {0, 1}Zd
of the indicator function of Vu(ω),

see also Remark 2.2 2) of [18]. This brings us to the conclusion of Section 1 and of this
brief review of some useful facts that we will use in the next sections.

2 From local to global: the renormalization scheme

We develop in this section a renormalization scheme that follows in its broad lines the
strategy of [17]. We introduce a geometrically increasing sequence of length scales Ln,
n ≥ 0, and an increasing but typically convergent sequence of levels un, n ≥ 0. When the
sequence un is sufficiently increasing, cf. (2.19), we are able to propagate from scale to
scale bounds on the key quantities pn(un) that appear in (2.17). Roughly speaking these
controls provide uniform upper bounds on the probability that in a box at scale Ln, 2

n

“well-spread” boxes at scale L0 all witness certain crossing events at Euclidean distance
of order cL0 in the vacant set at level un. Interactions are handled by the sprinkling
technique originally introduced in Section 3 of [18]. The renormalization scheme enables
us to transform local estimates on the existence of vacant crossings at scale L0 in the
vacant set a level u0 into global estimates on crossings at arbitrary scales in the vacant
set at level u∞ = lim un. The difficulty we encounter in the implementation of the scheme
stems from the fact that we want both u0 and u∞ to be “slightly above” the critical value
u∗, see (4.7) and (0.3). However the local controls on vacant crossings at level u0, which
we inject into the renormalization scheme, and develop in the next section, require L0

to be rather small, i.e. of order d. We are then forced to keep a tight control on the
estimates we derive when d goes to infinity. The Green function and entrance probability
estimates from Lemma 1.1 together with the bounds on Harnack constants in Euclidean
balls from Proposition 1.3 play a pivotal role in this scheme. The fact that the ℓ∞- and
the Euclidean distances behave very differently for large d, see (1.1), also forces upon us
some modifications of the geometric constructions in [17], see for instance (2.1) and (2.26).
The main results of this section are Proposition 2.1, which contains the main induction
step, and Proposition 2.3, which encapsulates the estimates we will use in Section 4.

We consider the length scales

(2.1) L0 ≥ d, L̂0 = (
√
d+R)L0, with R ≥ 1,

10



as well as

Ln = ℓn0 L0, for n ≥ 1, where ℓ0 ≥ 1000
c0
c1

(
√
d+R) is an integer

multiple of 100, (we recall that c0 ≥ c1, cf. Lemma 1.1).
(2.2)

We organize Z
d in a hierachical way with L0 the finest scale and L1 < L2 < . . . , coarser

and coarser scales. Crossing events at the finest scale will involve the length scale L̂0. We
introduce the set of labels of boxes at level n ≥ 0:

(2.3) In = {n} × Z
d .

To each m = (n, i) ∈ In, n ≥ 0, we attach the box

(2.4) Cm = (iLn + [0, Ln)
d) ∩ Z

d .

In addition when n ≥ 1, we define

(2.5) C̃m =
⋃

m′∈In,d∞(Cm′ ,Cm)≤1

Cm′(⊇ Cm) .

On the other hand when n = 0 and m = (0, i) ∈ I0, we define instead

(2.6) C̃m = B(iL0, L̂0)
(1.1),(2.1)

⊇
⋃

x∈Cm

B(x,RL0)(⊇ Cm) .

The above definitions slightly differ from (2.3) in [17] due to the special treatment of the
scale n = 0. It is relevant here to use Euclidean balls, and thanks to (1.6) of Lemma 1.1,

have a good control on the entrance probability of a simple random walk in C̃m. The
radius of these balls has to be chosen sufficiently large, so that we can show that crossing
events at the bottom scale, from Cm to ∂intC̃m, are unlikely, (this will be done in the next
Section 3).

We then write Sm = ∂intCm and S̃m = ∂intC̃m, for m ∈ In, n ≥ 0. Given m ∈ In, with
n ≥ 1, we consider H1(m), H2(m) ⊆ In−1 defined by:

H1(m) = {m ∈ In−1; Cm ⊆ Cm and Cm ∩ Sm 6= ∅}
H2(m) =

{
m ∈ In−1; Cm ∩

{
z ∈ Z

d; d∞(z, Cm) =
Ln

2

}
6= ∅

}
.

(2.7)

We thus see that for n ≥ 1, m ∈ In, one has

(2.8)
m1 ∈ H1(m), m2 ∈ H2(m) implies that

C̃m1 ∩ C̃m2 = ∅, and C̃m1 ∪ C̃m2 ⊆ C̃m ,

(in the case n = 1, we use the lower bound on ℓ0 in (2.2) as well as (1.1)).
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C̃m

C̃m2

C̃m1

Cm1

Cm2

S̃m

Cm

Fig. 1: An illustration of the boxes Cmi
and balls C̃mi

, i = 1, 2, when m belongs to I1.

Then to each m ∈ In, n ≥ 0, we associate a collection Λm of “binary trees of depth n”.
More precisely we define Λm as the collection of subsets T of

⋃
0≤k≤n Ik, such that writing

T k = T ∩ Ik, one has

(2.9) T n = {m} ,

(2.10)
any m′ ∈ T k, 1 ≤ k ≤ n, has two “descendants” mi(m

′) ∈ Hi(m
′), i = 1, 2,

such that T k−1 =
⋃

m′∈T k

{m1(m
′), m2(m

′)} .

For each T ∈ Λm and m′ ∈ T , one can then define the subtree of “descendants of m′ in
T ” via:

(2.11) Tm′ = {m′′ ∈ T ; C̃m′′ ⊆ C̃m′}(∈ Λm′) .

Given 1 ≤ k ≤ n, m′ ∈ T k, one thus has the partition of Tm′ :

(2.12) Tm′ = {m′} ∪ Tm1(m′) ∪ Tm2(m′) .

In addition we have the following rough bound on the collection Λm of binary trees
attached to m ∈ In:

(2.13) |Λm| ≤ (c4 ℓ0)
2(d−1)(c4 ℓ0)

4(d−1) . . . (c4 ℓ0)
2n(d−1) = (c4 ℓ0)

2(d−1)(2n−1) ,

where we used the rough bound for m′ ∈ Ik, 1 ≤ k ≤ n, and i = 1, 2:

|Hi(m
′)| ≤ 2d

(
c

Lk

Lk−1

)d−1

= 2d(cℓ0)
d−1 ≤ (c4 ℓ0)

d−1, for some c4 > 1 .

We then introduce for u ≥ 0, m ∈ In, with n ≥ 0, the event

(2.14) Au
m =

{
Cm

Vu

←→ S̃m

}
,

where the expression in the right-hand side of (2.14) denotes the collection of ω in Ω

such that there is a path between Cm and S̃m contained in Vu. In an analogous fashion to
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Lemma 2.1 of [17], Au
m “cascades down to the bottom scale”, because any path originating

in Cm and ending in S̃m must go through some Cm1, m1 ∈ H1(m), reach S̃m1 and then go

through some Cm2, m2 ∈ H2(m), and reach S̃m2 . Thus similarly to Lemma 2.1 of [17], we
find that defining for u ≥ 0, n ≥ 0, m ∈ In, and T ∈ Λm

(2.15) Au
T =

⋂

m′∈T 0

Au
m′ , (recall T 0 = T ∩ I0) ,

one has the inclusion

(2.16) Au
m ⊆

⋃

T ∈Λm

Au
T .

We then introduce the key quantity,

(2.17) pn(u) = sup
T ∈Λm

P[Au
T ], u ≥ 0, n ≥ 0, with m ∈ In arbitrary ,

which is well defined due to translation invariance, and find that:

(2.18) P[Au
m] ≤ |Λm| pn(u), for u ≥ 0, n ≥ 0 .

The heart of the matter is now to find a recurrence relation bounding pn+1(un+1) in terms
of pn(un) for suitably increasing sequences un, (we are actually interested in increasing
but convergent sequences). We recall that R appears in (2.1).

Proposition 2.1. There exist positive constants c5, c6, c, such that when ℓ0 ≥ c(
√
d+R),

then for any increasing sequences un, n ≥ 0, in (0,∞) and non-decreasing sequences rn,
n ≥ 0, of positive integers such that

(2.19) un+1 ≥ un

(
1 +

L̂0

L0

(
c5
ℓ0

)(n+1)(d−2))rn+1

, for all n ≥ 0 ,

one has for all n ≥ 0:

(2.20) pn+1(un+1) ≤ pn(un+1)(pn(un) + un

(
L̂0√
d

)(d−2)(
4n
(
c6

L̂0

L0

)(d−2)

ℓ
−(n+1)(d−2)
0

)rn)
,

(note that pn(·) is non-increasing so that pn(un+1) ≤ pn(un)).

Proof. The proof of Proposition 2.1 is an adaptation of the proof of Proposition 2.2 of
[17], which will be sketched below, with some modifications, which we will highlight.

One considers some n ≥ 0, m ∈ In+1, T ∈ Λm, and writes m1, m2 for the unique
elements of H1(m), H2(m) in T n (= T ∩ In). One also writes u′ and u, with 0 < u′ < u,
in place of un and un+1.

If T ∈ Λm, with m ∈ In, one defines for µ a point process on W+ defined on Ω, (i.e. a
measurable map from Ω into the space of point measures on W+):

AT (µ) =
⋂

m′∈T ∩I0

{
ω ∈ Ω; there is a path in C̃m′\

( ⋃
w∈Suppµ(ω)

w(N)
)

joining Cm′ with S̃m′

}
.

(2.21)
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As in (2.19) of [17], using independence we have the bound

(2.22) P[Au
T ] ≤ pn(u)P[AT 2

(µ2,2)] ,

where T 2 stands for Tm2 , and we have decomposed the point process µV,u, see (1.27),
where

V = Ĉ1 ∪ Ĉ2, with(2.23)

Ĉi =
⋃

m′∈T i∩I0

C̃m′ ⊆ C̃mi
, for i = 1, 2,(2.24)

(i.e. a union of 2n pairwise disjoint Euclidean balls of radius L̂0), into a sum of independent
Poisson processes via

(2.25) µV,u = µ1,1 + µ1,2 + µ2,1 + µ2,2 ,

where for i 6= j in {1, 2}, we have set

µi,j = 1{X0 ∈ Ĉi, H bCj
<∞}µV,u and µi,i = 1{X0 ∈ Ĉi, H bCj

=∞}µV,u .

One introduces similar decompositions for µV,u′ in terms of analogously defined point
processes µ′

i,j, 1 ≤ i, j ≤ 2, and for µV,u′,u in terms of µ∗
i,j, 1 ≤ i, j ≤ 2.

The heart of the matter is to bound P[AT 2
(µ2,2)] = P[AT 2

(µ′
2,2+µ∗

2,2)], which appears
in the right-hand side of (2.22), in terms of pn(u

′) when u − u′ is not too small. For
this purpose we employ the sprinkling technique of [18], and loosely speaking establish
that µ∗

2,2 dominates “up to small corrections” the contribution of µ′
2,1 + µ′

1,2 in P[Au′

T 2
] =

P[AT 2
(µ′

2,2 + µ′
2,1 + µ′

1,2)].

With this in mind we define a neighborhood U of C̃m2 , (and in contrast to (2.20)

of [17], we do not define U as the ℓ∞-neighborhood of C̃m2 of size Ln+1

10
). Instead if

m2 = (n, i2) ∈ In, see (2.3), we define U as the Euclidean ball, (which is much smaller
than the corresponding ℓ∞-ball of same radius):

(2.26) U = B
(
i2 Ln,

Ln+1

10

)
⊇ C̃m2, using (2.1), (2.2), (2.5), (2.6) .

We then have the following important controls on Euclidean distances:

d(∂U, Ĉ2) ≥ Ln+1

10
− 3
√
d Ln

(2.1),(2.2)
>

Ln+1

20
, when n ≥ 1 ,

≥ Ln+1

10
− L̂0

(2.1),(2.2)
>

Ln+1

20
, when n = 0 ,

(2.27)

and we have used that Ĉ2 ⊆ C̃m2
, when m ≥ 1, in the first line, see (2.8). Using similar

considerations we find that

d(∂U, Ĉ1) ≥ Ln+1

2
− Ln − Ln − Ln+1

10
− 1 >

Ln+1

20
, when n ≥ 1 ,

≥ Ln+1

2
− L̂0 − L0 − Ln+1

10
− 1 >

Ln+1

20
, when n = 0 .

(2.28)
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Since V = Ĉ1 ∪ Ĉ2, we have established that

(2.29) d(∂U, V ) >
Ln+1

20
.

We then introduce the successive times of return to Ĉ2 and departure from U :

R1 = H bC2
, D1 = TU ◦ θR1 +R1, and for k ≥ 1, by induction

Rk+1 = R1 ◦ θDk
+Dk, Dk+1 = D1 ◦ θDk

+Dk ,
(2.30)

so that 0 ≤ R1 ≤ D1 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞.

Letting r ≥ 1, play the role of rn in (2.19), (2.20), we further introduce the decompo-
sitions:

µ′
2,1 =

∑
1≤ℓ≤r

ρℓ2,1 + ρ2,1, µ
′
1,2 =

∑
1≤ℓ≤r

ρℓ1,2 + ρ1,2 ,

µ∗
2,2 =

∑
1≤ℓ≤r

ρℓ2,2 + ρ2,2 ,
(2.31)

where for i 6= j in {1, 2}, and ℓ ≥ 1, we have set

ρℓi,j = 1{Rℓ < Dℓ < Rℓ+1 =∞}µ′
i,j, ρi,j = 1{Rr+1 <∞}µ′

i,j, and

ρℓ2,2 = 1{Rℓ < Dℓ < Rℓ+1 =∞}µ∗
2,2, ρ2,2 = 1{Rr+1 <∞}µ∗

2,2 .

The point processes ρ1,2 and ρ2,2 play the role of correction terms, eventually responsible
for the last term in the right-hand side of (2.20). The bounds we derive on the intensity
measures ξ2,1 and ξ1,2 of ρ2,1 and ρ1,2 depart from (2.26), (2.27) in [17]. We write

(2.32)

ξ2,1(W+) = u′ PeV [X0 ∈ Ĉ2, H bC1
<∞, Rr+1 <∞]

(1.19)

≤ u′ cap(Ĉ2) sup
x∈ bC2

Px[Rr+1 <∞]

strong Markov

≤ u′cap(Ĉ2)( sup
x∈∂U

Px[H bC2
<∞])r .

Combining (1.6) and (2.29) we find that

(2.33) sup
x∈∂U

Px[H bC2
<∞] ≤ 2n

(
c

L̂0

Ln+1

)(d−2) (2.1),(2.2)
= 2n

(
c
L̂0

L0

ℓ
−(n+1)
0

)(d−2)

.

Moreover from (1.20), (1.22), we have

(2.34) cap(Ĉ2) ≤ 2n
(
c

L̂0√
d

)(d−2)

,

and hence

(2.35) ξ2,1(W+) ≤ u′
(
L̂0√
d

)(d−2)(
4n
(
c
L̂0

L0

)(d−2)

ℓ
−(n+1)(d−2)
0

)r

.

In a similar fashion we also obtain:

(2.36) ξ1,2(W+) ≤ u′
(
L̂0√
d

)(d−2)(
4n
(
c
L̂0

L0

)(d−2)

ℓ
−(n+1)(d−2)
0

)r

.

The next objective is to show that the trace on Ĉ2 of paths in the support of
∑

1≤ℓ≤r ρ
ℓ
2,1

and
∑

1≤ℓ≤r ρ
ℓ
1,2 is stochastically dominated by the corresponding trace on Ĉ2 of paths in

the support of µ∗
2,2, when u− u′ is not too small. An important step is the next lemma:
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Lemma 2.2. For ℓ0 ≥ c(
√
d+R), for all n ≥ 0, m ∈ In+1, T ∈ Λm, x ∈ ∂U , y ∈ ∂int Ĉ2,

one has:

Px[H bC1
< R1 <∞, XR1 = y] ≤

(
L̂0

L0

)(d−2)( c

ℓ0

)(d−2)(n+1)

Px[H bC1
> R1, XR1 = y] ,(2.37)

Px[H bC1
<∞, R1 =∞] ≤

(
L̂0

L0

)(d−2)( c

ℓ0

)(d−2)(n+1)

Px[R1 =∞ = H bC1
] .(2.38)

Proof. The proof of (2.37) follows closely the proof of (2.30) in Lemma 2.3 of [17]. The
difference lies in the control of Harnack constants. Indeed we first observe that the function
h : z → Pz[R1 < ∞, XR1 = y] = Pz[H bC2

< ∞, XH bC2
= y] is a non-negative function

harmonic in Ĉc
2. By (2.29) it is therefore harmonic on any B(z0,

Ln+1

20
), with z0 ∈ ∂U .One

can then find c such that for any z̃, z̃ ′ in ∂U , there exists a sequence zi, 0 ≤ i ≤ m, in ∂U ,
with m ≤ c, z0 = z̃, zm = z̃ ′, and |zi+1 − zi| ≤ Ln+1

100c3
, in the notation of Proposition 1.3.

Indeed one simply projects z̃, z̃ ′ on the Euclidean sphere in R
d of radius Ln+1

10
with center

i2 Ln, the “center” of U , see (2.26), and uses the great circle joining these two points to
construct the sequence.

Using (1.15) and a standard chaining argument, it follows that

(2.39) sup
z∈∂U

Pz[R1 <∞, XR1 = y] ≤ cd inf
z∈∂U

Pz[R1 <∞, XR1 = y] .

The proof of (2.37) then proceeds as in Lemma 2.3 of [17], (and we use a similar bound

to (2.33) above, where Ĉ1 replaces Ĉ2).

As for (2.38), we first note that for x ∈ ∂U , due to (1.6) and (2.29), we have:

(2.40) inf
x∈∂U

Px[R1 =∞, H bC1
=∞] ≥ 1−2 2n

(
c

L̂0

Ln+1

)(d−2) (2.2)

≥ 1−
(

c

ℓ0

L̂0

L0

)(d−2) (2.1)

≥ 1

2
,

when ℓ0 ≥ c′(
√
d+R).

On the other hand a similar calculation leads to:

(2.41) Px[H bC1
<∞, R1 =∞] ≤ 2n

(
c

L̂0

Ln+1

)(d−2)

≤
(
L̂0

L0

)(d−2) ( c

ℓ0

)(d−2)(n+1)

,

and (2.38) follows.

The proof of Proposition 2.1 then proceeds as the proof of Proposition 2.3 of [17], and
yields that under (2.19), (with u′ in place of un and u in place of un+1):

(2.42)

P[AT 2
(µ2,2)] ≤ pn(u

′) + ξ2,1(W+) + ξ1,2(W+)

(2.35),(2.36)

≤ pn(u
′) + 2u′

(
L̂0√
d

)(d−2)(
4n
(
c
L̂0

L0

)(d−2)

ℓ
−(n+1)(d−2)
0

)r

.

Inserting this inequality into (2.22), we thus infer (2.20) under the assumption on (2.19).
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We assume from now on that ℓ0 ≥ c(
√
d + R), with c > 2c5 sufficiently large so that

Proposition 2.1 holds. We then pick the sequences un, n ≥ 0 and rn, n ≥ 0, as follows:

un = u0 exp
{(

L̂0

L0

)(d−2) ∑
0≤k<n

(rk + 1)
(
c5
ℓ0

)(k+1)(d−2)}
,(2.43)

rn = r0 2
n ,(2.44)

where u0 > 0 and r0 is a positive integer. The choice (2.43) ensures that (2.19) is fulfilled
and the increasing sequence un has the finite limit

(2.45) u∞ = u0 exp
{(c5 L̂0

ℓ0L0

)(d−2)( r0

1− 2(c5 ℓ
−1
0 )(d−2)

+
1

1− (c5 ℓ
−1
0 )(d−2)

)}
.

The next proposition reduces the task of bounding pn(un) to a set of conditions, which
enable us to initiate the induction procedure suggested by Proposition 2.1. We view u∞
as a function of u0, r0, ℓ0, R, (we introduced R in (2.1)).

Proposition 2.3. There exists a positive constant c such that when u0 > 0, r0 ≥ 1,
ℓ0 ≥ c(

√
d+R), L0 ≥ d, L̂0 = (

√
d+R)L0, R ≥ 1, K0 > log 2 satisfy

u∞

(
L̂0√
d

)d−2

∨ eK0 ≤
(
ℓ0 L0

c6 L̂0

) r0
2
(d−2)

,(2.46)

p0(u0) ≤ e−K0,(2.47)

then

(2.48) pn(un) ≤ e−(K0−log 2)2n , for each n ≥ 0 .

Proof. The argument is similar to Proposition 2.5 of [17]. We assume as mentioned
before c > 2c5 large enough so that Proposition 2.1 applies. Condition (2.46) implies that

c6 L̂0 ≤ ℓ0 L0 (= L1). Thus the last term in the right-hand side of (2.20) satisfies:

(2.49)

un

(
L̂0√
d

)(d−2)(
4n
(
c6

L̂0

L0

)(d−2)

ℓ
−(n+1)(d−2)
0

)rn
≤

u∞

(
L̂0√
d

)(d−2)(
c6

L̂0

ℓ0 L0

)(d−2)rn( 4

ℓd−2

0

)nrn (2.2),(2.46)

≤
(
c6

L̂0

ℓ0 L0

) rn
2
(d−2)

.

As a result (2.20) yields that for n ≥ 0:

(2.50) pn+1(un+1) ≤ pn(un)
(
pn(un) +

(
c6

L̂0

ℓ0 L0

) r0
2
2n(d−2))

.

We then define by induction Kn, n ≥ 0, via the following relation valid for n ≥ 1,

(2.51) Kn = K0 −
∑

0≤n′<n

2−(n′+1) log
(
1 + eKn′2n

′
(
c6

L̂0

ℓ0 L0

) r0
2
2n

′
(d−2))

,
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so that Kn ≤ K0, and hence

Kn ≥ K0 −
∑
n′≥0

2−(n′+1) log
(
1 + eK02n

′
(
c6

L̂0

ℓ0L0

) r0
2
2n

′
(d−2))

(2.46)

≥ K0 −
∑
n′≥0

2−(n′+1) log 2 = K0 − log 2 > 0 .

(2.52)

As we now show by induction we have pn(un) ≤ e−Kn2n .

Indeed this inequality holds for n = 0, due to (2.47), and if it holds for n ≥ 0, then
due to (2.50) we find that

pn+1(un+1) ≤ e−Kn2n
(
e−Kn2n +

(
c6

L̂0

ℓ0 L0

) r0
2

2n(d−2))

= e−Kn2n+1
(
1 + eKn2n

(
c6

L̂0

ℓ0L0

) r0
2

2n(d−2)) (2.51)
= e−Kn+12n+1

.

This proves that pn(un) ≤ e−Kn2n for all n ≥ 0, and (2.48) follows.

Remark 2.4. One of the main issues we now have to face, is proving the local estimate
p0(u0) ≤ e−K0 , see (2.47), for large d, with u0 of order close to log d, (and a posteriori close
to u∗). We further need K0 sufficiently large so that 2−(K0−log 2)2n beats the combinatorial
complexity arising from the choice of the binary trees in the upper bound (2.18), i.e. beats

the factor |Λn|
(2.13)

≤ (c4 ℓ0)
2(d−1)(2n−1). Devising this local estimate will be the object of

the next section and will involve aspects of random interlacements at a shorter range,
where features reminiscent of random interlacements on 2d-regular trees, cf. Section 5 of
[23], will be manifest. �

3 Local connectivity bounds

The object of this section is to derive exponential bounds on the decay of the probability
of existence of a path in the vacant set at level u0 = (1+5ε) log d, starting at the origin and
traveling at ℓ1-distanceMd, whereM is an arbitrary integer and d ≥ c(ε,M), cf. Corollary
3.4. For this purpose we develop an enhanced Peierls-type argument. The main step comes
in Theorem 3.1 below. In the present section aspects of random interlacements on Z

d for
large d, reminiscent of random interlacements on 2d-regular trees, cf. [23], will play a
important role. We introduce the parameter

(3.1) 0 < ε <
1

3
.

We also introduce in the notation of (1.14)

(3.2) L = c7 d, with c7 = [e8c2] + 2 .

The main result of this section is the following estimate on the connectivity function.
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Theorem 3.1. (d ≥ c)

For any positive integer M , we have

(3.3) P[0
Vu0←→ S1(0,ML)] ≤ exp

{
M(M − 1)

2
L+ 3Md − ε2

5
Md log d

}
,

where the notation is similar to (2.14) and

(3.4) u0 = (1 + 5ε) log d .

Proof. Observe that any self-avoiding path from 0 to S1(0,ML) successively visits the
ℓ1-spheres S1(0, iL), with i = 0, . . . ,M − 1. Thus considering the first [ ε

10
d] steps of the

path consecutive to the successive entrances in the various spheres S1(0, iL), we obtainM
self-avoiding paths πi, i = 0, . . . ,M − 1, where πi starts in S1(0, iL) and has [ ε

10
d] steps

for each i. Denoting by zi, i = 0, . . . ,M − 1, the respective starting points of these paths,
we find that:

(3.5) P[0
Vu0←→ S1(0,ML)] ≤ ∑

zi,πi

P[Vu0 ⊇ range πi, for i = 0, . . . ,M − 1] ,

where the above sum runs over zi ∈ S(0, iL) and self-avoiding paths πi with [ ε
10
d] steps

and starting points zi, for i = 0, . . . ,M−1. The next lemma provides a very rough bound
on the cardinality of ℓ1-spheres and ℓ1-balls. Crucially it shows that ℓ1-spheres and balls
of radius cd are “rather small”: their cardinality grows at most geometrically in d.

Lemma 3.2. (ℓ ∈ N)

(3.6)
i) |S1(0, ℓ)| ≤ 2d eℓ+d

ii) |B1(0, ℓ)| ≤ 2d eℓ+1+d .

Proof. We express the generating function of |S1(0, k)|, k ≥ 0, as follows. Given |t| < 1,
we have:

∑
k≥0

tk|S1(0, k)| =
∑
k≥0

tk
∑

m1,...,md≥0
m1+···+md=k

2|{i∈{1,...,d};mi 6=0}|

=
∑

m1,...,md≥0

tm1+···+md2|{i∈{1,...,d};mi 6=0}| =
(
1 + 2

∑
m≥1

tm
)d

=
(1 + t

1− t
)d

≤ 2d

(1− t)d .

(3.7)

As a result we see that for 0 < t < 1, ℓ ≥ 0,

|S1(0, ℓ)| ≤ 2d(1− t)−d t−ℓ .

Choosing t = ℓ/(d+ ℓ), we find that

(3.8) |S1(0, ℓ)| ≤ 2d
(
1 +

ℓ

d

)d(
1 +

d

ℓ

)ℓ

≤ 2d eℓ+d ,

where we used the inequality 1 + u ≤ eu in the last step. This proves (3.6) i). As for the
inequality (3.6) ii), by (3.6) i) we can write:

(3.9) |B1(0, ℓ)| ≤ 2d ed
ℓ∑

k=0

ek = 2d ed
eℓ+1 − 1

e− 1
≤ 2d eℓ+1+d ,

and our claims follows.
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We now come back to (3.5). By a very rough counting argument for the number of
possible choices of πi, we have a Peierls-type bound:

(3.10)

P[0
Vu0←→ S1(0,ML)] ≤

(M−1∏
k=0

|S1(0, kL)| (2d)
ε
10

d
)

sup
zi,πi

P[Vu0 ⊇ range πi, i = 0, . . . ,M − 1]
(3.6) i)

≤

(M−1∏
k=0

2d ekL+d
)
(2d)

ε
10

Md sup
zi,πi

P[Vu0 ⊇ range πi, i = 0, . . . ,M − 1] ≤

e
M(M−1)

2
L+2Md (2d)

ε
10

Md sup
zi,πi

P[Vu0 ⊇ range πi, i = 0, . . . ,M − 1] ,

where the supremum runs over a similar collection as the sum in (3.5).

The next objective is to bound the probability in the last line of (3.10). For this
purpose for each x in the set

(3.11) B
def
=

M−1⋃

i=0

B1

(
zi,

ε

10
d
)
, (pairwise disjoint ℓ1-balls appear in this union),

we write zx for the unique zi such that x ∈ B
(
zi,

ε

10
d
)
. We then define for any x in B

the subset W ∗
x of W ∗, see above (1.24), (not to be confused with W ∗

{x}):

W ∗
x = the image under π∗ of

{
w ∈ W ; the minimum of d1(zx, w(n)), n ∈ Z,(3.12)

is reached for the first time at w(n) = x, and w does not enter any

B1

(
zi,

ε

10
d
)
, with zi 6= zx

}
.

Note that clearly W ∗
x ⊆W ∗

{x}, and that

(3.13) W ∗
x , x ∈ B, are pairwise disjoint measurable subsets of W ∗ .

It then follows that for zi, πi, 0 ≤ i ≤M − 1, as in (3.10), we have

(3.14)

P[Vu0 ⊇ range πi, i = 0, . . . ,M − 1] ≤

P

[
ω
(M−1⋃

i=0

⋃
x∈range πi

W ∗
x × [0, u0]

)
= 0

]
= exp

{
− u0

M−1∑
i=0

∑
x∈rangeπi

ν(W ∗
x )
}
≤

exp
{
− u0 M εd

10
× inf

x∈B
ν(W ∗

x )
}
.

We will now seek a lower bound on ν(W ∗
x ), for x ∈ B.

Choosing K = {x} in (1.25), (1.26), by (1.19) we see that for any x in B

ν(W ∗
x ) = Px

[
|Xn − zx|1 ≥ |x− zx|1, for n ≥ 0, and H S

zi 6=zx

B1(zi,
ε
10

d) =∞
]
×

Px

[
|Xn − zx|1 > |x− zx|1, for n > 0, and H S

zi 6=zx

B1(zi,
ε
10

d) =∞
]

≥
(
Px[|Xn − zx|1 > |x− zx|1, for n > 0]− ∑

zi 6=zx

Px

[
HB1(zi,

ε
10

d) <∞
])2

+
.

(3.15)
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In view of (1.14) and the choice of L in (3.2) we see that when d ≥ 8, we have:

(3.16)

∑
zi 6=zx

Px

[
HB1(zi,

ε
10

d) <∞
]
≤ ∑

zi 6=zx

sup
y∈B(zi,

ε
10

d)

g(y − x)
∣∣∣B1

(
0,

ε

10
d
)∣∣∣

(1.14),(3.6)ii)

≤

2
∑
j≥1

(
c2 d

jL− ε

5
d

)d
2
−2

2d e
ε
10

d+1+d
(3.2)

≤ 2e−8(d
2
−2)+3d+1

∑
j≥1

j−(d
2
−2)

d≥8

≤ c e−d .

The next lemma yields a lower bound on the first term in the last line of (3.16).

Lemma 3.3. (d ≥ c)

When |y|1 ≤ d
2
, one has

(3.17) Py[|Xn|1 > |y|1, for all n > 0] ≥ 1− 4(|y|1 ∨ 1)

2d− (|y|1 ∨ 1)
.

Proof. We first note that for z = (z1, . . . , zd) in Z
d, Pz-a.s.,

∣∣|X1|1 − |z|1
∣∣ = 1, and

(3.18)
Pz[|X1|1 = |z|1 + 1] =

1

2d

(
2d−

d∑
k=1

1{zk 6= 0}
)
≥ p|z|1, where

pm
def
=

(
1

2
+

1

2

(
1− m

d

)
+

)
, for m ≥ 0 .

We then introduce the canonical Markov chain Nn on N that jumps to m+1 with proba-
bility pm and to m− 1 with probability qm = 1− pm, when located at m. We denote with
Qm the canonical law of this Markov chain starting in m. In view of (3.18), a coupling
argument shows that we can construct Xn and Nn on the same probability space so that
a.s. |Xn|1 ≥ Nn, for all n ≥ 0, and X0 = y ∈ Z

d, N0 = |y|1. Consequently we see that
when y 6= 0, we have the bound, (with m = |y|1 ≤ d

2
):

Py[HS1(0,d2) < H̃B1(0,|y|1)] ≥ Q|y|1[Hd2 < H̃|y|1]

= pm(1 + ρm+1 + ρm+1 ρm+2 + · · ·+ ρm+1 . . . ρd2−1)
−1,

(3.19)

where ρℓ =
qℓ
pℓ
, for ℓ ≥ 0, and we have used [5], (5), p. 73.

Note that the expression in the right-hand side of (3.19) is a decreasing function of
each ρℓ, m + 1 < ℓ < d2. If we further observe that ρℓ ≤ (1

2
− 1

2
× 1

4
)(1

2
+ 1

2
× 1

4
)−1 = 3

5
,

for m + 1 < ℓ ≤ 3
4
d, and ρℓ ≤ 1, for 3

4
d < ℓ ≤ d2 − 1, we see that the above expression

is bigger than:

(
1− m

2d

)(
1 +

m

2d−m

∑
k≥0

(
3

5

)k

+
(
3

5

)[ 3
4
d]−m

d2
)−1 m≤ d

2≥
(
1− m

2d

)(
1 +

5

2

m

2d−m
+

5

3

(
3

5

)d
4
d2
)−1 d≥c

≥
1≤m≤ d

2

(
1− m

2d

)(
1 + 3

m

2d−m

)−1

≥
(
1− m

2d

)(
1− 3

m

2d−m

) (
≥ 0, since m ≤ d

2

)
.
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By the strong Markov property at time HS1(0,d2), we thus find that for d ≥ c, 1 ≤ |y|1 ≤ d
2
,

we have:

(3.20)

Py[|Xn|1 > |y|1, for all n > 0] ≥
(
1− |y|1

2d

)(
1− 3|y|1

2d− |y|1

)(
1− sup

|z|1=d2
Pz[HB1(0,

d
2
) <∞]

) (1.1)

≥
(
1− |y|1

2d

)(
1− 3|y|1

2d− |y|1

)
− sup

|z|≥d3/2
Pz[HB(0,d) <∞]

(1.6)

≥

1− |y|1
2d
− 3|y|1

2d− |y|1
+

3|y|21
2d(2d− |y|1)

−
(

c√
d

)(d−2) d≥c

≥
y 6=0

1− 4|y|1
2d− |y|1

.

This completes the proof of (3.17) when y 6= 0. The extension to the case y = 0 is
immediate.

We use the above lemma to bound the first term in the last line of (3.15) from below.
In view of (3.16) and (3.17) we thus find that for d ≥ c, and any x ∈ B, (see (3.11)):

(3.21) ν(W ∗
x ) ≥

(
1− 5

|x− zx|1 ∨ 1

2d− (|x− zx|1 ∨ 1)

)2

≥ 1− 10
ε/10

2− ε/10
≥ 1− ε .

Coming back to (3.14) we thus find that

(3.22) P[Vu0 ⊇ range πi, i = 0, . . . ,M − 1] ≤ exp
{
− u0

10
M ε(1− ε) d

}
.

Inserting this bound in the last line of (3.10) we obtain

P[0
Vu0←→ S1(0,ML)] ≤ exp

{
M(M − 1)

2
L+ 2Md − u0

10
ε(1− ε)Md

}
(2d)

ε
10

Md

(3.4)

≤ exp
{
M(M − 1)

2
L+ 3Md +

ε

10
Md log d− 1

10
(ε+ 4ε2 − 5ε3)Md log d

}
.

Since 5ε3 ≤ 2ε2, due to (3.1), the claim (3.3) follows. �

We will use the following corollary in the proof of Theorem 0.1 in the next section.

Corollary 3.4. (with (3.1), (3.2))

Given M ≥ 1, then for d ≥ c(M, ε),

(3.23) P[0
Vu0←→ S1(0,ML)] ≤ exp

{
− ε2

10
dM log d

}
.

Proof. This is an immediate consequence of (3.3).

Remark 3.5. One should note that the bound of Theorem 3.1 deteriorates when M
becomes large. One can view Theorem 3.1 as a Peierls-type bound, (slightly enhanced
due to the role of M in the proof). In the next section we will pick M as a large constant
depending on ε, and use Corollary 3.4 to produce the local estimate, which will enable
us to initiate the renormalization scheme of Section 2. In this fashion the local estimate
on crossings in Vu0 at ℓ1-distance of order c(ε)d will be transformed into an estimate on
crossings at all scales in Vu∞ , where u∞ ≤ (1 + 10ε) log d. �
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4 Denouement

In this section we prove Theorem 0.1. We combine the local bound on the connectivity
function at level u0 of the last section, cf. Corollary 3.4, with the renormalization scheme
of Section 2, cf. Proposition 2.3, in order to produce a bound on vacant crossings at a
level u∞ ∈ [(1 + 5ε) log d, (1 + 10ε) log d], valid at arbitrary large scales.

Proof of Theorem 0.1: We pick ε and u0 as in (3.1), (3.4). For the renormalization scheme
of Section 2, we choose, (the constant c7 appears in (3.2)):

L0 = d, L̂0 = (
√
d+R)L0, with R = 300c7 ε

−2, and(4.1)

ℓ0 = d .(4.2)

In the notation of Proposition 2.3 and (2.13) we pick

r0 = 24, and(4.3)

K0 = log(4(c4 ℓ0)
2(d−1))

(4.2)
= log(4(c4 d)

2(d−1)) .(4.4)

In the application of Corollary 3.4, we choose

(4.5) M = [100ε−2] + 1 ,

so that in the notation of (3.2), (4.1)

(4.6) ML + 1 ≤ RL0 .

We will now check that the assumptions of Proposition 2.3 hold for d ≥ c(ε). By (2.45)
we see that for d ≥ c(ε),

(4.7) u0 = (1 + 5ε) log d < u∞ < (1 + 10ε) log d ,

and also that

(4.8) L̂0 ≤ 2d
3
2 .

As a result we find that

(4.9) u∞

(
L̂0√
d

)(d−2)

≤ (1 + 10ε) (log d)(2d)(d−2) ,

and that

(4.10) eK0 = 4(c4 d)
2(d−1) ,

whereas on the other hand

(4.11)
(
ℓ0 L0

c6 L̂0

) r0
2

(d−2)

≥ (cd)6(d−2) .

Since 2(d− 1) < 6(d− 2), we see that for d ≥ c(ε), the expression in the left-hand side of
(4.11) dominates the corresponding expressions in (4.9) and (4.10), i.e. (2.46) holds.
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There remains to check (2.47). For this purpose we apply Corollary 3.4, and find that

for d ≥ c(ε), since L̂0 ≥
√
dL0 +ML+ 1, cf. (4.1), (4.6), we have

p0(u0) = P
[
[0, L0 − 1]d

Vu0←→ ∂intB(0, L̂0)
]

≤ Ld
0 P[0

Vu0←→ S1(0,ML)]
(3.23)

≤
(4.5)

exp{d log d− 10d log d} = d−9d.
(4.12)

We thus find that for d ≥ c(ε), p0(u0) ≤ e−K0, i.e. (2.47) holds as well. It now follows
from Proposition 2.3 that for d ≥ c(ε):

(4.13) pn(u∞) ≤ e−(K0−log 2)2n , for all n ≥ 0 .

Taking (2.13), (2.18) into account yields that for all n ≥ 1,

(4.14)
P
[
[0, Ln − 1]d

Vu∞←→ ∂int[−Ln, 2Ln − 1]d
]
≤

(c4 ℓ0)
2(d−1)(2n−1)e−(K0−log 2)2n

(4.10)

≤ 2−2n .

In particular the above inequality implies that P[0
Vu∞←→ ∞] = 0, and hence u∗ ≤ u∞ <

(1+10ε) log d, for d ≥ c(ε). The claim (0.6) readily follows. Combining this upper bound
with the lower bound (0.3), we have thus proved Theorem 0.1.

Remark 4.1.

The inequality (4.14) together with the fact that Ln = L0 ℓ
n
0 , for n ≥ 0, is more than

enough to show that for ε as in (3.1) and d ≥ c(ε),

lim
L→∞

Lγ
P[B∞(0, L)

V(1+10ε) log d

←→ S∞(0, 2L)] = 0 ,

for some, and in fact all γ > 0. From the definition of the critical parameter u∗∗ in [19]:

u∗∗ = inf{u ≥ 0; α(u) > 0}, where

α(u) = sup{α ≥ 0; lim
L→∞

Lα
P[B∞(0, L)

Vu

←→ S∞(0, 2L)] = 0} ,
(4.15)

(the supremum is by convention equal to zero, when the set is empty), we thus find that
for d ≥ c(ε),

(4.16) u∗∗ ≤ (1 + 10ε) log d .

Since u∗ ≤ u∗∗, it follows that we have also proved that

(4.17) lim
d
u∗∗/ log d = 1 .

It is presently open whether u∗ = u∗∗, however one knows that 0 < u∗ ≤ u∗∗ <∞, for all
d ≥ 3, cf. [21], and that for u > u∗∗ the connectivity function has a stretched exponential
decay, cf. [17].

2) One may wonder whether the following reinforcement of (0.4) actually holds:

P[0 ∈ Vu∗ ] = e−u∗/g(0) ∼ (2d)−1, as d→∞ .

This would indicate a similar high-dimensional behavior as for Bernoulli percolation, see
[1], [2], [6], [9], [11]. In the case of interlacement percolation on a 2d-regular tree, such an
asymptotic behavior is known to hold, cf. [22]. �
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A Appendix

In this appendix we prove an elementary inequality, which enters the proof of the Green
function estimate (1.14), see Lemma A.1 below. We then prove in Lemma A.2 a bound on
Harnack constants in terms of killed Green functions, for nearest neighbor Markov chains
on graphs. The result is stated in a rather general formulation, due to its independent
interest. It is an adaptation of Lemma 10.2 of [7]. We recall that Lemma A.2 enters the
proof of Proposition 1.3.

Lemma A.1.

(A.1) for a, b ≥ 0,
√
a2 + b2 log(1 +

√
a2 + b2) ≤ a log(1 + a) + b log(1 + b) .

Proof. We introduce ψ(u) = u log(1 + u), u ≥ 0, as well as ϕb(a) =
√
a2 + b2 and χb(a) =

ψ(a) + ψ(b)− ψ(ϕb(a)), for a, b ≥ 0. We want to show that

(A.2) χb(a) ≥ 0, for a, b > 0 .

We note that χb(0) = 0, and that

χ′
b(a) = log(1 + a) + 1− 1

1 + a
−

(
log(1 + ϕb(a)) + 1− 1

1 + ϕb(a)

)
a

ϕb(a)
.

The claim (A.2) will follow once we show that

(A.3) χ′
b(a) ≥ 0, for a, b > 0 .

To this end we note that for a > 0, χ′
0(a) = 0, and that

∂

∂b
χ′
b(a) = −

(
1

1 + ϕb(a)

b

ϕb(a)
+

1

(1 + ϕb(a))2
b

ϕb(a)

)
a

ϕb(a)

+
(
log(1 + ϕb(a)) + 1− 1

1 + ϕb(a)

)
ab

ϕb(a)3

=
ab

(1 + ϕb(a))ϕb(a)3

{
log(1 + ϕb(a))(1 + ϕb(a))− ϕb(a)

1 + ϕb(a)

}
.

(A.4)

Introduce the function ρ(u) = log(1+ u)(1+u)− u
1+u

, u ≥ 0. Observe that ρ(0) = 0, and

ρ′(u) = log(1 + u) + 1− 1
(1+u)2

≥ 0, so that ρ(u) ≥ 0, for u ≥ 0. Coming back to the last

line of (A.4), we find that for a > 0, ∂
∂b
χ′
b(a) ≥ 0, for b ≥ 0. This shows (A.3) and the

claim (A.1) follows.

We then turn to the second result of this appendix. We consider a connected graph
Γ with an at most countable vertex set E, and edge set E , (a subset of the collection of
unordered pairs of E). Given U ⊆ E, we define ∂U , ∂intU and U similarly to what is
described at the beginning of the Section 1, (with obvious modifications). We consider an
irreducible Markov chain on E, nearest-neighbor in the wide sense, (i.e. at each step the
Markov chain moves to a vertex, which is at graph-distance at most one from its current
location). We write Xn, n ≥ 0, for the canonical process, Px for the canonical law starting
from x ∈ E, and otherwise use similar notation as described at the beginning of Section 1.
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We denote with p(x, y), x, y ∈ E, the transition probability. We assume that the Markov
chain satisfies the ellipticity condition:

(A.5) p(x, y) > 0, when x, y are neighbors, (i.e. {x, y} ∈ E}) .

For f a bounded function on E, we define

(A.6) Lf(x) = Ex[f(X1)]− f(x) =
∑
y∼x

p(x, y)(f(y)− f(x)), for x ∈ E ,

where y ∼ x means that y = x or y is a neighbor of x. Given U ⊆ E, a bounded function
on U is said to be harmonic in U when (with a slight abuse of notation):

(A.7) Lf(x) = 0, for x ∈ U .

When U is a finite strict subset of E, the Green function killed outside U is defined as
follows, (the notation is similar to Section 1):

(A.8) GU(x, y) = Ex

[ ∑
k≥0

1{Xk = y, TU > k}
]
, x, y ∈ E .

It follows from the ellipticity assumption (A.5), that when U is connected, GU(x, y) > 0,
for all x, y ∈ U . The next lemma is an adaptation of Lemma 10.2 of [7].

Lemma A.2. Assume that ∅ 6= U1 ⊆ U2 ⊆ U3 are finite strict subsets of E, with U3

connected, and that u is a bounded non-negative function on U 3, which is harmonic in
U3. Then one has:

(A.9) max
U1

u ≤ K min
U1

u ,

where

(A.10) K = max
x,y∈U1

max
z∈∂intU2

GU3(x, z)/GU3(y, z) .

Proof. We define for x ∈ E,

(A.11) v(x) = Ex[u(XHU2
), HU2 < TU3 ] .

We first note that

(A.12) u(x) ≥ v(x), for x ∈ U 3, and u(x) = v(x), for x ∈ U2 .

Indeed in view of (A.11), u and v agree on U2, and thanks to our assumptions, u(Xn∧TU3
),

n ≥ 0, is a bounded martingale under Px, x ∈ U 3, so that by the stopping theorem we
find

u(x) = Ex[u(XHU2
∧TU3

)] = v(x) + Ex[u(XTU3
), TU3 < HU2 ]

≥ v(x), for x ∈ U3 .

The claim (A.12) follows.
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Applying the simple Markov property at time 1 in (A.11), when x ∈ U3\U2, we see
that

(A.13) v is harmonic in U3\U2 .

In addition we have for x ∈ U2:

v(x) = u(x) =
∑
y∼x

p(x, y) u(y)
(A.12)

≥ ∑
y∼x

p(x, y) v(y) ,

and the last inequality is an equality when x ∈ U2\∂int U2. We have thus shown that

(A.14) Lv = 1∂intU2Lv ≤ 0, on U3 .

Applying the stopping theorem, we see that under any Px

v(Xn∧TU3
)− ∑

0≤k<n∧TU3

Lv(Xk), n ≥ 0, is a martingale .

Taking expectations and letting n tend to infinity, we obtain the identity:

v(x) = Ex[v(XTU3
)]− Ex

[ ∑
0≤k<TU3

Lv(Xk)
]

= − ∑
z∈E

GU3(x, z)Lv(z)
(A.14)
=

∑
z∈∂intU2

GU3(x, z)(−Lv)(z), x ∈ E .
(A.15)

Since v and u agree on U2 ⊇ U1, (A.9) is a direct consequence of the above representation
formula for v.
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