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Abstract

We study the percolative properties of random interlacements on G× Z, where
G is a weighted graph satisfying certain sub-Gaussian estimates attached to the
parameters α > 1 and 2 ≤ β ≤ α + 1, describing the respective polynomial growths
of the volume on G and of the time needed by the walk on G to move to a distance.
We develop decoupling inequalities, which are a key tool in showing that the critical
level u∗ for the percolation of the vacant set of random interlacements is always
finite in our set-up, and that it is positive when α ≥ 1 + β

2 . We also obtain several
stretched exponential controls both in the percolative and non-percolative phases of
the model. Even in the case where G = Z

d, d ≥ 2, several of these results are new.
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0 Introduction

Random interlacements offer a microscopic model for the structure left at appropriately
chosen time scales by random walks on large recurrent graphs, which are locally tran-
sient. In this work we investigate the percolative properties of random interlacements on
transient weighted graphs E of the form G × Z, where the walk on the weighted graph
G satisfies certain sub-Gaussian estimates governed by two parameters α > 1 and β in
[2, α+1], respectively reflecting the volume growth of G, and the diffusive or sub-diffusive
nature of the walk on G. Random interlacements on the weighted graphs considered
in this article occur for instance in the description of the microscopic structure left by
random walks on discrete cylinders GN × Z, with large finite bases GN , which tend to
look like G in the vicinity of certain points, when the walk on GN × Z, runs for times
comparable to the square of the number of points in GN , see [22], [31]. In the spirit of
[30], they are expected to occur in the description of the microscopic structure left by
random walks on suitable sequences of large finite graphs EN , which tend to look like E
in the vicinity of certain points, when the walk runs for times proportional to the number
of points in EN .

Here, our main interest lies in the percolative properties of Vu the vacant set at level
u of random interlacements on E, as u ≥ 0 varies. This set is the complement in E of the
trace of the trajectories with labels at most u in the interlacement point process. These
percolative properties are naturally related to various disconnection and fragmentation
problems, see [10], [23], [24], [1], [5], [6], [7], [9], [28]. For instance in the case of random
walks on the cylinders (Z/NZ)d×Z, with d ≥ 2, one can construct couplings of the trace
in a box of size N1−ε of the complement of the trajectory of the walk after completion of
a suitable number of excursions to the vicinity of the box, with the vacant set of random
interlacements in a box of size N1−ε in Z

d+1, see [23], [24], and [4]. These couplings enable
one to show that the disconnection time TN of the cylinder by the walk has precise order
N2d. They also suggest a candidate limit distribution for TN/N2d as N goes to infinity,
which brings into play the critical parameter u∗ for the percolation of Vu, see [23], [24].
Proving that such a limit holds presently rests on being able to sharpen controls on the
percolative properties of Vu when u is fixed but possibly close to u∗. In the case of random
walks on (Z/NZ)d, d ≥ 3, similar couplings between the trace left by the complement
of the trajectory of the walks at time uNd in boxes of size N1−ε, and the trace of Vu in
boxes of size N1−ε in Z

d can be constructed, cf. [28]. They enable one to show that for
small u there typically is a giant component containing order Nd sites in the complement
of the trajectory of the walk at time uNd, which is unique, at least when d ≥ 5, and that
for large enough u there typically are only small components. The critical value u∗ for
the percolation of Vu is moreover conjectured to be the threshold for this fragmentation
problem, separating the two behaviors mentioned above. The proof of such a conjecture
analogously rests on the improvement of controls on the percolative properties of Vu for u
fixed but possibly close to u∗. When (Z/NZ)d is replaced by a large d-regular graph on N
vertices, with d ≥ 3, and random walk runs on the graph up to time uN , one can indeed
show that when u < u∗, for large N there typically is a component in the complement of
the trajectory with order N vertices, which is unique, whereas for u > u∗ all components
are small. The relevant threshold for this fragmentation problem is now the critical value
u∗ for the percolation of the vacant set of random interlacements on the d-regular tree,
(the local model for typical points of large random d-regular graphs), cf. [6], [7], [9].
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We now describe our results in more detail, but refer to Section 1 for precise definitions.
We consider graphs of the form E = G × Z, where G is an infinite connected graph of
bounded degree, endowed with bounded and uniformly positive weights along its edges.
We assume that G is α-Ahlfors regular for some α > 1, that is, see also (1.7),

(0.1)
the volume of balls of radius R in the graph-distance on G
behaves as Rα, up to multiplicative constants.

We endow the product graph E = G×Z with weights, which take the value 1 for “vertical
edges” in the Z-direction, and agree with the corresponding weights on G for “horizontal
edges” in the G-direction. These weights naturally determine a random walk on E, which
at each step jumps to one of its neighbors with a probability proportional to the weight of
the edge leading to this neighbor. Due to (0.1) the random walk on E is in fact transient,
see below(1.8), and we assume that the Green density g(·, ·) has a power decay of the
following kind: there is a β in [2, α + 1], such that

(0.2) c(d(x, x′) ∨ 1)−ν ≤ g(x, x′) ≤ c′(d(x, x′) ∨ 1)−ν , for x, x′ in E ,

with ν = α− β
2

(a positive number due to the constraints on α, β), and d(·, ·) the distance
on E defined by:

(0.3) d(x, x′) = max(dG(y, y′), |z − z′| 2β ), for x = (y, z), x′ = (y′, z′) in E,

where dG(·, ·) stands for the graph-distance on G.

In fact, with the help of [11], [12], the above assumptions can be restated in terms
the following sub-Gaussian estimates for the transition densities pG

n (y, y′) of the walk
determined by the weighted graph G, see Remark 1.1 2):

(0.4)

i) pG
n (y, y′) ≤ c n−α

β exp{−c(dG(y, y′)β/n)
1

β−1}, for n ≥ 1, y, y′ in G,

ii) pG
n (y, y′) + pG

n+1(y, y′) ≥ c n−α
β exp{−c(dG(y, y′)β/n)

1
β−1},

for n ≥ 1 ∨ dG(y, y′), y, y′ in G ,

and c refers to positive constants changing from place to place.

The classical example G = Z
d, d ≥ 2, endowed with the natural weight equal to 1

along all edges thus corresponds to α = d, β = 2, whereas the case of G, the discrete
skeleton of the Sierpinski gasket endowed with its natural weight, corresponds to α = log 3

log 2
,

β = log 5
log 2

(> 2), see [15], [3]. We also refer to [2], [3], [11], [12], [14], for many more examples

and for equivalent characterizations of (0.4).

Random interlacements on the transient weighted graph E consist in essence of a
Poisson point process on the state space of doubly infinite trajectories on E modulo time-
shift, which tend to infinity at positive and negative infinite times, see [26], Section 1, and
[21], Remark 1.4. A non-negative parameter u plays the role of a multiplicative factor of
the σ-finite intensity measure of this Poisson point process. In fact, one constructs “at
once”, on the same probability space (Ω,A, P), the whole family Iu, u ≥ 0, of random
interlacements at level u. These random subsets of E are infinite when u is positive, and
come as unions of the ranges of the trajectories modulo time-shift with label at most u, in
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the canonical Poisson cloud constructed on (Ω,A, P). The law on {0, 1}E of the indicator
function of Iu is characterized by the identity:

(0.5) P[Iu ∩K = ∅] = exp{−u cap(K)}, for all finite subsets K of E ,

with cap(K) the capacity of K, see (1.21).

There is by now substantial evidence that the percolative properties of the vacant set
Vu = E\Iu play an important role in understanding various disconnection and fragmenta-
tion problems for random walks on large recurrent approximations of E, see in particular
[23], [24], [7], [28].

To further discuss these properties, we define for x in E and u ≥ 0,

(0.6) η(x, u) = P[x
Vu

←→∞] ,

where the above notation refers to the event “ x belongs to an infinite connected compo-
nent of Vu”. It is known from Corollary 3.2 of [26] that the critical value

(0.7) u∗ = inf{u ≥ 0; η(x, u) = 0} ∈ [0,∞] ,

does not depend on the choice of x. It is an important question whether u∗ is finite and
positive. We show in Theorem 4.1 that Vu does not percolate for large u, that is:

(0.8) u∗ <∞ .

When α ≥ 1 + β
2
, i.e. ν ≥ 1 in (0.2), we show in Theorem 5.1 that for small u > 0, Vu

percolates in “half-planes” of E = G×Z that are product of a semi-infinite geodesic path
in G with Z, and in particular that

(0.9) u∗ > 0, when ν ≥ 1 .

Some special cases of (0.8), (0.9) are known, for instance when E is Z
d+1, d ≥ 2, endowed

with its natural weight, see [21], [18]. Also when ν ≥ 6, the methods of Section 4 of [26]
can likely be adapted to prove (0.9). But Theorems 4.1 and 5.1 yield further information.
If B(x, r) denotes the closed ball with center x in E and radius r ≥ 0 in the d(·, ·)-metric,
see (0.3), and ∂intB(x, r) stands for the set of points in B(x, r) neighboring B(x, r)c, we
introduce:

(0.10) u∗∗ = inf{u ≥ 0; lim
L→∞

sup
x∈E

P[B(x, L)
Vu

←→ ∂intB(x, 2L)] = 0} ∈ [0,∞] ,

where the event under the probability refers to the existence of a nearest neighbor path
in Vu between B(x, L) and ∂intB(x, 2L). We trivially have u∗ ≤ u∗∗ ≤ ∞, and Theorem
4.1 actually shows that

(0.11) u∗∗ <∞ ,

and that for u > u∗∗, the connectivity function has a stretched exponential decay

(0.12) P[x
Vu

←→ ∂intB(x, L)] ≤ c e−c′ Lγ

,
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where c(u), c′(u) > 0 and 0 < γ(u) < 1 are constants possibly depending on u. We also
introduce the value

(0.13) ũ = inf{u ≥ 0; lim
L→∞

sup
P,x∈P

P[B(x, L)
∗−Iu∩P←→ ∂intB(x, 2L)] > 0} ,

where P runs over all the half-planes in E, and the event under the probability refers to
the existence of a ∗-path in Iu ∩P between B(x, L) and ∂intB(x, 2L), see below (3.8) for
the definition of a ∗-path in P. We show in Theorem 5.1 and Corollary 5.5 that

(0.14) ũ ≤ u∗ ,

that for u < ũ and for any half-plane P, and x in P, as above,

(0.15) P[the component of x in Vu ∩ P is finite and intersects ∂intB(x, L)] ≤ ce−c′ Lγ′

,

with c(u), c′(u) > 0 and 0 < γ(u)′ < 1, constants possibly depending on u, that in (0.13)
the quantity under the lim inf satisfies a similar stretched exponential decay when u < ũ,
and importantly that

(0.16) ũ > 0, when ν ≥ 1 .

When E = Z
d+1, d ≥ 2, for all the above results, the distance in (0.3) and the associated

balls can be replaced with the more common sup-norm distance and corresponding balls.
Even in the special case E = Z

d+1, d ≥ 2, the above results improve on present knowledge,
see Remarks 4.2 1) and 5.6 1).

However in the case of a general E with ν < 1, (for instance when G is the discrete
skeleton of the Sierpinski gasket), it is a challenging question left open by the present
work to understand whether u∗ > 0, see Remark 5.6 2).

We now provide some comments on the proofs. An important difficulty stems from the
long range interaction present in random interlacements, (for instance the correlation of
the events {x ∈ Vu} and {x′ ∈ Vu} decays as d(x, x′)−ν , when the distance between x and
x′ grows, see (1.38)). One important novelty of the present work, (even in the classical
case E = Z

d+1, d ≥ 2), is that we use the same renormalization scheme to treat both the
percolative and non-percolative regimes of Vu. The heart of the matter is encapsulated
in the decoupling inequalities stated in Theorem 2.6.

The decoupling inequalities bound from above the probability of an intersection of 2n

decreasing events, or 2n increasing events that depend on the respective traces of random
interlacements in 2n boxes in E, which are well “spread out”, and can be thought of as
the “bottom leaves” of a dyadic tree of depth n.

More precisely, for 2n decreasing, resp. increasing, events Am, resp. Bm, on {0, 1}E,
labelled by m, respectively adapted to 2n balls of size of order L0, which are well “spread
out”, this last feature involves a geometrically growing sequence of length scales Ln =
ℓn
0 L0, see (2.1) - (2.5), the decoupling inequalities state that for K > 0, 0 < ν′ < ν = α−β

2
,

when ℓ0 ≥ c(K, ν ′), L0 ≥ 1, u > 0, one has

(0.17) P

[⋂
m

Au+
m

]
≤∏

m

(P[Au
m] + ε(u)), and

(0.18) P

[⋂
m

Bu−
m

]
≤∏

m

(P[Bu
m] + ε(u−)),

4



where

(0.19) u± =
∏
n≥0

(
1 + c1

√
K

(n + 1)3
ℓ
− (ν−ν′)

2
0

)±1

u ,

and we have set for v > 0,

(0.20) ε(v) = 2 e−KvLν
0 ℓν′

0 /(1− e−Kv Lν
0 ℓν′

0 ) .

The notation Av
m, resp. Bv

m, in (0.17), resp. (0.18), refers to the event where the indicator
function of Iv belongs to Am, resp. Bm.

The tuning of the level u into u+ or u− in (0.17), (0.18), corresponds to the “sprinkling
technique”, where throwing in some additional trajectories of the random interlacements
provides a way to dominate long range interactions. Several variations of this strategy
have already been employed, see [21], [18], [19]. The novelty here is that percolative and
non-percolative regimes are handled in a unified and more powerful fashion thanks to the
decoupling inequalities, which themselves are the consequence of the renormalization step
stated in Theorem 2.1.

The strength of the decoupling inequalities comes to bear when applied to cascading
families of events as discussed in Section 3. Informally, the occurrence of an event of such
a family on a “large scale” trickles down to a “lower scale”, and permits the construction
of dyadic trees of finite depth, forcing the occurrence of events of the family at the bottom
scale, in well spread out boxes corresponding to the leaves of the tree. Balancing out the
combinatorial complexity of the possible dyadic trees arising in this construction, with the
bounds coming from the decoupling inequalities (0.17), (0.18), is the key to the derivation
of the stretched exponential bounds in (0.12), (0.15). The approach we develop here also
gives a way to revisit [27] from a new perspective, see Remarks 3.3 2) and 3.8) 1).

We will now explain the structure of this article.

In Section 1 we introduce further notation and collect several useful results about the
weighted graph E, random walk on E, and random interlacements on E. The Harnack
inequality that appears in Lemma 1.2 is instrumental in Section 2.

Section 2 develops the renormalization scheme underpinning the decoupling inequali-
ties of Theorem 2.6. The key renormalization step is carried out in Theorem 2.1.

In Section 3 we bring into play the cascading property and give several examples in
Proposition 3.2 and Remark 3.3. The combination of this notion with the decoupling
inequalities leads to the bounds stated in Theorem 3.4. Some consequences are stated in
the Corollaries 3.5 and 3.7.

Section 4 applies Theorem 3.4 and Corollary 3.5 to prove the finiteness of u∗∗, (and
hence of u∗), as well as the stretched exponential decay of the connectivity function when
u > u∗∗, see (0.10) - (0.12). The main result appears in Theorem 4.1.

In Section 5 we apply Corollary 3.5 and 3.7 to show in Theorem 5.1 that ũ ≤ u∗,
derive for u < ũ a stretched exponential bound for the occurrence of a large finite cluster
in the intersection of Vu with a half-space, and establish that ũ > 0, when ν ≥ 1.

The Appendix provides the proof of the cascading property of the family of “separation
events” introduced in Remark 3.3) 2), in the spirit of [27].
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Let us finally explain the convention we use concerning constants. We denote with
c, c′, c̃, c positive constants changing from place to place, which only depend on the
weighted graph G, (and in particular on α and β). Numbered constants c0, c1, . . . re-
fer to the value corresponding to their first appearance in the text. Finally dependence
of constants on additional parameters appears in the notation. For instance c(u) denotes
a positive constant depending on the weighted graph G and on u.

Acknowledgements: We wish to thank Augusto Teixeira for pointing out reference [1].

1 Notation and some useful facts

In this section we introduce the precise set-up and collect various useful results about
random walks and random interlacements on the type of weighted graphs we consider
in this article. An important control on Harnack constants for harmonic functions in
d(·, ·)-balls is stated in Lemma 1.2. Further we collect some facts concerning capacity and
entrance probabilities in Lemma 1.3. Several useful features of random interlacements
appear in Lemma 1.4.

We let N = {0, 1, . . .} denote the set of natural numbers. When u is a non-negative
real number, we let [u] stand for the integer part of u. Given a finite set A we denote
with |A| its cardinality. The graphs we consider have a countable vertex set and an edge
set made of unordered pairs of the vertex set. With an abuse of notation we often denote
a graph by its vertex set, when this causes no confusion. When x, x′ are distinct vertices
of the graph, we write x ∼ x′, if x and x are neighbors, i.e. if {x, x′} is an edge of the
graph. The graphs we discuss here are connected and have bounded degree, i.e. each
vertex has a uniformly bounded number of neighbors. A finite path in a graph refers to a
sequence x0, . . . , xN , N ≥ 0, of vertices of the graph such that xi ∼ xi+1, for 0 ≤ i < N .
We sometimes write path instead of finite path, when this causes no confusion. Given a
graph Γ as above, we denote with dΓ(·, ·) the graph-distance on Γ, i.e. the minimal number
of steps of a finite path joining two given vertices of Γ. The graphs under consideration
being connected, this number is automatically finite. We write BΓ(x, r) for the closed
dΓ-ball with center x in Γ and radius r ≥ 0. When U is a subset of vertices in Γ, we
denote by ∂U , ∂intU , and U , the vertex boundary, the interior vertex boundary, and the
closure of U :

∂U = {x ∈ U c; ∃x′ ∈ U, with x ∼ x′},
∂intU = {x ∈ U ; ∃x′ ∈ U c, with x ∼ x′}, and U = U ∪ ∂U .

(1.1)

Further we denote by χU the indicator function of U , and write U ⊂⊂ Γ to express that
U is a finite subset of the vertex set of Γ. A weight on Γ is a symmetric non-negative
function ρx,x′ on Γ × Γ such that ρx,x′ > 0 if and only if x ∼ x′. A weight ρ induces a
measure on the vertex set of Γ via

(1.2) ρ(x) =
∑

x′∼x

ρx,x′ and ρ(U) =
∑
x∈U

ρ(x), for U ⊆ Γ .

The natural weight on Γ refers to the choice ρx,x′ = 1x∼x′, and in this case ρ(x) coincides
with the degree of the vertex x in Γ. The set Z

m, m ≥ 1, throughout this work is tacitly
endowed with its usual graph structure and its natural weight, unless explicitly stated
otherwise.
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A weighted graph (Γ, ρ) induces a random walk on the vertex set of Γ having transition
probability

(1.3) px,x′ = ρx,x′/ρ(x), for x, x′ in Γ .

It satisfies the detailed balance equations relative to ρ:

(1.4) ρ(x) px,x′ = ρ(x′) px′x, for x, x′ in Γ .

We let Px stand for the canonical law of the walk on Γ starting at x, with transition
probability as in (1.3), and denote by (Xn)n≥0 the canonical process. The transition
density of the walk is defined as follows:

(1.5) pn(x, x′) = Px[Xn = x′]/ρ(x′), for n ≥ 0, x, x′ in Γ .

It is a symmetric function of x, x′ thanks to (1.4).

As explained in the Introduction our main interest lies in graphs of the form E = G×Z,
where G is an infinite connected graph of bounded degree endowed with a weight ρG such
that ρG

x,x′ is uniformly bounded, and uniformly positive, when x ∼ x′. We then endow E
with the weight:

ρx,x′ = ρG
y,y′ , if z = z′, with x = (y, z), x′ = (y′, z′) in E,

= 1, if |z − z′| = 1 and y = y′,

= 0, otherwise.

(1.6)

In particular for x as above, ρ(x) = ρG(y) + 2, see (1.2).

We further assume that for some α > 1, (G, ρG) is α-Ahlfors regular, that is

(1.7) c Rα ≤ ρG(BG(y, R)) ≤ c′Rα, for all R ≥ 1
2

and y in G .

When referring to the random walk in the weighted graph (E, ρ), we use the notation
introduced below (1.4). The Green density is defined as follows:

(1.8) g(x, x′) =
∑
n≥0

pn(x, x′), for x, x′ in E .

It is a symmetric function. It is in fact finite. To see this point, one uses (1.7) combined
with the upper bound from Proposition 3.13 of [17] on the transition density of the
continuous time walk on G using the weights on G as jump rates. The transition density
of the analogous continuous time walk on E is then the product of the transition densities
of the continuous time walk on G and of the continuous time walk on Z. Relating g(·, ·)
to the Green density of the continuous time walk on E, the finiteness of g(·, ·) readily
follows. We also refer to the Appendix of [20] for related controls. In a more substantive
fashion, we crucially assume the existence of a number β in [2, 1 + α] such that

(1.9) c(d(x, x′) ∨ 1)−ν ≤ g(x, x′) ≤ c′(d(x, x′) ∨ 1)−ν , for x, x′ in E ,

where ν = α− β
2

(> 0), and d(·, ·) denotes the distance function on E as in (0.3), that is:

(1.10) d(x, x′) = max{dG(y, y′), |z − z′| 2β }, for x = (y, z), x′ = (y′, z′) in E .
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Remark 1.1.

1) The condition β ≥ 2 is natural since we want that d(·, ·) in (1.10) defines a metric.
The inequality β ≤ 1 + α is then a consequence of (1.7) - (1.10). Indeed by (1.9), (1.11),
bringing into play the killed Green densities, (see also for instance (1.18) below), one sees
that Ex[TB(x,R)] ≥ c Rβ, see (1.12) for notation, and a similar inequality then holds for
the walk on G, with BG(y, R) in place of B(x, R). The inequality β ≤ 1 + α now follows
from a similar argument as in Lemma 1.2 of [2].

2) Under the assumptions on (G, ρG) stated above (1.6), for given α > 1, 2 ≤ β ≤ α + 1,
the conditions (1.7) and (1.9) are actually equivalent to the the sub-Gaussian bounds
(0.4) on the probability density pG

n (y, y′) of the walk on G, as we now explain.

Under (0.4), condition (1.7) follows from Grigoryan-Telcs [11], p. 503-504. The proof
of Lemma 5.4 of [20], with obvious modifications since ρG is the natural weight in [20],
shows that (1.9) holds.

Conversely given (1.7) and (1.9), the controls on Harnack constants for positive har-
monic functions in d(·, ·)-balls from Lemma 1.2 below, imply, in the terminology of [12],
the elliptic Harnack inequality on (G, ρG). In addition, for the walk on G, when starting
at y, the expected exit time from BG(y, R) is at least c Rβ, as mentioned in 1) above. It
is also at most c′ Rβ. To see this last point, one can for instance use the following fact,
which is a consequence of (1.9) and of lower bounds on the killed Green densities as in
(1.20) below, that given x and x′ in E with d(x, x′) ≤ 3R, the walk on E enters B(x′, R)
before exiting B(x, cR), with a probability uniformly bounded away from 0, when c is
chosen large. Condition (0.4) now follows from Theorem 3.1 of Grigoryan-Telcs [12].

We refer to [2], [3], [11], [12], [14], for further examples and equivalent characterizations
of (0.4) combined with the assumptions stated above (1.6). �

The metric d(·, ·) in (1.10) is well adapted to the possibly different natures of the hori-
zontal and vertical displacements of the walk on E. It plays an important role throughout
this work. We write B(x, r) for the corresponding closed ball with center x ∈ E and radius
r ≥ 0. When K, K ′ are subsets of E we write d(K, K ′) = inf{d(x, x′); x ∈ K, x′ ∈ K ′}
for the mutual distance of K and K ′. When K = {x} is a singleton, we simply write
d(x, K ′). As a direct consequence of (1.6), (1.7), (1.10) we have the following control on
the volume of balls in E:

(1.11) c Rα+ β
2 ≤ ρ(B(x, R)) ≤ c′ Rα+ β

2 , for x ∈ E, R ≥ 1

2
.

In the important special case E = Z
d+1, d ≥ 2, (i.e. when G = Z

d, d ≥ 2), we denote
with d∞(·, ·) the sup-norm distance on Z

d+1 and write B∞(x, r) for the corresponding
closed ball with center x and radius r. Let us already point out that when E = Z

d+1 we
can replace d(·, ·) with the more common metric d∞(·, ·) in the various constructions and
results we develop in this work.

We denote by W+ the set of nearest neighbor trajectories on E, defined for non-
negative times and tending to infinity, and byW+ the canonical σ-algebra on W+ induced
by the canonical process Xn, n ≥ 0. Due to (1.9), the walk on (E, ρ) is transient and
the set W+ has full measure under any Px. From now on we will view Px as a measure
on (W+,W+). When m is a measure on E, we denote by Pm the measure

∑
x∈E m(x)Px,
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and by Em the corresponding expectation. We let θn, n ≥ 0, stand for the canonical shift
on W+, so that θn(w)(·) = w(n + ·), for w ∈W+, n ≥ 0. Given U ⊆ E, we write

HU = inf{n ≥ 0; Xn ∈ U}, H̃U = inf{n ≥ 1; Xn ∈ U}

TU = inf{n ≥ 0; Xn /∈ U} ,
(1.12)

for the entrance time in U , the hitting time of U , and the exit time from U . In the case

U = {x}, we write Hx and H̃x for simplicity.

We now come to some important controls on Harnack constants. Given U ⊆ E, we
say that a function on U , see (1.1) for notation, is harmonic in U , when in the notation
of (1.3)

(1.13)
∑

x′∼x

px,x′f(x′) = f(x), for all x in U .

The following lemma is a crucial ingredient for the implementation of the sprinkling
technique in Section 2. It is based on (1.9) and Lemma A.2 of [25], which is an adaptation
of Lemma of 10.2 of [11].

Lemma 1.2. There exist c, c0 > 1 such that for x ∈ E, L ≥ 1, and v a non-negative
function on B(x, c0L), harmonic in B(x, c0 L) one has

(1.14) max
B(x,L)

v ≤ c min
B(x,L)

v .

Proof. We define Ui = B(x, Li), for i = 1, 2, 3, where L1 = L, L2 = 3L, and L3 ≥ L2 so
that U1 ⊆ U2 ⊆ U3. It follows from Lemma A.2 of [25] that when v′ is a non-negative
function on U3 harmonic in U3, one has

(1.15) max
U1

v ≤ K min
U1

v .

where

(1.16) K = max
ex,x∈U1

max
x′∈∂intU2

gU3(x̃, x′)/gU3(x, x′) ,

and gU3(·, ·) denotes the killed Green density:

(1.17) gU3(x̃, x′) = Eex

[ ∑
k≥0

1{Xk = x′, TU3 > k}
]
/ρ(x′), for x̃, x′ in E .

Applying the strong Markov property at time TU3 we find that

(1.18) gU3(x̃, x′) = g(x̃, x′)− Eex[g(XTU3
, x′)], for x̃, x′ in E .

As a result when x̃, x belong to U1 and x′ to ∂intU2, it follows from (1.9) that

gU3(x̃, x′) ≤ g(x̃, x′) ≤ c(L2 − L1 − 1)−ν ≤ c L−ν ,(1.19)

gU3(x, x′) ≥ c L−ν
2 − c(L3 − L2)

−ν ≥ c L−ν , when L3 = c0L .(1.20)

The claim (1.14) now follows from (1.15), (1.16), together with B(x, c0L) = U3 and
B(x, L) = U1.
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We now recall some facts concerning the equilibrium measure and the capacity of a
finite subset of E. Given K ⊂⊂ E, (see below (1.1) for the notation) we write eK for the
equilibrium measure of K and cap(K) for its total mass, the capacity of K:

eK(x) = Px[H̃K =∞] ρ(x) 1K(x), for x ∈ E ,

cap(K) = eK(E) =
∑

x∈K

Px[H̃K =∞] ρ(x) .
(1.21)

The subadditive property of the capacity easily follows from (1.21):

(1.22) cap(K ∪K ′) ≤ cap(K) + cap(K ′), for K, K ′ ⊂⊂ E ,

and classically, one can express the probability that the walk enters K via:

(1.23) Px[HK <∞] =
∑

x′∈K

g(x, x′) eK(x′), for x ∈ E .

The following lemma collects further useful facts.

Lemma 1.3.

(1.24)

cap({x}) = g(x, x)−1,

cap({x, x′}) =
g(x, x) + g(x′, x′)− 2g(x, x′)

g(x, x)g(x′, x′)− g(x, x′)2
, for x 6= x′ in E .

For K ⊂⊂ E, x ∈ E, one has:

(1.25)

∑
x′∈K

g(x, x′)/ sup
x∈K

∑
x′∈K

g(x, x′) ≤ Px[HK <∞] ≤
∑

x′∈K

g(x, x′)/ inf
x∈K

∑
x′∈K

g(x, x′) .

(1.26) c Lν ≤ cap(B(x, L)) ≤ c′Lν , for x ∈ E, L ≥ 1

2
.

Proof. The claim (1.24) follows by writing e{x} = γx δx and e{x,x′} = λxδx + λx′δx′ , with
γx, λx, λx′ ≥ 0, and then using (1.23) together with the identity Px[HK < ∞] = 1, when
x ∈ K, to determine γx, λx, λx′.

The bound (1.25) follows in a classical fashion from the L1(Px)-convergence of the
bounded martingale Mn =

∑
x′∈K g(Xm∧HK

, x′), n ≥ 0, towards 1{HK < ∞} ∑
x′∈K

g(XHK
, x′), and the resulting equality of the Px-expectation of this quantity with

∑
x′∈K

g(x, x′).

As for (1.26), a variation of the above argument yields the identity

g(x, x′) = Ex[g(XHB
, x′), HB <∞], for x, x′ in E and B = B(x′, L) .

By (1.9) we thus see that for x /∈ B one has

c(L/d(x, x′))ν ≤ Px[HB <∞]
(1.23)
=

∑
x∈B

g(x, x) eB(x) ≤ c′(L/d(x, x′))ν .

Letting x tend to infinity the claim (1.26) now follows from (1.9).
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We now collect some properties of random interlacements on the transient weighted
graph (E, ρ), which will be useful in the following sections. Random interlacements on
E are defined on a canonical space (Ω,A, P). On this space a certain Poisson point
process on W ∗×R+, (with W ∗ the space of doubly infinite E-valued trajectories tending
to infinity at positive and negative infinite times, modulo time-shift), having intensity
measure ν(dw∗)du, can be constructed. We refer to Section 2 of Teixeira [26], and also to
Remark 1.4 of [21], for the precise definition of this probability space and of the σ-finite
measure ν(dw∗). For the purpose of the present work we only need to recall that one can
define on (Ω,A, P) some families of Poisson point processes on the space W+, see above
(1.12) for the notation, namely µK,u(dw) and µK,u′,u(dw), for K ⊂⊂ E, and u, u′ ≥ 0,
with u′ < u, so that

(1.27)
µK,u′,u and µK,u′ are independent with respective intensity measures
(u− u′)PeK

and u′PeK
,

and

(1.28) µK,u = µK,u′ + µK,u′,u .

In essence µK,u, resp. µK,u′,u, keep track of the part after entrance in K of the doubly
infinite trajectories modulo time-shift, with labels at most u, resp. with labels in (u′, u],
belonging to the canonical Poisson cloud, that do enter K. These finite point measures
on W+ satisfy certain compatibility relations, the sweeping identities:

(1.29) µK,u =
m∑

i=1

1{HK(wi) <∞} δθHK(wi)
, if µK ′,u =

m∑
i=1

δwi
, for K ⊂ K ′ ⊂⊂ E, u ≥ 0 ,

together with the analogous relations for µK,u′,u and µK ′,u′,u, 0 ≤ u′ < u. We refer to
(1.13) - (1.15) of [19] or to (1.18) - (1.21) and Proposition 1.3 of [21] for more details.

Given ω ∈ Ω, the random interlacement at level u ≥ 0 is the random subset of E
defined by

(1.30) Iu(ω) =
⋃

K⊂⊂E

⋃
w∈Supp µK,u(ω)

range(w) ,

where the notation Supp µK,u(ω) refers to the support of the finite point measure µK,u(dw)
and range(w) = w(N) for w ∈W+. The vacant set at level u is then defined as

(1.31) Vu(ω) = E\Iu(ω), for ω ∈ Ω, u ≥ 0 .

As a straightforward consequence of the compatibility relations (1.29), see for instance
(1.54) of [21], one finds that:

(1.32) Iu(ω) ∩K =
⋃

w∈Supp µK′ ,u(ω)

w(N) ∩K, for any K ⊂ K ′ ⊂⊂ E, u ≥ 0, ω ∈ Ω .

It also readily follows from (1.27) that

(1.33) P[Vu ⊇ K] = exp{−u cap(K)}, for all K ⊂⊂ E, u ≥ 0 .

This identity determines the law Qu on {0, 1}E of χVu, the indicator function of Vu, see
Remark 2.2 2) of [21], or Remark 2.3. of [26]. The law Qu satisfies the FKG Inequality,
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see Theorem 3.1 of [26]: when f, g are increasing, σ(Ψx, x ∈ E)-measurable functions on
{0, 1}E, (with Ψx, x ∈ E, the canonical coordinates on {0, 1}E), which are Qu-square
integrable, then

(1.34) EQu [fg] ≥ EQu[f ] EQu [g] .

The following notation will be quite handy and recurrently used in the sequel. Given
J (ω) a random subset of E, and A a subset of {0, 1}E, we define

(1.35) A(J ) = {ω ∈ Ω; χJ (ω) ∈ A} ,

and write for u ≥ 0:

(1.36) Au def
= A(Iu) .

The following lemma attests the presence of a long range dependence in random inter-
lacements, and states a zero-one law for the occurrence of an infinite cluster in Vu. We
recall that ν = α− β

2
> 0, see (1.9).

Lemma 1.4. (u > 0, x, x′ in E)

P[x ∈ Vu] = exp
{
− u

g(x, x)

}
,(1.37)

c(u)d(x, x′)−ν ≤ covP(1{x ∈ Vu}, 1{x′ ∈ Vu}) ≤ c′(u)d(x, x′)−ν , for x 6= x′ .(1.38)

P[Vu contains an infinite connected component ] ∈ {0, 1} .(1.39)

Proof. The identity (1.37) directly follows from (1.24), (1.33). Similarly the covariance in
(1.38) is equal to, (writing gx in place of g(x, x)):

(1.40) exp{−u(g−1
x + g−1

x′ )}
(

exp
{
u
[gx + gx′

gxgx′

− gx + gx′ − 2g(x, x′)

gxgx′ − g(x, x′)2

]}
− 1

)
.

The expression inside the square bracket is non-negative as a result of (1.24) and the
subadditivity property of the capacity, see (1.22). The claim (1.38) when d(x, x′) > c(u)
is a simple consequence of (1.9). The case 0 < d(x, x′) ≤ c(u) follows from the inequality

(1.41) g(x, x′)/gx′ ≤ c̃ < 1, (and similarly for g(x′, x)/gx) ,

which straightforwardly implies that the expression in the square bracket remains uni-
formly bounded away from zero for such x, x′. To prove (1.41) one simply notes that
Px[Hx′ < ∞] = g(x, x′)/gx′, and uses an escape route from x′ for the walk starting at x,
which first moves in the Z-direction and then takes advantage of (1.9) to show that the
above probability is smaller than c̃ < 1.

Let us finally prove (1.39). When z ∈ Z, the translation tz in the Z-direction on
{0, 1}E is defined for σ ∈ {0, 1}E via tz(σ) = σ(x + z), for x ∈ E, where x + z is the
natural translation of x by z in E = G × Z. As a direct consequence of (1.33) and the
fact that cap(K + z) = cap(K) for any K ⊂⊂ E, we see that tz, z ∈ Z, preserves Qu.
Similar arguments as in the proof of Theorem 2.1 of [21], see in particular (2.6), (2.15) of
[21], show that the group tz, z ∈ Z of Qu-preserving transformations is ergodic, (see also
(1.42) below). The claim (1.39) readily follows.
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Remark 1.5.

1) The arguments used in the proof of (2.15) of [21] show that when K, K ′ are disjoint
finite subsets of E, and F, F ′ are bounded measurable functions on the set of finite point
measures on W+, then for u ≥ 0, one has

(1.42) |covP(F (µK,u), F ′(µK ′,u))| ≤ c u
cap(K) cap(K ′)

d(K, K ′)ν
‖F‖∞ ‖F ′‖∞ ,

with d(K, K ′) as above (1.11), and ‖F‖∞, ‖F ′‖∞ the respective sup-norms of F and F ′.

2) In the case E = Z
d+1, d ≥ 2, the definition of the capacity in (1.21) differs by a

multiplicative factor 2(d + 1) from the definition in [21], due to the presence of ρ(·). The
convention used in [21] correspond to assigning a weight (2d+2)−1 to each edge of Z

d+1, so
that the volume measure coincides with the counting measure. This multiplicative factor
leads to the (in most respect unessential) fact that random interlacement at level u in the
present work correspond to random interlacements at level 2(d + 1)u in the terminology
of [21], [18], [19].

3) In the context of Bernoulli percolation two inequalities play an important role in the
development of the theory, the BK Inequality and the FKG Inequality, see for instance
[13]. We have seen in (1.34) that the FKG Inequality holds for Qu. However it follows
from (1.38) that for x 6= x′ the events {x ∈ Vu} and {x′ ∈ Vu} are correlated, in fact
positively correlated, when u > 0. As a result the BK Inequality does not hold for Qu.
The decoupling inequalities of Theorem 2.6 in the following section play the role of a
partial substitute for the absence of a BK Inequality. �

2 Decoupling inequalities and the sprinkling

technique

In this section we implement a certain renormalization scheme. The goal is to derive
decoupling inequalities for the probability of intersections of 2n events, which are either all
increasing or all decreasing, and respectively pertain to the state of random interlacements
on E at a certain level, in 2n boxes of typical length L0. These boxes should be thought of
as the bottom leaves of a dyadic tree of depth n, and a geometrically increasing sequence
of length scales, Ln = ℓn

0 L0, n ≥ 0, is used to quantify the fact that these boxes are
well spread out. The key idea to overcome the presence of long range interactions in
the model is the sprinkling technique. Roughly speaking one slightly increases the level
so as to throw in more trajectories and dominate terms containing interactions between
distant boxes at a given scale. The fashion in which we conduct the sprinkling technique
is new, even in the case of E = Z

d+1, d ≥ 2, and differs markedly from [21], [18], [19].
The key induction step appears in Theorem 2.1 and the crucial decoupling inequalities
are presented in Theorem 2.6. In the important special case E = Z

d+1, d ≥ 2, one can
replace the distance d(·, ·) with the sup-norm distance d∞(·, ·) and the balls B(x, r) with
the corresponding balls B∞(x, r) throughout the article, simply adapting constants when
necessary.

We introduce a geometrically growing sequence of length scales, (we recall that c0 > 1
appears in Lemma 1.2):

(2.1) Ln = ℓn
0 L0, for n ≥ 0, where L0 ≥ 1 and ℓ0 ≥ 106c0 .
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We want to derive upper bounds on the probability of intersections of events, which occur
in boxes of size L0, which are well spread-out. Specifically this last feature will bring into
play certain embeddings of dyadic trees of finite depth n, which we now describe.

Given n ≥ 0, we denote with Tn =
⋃

0≤k≤n{1, 2}k, the canonical dyadic tree of depth

n and with T(k) = {1, 2}k, the collection of elements of the tree at depth k. We write Λn

for the set of embeddings of Tn in E, that is of maps T : Tn → E, such that defining

(2.2) xm,T = T (m), C̃m,T = B(xm,T , 10Ln−k), for m ∈ T(k), 0 ≤ k ≤ n ,

one has for any 0 ≤ k < n, m ∈ T(k), and m1, m2 the two descendants of m in T(k+1)

obtained by respectively concatenating 1 and 2 to m:

C̃m1,T ∪ C̃m2,T ⊆ C̃m,T ,(2.3)

d(xm1,T , xm2,T ) ≥ 1

100
Ln−k .(2.4)

Due to (2.1) it follows that for each 0 ≤ k ≤ n, the “boxes at depth k”, C̃m,T , m ∈ T(k),
are pairwise disjoint.

Given n ≥ 0 and T ∈ Λn, a collection of measurable subsets of {0, 1}E indexed by the
“leaves” of Tn, Am, m ∈ T(n), is said T -adapted when (see above (1.34) for notation):

(2.5) Am is σ(Ψx, x ∈ C̃m,T )-measurable for each m ∈ T(n) .

We also recall that given u ≥ 0, the events Au
m(⊆ Ω), m ∈ T(n), are defined in (1.36).

We still need some notation before stating the main induction step of the renormal-
ization scheme we develop in this section. Given n ≥ 0 and T ∈ Λn+1, we denote with
T1, T2 ∈ Λn, the two embeddings of Tn such that Ti(m) = T ((i, i1, . . . , ik)) for i = 1, 2
and m = (i1, . . . , ik) in T(k), 0 ≤ k ≤ n. Loosely speaking T1 and T2 are the two natural
embeddings corresponding to the respective restrictions of T to the descendants of 1 and
of 2 in Tn+1. Given a T -adapted collection Am, m ∈ T(n+1), we then define two collections
Am,1, m ∈ T(n), and Am,2, m ∈ T(n), respectively T1- and T2-adapted, as follows:

(2.6) Am,i = A(i,i1,...,in), for i = 1, 2 and m = (i1, . . . , in) ∈ T(n) .

We can now state the main induction step.

Theorem 2.1. (K > 0, 0 < ν′ < ν
(1.9)
= α− β

2
)

When ℓ0 ≥ c(K, ν ′), then for all n ≥ 0, T ∈ Λn+1, for all T -adapted collections
Am, m ∈ T(n+1), of decreasing events, respectively Bm, m ∈ T(n+1), of increasing events,
on {0, 1}E, and for all 0 < u′ < u such that

(2.7) u ≥
(
1 + c1

√
K (n + 1)−

3
2 ℓ

− (ν−ν′)
2

0

)
u′ ,

one has

(2.8) P

[ ⋂
m∈T(n+1)

Au
m

]
≤ P

[ ⋂
m1∈T(n)

Au
m1,1

](
P

[ ⋂
m2∈T(n)

Au′

m2,2

]
+ 2e

−2u′ K
(n+1)3

Lν
n ℓν′

0

)
,

respectively,

(2.9) P

[ ⋂
m∈T(n+1)

Bu′

m

]
≤ P

[ ⋂
m1∈T(n)

Bu
m1,1

]
P

[ ⋂
m2∈T(n)

Bu
m2,2

]
+ 2e

−2u′ K
(n+1)3

Lν
n ℓν′

0 .
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Remark 2.2.

1) The events Am1,1, m1 ∈ T(n), are decreasing and (2.8) immediately implies that

(2.8’) P

[ ⋂
m∈T(n+1)

Au
m

]
≤ P

[ ⋂
m1∈T(n)

Au′

m1,1

](
P

[ ⋂
m2∈T(n)

Au′

m2,2

]
+ 2e

−2u′ K
(n+1)3

Lν
n ℓν′

0

)
,

2) By the FKG Inequality (1.34) we see that

(2.10) P

[ ⋂
m∈T(n)

Au
m

]
≥ P

[ ⋂
m1∈T(n)

Au
m1,1

]
P

[ ⋂
m2∈T(n)

Au
m2,2

]
,

and a similar inequality holds for Bu
m, m ∈ T(n+1), Bu

mi,i
, mi ∈ T(n), i = 1, 2. �

We provide a brief outline of the proof of Theorem 2.1. When bounding the left-hand
side of (2.8), (2.9), we have to cope with the mutual dependence between what happens

in the union of boxes C̃m1,T1 (of size 10L0) and in the union of boxes C̃m2,T2 (of size 10L0)
due to the presence of trajectories in the interlacement touching both collections. For
this purpose we work in the above renormalization step with the two levels 0 < u′ < u.
The sprinkling of additional trajectories corresponding to the increase from u′ to u, is
supposed to dominate for the most part interactions taking place at level u′. Specifically
we consider two disjoint balls U1, U2 of radius cLn+1, with c small, containing the respective
collections of boxes, see (2.13), and we keep track of excursions of the trajectories in the
interlacement point process at level u′ between some region W , to be later determined,
containing the two collections of boxes of size 10L0, and the complement of U = U1 ∪U2.
We collect all excursions generated by trajectories with labels at most u′ that do reenter
W after leaving U , see (2.42), and dominate with high probability this (non-Poissonian)
point process in terms of the collection of excursions of trajectories with labels between
u′ and u that do not come back to W after leaving U . This domination step involves
controls on the entrance distribution in W , which rely on the Harnack inequality from
Lemma 1.2, see Lemma 2.3, and on a coupling lemma for the two point processes, see
Lemma 2.4. We then choose the set W : a “large W” offers a high success probability for
the domination in the coupling, however requires that u and u′ are sufficiently far apart
(as a function of the “size of W”), cf. (2.54). We optimize so that domination occurs
with high probability, but u and u′ remain close enough, cf. (2.58). Finally the coupling
combined with the monotone character of the events in the left-hand side of (2.8), (2.9),
enables us to derive the upper bounds (2.8), (2.9), see (2.65) - (2.68).

Proof of Theorem 2.1: We consider n ≥ 0, 0 < u′ < u, T ∈ Λn+1, and write for simplicity

x1, x2 and C̃1, C̃2, dropping the subscript T in (2.2), when m = 1, 2 ∈ T(1). We then
define

(2.11) Ĉi =
⋃

m∈T(n)

C̃m,Ti
, for i = 1, 2, and V = Ĉ1 ∪ Ĉ2 .

In other words Ĉ1 and Ĉ2 are the respective unions of boxes of size of order L0 corre-
sponding to the respective descendants of 1 and 2 at the bottom scale. In particular we
see by (2.3) that

(2.12) Ĉi ⊆ C̃i, for i = 1, 2 .
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Moreover by (2.1), (2.4), the following disjoint union

(2.13) U = U1 ∪ U2, where Ui = B
(
xi,

Ln+1

1000

)
, i = 1, 2 ,

is such that U1 ∩ U 2 = ∅, and

(2.14) C̃i ⊆ B
(
xi,

Ln+1

2000M

)
def
= B̃i ⊆ Ui, for i = 1, 2 ,

where M is determined in (2.36) below, and such that 1 ≤ M ≤ ℓ0/(2 · 104). We then
introduce a set W such that

(2.15) V ⊆W ⊆ B̃1 ∪ B̃2 ⊆ U ,

as well as the sequence Rk, Dk, k ≥ 1 of successive returns of the walk on E to W and
departures from U :

R1 = HW , D1 = TU ◦ θR1 + R1, and by induction

Rk+1 = R1 ◦ θDk
+ Dk, Dk+1 = D1 ◦ θDk

+ Dk, for k ≥ 1 .
(2.16)

Our goal is to keep track of excursions between W and ∂U for the paths of the random
interlacement entering W , and in essence dominate the effect of paths with labels at most
u′ that reenter W for a second time, after leaving U , in terms of paths with labels between
u′ and u, that never reenter W after leaving U . Optimizing on W will then lead to the
choice of W in (2.58) below.

We thus introduce the Poisson point processes on W+, (see (1.27) for notation),

ζ ′
ℓ = 1{Rℓ <∞ = Rℓ+1}µW,u′, for ℓ ≥ 1 ,

ζ∗
ℓ = 1{Rℓ <∞ = Rℓ+1}µW,u′,u, for ℓ ≥ 1 .

(2.17)

By (1.27) we see that

(2.18) ζ ′
ℓ, ℓ ≥ 1, ζ∗

1 are independent Poisson point processes on W+ ,

and their respective intensity measures are

ξ′ℓ = u′ 1{Rℓ <∞ = Rℓ+1}PeW
, ℓ ≥ 1 ,

ξ∗1 = (u− u′) 1{R1 <∞ = R2}PeW
.

(2.19)

Note also that the Poisson point processes on W+

(2.20) 1{H bC1
<∞}µW,u and 1{H bC1

=∞}(ζ ′
1 + ζ∗

1) are independent .

We then denote by C the countable set of excursions from W to ∂U :

C =
{
π = (π(i))0≤i≤N , finite path, such that π(0) ∈W, π(N) ∈ ∂U , and

π(i) ∈ U , for 0 ≤ i < N
}

,
(2.21)

and with φℓ, when ℓ ≥ 1, the map from {Rℓ <∞ = Rℓ+1} ⊆ W+ into Cℓ such that:

(2.22)
w → φℓ(w) = (w1, . . . , wℓ), where
wk(·) = (XRk+·(w))0≤·≤Dk(w)−Rk(w), 1 ≤ k ≤ ℓ .
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The ζ ′
ℓ in (2.17) can be viewed as point processes on {Rℓ < ∞ = Rℓ+1}(⊆ W+), and ζ∗

1

can be viewed as a point process on {R1 <∞ = R2}. We then define

(2.23)
ζ̃ ′
ℓ the image of ζ ′

ℓ under φℓ, for ℓ ≥ 1, and

ζ̃∗
1 the image of ζ∗

1 under φ1 ,

so that

(2.24)
ζ̃ ′
ℓ, ℓ ≥ 1, ζ̃∗

1 are independent Poisson point processes with intensity

measures ξ̃′ℓ, ℓ ≥ 1, ξ̃∗1 , which are respective images under φℓ, ℓ ≥ 1, and
φ1 of ξ′ℓ, ℓ ≥ 1, and ξ∗1 .

The following lemma plays a crucial role for the domination procedure, i.e. the sprinkling
technique, we are currently setting into place. It brings into play the control of Harnack
constants in d(·, ·)-balls from Lemma 1.2, together with some specific connectivity prop-
erties of the interior boundary of d(·, ·)-balls owing to the special structure of E = G×Z.
As mentioned at the beginning of the section when E = Z

d+1, d ≥ 2, our results also hold
when we instead work with the more common sup-norm distance and the corresponding
balls, possibly adapting constants.

Lemma 2.3. (ℓ0 ≥ c)

For any W̃ ⊆ B(x1, Ln+1/2000)∪B(x2, Ln+1/2000), x ∈ ∂U ∪∂int U , x′ ∈ W̃ , one has

(2.25) c′2 L−ν
n+1 efW (x′) ≤ Px[HfW <∞, XHfW

= x′] ≤ c2 L−ν
n+1 efW (x′) .

Proof. From the inclusion W̃ ⊆ U , see (2.13), we have the classical sweeping identity, (for
instance resulting from (1.27), (1.29)):

(2.26) efW (x′) = PeU
[HfW <∞, XHfW

= x′] ,

so that

(2.27)

cap(U) inf
x∈∂intU

Px[HfW <∞, XHfW
= x′] ≤ efW (x′) ≤

cap (U) sup
x∈∂intU

Px[HfW <∞, XHfW
= x′] .

Observe that the function f(x) = Px[HfW < ∞, XHfW
= x′] is a non-negative function,

which is harmonic in W̃ c. Now W̃ ⊆ B(x1,
Ln+1

2000
) ∪ B(x2,

Ln+1

2000
) and note that by (2.4),

(2.13), (2.14) one has:

(2.28) d(∂intU, B(x1, Ln+1/2000) ∪B(x2, Ln+1/2000)) ≥ Ln+1

1000
− Ln+1

2000
− 1 >

Ln+1

5000
.

Moreover ∂intU = ∂int U1 ∪ ∂int U2, and for i = 1, 2,

(2.29)

any two points on ∂int Ui can be linked by a path in ∂int Ui concatenation
of at most three paths, which are either “horizontal” with at most c Ln+1

steps or “vertical” with at most c L
β/2
n+1 steps.
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The above statement is a straightforward consequence from the fact that for x = (y, z) in
E and R ≥ 1 one has the identity

∂int B(x, R) = BG(y, R)× (z + {−[Rβ/2], [Rβ/2]})
∪ ∂intBG(y, R)× (z + [−[Rβ/2], [Rβ/2]]) .

Note that d(x1, x2) ≤ 20Ln+1 due to (2.2), (2.3). It now follows that there is an integer
constant c such that

(2.30)

for any two points x, x̃ in ∂int U , one can construct x(i), 0 ≤ i ≤ c,
in ∂int U ∪ U c, such that x(0) = x, x(c) = x̃, and

d(x(i), x(i + 1)) ≤ L
def
= Ln+1/(104c0) .

B
(
x2,

Ln+1

2000

)

x1

x2

U1

x̃

W̃

U2x

B
(
x1,

Ln+1

2000

)

Fig. 1: A schematic illustration of a possible sequence x(i), 0 ≤ i ≤ c,
corresponding to the black dots.

For each i, the function f is non-negative on B(x(i), c0L) and harmonic in B(x(i), c0L)

(⊆ W̃ c) due to (2.28), (2.30). Applying Lemma 1.2 and a chaining argument, we see that:

(2.31) sup
x∈∂int U

Px[HfW <∞, XHfW
= x′] ≤ c inf

x∈∂int U
Px[HfW <∞, XHfW

= x′] .

Moreover we know by (1.26), (1.22) that

(2.32) c Lν
n+1 ≤ cap(U) ≤ c′ Lν

n+1 .

Coming back to (2.27) we deduce (2.25) for x ∈ ∂int U and x′ ∈ W̃ . The extension to
x ∈ ∂U immediately follows thanks to the ellipticity condition satisfied by the walk, see
above (1.6).

The next objective is to derive an upper bound on the intensity measures ξ̃′ℓ, ℓ ≥ 2, and

a lower bound on ξ̃∗1 , see (2.40), (2.41) below. We first note that for ℓ ≥ 2, w1, . . . , wℓ ∈ C,

18



one has with the convention R0 = D0 = 0, as well as the notation eW = eW /cap(W ),

(2.33)

ξ̃′ℓ(w1, . . . , wℓ) =

u′ PeW

[
Rℓ <∞, (XRk+·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k ≤ ℓ, Rℓ+1 =∞
] strong Markov

≤
property

u′ EeW

[
Rℓ <∞, (XRk+·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k < ℓ,

PXRℓ
[(X.)0≤·≤TU

= wℓ(·)]
]

=

u′ EeW

[
Dℓ−1 <∞, (XRk+·)0≤·≤Dk−Rk

= wk(·), 1 ≤ k < ℓ,

EXDℓ−1
[HW <∞, PXHW

[(X.)0≤·≤TU
= wℓ(·)]

] (2.25)

≤

u′ c2

Lν
n+1

cap(W ) EeW

[
Dℓ−1 <∞, (XRk+·)0≤·≤Dk−Rk

= wk, 1 ≤ k ≤ ℓ− 1
]
×

PeW
[(X.)0≤·≤TU

= wℓ(·)] ,
and by induction

≤ u′cap(W )
(
c2

cap(W )

Lν
n+1

)ℓ−1 ℓ∏
k=1

Γ(wk) ,

where Γ is the law on C of (X.)0≤·≤TU
under PeW

:

(2.34) Γ(·) = PeW
[(X.)0≤·≤TU

= ·] .

As for the lower bound on ξ̃∗1 , we note that for w ∈ C one has

(2.35) ξ̃∗1(w) = (u− u′) PeW
[(X.)0≤·≤TU

= w(·), HW ◦ θTU
=∞] .

Observe that for x ∈ ∂U we have by (2.14), (2.15), and (2.25)

(2.36)
Px[HW <∞] ≤ c2

Lν
n+1

cap(W )
(1.26)

≤ c

Lν
n+1

( Ln+1

2000M

)ν

≤ (2e)−1,

when we choose M = c3 ≥ 1 ,

and we assume ℓ0 ≥ 2 · 104c3, so that 1 ≤M ≤ ℓ0/(2 · 104). Coming back to (2.35) we see
applying the strong Markov property at time TU that for w ∈ C:

(2.37) ξ̃∗1(w) ≥ (u− u′)

2
cap(W ) Γ(w) .

We then introduce the notation

(2.38) λ′
W = u′cap(W ), βW =

c2 cap(W )

Lν
n+1

(
≤ 1

2e
, see (2.36)

)
,

as well as

(2.39) λ∗
W =

(u− u′)

2
cap(W ) .

We have thus shown that

ξ̃′ℓ ≤ λ′
W βℓ−1

W Γ⊗ℓ, for ℓ ≥ 2, and(2.40)

ξ̃∗1 ≥ λ∗
W Γ .(2.41)
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We now come to the construction of a coupling that will provide the domination argument
hinted at in the comment below (2.16). We denote by sℓ the map which sends a finite
point measure m on Cℓ onto a finite point measure on C via:

sℓ(m) =
ℓ∑

k=1

pℓ
k ◦m ,

where pℓ
k stands for the k-th canonical coordinate on Cℓ, for 1 ≤ k ≤ ℓ. In other words

sℓ(m) =
∑N

i=1 δwi
1
+ · · ·+ δwi

ℓ
, when m =

∑N
i=1 δ(wi

1,...,wi
ℓ)
. We want to construct a coupling

of the finite point measure on C:

(2.42) σ̃′ =
∑
ℓ≥2

sℓ(ζ̃
′
ℓ) ,

which collects all excursions from W to ∂U induced by trajectories in the support of µW,u′

having at least once exited U and reentered W , with the finite point measure ζ̃∗
1 , so that

with high probability ζ̃∗
1 dominates σ̃′. Incidentally let us mention that σ̃′ is not a Poisson

point measure, see Remark 2.5 1) below. This feature makes the domination argument
more delicate.

With this in mind we consider an auxiliary probability space (Ω̃, Ã, P̃) endowed with
a collection of independent Poisson variables N ′

ℓ, ℓ ≥ 2, and with a Poisson variable N∗
1 ,

with respective intensities,

λ′
ℓ = λ′

W βℓ−1
W , ℓ ≥ 2, and(2.43)

λ∗
1 = λ∗

W ,(2.44)

and with an independent collection of i.i.d. C-valued random variables γi, i ≥ 1, with
distribution Γ, cf. (2.34). We then define

(2.45) N ′ =
∑
ℓ≥2

ℓ N ′
ℓ .

By (2.38), we see that N ′ has finite expectation, (actually N ′ is distributed as a certain
Poisson compound distribution, see below (2.51)), and we define the finite point processes
on C:

(2.46) Σ′ =
∑

1≤i≤N ′

δγi
, Σ∗

1 =
∑

1≤i≤N∗
1

δγi
.

Lemma 2.4. (Coupling Lemma)

One can construct on some probability space (Ω,A, P) variables N ′, N∗
1 , Σ′, Σ∗

1 as above,

and σ ′ distributed as σ̃ ′, and ζ1
∗ distributed as ζ̃∗

1 so that

(2.47) σ ′ ≤ Σ′ and Σ∗
1 ≤ ζ1

∗ ,

and in particular

(2.48) P-a.s. on {N ′ ≤ N∗
1}, σ ′ ≤ ζ1

∗ .
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Proof. Observe that Σ′ has the same distribution as
∑

ℓ≥2 sℓ(ζℓ), where ζℓ, ℓ ≥ 2, are

independent Poisson point processes on Cℓ with respective intensities λ′
ℓ Γ⊗ℓ ≥ ξ̃′ℓ, due to

(2.40), (2.43). We construct a coupling of the ζ̃ ′
ℓ, ℓ ≥ 2, and the ζℓ, ℓ ≥ 2, say by thinning

the ζℓ, ℓ ≥ 2, so that ζℓ ≥ ζ̃ ′
ℓ, for each ℓ ≥ 2. This permits after “enlarging the probability

space (Ω̃, Ã, P̃)”, to construct a σ ′ with same distribution as σ̃ ′ and such that Σ′ ≥ σ ′.

Then note that Σ∗
1 is a Poisson point process on C with intensity measure λ∗

1 Γ ≤ ξ̃∗1 by
(2.41), (2.44). We can then construct, by “further enlarging” the probability space, a ζ1

∗

having same law as ζ̃∗
1 , such that Σ∗

1 ≤ ζ1
∗. This yields (2.47) and (2.48) is an immediate

consequence.

The next task is to bound the probability of the “bad event” {N∗
1 < N ′}, cf. (2.48),

and by appropriately selecting W in (2.58) obtain the bound (2.59). We thus note that

(2.49) P[N∗
1 < N ′] ≤ P

[
N∗

1 ≤
λ∗

W

2

]
+ P

[
N ′ >

λ∗
W

2

]
.

By classical bounds on the tail of a Poisson variable of intensity λ∗
W we have:

(2.50) P

[
N∗

1 ≤
λ∗

W

2

]
≤ e−cλ∗

W .

As for the last term of (2.49), the exponential Chebyshev inequality yields

(2.51) P

[
N ′ >

λ∗
W

2

]
≤ exp

{
− a

λ∗
W

2

}
EP[eaN ′

], for a > 0 .

We then observe that

EP[eaN ′

]
(2.45)
= exp

{ ∑
ℓ≥2

λ′
ℓ(e

aℓ − 1)
}

= exp
{
λ′

W

∑
ℓ≥2

βℓ−1
W (eaℓ − 1)

}
.

This formula incidentically shows that N ′ has the law of a compound Poisson variable with
compounding distribution which is that of a geometric variable with parameter 1 − βW

conditioned to be at least 2. Note that E[eaN ′
] =∞, when ea ≥ β−1

W , but that

(2.52) EP[eaN ′

] ≤ exp
{

λ′
W βW

e2a

1− βWea

}
, when βW ea < 1 .

Coming back to (2.51), we have shown that

(2.53) P

[
N ′ >

λ∗
W

2

]
≤ exp

{
− a

λ∗
W

2
+ λ′

W βW
e2a

1− βW ea

}
, for βW ea < 1 .

Choosing a = 1, we know from (2.38) that 2eβW ≤ 1, so that when
λ∗

W

4
≥ 2βW e2 λ′

W holds,

one finds that P[N ′ >
λ∗

W

2
] ≤ exp{−λ∗

W

4
}. Thus coming back to (2.49) we have shown that

for any W such that V ⊆ W ⊆ ⋃2
i=1 B(xi, Ln+1/(2000c3)) = B̃1 ∪ B̃2, cf. (2.15), (2.36),

(2.39), one has

(2.54) P[N∗
1 < N ′] ≤ 2 exp{−c λ∗

W}, when (u− u′) ≥ 16e2 c2
cap(W )

Lν
n+1

u′ .
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We will now select the set W . We want on the one hand cap(W ) large, to take advantage
of the left-hand inequality in (2.54), and on the other hand not too large, so that we can
pick u,u′ close enough (in our renormalization scheme, the sequence of levels will need to
converge).

Due to (1.26) and (2.11), we have

(2.55) cap(V ) ≤ c̃ 2n+1 Lν
0 ,

as well as

(2.56) cap(B̃1 ∪ B̃2) ≥ cLν
n+1 = c ℓ

(n+1)ν
0 Lν

0 .

Observe that for A ⊂⊂ E, x ∈ E, one has, cf. (1.22)

(2.57) cap(A) ≤ cap(A ∪ {x}) ≤ cap(A) + c∗ .

Thus when ℓ0 ≥ c(K, ν ′), one can find W such that V ⊆ W ⊆ B̃1 ∪ B̃2 and

(2.58)
1

2

√
K

(n + 1)3/2
Lν

n ℓν′′

0 ≤ cap(W ) ≤ 2

√
K

(n + 1)3/2
Lν

n ℓν′′

0 , where ν ′′ =
ν + ν ′

2
.

Indeed, when ℓ0 ≥ c(K, ν ′), with the same constants as in (2.55) - (2.57), one has for all

n ≥ 0, c̃ 2n+1 Lν
0 ≤

√
K

(n+1)3/2 ℓnν
0 Lν

0 ℓν′′

0 < c ℓ
(n+1)ν
0 Lν

0 , as well as
√

K
(n+1)3/2 ℓnν

0 Lν
0 ℓν′′

0 > 2c∗.

So when ℓ0 ≥ c(K, ν ′), with the above choice of W and (2.54), we have shown that

(2.59)

when u− u′ ≥ c1

√
K/(n + 1)3/2 ℓ

−(ν−ν′′)
0 u′, then

P[N∗
1 < N ′] ≤ 2 exp

{
− c(u− u′)

√
K

(n + 1)3/2
Lν

n ℓν′′

0

}

≤ 2 exp
{
− 2u′ K

(n + 1)3
Lν

n ℓν′

0

}
,

(since 2ν ′′ − ν = ν ′ and choosing c1 large enough) .

We now introduce the random finite subsets of V (⊆W ):

(2.60) I ′ℓ = V ∩
( ⋃

(w1,...,wℓ)∈Supp eζ
′
ℓ

range(w1) ∪ · · · ∪ range(wℓ)
)
, for ℓ ≥ 1 ,

(2.61) I∗1 = V ∩
( ⋃

w∈Supp eζ∗1

range(w)
)

.

By (2.23), (2.24) we see that

(2.62)
the random subsets I ′

ℓ, ℓ ≥ 1, I∗1 are independent,

Iu′ ∩ V =
⋃
ℓ≥1

I ′ℓ, and Iu ∩ V ⊇ I∗1 .

We also note that

Iu ∩ Ĉ1 = Ĉ1 ∩
( ⋃

w∈Supp (1{H
bC1

<∞}µW,u
)

range(w)
)

,
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and that
(I ′1 ∪ I∗1 ) ∩ Ĉ2 = Ĉ2 ∩

( ⋃
w∈Supp (1{H bC1

=∞}(ζ′1+ζ∗1 ))

range(w)
)

.

By (2.20) we thus see that

(2.63) Iu ∩ Ĉ1 and (I ′1 ∪ I∗1 ) ∩ Ĉ2 are independent .

By even easier arguments we also see that

(2.64) (I ′1 ∪ I∗1 ) ∩ Ĉ1 and (I ′1 ∪ I∗1 ) ∩ Ĉ2 are independent .

We now prove our main claims (2.8), (2.9). We recall the notation from (1.35). Since the
Am, m ∈ I(n+1), are decreasing and T -adapted, cf. (2.5), we see that

(2.65)

P

[ ⋂
m∈T(n+1)

Au
m

]
(2.6)
= P

[ ⋂
m1∈T(n)

Au
m1,1 ∩

⋂
m2∈T(n)

Au
m2,2

]
≤

P

[ ⋂
m1∈T(n)

Am1,1(Iu ∩ Ĉ1) ∩
⋂

m2∈T(n)

Am2,2((I ′1 ∪ I∗1 ) ∩ Ĉ2)
]

(2.63)
=

P

[ ⋂
m1∈T(n)

Au
m1,1

]
P

[ ⋂
m2∈T(n)

Am2,2(I ′1 ∪ I∗1 )
]
.

Note that by (2.42), (2.60) we have

(2.66)
⋃

ℓ≥2

I ′ℓ = V ∩
( ⋃

w∈Supp eσ′

range(w)
)

,

and it follows from Lemma 2.4 and (2.62) that

(2.67)

P

[ ⋂
m2∈T(n)

Am2,2(I ′1 ∪ I∗1 )
]
≤ P

[ ⋂
m2∈T(n)

Am2,2

( ⋃
ℓ≥1

I ′ℓ
)]

+ P[N∗
1 < N ′]

(2.59),(2.62)

≤

P

[ ⋂
m2∈T(n)

Au′

m2,2

]
+ 2 exp

{
− 2u′ K

(n + 1)3
Lν

n ℓν′

0

}
,

when u− u′ ≥ c1

√
K

(n + 1)3/2
ℓ
− (ν−ν′)

2
0 u′ .

Inserting this inequality in (2.65) yields (2.8) (and of course (2.8’) as well). We now turn
to the proof of (2.9). Since the Bm, m ∈ T(n+1), are increasing T -adapted, we find with
Lemma 2.4 that

(2.68)

P

[ ⋂
m∈T(n+1)

Bu′

m

]
(2.62)
= P

[ ⋂
m∈T(n+1)

Bm

( ⋃
ℓ≥1

I ′ℓ
)] (2.62),(2.66)

≤
Lemma 2.4

P

[ ⋂
m∈T(n+1)

Bm(I ′

1 ∪ I∗1 )
]

+ P[N∗
1 < N ′]

(2.64)
=

P

[ ⋂
m1∈T(n)

Bm1,1(I ′1 ∪ I∗1 )
]

P

[ ⋂
m2∈T(n)

Bm2,2(I ′1 ∪ I∗1 )
]

+ P[N∗
1 < N ′]

(2.62)

≤

P

[ ⋂
m1∈T(n)

Bu
m1,1

]
P

[ ⋂
m2∈T(n)

Bu
m2,2

]
+ P[N∗

1 < N ] .

The claim (2.9) now follows from (2.59), and this completes the proof of Theorem 2.1. �
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Remark 2.5.

1) With the help of Lemma 2.3 and (2.36), one can also derive a companion lower bound
to (2.33) or (2.40) showing that for ℓ ≥ 2,

ξ̃′ℓ ≥ u′ cap(W )
(
c
cap(W )

Lν
n+1

)ℓ−1

Γ⊗ℓ .

Combined with (2.40) we see that the total mass of σ̃′, see (2.42), has finite expectation,
but that large enough exponential moments of the total mass of σ̃′ are divergent, (this is
very much in line with the identity below (2.51)).

As a result one cannot hope to find a coupling of σ̃′ and ζ̃∗
1 such that ζ̃∗

1 globally
dominates σ̃′, see Lemma 2.4.

Incidentally in the construction of the coupling from Lemma 2.4, one actually has
flexibility in the choice of the joint distribution of N ′ and N∗

1 . One might possibly take
advantage of this feature to improve the bound (2.49), and as a result improve the quality
of the remainder terms in (2.8), (2.9).

2) The renormalization step conducted above differs from what was done in [21], [18],
[19]. In essence, the sprinkling technique we have employed here, aims at dominating for
the most part, with the Poisson variable N∗

1 , the “long range interaction terms ”, which
are accounted for in the variable N ′ of (2.45). The variable N ′ has a compound Poisson
distribution, where the compounding law is supported on the set of integers at least equal
to 2, see below (2.51). Quite naturally, the quality of our bounds deteriorates when the
parameter of N∗

1 becomes small. This explains why in place of choosing W = V in (2.54),
we instead pick W rather big, at the expense of assuming u− u′ not too small.

3) Althoug Theorem 2.1 will be general enough for our purpose here, let us note that the
crucial Lemma 2.4 offers a domination statement that goes beyond asserting that

⋃
ℓ≥2 I ′ℓ

is dominated with “high probability” by I∗1 . For instance the proof of Theorem 2.1 yields
similar inequalities as (2.8), (2.9) for decreasing events Am, m ∈ T(n+1), or increasing
events Bm, m ∈ T(n+1), pertaining to the occupancy of both sets of points and edges

contained in C̃m,T . In place of (1.36) one naturally defines in this context Au
m, or Bu

m, by
the consideration of the set of points visited and edges crossed by the trajectories of the
interlacement point process with labels at most u. The proof of Theorem 2.1 then yields

Corollary 2.1’. (K > 0, 0 < ν′ < ν)

When ℓ0 ≥ c(K, ν ′), for all n ≥ 0, T ∈ Λn+1, for all in the above generalized sense
T -adapted collections Am, m ∈ T(n+1), of decreasing events, respectively Bm, m ∈ T(n+1),
of increasing events, and for all 0 < u′ < u satisfying (2.7), the corresponding inequalities
to (2.8), (2.9) hold.

�

We will now derive the key decoupling inequalities. Given K > 0, 0 < ν′ < ν, and
ℓ0 ≥ c(K, ν ′) such that Theorem 2.1 applies we define for any u0 > 0 the increasing and
decreasing sequences of levels

(2.69)

u+
n =

∏
0≤k<n

(
1 + c1

√
K

(k + 1)3/2
ℓ
− (ν−ν′)

2
0

)
u0,

u−
n =

∏
0≤k<n

(
1 + c1

√
K

(k + 1)3/2
ℓ
− (ν−ν′)

2
0

)−1

u0,
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so that u+
n , n ≥ 0, is increasing, u−

n , n ≥ 0, is decreasing, and they satisfy

u+
n+1 − u+

n = c1

√
K

(n + 1)3/2
ℓ
− (ν−ν′)

2
0 u+

n , and u−
n − u−

n+1 = c1

√
K

(n + 1)3/2
ℓ
− (ν−ν′)

2
0 u−

n+1 ,

for n ≥ 0, as well as u+
0 = u0 = u−

0 .

These sequences also have positive finite limits respectively equal to

(2.70)

u+
∞ =

∏
k≥0

(
1 + c1

√
K

(k + 1)3/2
ℓ
− (ν−ν′)

2
0

)
u0,

u−
∞ =

∏
k≥0

(
1 + c1

√
K

(k + 1)3/2
ℓ
− (ν−ν′)

2
0

)−1

u0,

We can now state and prove the main result of this section.

Theorem 2.6. (Decoupling Inequalities; K > 0, 0 < ν′ < ν, ℓ0 ≥ c(K, ν ′))

For any u0 > 0, n ≥ 0, T ∈ Λn, and all T -adapted collections Am, m ∈ T(n), of
decreasing events on {0, 1}E, respectively Bm, m ∈ T(n), of increasing events on {0, 1}E,
one has:

(2.71) P

[ ⋂
m∈T(n)

Au+
∞

m

]
≤ P

[ ⋂
m∈T(n)

Au+
n

m

]
≤ ∏

m∈T(n)

(P[Au0
m ] + ε(u0)) ,

(2.72) P

[ ⋂
m∈T(n)

Bu−
∞

m

]
≤ P

[ ⋂
m∈T(n)

Bu−
n

m

]
≤ ∏

m∈T(n)

(P[Bu0
m ] + ε(u−

∞)) ,

where we have set

(2.73) ε(u) =
2e−KuLν

0 ℓν′

0

1− e−Ku Lν
0 ℓν′

0

, for u > 0, (note that v > 0→ e−v

1−e−v is decreasing) .

Proof. We begin with the proof of (2.72). The first inequality is immediate since u−
∞ ≤ u−

n ,
and the events Bm are increasing. As for the second inequality, we first prove by induction
on n that

(2.74) P

[ ⋂
m∈T(n)

Bu−
n

m

]
≤ ∏

m∈T(n)

(
P[Bu0

m ] +
∑

0≤k<n

(
2 e

− 2K
(k+1)3

u−
k+1 Lν

k ℓν′

0
) 1

2k+1
)
.

The claim trivially holds when n = 0. If it is true for n, we find by (2.9) that for T ∈ Λn+1,
and Bm, m ∈ T(n+1), an increasing T -adapted collection, one has, with hopefully obvious
notation:

(2.75)

P

[ ⋂
m∈T(n+1)

B
u−

n+1
m

]
≤ P

[ ⋂
m1∈T(n)

Bu−
n

m1,1

]
P

[ ⋂
m2∈T(n)

Bu−
n

m2,2

]
+ 2 e

− 2K
(n+1)3

u−
n+1 Lν

n ℓν′

0

induction
≤

hypothesis

∏
m∈T(n+1)

(
P[Bu0

m ] +
∑

0≤k<n

(
2 e

− 2K
(k+1)3

u−
k+1 Lν

k ℓν′

0
) 1

2k+1
)

+ 2 e
− 2K

(n+1)3
u−

n+1 Lν
n ℓν′

0

≤ ∏
m∈T(n+1)

(
P[Bu0

m ] +
∑

0≤k<n+1

(
2 e

− 2K
(k+1)3

u−
k+1 Lν

k ℓν′

0
) 1

2k+1
)
,

and this completes the proof of (2.74) by induction.
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To finish the proof of (2.72), we now observe that when ℓ0 ≥ c(K, ν ′), then for all

k ≥ 0, (
ℓν
0

2
)k ≥ 24k ≥ (k + 1)4. Hence the series in the product in the right-hand side of

(2.74) is smaller than

∑
k≥0

2 e
− K

(k+1)3
u−
∞(

ℓν
0
2

)k Lν
0 ℓν′

0 ≤ 2
∑
k≥0

e−(k+1) K u−
∞ Lν

0 ℓν′

0 = ε(u−
∞) ,

and this completes the proof of (2.72).

The proof of (2.71) is analogous. Instead of (2.74), one shows by induction on n, with
the help of (2.8’), that

(2.76) P

[ ⋂
m∈T(n)

Au+
n

m

]
≤ ∏

m∈T(n)

(
P[Au0

m ] +
∑

0≤k<n

(
2 e

− 2K
(k+1)3

u+
k Lν

k ℓν′

0
) 1

2k

)
,

and obtains (2.71) as a consequence, (in fact the argument below (2.75) yields that (2.71)
even holds with 2K in place of K in the definition of ε(u0) in (2.73)).

Remark 2.7.

1) As already mentioned, in the important special case E = Z
d+1, d ≥ 2, (so that α = d,

β = 2), one can replace the distance d(·, ·) with the sup-norm distance d∞(·, ·) and the
balls relative to d(·, ·) with balls relative to d∞(·, ·), in the above theorem and of course
in the definition of Λn, and of T -adapted collections when T ∈ Λn.

2) As companions to (2.71), (2.72), the FKG-Inequality, see (1.34), implies that

(2.77) P

[ ⋂
m∈T(n)

Au+
∞

m

]
≥ ∏

m∈T(n)

P[Au+
∞

m ] ,

and

(2.78) P

[ ⋂
m∈T(n)

Bu−
∞

m

]
≥ ∏

m∈T(n)

P[Bu−
∞

m ] .

Theorem 2.6 provides an upper bound for the expressions in the left-hand side of (2.77),
(2.78). In a sense it offers a partial substitute for the BK Inequality, which plays a key
role for Bernoulli percolation, cf. [13], but not for interlacement percolation, so far, see
Remark 1.5 3). �

3 Cascading events

We want to apply the decoupling inequalities of Theorem 2.6 to control the probability
of certain events on {0, 1}E, which pertain to the trace of the interlacement Iu in a large
box. For this purpose the cascading property plays an important role. In essence, it
enables us to cover such an event concerning the state of Iu in a ball of size of order
Ln, with a not too large family of events, which come each as intersections of 2n events
depending on the respective traces of Iu in well-separated balls of size of order L0. The
decoupling inequalities of Theorem 2.6 will yield upper bounds on the probability of such
intersections. These bounds will compete against the combinatorial complexity of the
family of dyadic tree embeddings used to cover the original event. In Proposition 3.2
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we present two examples of cascading families of events, which play an important role in
Section 4 and 5. We discuss in Remark 3.3 another example in the case of Z

d+1, d ≥ 2,
which is due to Teixeira [27], as well as a modification of this example adapted to the
general context of the present work. The main consequences of the cascading property
and the decoupling inequalities appear in Theorem 3.4, as well as Corollary 3.5 and 3.7.
In the special case E = Z

d+1, d ≥ 2, the distance d(·, ·) and the balls B(x, r) can be
replaced with the sup-norm distance d∞(·, ·) and the corresponding balls B∞(·, ·).

Definition 3.1. A family G = (Gx,L)x∈E,L≥1 integer of events on {0, 1}E has the cascading
property (or cascades) with complexity at most λ > 0, when

(3.1) Gx,L is σ(Ψx′, x′ ∈ B(x, 10L))-measurable for each x ∈ E, L ≥ 1 ,

(the notation Ψx is defined above (1.34)),

and for each ℓ multiple of 100, x ∈ E, L ≥ 1, there exists Λ ⊆ E, such that

Λ ⊆ B(x, 9ℓL),(3.2)

|Λ| ≤ c(G, λ) ℓλ ,(3.3)

Gx,ℓL ⊆
⋃

x′,x′′∈Λ; d(x′,x′′)≥ ℓ
100

L

Gx′,L ∩Gx′′,L .(3.4)

When the family of events depends on an additional parameter, we say that it has
the uniform cascading property (or cascades uniformly ) with complexity at most λ, when
for each fixed value of the parameter, the cascading property with complexity at most λ
holds, and in addition the constant in (3.3) can be chosen uniformly in the parameter.

We will now provide examples of such families, see Proposition 3.2 and Remark 3.3
below. The first two examples play an important role, respectively in Section 4 and 5.
The first example corresponds to the family A = (Ax,L)x∈E,L≥1 integer, where

Ax,L =
{

σ ∈ {0, 1}E; B(x, L) is linked to ∂int B(x, 2L)

by a path where σ vanishes
}
.

(3.5)

In particular, we see that in the notation of (0.10) and (1.36), for u ≥ 0,

(3.6) Au
x,L

(1.36)
= Ax,L(Iu) = {B(x, L)

Vu

←→ ∂intB(x, 2L)} .

To describe the second example, we consider the family of “half-planes” P in E of the
form

(3.7) P = {y(n); n ≥ 0} × Z ⊆ E ,

where y(n), n ≥ 0, is a semi-infinite geodesic in G (recall E = G× Z), that is:

(3.8) dG(y(n), y(m)) = |n−m|, for all n, m ≥ 0 .

It is well-known, see for instance Theorem 3.1 of [29], that for each y ∈ G, one can
find such a y(n), n ≥ 0, with y(0) = y. Given such a half-plane P we say that a finite
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sequence x0, . . . , xN in P is a ∗-path, when for each 0 ≤ i < N , xi 6= xi+1, and the
G-projections of xi and xi+1 lie at dG-distance at most 1, and a similar condition holds
for the Z-projections.

We then define the family of events depending on the additional parameter P varying
over all possible “half-planes” in E, B = (Bx,L,P), where:

Bx,L,P =
{
σ ∈ {0, 1}E; B(x, L) is linked to ∂int B(x, 2L) by a ∗-path in P,

where σ takes the value 1
}
, when x ∈ P ,

= φ, when x /∈ P .

(3.9)

In particular when x ∈ P, Bu
x,L,P coincides with the event that appears in (0.13).

Proposition 3.2.

A is a family of decreasing events on {0, 1}E that cascades with(3.10)

complexity at most α + β
2
.

B is a family of increasing events on {0, 1}E that cascades uniformly with(3.11)

complexity at most β
2
.

Proof. We begin with the proof of (3.10). The events Ax,L are clearly decreasing and
σ(Ψx′, x′ ∈ B(x, 10L))-measurable. Then note that given x ∈ E, L ≥ 1, and ℓ multiple
of 100, one can find xi

1, 1 ≤ i ≤ N1, in ∂intB(x, ℓL) and xj
2, 1 ≤ j ≤ N2, in ∂intB(x, 3

2
ℓN),

such that

(3.12) N1 ∨N2 ≤ c ℓα+ β
2 ,

(3.13) ∂int B(x, ℓL) ⊆ ⋃
1≤i≤N1

B(xi
1, L), and ∂intB

(
x,

3

2
ℓL

)
⊆ ⋃

1≤j≤N2

B(xj
2, L) .

Indeed we first select a maximal collection in ∂intB(x, ℓL) with mutual distance bigger
than L, xi

1, 1 ≤ i ≤ N1. The balls B(xi
1,

L
2
) are thus pairwise disjoint, and each have,

by (1.11), volume at least c Lα+ β
2 . Their union is contained in B(x, 2ℓL) and thus has

volume at most c ℓα+ β
2 Lα+ β

2 , using (1.11) once again. As a result N1 ≤ c ℓα+ β
2 . In a

similar fashion we can construct xj
2, 1 ≤ j ≤ N2, so that (3.12), (3.13) holds. Note that

by construction one has

(3.14) d(xi
1, x

j
2) ≥

ℓ

2
L− 1 >

ℓ

5
L, for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 ,

and defining Λ as the collection of points xi
1 and xj

2, we see that (3.2), (3.3), hold with
λ = α + β

2
.

Finally observe that any path from B(x, ℓL) to ∂intB(x, 2ℓL) must visit ∂intB(x, ℓL)
and thus enter one of the B(xi

1, L), then leave B(xi
1, 2L), then visit ∂intB(x, 3

2
ℓL) and

thus enter one of the B(xj
2, L), and then leave B(xj

2, 2L) before reaching ∂intB(x, 2ℓL).
This shows that

(3.15)
Ax∗,ℓL ⊆

⋃
1≤i≤N1
1≤j≤N2

Axi
1,L ∩ Axi

2,L ,

and due to (3.14) thus completes the proof of (3.10).
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Let us now turn to the proof (3.11). The events Bx,L,P are clearly increasing and
σ(Ψx′, x′ ∈ B(x, 10L))-measurable. When x ∈ P, R ≥ 1, then B(x, R) ∩ P is a rect-
angle with horizontal sides of length comparable to R up to a multiplicative constant,

and vertical sides of height comparable to R
β
2 up to a multiplicative constant. The set

∂P
intB(x, R) of vertices of B(x, R) ∩ P that neighbour P\B(x, R) is the union of two hor-

izontal and one or two vertical sides of the rectangle B(x, R) ∩ P. We then proceed as
in the proof of (3.10), in essence replacing ∂intB(x, ℓL) and ∂intB(x, 3

2
ℓL) by ∂P

int B(x, ℓL)

and ∂P
intB(x, 3

2
ℓL). In a similar fashion we find xi

1, 1 ≤ i ≤ N1, in ∂P
intB(x, ℓL) and xj

2,

1 ≤ j ≤ N2, in ∂P
int B(x, 3

2
ℓL), such that

N1 ∨N2 ≤ c ℓ
β
2 ,(3.16)

∂P
int B(x, ℓL) ⊆

⋃

1≤i≤N1

B(xi
1, L), ∂P

intB
(
x,

3ℓ

2
L
)
⊆

⋃

1≤j≤N2

B(xj
2, L) .(3.17)

On the other hand when x /∈ P, (and Bx,ℓL,P = φ), we simply choose N1 = N2 = 1, and

xi
1 ∈ ∂intB(x, ℓL), xj

1 ∈ ∂intB(x, 3
2
ℓL). Similar arguments as for the proof of (3.10) show

that (3.11) holds.

Remark 3.3.

1) In the case E = Z
d+1, d ≥ 2, α + β

2
= d + 1 in (3.10). But one easily sees that in fact

A cascades with complexity at most d. This fact was for instance implicitly used in the
proof of Lemma 1.2 of [19].

2) In the case E = Z
d+1, d ≥ 2, Teixeira introduced in [27] a very interesting family of

events having the cascading property, which we briefly describe below. We now use the
sup-norm distance d∞(·, ·) in place of d(·, ·). For x ∈ Z

d+1, and L ≥ 1 integer, we define
the separation event:

S̃x,L =
{
σ ∈ {0, 1}Z

d+1

; there exist two connected sets

A1, A2 ⊂ x + [−L, 2L)d+1, with diameter at least L
2
,

separated by σ in x + [−2L, 3L)d+1
}

,

(3.18)

where the expression “σ separates A1, A2 in x + [−2L, 3L)d+1” means that the mutual
graph-distance between A1, and A2 exceeds 1, i.e. dZd+1(A1, A2) > 1, and that any path
in x + [−2L, 3L)d+1 from ∂A1 to ∂A2 meets the set Σ(σ) = {x ∈ Z

d+1, σ(x) = 1}.
In other words on the complement of the separation event S̃x,L, for any two connected

subsets A1, A2 of x + [−L, 2L)d+1 with diameter at least L/2, and mutual graph-distance
bigger than 1, one can find a path from ∂A1 to ∂A2 in x+[−2L, 3L)d+1, where σ identically
vanishes.

It then follows from Theorem 5.2 of [27] that

(3.19) S̃ def
= (S̃x,L)x∈Zd+1,L≥1 cascades with complexity at most d + 1 .

3) In analogy with [27], we introduce in the general context of the present work the
collection S = (Sx,L)x∈E,L≥1 integer of separation events defined by

Sx,L =
{
σ ∈ {0, 1}E; there exist connected subsets A1 and A2 of B(x, 3L)

with d(·, ·)-diameter at least L, separated by Σ(σ) in B(x, 5L)
}

,
(3.20)
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where Σ(σ) = {x ∈ E; σ(x) = 1}, and the above separation statement means that the
mutual graph-distance dE(A1, A2) is bigger than 1, and that any path from ∂A1 to ∂A2

in B(x, 5L) meets Σ(σ).

We show in Proposition A.2 of the Appendix that

(3.21)
S is a family of increasing events on {0, 1}E that cascades with

complexity at most α + β
2
.

As an aside, let us mention that making further progress on the question whether u∗ > 0,
when ν < 1, might possibly involve the application of Corollary 3.7 below, to a suitable
variation on the above family S, see also Remark 5.6 2).

�

We now come to the main result of this section, which combines the decoupling in-
equalities of Section 2 with the above notion of cascading property. We recall the sequence
of length scales introduced in (2.1), as well as the notation (1.36), and (2.70). We im-
plicitly assume that ℓ0 ≥ 106c0, see (2.1), is divisible by 100, and that L0 ≥ 1 is an
integer.

Theorem 3.4. (K > 0, 0 < ν′ < ν, ℓ0 ≥ c(K, ν ′), L0 ≥ 1, λ > 0)

Consider G = (Gx,L)x∈E,L≥1 integer, a collection of decreasing, resp. increasing events
on {0, 1}E, cascading with complexity at most λ. Then for any n ≥ 0, u0 > 0, one has
for decreasing events

sup
x∈E

P[Gu+
∞

x,Ln
] ≤ (c(G, λ)ℓ2λ

0 )2n−1
(
sup
x∈E

P[Gu0
x,L0

] + ε(u0)
)2n

,(3.22)

resp. for increasing events

sup
x∈E

P[Gu−
∞

x,Ln
] ≤ (c(G, λ)ℓ2λ

0 )2n−1
(
sup
x∈E

P[Gu0
x,L0

] + ε(u−
∞)

)2n

,(3.23)

with ε(·) as in (2.73).

When the family of events depends on a parameter and cascades uniformly with com-
plexity at most λ, similar inequalities hold as in (3.22), (3.23), where the supremum
appearing on both sides of the inequalities now runs over x ∈ E and the parameter set.

Proof. It follows from (3.4), and induction on n that

(3.24) Gu
x,Ln
⊆ ⋃

T ∈ΛG
n

⋂
m∈T(n)

Gu
xm,T ,L0

,

where the subset ΛG
n of the collection Λn of embeddings of Tn, see above (2.2), has cardi-

nality at most

(3.25) |ΛG
n| ≤ (c(G, λ)ℓλ

0)
2(c(G, λ)ℓλ

0)
4 . . . (c(G, λ)ℓλ

0)
2n

= (c′(G, λ)ℓ2λ
0 )2n−1 .

In view of the decoupling inequalities (2.71), (2.72), our claims (3.22), (3.23) follow. The
extension to families depending on a parameter and having the uniform cascading property
is immediate.

We now derive two corollaries, which we will later apply in Sections 4 and 5.
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Corollary 3.5. Consider a family G = (Gx,L)x∈E,L≥1 integer of events on {0, 1}E cascading
with complexity at most λ > 0, and u > 0 such that

(3.26) lim
L→∞

sup
x∈E

P[Gu
x,L] = 0 .

If the events in G are decreasing, resp. increasing, then for u > u, resp. u < u, one can
find integers L0 ≥ 1, ℓ0 > 1, such that with Ln = ℓn

0 L0,

(3.27) sup
x∈E

P[Gu
x,Ln

] ≤ 2−2n

, for all n ≥ 0 .

When the family depends on a parameter and cascades uniformly with complexity at most
λ, if (3.26) holds with a joint supremum over x in E and the parameter set, then (3.27)
holds with a similar modification.

Proof. We pick K = 2 and ν ′ = ν
2

in Theorem 3.4, and from now on assume that
ℓ0 > c = c(K = 2, ν ′ = ν

2
) ≥ 106c0 is a multiple of 100 such that Theorem 3.4 applies.

Setting u0 = u, we further assume that ℓ0 ≥ c(u,G, λ) is large enough so that in the case
of decreasing events, (cf. (2.70), (3.22) for the notation):

(3.28)

i) u+
∞ < u, and

ii) c(G, λ) ℓ2λ
0 ε(u)

(2.73)

≤ c(G, λ)ℓ2λ
0 2e−2uℓν′

0 /(1− e−2uℓν′

0 ) ≤ 1

4
, for all L0 ≥ 1 .

and that in the case of increasing events:

(3.29)
i) u−

∞ > max
(
u,

u

2

)

ii) c(G, λ) ℓ2λ
0 ε(u−

∞) ≤ c(G, λ)ℓ2λ
0 ε

(
u

2

)
≤ 1

4
, for all L0 ≥ 1 .

So in the case of decreasing events we see that for all L0 ≥ 1, n ≥ 0, x ∈ E,

(3.30) P[Gu
x,Ln

] ≤ P[Gu+
∞

x,Ln
]

(3.22)

≤
(3.28)ii)

[
c(G, λ)ℓ2λ

0 sup
x∈E

P[Gu
x,L0

] +
1

4

]2n

.

In view of (3.26) we can pick a large enough L0 so that (3.27) holds. When the family
consists of increasing events, the same argument with (3.23) and (3.29) in place of (3.22),
(3.23) yields the claim. The case of a family depending on a parameter is handled in a
similar fashion as above.

Remark 3.6.

1) Note that we can pick ℓ0 and L0 in Corollary 3.5 as c(u,G), where the convention
concerning constants can be found at the end of the Introduction. For instance we can
select ℓ0 > 1 minimal such that (3.27) holds for some L0 ≥ 1 and then given this choice
of ℓ0 pick a minimal L0 such that (3.27) holds.

2) The above corollary could in fact accommodate the choice of a faster growth of com-
plexity than what is imposed on cascading families in (3.3). One could as well have chosen

c(G, ν̃) eℓeν
, with ν̃ < ν, in place of c(G, λ) ℓλ, and the above proof would have gone through

with minor modifications. Apart from the various examples presented in Proposition 3.2
and Remark 3.3, one motivation for the choice that appears in (3.3) stems from the next
proposition, where the parameter λ from (3.3) plays an explicit role. �

31



We are now ready to state the second corollary of Theorem 3.4, which will be used in
Section 5. The following observation will be implicit in the interpretation of the expres-
sion in (3.31) below: given X1

. , . . . , X
M
. independent canonical random walks on E, the

indicator function χ∪M
1 range(Xi.) of the union of the ranges of the walks defines a {0, 1}E-

valued random variable, (when M = 0 this random variable is constant and equal to the
function identically equal to 0 on E).

Corollary 3.7. Consider a family G = (Gx,L)x∈E,L≥1 integer of increasing events on {0, 1}E
cascading with complexity at most λ > 0, and an integer M ≥ [2λ

ν
], (recall ν = α− β

2
> 0).

Assume that

(3.31) lim
L→∞

sup
x,x1,...,xM

M⊗

i=1

Pxi
[χ∪M

1 range(Xi.) ∈ Gx,L] = 0 ,

where the supremum runs over x ∈ E, x1, . . . , xM ∈ ∂intB(x, 20L). Then one can find
u > 0, and integers L0 ≥ 1, ℓ0 > 1, so that

(3.32) sup
x∈E

P[Gu
x,Ln

] ≤ 2−2n, for all n ≥ 0 .

In addition when the family depends on a parameter and cascades uniformly with com-
plexity at most λ, if (3.31) holds with a joint supremum over x, x1, . . . , xM as above and
the parameter set, then the supremum in (3.32) can be replaced by a joint supremum over
x and the parameter set.

Proof. We choose K = 2 and 0 < ν′′ < ν′ < ν = α− β
2
, so that

(3.33) ν ′′(M + 1) > 2λ .

We know from Theorem 3.4 that for ℓ0 ≥ c(K = 2, ν ′) multiple of 100, u0 > 0, L0 ≥ 1,
one has

(3.34) sup
x∈E

P[Gu−
∞

x,Ln
] ≤ [c(G, λ)ℓ2λ

0

(
sup
x∈E

P[Gu0
x,L0

] + ε(u−
∞))]2

n

.

From now on we assume ℓ0 large enough so that, cf. (2.70), for all u0 > 0,

u−
∞ ≥

1

2
u0 ,(3.35)

and such that setting

u0 = L−ν
0 ℓ−ν′′

0 ,(3.36)

one also has, cf. (2.73):

(3.37) c(G, λ) ℓ2λ
0 ε(u−

∞) ≤ c(G, λ) ℓ2λ
0 2e−ℓν′−ν′′

0 /(1− e−ℓν′−ν′′

0 ) ≤ 1

4
, for all L0 ≥ 1 .

The claim (3.32) will then follow in view of (3.34), (3.37), once we show that

(3.38) lim
ℓ0→∞

lim
L0→∞

ℓ2λ
0 sup

x∈E
P[Gu0

x,L0
] = 0 ,

with u0 as in (3.36) and ℓ0 multiple of 100.
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For this purpose we observe that Gx,L0 is σ(Ψx′, x′ ∈ B(x, 10L0))-measurable and
Iu0 ∩ B(x, 10L0) coincides by (1.32) with the trace on B(x, 10L0) of the union of the

ranges of the trajectories in the support of the Poisson point measure µ
def
= µB(x,20L0),u0 .

The intensity of µ equals u0 PeB(x,20L0)
by (1.27), and the law of µ can thus be generated

as the sum of a Poisson number of point masses on W+ located at independent random
walk trajectories with common distribution Pe, where the common starting distribution
equals e = eB(x,20L0)/cap(B(x, 20L0)) and the Poisson variable has intensity

(3.39) u0 cap(B(x, 20L0))
(1.26)

≤ c u0 Lν
0

(3.36)

≤ c ℓ−ν′′

0
def
= κ .

The probability that the Poisson variable exceeds M is at most:

e−κ
∑

k≥M+1

κk

k!
≤ κM+1 = c(M+1)ℓ

−ν′′(M+1)
0 .

As a result we see that

(3.40)

ℓ2λ
0 sup

x∈E
P[Gu0

x,L0
] ≤ c(M+1) ℓ

2λ−(M+1)ν′′

0 +

ℓ2λ
0 sup

x,x1,...,xM

M⊗
i=1

Pxi
[χ∪M

1 range(Xi.) ∈ Gu0
x,L0

] ,

where the supremum runs over the same collection as in (3.31). By (3.31) and (3.33)
we see that (3.38) holds. This proves (3.32). The case of a family G depending on a
parameter is handled in a similar fashion. This concludes the proof of Corollary 3.7.

Remark 3.8.

1) In the case E = Z
d+1, d ≥ 2, the family S̃ of separation events, cf. (3.18), (3.19)

introduced by Teixeira [27] cascades with complexity at most d + 1, and ν = d − 1, so
that [2λ

ν
] = 2 + [ 4

d−1
]. When d ≥ 4, we can choose M = 3, and it follows from Theorem

6.11 of [27] that (3.31) holds. As a result we see by (3.32) that one can find u > 0, ℓ0 > 1,
and L0 ≥ 1, such that

(3.41) P[S̃u
0,Ln

] ≤ 2−2n

, for all n ≥ 0 ,

(the supremum over x has been dropped due to translation invariance).

2) In view of the above remark, the family S in (3.20) is also a natural candidate for
which condition (3.31) of Corollary 3.7 ought to be tested. We hope this point will be
tackled elsewhere.

3) By similar considerations as in Remark 3.6, we can pick u, ℓ0, L0 as c(G) in the above
Corollary 3.7. �
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4 Finiteness of u∗u∗u∗ and connectivity bounds

In this section we explore the percolative properties of the vacant set of random interlace-
ments on E, in the sub-critical phase of the model. We show that in our set-up the critical
parameter u∗ in (0.7) is always finite, and we derive stretched exponential bounds on the

connectivity function P[x
Vu

←→ y], when u > u∗∗, with u∗∗ ≥ u∗, a certain finite critical
value, possibly equal to u∗, see (0.10). The main result appears in Theorem 4.1, and
comes as an application of Theorem 3.4 and Corollary 3.5. Even in the case E = Z

d+1,
d ≥ 2, Theorem 4.1 improves on what is presently known, see Remark 4.2 1) below.

We recall the definition of u∗∗ from (0.10),

(4.1) u∗∗ = inf{u ≥ 0; lim
L→∞

sup
x∈E

P[B(x, L)
Vu

←→ ∂intB(x, 2L)] = 0} ∈ [0,∞] .

With the notation from (0.3), it is plain that η(x, u) = 0 for all x in E, when u > u∗∗,
and therefore we see that

(4.2) 0 ≤ u∗ ≤ u∗∗ ≤ ∞ .

A routine covering argument further shows that u∗∗ does not change when we restrict L
to integer values in (4.1), see also below (4.5). The following theorem will in particular
show that u∗∗ is finite.

Theorem 4.1.

(4.3) 0 ≤ u∗ ≤ u∗∗ <∞ ,

and for u > u∗∗ there exist c4(u), c5(u) > 0, 0 < κ(u) < 1, such that

(4.4) sup
x∈E

P[B(x, L)
Vu

←→ ∂intB(x, 2L)] ≤ c4 e−c5Lκ

, for L ≥ 1 .

Proof. Once we know that u∗∗ <∞, it follows from Corollary 3.5 applied to the collection
A of (3.5), see also Remark 3.6, that for u > u∗∗, there is ℓ0(u) > 1 and L0(u) ≥ 1, such
that:

(4.5) sup
x∈E

P[Au
x,Ln

] ≤ 2−2n

, for all n ≥ 0 .

If we now consider L ≥ 4L0, and Ln ≤ L/4 < Ln+1, a similar argument as in the proof of
Proposition 3.2 enables us to cover B(x, L) by a collection of a most c(u) closed balls of
radius Ln with centers in B(x, L). It then follows that

(4.6)

P[B(x, L)
Vu

←→ ∂intB(x, 2L)] ≤ c(u) sup
x∈E

P[Au
x,Ln

] ≤ c(u) 2−2n
=

c(u) exp
{
−

(
Ln+1

L1

)κ}
≤ c(u) exp{−L−κ

1 Lκ}, with κ(u) =
log 2

log ℓ0
,

and (4.4) follows straightforwardly.
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We hence only need to show that u∗∗ is finite. For this purpose we use (3.22) with
G = A, λ = α + β

2
, K = 1, ν ′ = ν

2
, and find that for some ℓ0 > 1, L0 = 1, and all n ≥ 0,

u0 > 0, one has

(4.7)
sup
x∈E

P[B(x, Ln)
Vu+

∞←→ ∂intB(x, 2Ln)] ≤
[
c ℓ2λ

0

(
sup
x∈E

P[B(x, 1)
Vu0←→ ∂intB(x, 2)] + ε(u0)

)]2n

.

Taking into account that the event under the probability in the right-hand side of (4.7)
is contained in the event {Vu0 ∩ B(x, 2) 6= ∅}, we see that

(4.8) sup
x∈E

P[B(x, 1)
Vu0←→ ∂intB(x, 2)]

(1.37)

≤ c e−cu0 .

Thus for large enough u0, the left-hand side of (4.7) is at most 2−2n
for all n ≥ 0. This

proves that u∗∗ <∞, and concludes the proof of Theorem 4.1.

Remark 4.2.

1) In the case E = Z
d+1, d ≥ 2, when we use the sup-norm distance in place of d(·, ·), the

above result improves upon what is known from [19]. Indeed it shows that

u∗∗ = inf
{
u ≥ 0; lim

L→∞
P[B∞(0, L)

Vu

←→ ∂intB∞(0, 2L)] = 0
}

= inf
{
u ≥ 0; for some α > 0, lim

L→∞
Lα

P[B∞(0, 2L)
Vu

←→ ∂intB∞(0, 2L)] = 0
}

,
(4.9)

the second line being a priori bigger or equal to u∗∗, but in fact equal to u∗∗ thanks to
(4.4). The quantity in the second line of (4.9) is used for the definition of u∗∗ in [19], and
the equality stated in (4.9) is new.

2) Can one construct examples where u∗∗ > u∗ holds? Can this bring some light concerning
the open question whether u∗ = u∗∗ in the case of E = Z

d+1, d ≥ 2 ? The absence of a
true substitute for the BK Inequality in the context of interlacement percolation makes
this last question hard to answer at present.

3) Note that for any two distinct points x, x′ in E, with d(x, x′) = L + 1, one has the
inclusion

{x Vu

←→ x′} ⊆ {x Vu

←→ ∂intB(x, L)} ,

because any path in E from x to x′ must at some point exit B(x, L). This observation
combined with (4.4) implies that for u > u∗∗ the connectivity function has a stretched
exponential decay:

(4.10) P[x
Vu

←→ x′] ≤ c(u) e−c′(u)d(x,x′)κ

for x, x′ in E ,

with κ as in (4.4).

4) It is plain that the argument employed in the proof of Theorem 4.1 is quite robust
and could be adapted to different collections of decreasing events having the cascading
property. �
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5 Positivity of u∗u∗u∗ and connectivity in half-planes

In this section we explore the percolative properties of the vacant set of random inter-
lacements on E in the super-critical phase of the model. We show that u∗ > 0 when
α ≥ 1 + β

2
, i.e. when ν ≥ 1, and that for small u > 0, Vu percolates in half-planes,

see (3.7) for the definition of half-planes. Additionally we derive stretched exponential
bounds on the ∗-connectivity function of Iu inside half-planes. Our main results appear
in Theorem 5.1 and Corollary 5.5. The proof of Theorem 5.1 has some flavor of the proof
of Theorem 5.3 of [20], where a similar restriction α ≥ 1 + β

2
is present. This restriction

rules out examples such as E = G× Z, where G is the discrete skeleton of the Sierpinski
gasket, cf. [15], [3]. It is an interesting question whether u∗ > 0 remains true in this case.
Let us point out that when E = Z

d+1, d ≥ 2, the condition ν ≥ 1 is automatically fulfilled
and the results of this section go beyond present knowledge, cf. [19], [26], [27].

We recall the definition of half-planes in (3.7) and of ∗-paths below (3.8). We then
introduce

(5.1) ũ = inf
{
u ≥ 0; lim

L→∞
sup

P,x∈P
P
[
B(x, L)

∗−Iu∩P←→ ∂intB(x, 2L)
]

> 0
}

,

(when L is a positive integer, the event inside the probability coincides with Bu
x,L,P , where

Bx,L,P has been defined in (3.9)). The main result of this section is the following.

Theorem 5.1.

(5.2) 0 ≤ ũ ≤ u∗ ,

moreover for u < ũ,

(5.3) P-a.s., Vu percolates in every half-plane P ,

and there exist positive c6(u), c7(u), and 0 < κ̃(u) < 1, such that

(5.4) sup
P,x∈P

P
[
B(x, L)

∗−Iu∩P←→ ∂intB(x, 2L)
]
≤ c6 e−c7Leκ

, for L ≥ 1 .

In addition when α ≥ 1 + β
2
, i.e. ν ≥ 1, one has

(5.5) 0 < ũ ≤ u∗ .

Proof. The claim (5.4) is a direct application of Corollary 3.5, and similar considerations
as below (4.5). The claim (5.2) follows immediately once we prove (5.3). We now prove
(5.3). To this end we consider u < ũ and P = {y(n); n ≥ 0} × Z, where y(n), n ≥ 0, is a
semi-infinite geodesic in G. We use the notation x0 = (y(0), 0), and L+ = {y(0)}× [0,∞),
L− = {y(0)} × (−∞,−1]. The claim (5.3) is a consequence of

(5.6) P[x0 belongs to an infinite connected component of Vu ∩ P] > 0 .

Indeed a similar argument as in the proof of (1.39), see also (1.42), shows that a zero-one
law holds for the probability that Vu percolates in P. Now for any integer M > 0, the
probability in (5.6) is at least

(5.7)

P[B(x0, M) ∩ P ⊆ Vu and there is no ∗-path in Iu ∩ P from

L+\B(x0, M) to L−\B(x0, M)]
(1.34)

≥

P[B(x0, M) ∩ P ⊆ Vu] P[ there is no ∗-path in Iu ∩ P from

L+\B(x0, M) to L−\B(x0, M)] .
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The first factor in the last line equals exp{−u cap(B(x0, M) ∩ P)} > 0. As for the last
factor, we consider the complement of the event under the probability, and keep track
of the largest B(x0, 2

kM) not containing the rightmost point of the ∗-path on {(y(n), 0);
n ≥ 0}. Setting x̃k = (y(2k+1M + 1), 0), for k ≥ 0, we see that the last factor is at least

1− ∑
k≥0

P[B(x̃k, 2
kM)

∗−Iu∩P←→ ∂intB(x̃k, 2
k+1M)]

(5.4)

≥

1− ∑
k≥0

c(u) e−c′(u)(2kM)eκ
> 0, when M is large .

This proves (5.6) and thus completes the proof of (5.3).

We now turn to the proof of (5.5) and assume from now on unless otherwise specified
that ν = α− β

2
≥ 1. In essence this assumption makes it hard for the random walk on E

to have a trace in a half-plane that covers a large ∗-path. We define the integer M via

(5.8) M =
[β

ν

]
.

In view of (3.11) and Corollary 3.7, (5.4) will hold for small u > 0, and our claim (5.5)
will follow once we prove that:

(5.9) lim
L→∞

s̃up
M⊗

i=1

Pxi
[χ∪M

1 range(Xi.) ∈ Bx,L,P ] = 0 ,

where the notation s̃up refers to a supremum over P, x in P, x1, . . . , xM in ∂intB(x, 20L),
and Bx,L,P appears in (3.9).

Given a half-plane P and x in P, we can find, depending on x and L ≥ 1, three or four

rectangles D̃ = W̃×J̃ in P∩(∂intB(x, L)∪(B(x, 2L)\B(x, L))), bordering ∂intB(x, L)∩P,

with L ≤ |W̃ | ≤ 5L, [Lβ/2] ≤ |J̃ | ≤ [(5L)β/2], and such that any ∗-path in P from
B(x, L) ∩ P to ∂intB(x, 2L) ∩ P contains a ∗-path in P joining the opposite sides of one
of these rectangles, (see Figure 2).
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L+ ∪ L−

∂intB(x, 2L) ∩ P

x

B(x, L) ∩ P

Fig. 2: An illustration with three rectangles bordering ∂intB(x, L) ∩ P
and a ∗-path in P from B(x, L) ∩ P to ∂intB(x, 2L) ∩ P
inducing a crossing of one of the three rectangles.
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We now define

(5.10)
H = [(L/N)

β
2 ], where N = log L, and L ≥ 103 is large enough

so that 103 ≤ H < [L
β
2 ] .

We can cover each of the three or four above rectangles D̃ by at most c Nβ/2 overlapping

rectangles D having same horizontal projection as D̃ and a vertical projection of cardi-

nality H , so that every ∗-path joining opposite sides of D̃ has a trace in at least one of
the rectangles D with either a horizontal projection containing a segment of at least L/10
points, or a vertical projection containing a segment of at least H/10 points. To see this,
one for instance considers the collection of rectangles D “vertical translates” of the form

W̃ ×([1, H ]+k[H/100]), k ∈ Z, that intersect D̃ = W̃ × J̃ . One then looks at the location

of the ∗-path when it reaches the “middle” of the side of D̃ it crosses, and picks one of
the rectangles D with “closest center” to that location.

From the above considerations we see that for large L, the expression inside the lim inf
in (5.9) is bounded from above by

A
def
= c N

β
2 sup

M⊗

i=1

Pxi

[ M⋃

i=1

range(X i
.) ∩D has G-projection with at least L/10

points or Z-projection with at least H/10 points
]
,

(5.11)

where the notation sup refers to a supremum over P, x1, . . . , xM in P, and D = W × J ,
a rectangle in P, with L ≤ |W | ≤ 5L, and |J | = H .

For a rectangle as above we introduce the notation

(5.12) Jy = {y} × J, y ∈ G, Wz = W × {z}, z ∈ Z .

The following lemma comes as a preliminary step in bounding A in (5.11). It will enable
us to control the average number of vertical segments Jy, y ∈W , and horizontal segments
Wz, z ∈ J , of D visited by a random walk on E starting from an arbitrary location. The
bound on A will then follow by an application of Khashminskii’s lemma, see [16]. The
calculations are similar to what appears in the proof of Corollary 5.3 of [20].

Lemma 5.2. (ν ≥ 1, L ≥ c)

When x = (y, z), x = (y, z) are in D,

(5.13) Px[HJy
<∞] ≤





c(H ∧ dG(y, y)β/2)/dG(y, y)ν , when α > β ,

c{1 + log(H
2
β /dG(y, y))}/ log H, when α = β and

0 < dG(y, y) < H
2
β ,

c H dG(y, y)−
β
2 / log H, when α = β and dG(y, y) ≥ H

2
β ,

c(1 ∧ (H
2
β /dG(y, y))ν), when α < β,

as well as

(5.14) Px[HWz
<∞] ≤

{
c(1 ∧ |z − z| 2β (1−ν)), if ν > 1 ,

c(1 + log(L/|z − z| 2β ))/ log L, if ν = 1 .
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Proof. We begin with the proof of (5.13). We apply the right-hand inequality of (1.25)
with K = Jy. With this in mind we introduce the function

(5.15) Jy(x
′) =

∑
ex∈Jy

g(x′, x̃), for x′ ∈ E .

We note that by (1.9) when x′ ∈ Jy, one has

(5.16) Jy(x
′) ≥ c

H∑
ℓ=1

ℓ−( 2α
β
−1) ≥





c, when α > β ,

c log H, when α = β ,

c H2− 2α
β , when α < β .

On the other hand when x /∈ Jy, with x as in (5.13), it follows from (1.9) that

(5.17) Jy(x) ≤ c
H∑

ℓ=1

(
dG(y, y)ν ∨ ℓ

2α
β
−1

)−1
,

so that when dG(y, y)
β
2 ≤ H , keeping track of whether ℓ ≤ dG(y, y)β/2 or not, we find that

(5.18) Jy(x) ≤





c dG(y, y)
β
2
−ν , when α > β,

c (1 + log(H/dG(y, y)
β
2 )), when α = β ,

c H2− 2α
β , when α < β .

On the other hand when dG(y, y)
β
2 > H , we find instead in all cases that

(5.19) Jy(x) ≤ c H dG(y, y)−ν .

The right-hand inequality in (1.25) yields that Px[HJy
<∞] is bounded by

Jy(x)/ infx′∈Jy
Jy(x

′), and (5.13) now follows (note that ν = β
2
, when α = β).

We then continue with the proof of (5.14), and now introduce the function

(5.20) Wz(x
′) =

∑
ex∈Wz

g(x′, x̃), for x′ ∈ E .

We find by (1.9) that when x′ ∈Wz, (remember that L ≤ |W | ≤ 5L), one has:

(5.21) Wz(x
′) ≥ c

|W |∑
ℓ=1

ℓ−ν ≥
{

c, when ν > 1 ,
c log L, when ν = 1 .

On the other hand, when x /∈Wz, with x as in (5.14), we have by (1.9):

Wz(x) ≤ c
|W |∑
ℓ=1

(
ℓν ∨ |z − z| 2α

β
−1

)−1

≤ c |z − z| 2β +1− 2α
β + c

∑

|z−z|
2
β <ℓ≤|W |

ℓ−ν

≤ c |z − z| 2β (1−ν), when ν > 1 ,

≤ c(1 + log(L/|z − z| 2β )), when ν = 1 .

(5.22)

Using once again the right-hand inequality of (1.25) we find that Px[HWz
<∞] is bounded

by Wz(x)/ infx′∈Wz
Wz(x

′), and (5.14) follows.
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With the help of the above lemma, we will now derive an upper bound on the expected
number of vertical or horizontal segments in D visited by the random walk in E. We first
introduce some notation. As a consequence of the strong Markov property at time HD,
we see that

Nvert
def
= sup

x∈E
Ex

[ ∑
y∈W

1{HJy
<∞}

]
= sup

x∈D
Ex

[ ∑
y∈W

1{HJy
<∞}

]
,(5.23)

and that

Nhor
def
= sup

x∈E
Ex

[ ∑
z∈J

1{HWz
<∞}

]
= sup

x∈D
Ex

[ ∑
z∈J

1{HWz
<∞}

]
,(5.24)

where D ⊆ P is a rectangle of the form D = W × J , with L ≤ |W | ≤ 5L, and |J | = H(<

L
β
2 ), see (5.10). The following lemma encapsulates the estimates that we will use, and

that are stated in a simplified form to avoid tracking all special values of the parameters.

Lemma 5.3. (ν ≥ 1, L ≥ c)

Nvert ≤ c H
2
β (1 + log(L/H

2
β ))/(1 + 1{α = β} logL) ,(5.25)

Nhor ≤ c H(1 + log(L/H
2
β ))/ log L .(5.26)

Proof. We begin with the proof of (5.25). When α > β, by the first line of (5.13) we find

Nvert ≤
∑

1≤ℓ<H
2
β

c ℓ−(α−β) +
∑

H
2
β ≤ℓ≤|W |

c Hℓ−ν

≤ c H
2
β
(1+β−α)+ + c(log H) 1{α = β + 1} ,

(5.27)

whence (5.25).

When α = β, using the second and third line of (5.13) we find that:

Nvert ≤
∑

1≤ℓ<H
2
β

c

log H

(
1 + log

(H
2
β

ℓ

))
+

∑

H
2
β ≤ℓ≤|W |

c

log H
H ℓ−

β
2

≤ c H
2
β / log H + c H

2
β (1 + 1{β = 2} log(L/H

2
β ))/ log H,

(5.28)

whence (5.25).

When β > α > 1 + β
2
, (so that ν > 1 and β > 2), the last line of (5.13) yields that:

(5.29) Nvert ≤
|W |∑
ℓ=1

c
(
1 ∧

(H
2
β

ℓ

)ν)
≤ c H

2
β + c H

2ν
β

∑

ℓ≥H
2
β

ℓ−ν ≤ c H
2
β ,

whence (5.25).

Finally when β > α = 1 + β
2
, (so that ν = 1 and β > 2), the last line of (5.13) now

yields that:

(5.30) Nvert ≤
|W |∑
ℓ=1

c
(
1 ∧

(H
2
β

ℓ

)ν)
≤ c H

2
β
(
1 + log(L/H

2
β )

)
,

whence (5.25).
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We then turn to the proof of (5.26). When α > 1 + β
2
, then 0 > 2

β
(1 − ν) =

2
β

(1 + β
2
− α) = 1− 2

β
(α− 1), and the first line of (5.14) implies that:

(5.31) Nhor ≤
H∑

k=1

c k
2
β
(1−ν) ≤ c H (1+ 2

β
(1−ν))+ + c 1{α = 1 + β} logH ,

whence (5.26).

Finally when α = 1 + β
2
, then ν = 1 and the second line of (5.14) yields that

(5.32) Nhor ≤
H∑

k=1

c

log L

(
1 + log

(L
β
2

k

))
≤ c H/ logL + c H log(L

β
2 /H)/ logL ,

whence (5.26). This concludes the proof of Lemma 5.3.

We are now ready to prove (5.9). For this purpose we bound A in (5.11) with the
help of Khasminskii’s Lemma, cf. [16], (2.46) of [10], or [8], p.71. We thus find that for
all rectangles D = W × J as stated above Lemma 5.3 we have:

sup
x∈E

Ex

[
exp

{ c

Nvert

∑
y∈W

1{HJy
<∞}

}]
≤ 2, and(5.33)

sup
x∈E

Ex

[
exp

{ c

Nhor

∑
z∈J

1{HWy
<∞}

}]
≤ 2 .(5.34)

As a result of the exponential Chebyshev inequality and (5.11) we thus find:

(5.35) A ≤ cN
β
2 2M

[
exp

{
− c

L

Nvert

}
+ exp

{
− c

H

Nhor

}]
.

However from (5.10) and Lemma 5.3 we find that for L ≥ c,

L

Nvert
≥ c

L

H
2
β

(1 + 1{α = β} log L)

1 + log(L/H
2
β )

≥ c
log L

log log L
, and(5.36)

H

Nhor
≥ c

log L

1 + log(L/H
2
β )
≥ c

log L

log log L
.(5.37)

Inserting these bounds in (5.35), (recall that N = log L), implies that A tends to zero as
L goes to infinity. This proves (5.9) and thus concludes the proof of Theorem 5.1.

Remark 5.4. In the above proof the methods of Section 3 make the case where ν > β,
i.e. α > 3

2
β, much simpler to treat. Indeed M in (5.8) vanishes and so does the expression

under the supremum in (5.9). This immediately yields the claim (5.5).

In the case α ≤ 3
2
β, the choice of rectangles D where the height H is such that H

2
β

is slightly smaller (by a logarithmic factor) than the base |W | ∈ [L, 5L], see (5.10) and
below (5.11), is truly useful when handling the situation where β > α, (and ν ≥ 1), as can
be seen from (5.29), (5.30). Such a procedure works because Nhor nevertheless remains
“negligible” with respect to H , as can be seen in (5.31), (5.32). �

41



We state a consequence of (5.4) in terms of the size of the finite connected components
of Vu in half-planes when u < ũ. The notation is the same as in Theorem 5.1, with
0 < κ̃(u) < 1 introduced in (5.4).

Corollary 5.5. When u < ũ, there exist positive c8(u), c9(u) such that

sup
P,x∈P

P
[
the connected component of x in Vu ∩ P is finite

and intersects ∂intB(x, L)] ≤ c8 e−c9 Leκ
, for L ≥ 1 .

(5.38)

Proof. On the event inside the probability one can find a ∗-path in Iu∩P separating in P
the connected component of x in Vu∩P from infinity. The respective G- and Z-projections
of the range of the ∗-path are “intervals” containing the respective G- and Z-projections
of x, and either the G-projection contains at least L points or the Z-projection contains

at least L
β
2 points. One can then consider the rightmost point of the ∗-path having same

height as x. A variation of the argument used to bound from below the last factor of (5.7)

combined with the inequalities
∑

k≥0 e−c(u)(2kL)eκ ≤ ∑
k≥0 e−c′(u)(k+1)Leκ ≤ c(u) e−c′(u)Leκ

yields the claim (5.38) in a straightforward fashion.

Remark 5.6.

1) In the important special case E = Z
d+1, d ≥ 2, when the sup-norm distance d∞(·, ·)

replaces d(·, ·), the results of Theorem 5.1 and Corollary 5.5, show that the plane exponent:

(5.39) ũpl = inf
{
u ≥ 0; lim

L→∞
P[B∞(0, L)

∗−Iu∩Z
2

←→ B(0, 2L)] > 0
}

,

(which coincides with ũ), is such that for any d ≥ 2,

(5.40) 0 < ũpl ≤ u∗,

that for u < ũpl,

(5.41) P-a.s., Vu percolates in all planes of Z
d,

and there exist c(u), c′(u), 0 < γ(u) < 1, such that for L ≥ 1,

P
[
B∞(0, L)

∗−Iu∩Z
2

←→ ∂intB∞(0, 2L)
]
≤ c e−c′ Lγ

, and(5.42)

P
[
the connected component of 0 in Vu ∩ Z

2 is finite and intersects(5.43)

∂intB∞(0, L)
]
≤ c e−c′ Lγ

.

The above sharpens previously known results of [18], cf. Remark 3.5 2), where arbitrary
polynomial decay in L for the left-hand side of (5.42), when u is sufficiently small has
been established. It also complements the separation results from [26], for small u > 0
and d + 1 ≥ 5, see also (3.19) and Remark 3.8 1).

2) It is a very interesting question to understand what happens when α < 1 + β
2
. Does

one of the values ũ or u∗ vanish, or both? Can one successfully apply Corollary 3.7 to
a cascading family in the spirit of the family S of separation events, which has been
introduced in Remark 3.3 3)? The special case of E = G × Z, where G is the discrete
skeleton of the Sierpinski gasket endowed with its natural weights, corresponds to α = log 3

log 2
,

β = log 5
log 2

, cf. [15], [3], and is somehow emblematic of this puzzle. �
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A Appendix

The main object of this appendix is to prove that the collection S of “separation events”
introduced in Remark 3.3 3) has the cascading property. The proof is in essence an
adaptation of the arguments that appear in Lemma 5.1 and Theorem 5.2 of Teixeira [27],
but the geometry is possibly quite different in the present set-up. Our main result is
stated in Proposition A.2. We refer to the beginning of Section 1 for notation, and recall
that dE(·, ·) denotes the graph-distance on E, which should not be confused with d(·, ·),
see (0.3).

We first note that for any subsets A, B of E, one has

(A.1) dE(A, B) > 1⇐⇒ A ∩ B = ∅ ⇐⇒ A ∩ B = ∅ .

We say that A and B are separated by C in U , all of them being subsets of E, when
dE(A, B) > 1 and any path from ∂A to ∂B remaining in U meets C. The collection
of events S = (Sx,L)x∈E,L≥1 integer introduced in (3.20) and discussed in this appendix is
defined by:

Sx,L =
{
σ ∈ {0, 1}E; there exist connected subsets A1 and A2 of B(x, 3L) with

d(·, ·)-diameter at least L, separated by Σ(σ) in B(x, 5L)
}

,
(A.2)

where Σ(σ) = {x ∈ E; σ(x) = 1}. For simplicity we will often write Σ in place of Σ(σ),
and diameter in place of d(·, ·)-diameter. Our first result is:

Lemma A.1. (ℓ multiple of 100, L ≥ 1 integer, x∗ in E)

Assume A1, A2 ⊆ B(x∗, 3ℓL) are connected subsets of diameter at least ℓL, that σ ∈
{0, 1}E is such that Σ separates A1 and A2 in B(x∗, 5ℓL), and that x1, . . . , xM is a sequence
in E such that:

(A.3)

i) B(xi, 5L) ⊆ B(x∗, 5ℓL), 1 ≤ i ≤ M ,

ii) d(xi, xi+1) ≤ L, for 1 ≤ i < M ,

iii) A1 ∩ B(x1, 2L) 6= ∅ and A2 ∩ B(xM , 2L) 6= ∅ .

It then follows that

(A.4) for some i ∈ {1, . . . , M}, σ ∈ Sxi,L .

Proof. Let C denote the connected component of A1 in (A1 ∪ Σc) ∩ B(x∗, 5ℓL). By con-
struction we have:

(A.5) ∂C ∩ B(x∗, 5ℓL) ⊆ Σ .

Moreover we also have

(A.6) A2 ∩ C = ∅ .

Indeed otherwise we could find a path in B(x∗, 5ℓL) from A1 to A2 not meeting Σ after
its last visit to A1, and as a result we could find a path from ∂A1 to ∂A2 in B(x∗, 5ℓL)
not meeting Σ, a contradiction.
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By (A.6) and (A.5) we now see that dE(C, A2) > 1, and any path from ∂C to ∂A2 in
B(x∗, 5ℓL) meets Σ, i.e.,

(A.7) C and A2 are separated by Σ in B(x∗, 5ℓL) .

By (A.3) iii) we know that C ∩B(x1, 2L) 6= ∅, and we denote by i∗ the largest 1 ≤ i ≤M ,
such that C ∩ B(xi, 2L) 6= ∅. We first note that

(A.8) when i∗ = M , then σ ∈ SxM ,L .

Indeed C and A2 have diameter at least ℓL > 6L + 2 and thus both meet ∂B(xM , 3L)

and B(xM , 2L). We can hence choose connected subsets A′
1 of C ∩ B(xM , 3L) and A′

2

of A2 ∩ B(xM , 3L) with diameter at least L. Due to (A.7) they are separated by Σ in
B(x∗, 5ℓL) and hence in B(xM , 5L). The claim (A.8) now follows.

We then observe that

(A.9) when 1 ≤ i∗ < M , then σ ∈ Sxi∗ ,L .

Indeed consider the “vertical segment”, (with πG and πZ the respective G-projection and
Z-projection on E):

J = {x ∈ E; πG(x) = πG(xi∗+1) and − 1 ≤ πZ(x)− πZ(xi∗+1) ≤ Lβ/2} ⊆ B(xi∗+1, L) .

By assumption C∩B(xi∗+1, 2L) = ∅, so that J∩C ⊆ B(xi∗+1, 2L)∩C = ∅, and dE(J, C) > 1.

Suppose that σ /∈ Sxi∗ ,L. Due to (A.3) ii) we see that J ⊆ B(xi∗ , 3L), and we can extract

a connected subset C′ of C ∩ B(xi∗ , 3L) with diameter at least L and a path from ∂C′
to ∂J in B(xi∗ , 5L)\Σ. This shows that C extends to ∂J and thus meets B(xi∗+1, 2L),
a contradiction. The claim (A.4) now follows from (A.8), (A.9), and Lemma A.1 is
proved.

We now come to the main result of this appendix.

Proposition A.2.

S is a family of increasing events on {0, 1}E that cascades with

complexity at most α + β
2
.

(A.10)

Proof. Clearly S is a family of increasing events which satisfy (3.1). For any given ℓ
multiple of 100, x∗ in E, and integer L ≥ 1, we want to find a finite subset Λ of E for
which (3.2) - (3.5) hold, with λ = α+ β

2
and x∗ in place of x in (3.2) - (3.5). Without loss

of generality and to simplify notation, we assume that x∗ = (y∗, 0).

We consider ΛG ⊆ BG(y∗, 5ℓL) defined as follows. When L ≤ 4, ΛG = BG(y∗, 5ℓL)
and when L > 4, ΛG is a maximal set of points in BG(y∗, 5ℓL) with mutual dG-distance
bigger than L/4. By construction we see that

(A.11) BG(y∗, 5ℓL) ⊆ ⋃
y∈ΛG

B(y, L/4)

and by the α-Ahlfors regularity of G, see (1.7), with similar arguments as in the proof of
Proposition 3.2, we find that

(A.12) |ΛG| ≤ c ℓα .
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Further note that for y ∈ G, R ≥ 0, the ball BG(y, R) is connected, and using (A.11)
when L > 4, we have the following local connectivity property of ΛG:

(A.13)
when BG(y, R) ⊆ BG(y∗, 5ℓL) and y′, y′′ ∈ ΛG ∩ BG(y, R), there is a
sequence y1, . . . , yM in ΛG ∩ BG(y, R + L

4
) such that y1 = y′, yM = y′′,

and dG(yi, yi+1) ≤ L, for 1 ≤ i < M .

We also introduce the finite subset of Z:

(A.14) ΛZ = a Z ∩ [−(5ℓL)β/2, (5ℓL)β/2], where a = max(1, [(L/4)
β
2 ]) .

We then define Λ = ΛG × ΛZ, and note that

(A.15)
Λ ⊆ B(x∗, 5ℓL), and B(x∗, 5ℓL) ⊆ ⋃

x∈Λ

B
(
x, L

4

)
,

(when L ≤ 4, Λ actually coincides with B(x∗, 5ℓL)).

Further one has

(A.16) |Λ| ≤ c ℓα+ β
2 .

Thus Λ satisfies (3.2), (3.3), and Proposition A.2 will follow once we prove (3.4).

To this end we consider σ ∈ Sx∗,5ℓL and A1, A2 connected subsets of B(x∗, 3ℓL) with
diameter at least ℓL separated by Σ in B(x∗, 5ℓL), see below (A.2) for notation.

By Lemma A.1, the claim (3.4) will follow once we find two sequences in Λ, π =
(π(i), 1 ≤ i ≤ M) and π′ = (π′(j), 1 ≤ j ≤M ′), such that

(A.17)

i) both π and π′ satisfy (A.3).

ii) d(π(i), π′(j)) ≥ ℓ

100
L, 1 ≤ i ≤M, 1 ≤ j ≤M ′ .

We write ℓ̃ = ℓ/100(≥ 1 by assumption). As we now explain, we can find x1, x
′
1, x2, x

′
2 in

Λ so that

(A.18)

i) the four points have mutual distance at least 24ℓ̃ L.

ii) A1 ∩B(x1, L/4) 6= ∅, A1 ∩B(x′
1, L/4) 6= ∅ ,

iii) A2 ∩B(x2, L/4) 6= ∅, A2 ∩B(x′
2, L/4) 6= ∅ .

Indeed we can pick two points of A1 with mutual distance at least ℓL. Since A2 is
connected and has diameter at least ℓL, it has at least one point outside the union of the

two balls of radius 50ℓ̃ L− 1 centered at the above two points. Likewise A2 must exit the

ball of radius 25ℓ̃ L centered at this last point and hence meet the interior boundary of
this ball. In this fashion we have constructed two points on A1 and two points on A2, so

that these four points have mutual distance at least 25ℓ̃ L − 1. By (A.15) we can thus
find x1 = (y1, z1), x′

1 = (y′
1, z

′
1), x2 = (y2, z2), x′

2 = (y′
z, z

′
2) in Λ satisfying (A.18).

Up to relabelling we assume that z1 ≥ z′1 and z2 ≥ z′2. We will construct the sequences
π and π′ satisfying (A.17) when z1 ≥ z2. The case where z1 < z2 is handled in a similar
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fashion exchanging the role of 1 and 2 in what follows. We from now on assume z1 ≥ z2,
and treat separately the case where z2 lies in the interval [z′1, z1] and the case where it
does not.

1) z′1 ≤ z2 ≤ z1:

π′

x2

x2

x′
2

x′
2

x1

x1

π

x′
1

x′
1

Fig. 3: A schematic representation of π and π′ in case 1)

We construct π and π′ as follows. We pick x1 = (y1, z1) having same G-projection as

x1, with z1 the largest elements of ΛZ smaller or equal to z1 + (25ℓ̃L)β/2, and define
x2 = (y2, z1). By (A.13) we can find a sequence in ΛG ∩ BG(y∗, 3ℓL + 1 + L

4
) linking y1

and y2 making steps of dG-distance at most L. We thus define π fulfilling (A.3) which
first moves up from x1 to x1, then horizontally from x1 to x2, using the above mentioned
sequence, and then down from x2 to x2.

Likewise to construct π′ we consider x′
1 = (y′

1, z
′
1) and x′

2 = (y′
2, z

′
1), where z′

1 denotes

the smallest element of ΛZ bigger or equal to z′1 ∧ z′2 − (25ℓ̃ L)β/2. We link y′
1 and y′

2 by
a sequence in ΛG ∩BG(y, 3ℓL + 1 + L

4
) as above, and construct π′ satisfying (A.3), which

first moves down from x′
1 to x′

1, then horizontally from x′
1 to x′

2, and then vertically from
x′

2 to x′
2.

The above constructed π and π′, see Figure 3, thus satisfy (A.3) and

(A.19) d(π(i), π(j)) ≥ 24ℓ̃ L, for 1 ≤ i ≤M, 1 ≤ j ≤M ′ .

2) z1 ≥ z′1 > z2(≥ z′2):

We consider two sub-cases.

a) dG(y′
1, y2) ≤ 11ℓ̃ L.

We introduce x2 = (y2, z
′
1) and link y′

1 and y2 in ΛG∩BG(y′
1, 11ℓ̃ L+ L

4
) by a sequence mak-

ing steps of dG-distance at most L. We then construct π′ which moves first horizontally
from x′

1 to x2, using the above sequence and then downwards from x2 to x′
2.

To construct π we introduce x1 and x′
2 in Λ with same G-projection as x1 and x′

2

respectively, with x1 the “highest point” in Λ with distance at most 25ℓ̃ L from x1 and x′
2

the “lowest point” in Λ with distance at most 25ℓ̃ L from x′
2, see Figure 4.

We then pick y in ΛG ∩ BG(y∗, 3ℓL) having at least dG-distance 50ℓ̃ L from BG(y′
1,

11ℓ̃ L + L
4
). This is possible because BG(y∗, 2ℓL) has dG-diameter at least 2ℓL and it
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suffices to pick y ∈ BG(y∗, 2ℓL) with dG(y, y′
1) ≥ ℓL and then y in ΛG within dG-distance

L
4

from y.

Then π is constructed as follows. It first moves upwards from x1 to x1 then horizontally
to the point having G-projection y, then downwards to the point with same Z-projection
as x′

2, then horizontally to x′
2, and then upwards to x′

2. This construction can be performed
so that the G-projection of π lies in ΛG ∩ B(y∗, 3ℓL + 1 + L

4
).

x′
1

x1

x1 π

G-projection equals y
x2

π′

x2

x2

x′
2

Fig. 4: A schematic representation of π, π′ in case 2a)

The above constructed paths π, π′ satisfy (A.3) and

(A.20) d(π(i), π(j)) ≥ 12ℓ̃ L .

The remaining sub-case of 2) corresponds to

b) dG(y′
1, y2) > 11ℓ̃ L.

We then construct π linking x1 and x2 and π′ linking x′
1 and x′

2 as in 1).

π

x2
x′

2

x′
1

π′

distance bigger than 11ℓ̃ Lx1

Fig. 5: A schematic representation of π and π′ in case 2) b)

The paths π and π′ constructed in this fashion, see Figure 5, satisfy (A.3) and

(A.21) d(π(i), π′(j)) ≥ 11ℓ̃ L, 1 ≤ i ≤M, 1 ≤ j ≤M ′ .

Combining (A.19) - (A.21), we have thus completed the construction of π, π′ satisfying
(A.17) and Proposition A.2 follows.
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