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Abstract

We consider continuous time random interlacements on Zd, d ≥ 3, and charac-
terize the distribution of the corresponding stationary random field of occupation
times. When d = 3, we relate this random field to the two-dimensional Gaussian
free field pinned at the origin, by looking at scaled differences of occupation times
of long rods by random interlacements at appropriately tuned levels. In the main
asymptotic regime, a scaling factor appears in the limit, which is independent of the
free field, and distributed as the time-marginal of a zero-dimensional Bessel process.
For arbitrary d ≥ 3, we also relate the field of occupation times at a level tending
to infinity, to the d-dimensional Gaussian free field.

Departement Mathematik
ETH-Zurich
CH-8092 Zürich
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0 Introduction

In this article we consider continuous time random interlacements on Zd, d ≥ 3, where
each doubly infinite trajectory modulo time-shift in the interlacement is decorated by i.i.d.
exponential variables with parameter 1 which specify the time spent by the trajectory at
each step. We are interested in the random field of occupation times, i.e. the total time
spent at each site of Zd by the collection of trajectories with label at most u in the
interlacement point process.

When d = 3, we relate this stationary random field to the two-dimensional Gaussian
free field pinned at the origin, by looking at the properly scaled field of differences of
occupation times of long rods of size N , when the level u is either proportional to logN/N
or much larger than logN/N . The choice of u proportional to logN/N corresponds to
a non-degenerate probability that the interlacement at level u meets a given rod. In
the asymptotic regime it brings into play an independent proportionality factor of the
Gaussian free field, which is distributed as a certain time-marginal of a zero-dimensional
Bessel process. This random factor disappears from the description of the limiting random
field, when instead uN/ logN tends to infinity .

For arbitrary d ≥ 3, we also relate the properly scaled field of differences of occupation
times of sites by the interlacement at a level u tending to infinity, with the Gaussian free
field on Zd.

Rather than discussing our results any further, we first present the model and refer to

Section 1 for additional details. We consider the spaces Ŵ+ and Ŵ of infinite and doubly
infinite Zd × (0,∞)-valued sequences, with d ≥ 3, such that the Zd-valued components
form an infinite, respectively doubly infinite, nearest neighbor trajectory spending finite
time in any finite subset of Zd, and such that the (0,∞)-valued components have an infinite

sum in the case of Ŵ+, and infinite “forward” and “backward” sums, when restricted to

positive and negative indices, in the case of Ŵ .

We write Xn, σn, with n ≥ 0, or n ∈ Z, for the respective Zd- and (0,∞)-valued

canonical coordinates on Ŵ+ and Ŵ . We denote by Px, x ∈ Zd, the law on Ŵ+ endowed
with the canonical σ-algebra, under which Xn, n ≥ 0, are distributed as simple random
walk starting at x, and σn, n ≥ 0, are i.i.d. exponential variables with parameter 1,

independent from the Xn, n ≥ 0. We write Ŵ ∗ for the space Ŵ modulo time-shift,

i.e. Ŵ ∗ = Ŵ/ ∼, where for ŵ, ŵ′ in Ŵ , ŵ ∼ ŵ′ means that ŵ(·) = ŵ′(· + k) for some

k ∈ Z. We denote by π∗: Ŵ → Ŵ ∗ the canonical map, and endow Ŵ ∗ with the σ-algebra

consisting of sets with inverse image under π∗ belonging to the canonical σ-algebra of Ŵ .

The continuous time interlacement point process on Zd, d ≥ 3, is a Poisson point

process on Ŵ ×R+. Its intensity measure has the form ν̂(dŵ∗)du, where ν̂ is the σ-finite

measure on Ŵ ∗ such that for any finite subset K of Zd, the restriction of ν̂ to the subset

of Ŵ ∗ made of ŵ∗ for which the Zd-valued trajectory modulo time-shift enters K, is equal
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to π∗ ◦ Q̂K , the image of Q̂K under π∗, where Q̂K is the finite measure specified by:

i) Q̂K(X0 = x) = eK(x), with eK the equilibrium measure of K, see (1.4),

(0.1)

ii) when eK(x) > 0, conditionally on X0 = x, (Xn)n≥0, (X−n)n≥0, (σn)n∈Z are

independent, respectively distributed as simple random walk starting at x,

as simple random walk starting at x conditioned never to return to K,

and as a doubly infinite sequence of independent exponential variables with

parameter 1.

The existence and uniqueness of such a measure ν̂ can be shown just as in Section 1
of [19]. The canonical continuous time interlacement point process is then constructed
on a space (Ω,A,P), similar to (1.16) of [19], with ω =

∑
i≥0 δ( bw∗

i ,ui) denoting a generic

element of the set Ω. We also refer to Remark 2.4 4) which explains how Zd, d ≥ 3, can
be replaced with a transient weighted graph, and continuous time random interlacements
on a transient weighted graph are constructed.

In the present work our main interest focuses on the collection of (continuous) occu-
pation times:

(0.2)

Lx,u(ω) =
∑
i≥0

∑
n∈Z

σn(ŵi) 1{Xn(ŵi) = x, ui ≤ u}, for x ∈ Zd, u ≥ 0,

where ω =
∑
i≥0

δ( bw∗
i ,ui) ∈ Ω, and π∗(ŵi) = ŵ∗

i , for each i ≥ 0.

We compute the Laplace functional of this random field, and show in Theorem 2.3 that
when V is a non-negative function on Zd with finite support one has the identity:

(0.3) E
[
exp

{
− ∑

x∈Zd

V (x)Lx,u

}]
= exp

{
−u

∑
φ 6=I cI Πx∈IV (x)∑
I gI Πx∈IV (x)

}
, u ≥ 0,

where in the above formula I runs over the collection of subsets of the support of V , gI
denotes the determinant of the Green function g(·, ·) restricted to I × I, see (1.1), and cI
the sum of the coefficients of the matrix of cofactors of the above matrix. Both quantities
are positive and, see (2.13), their ratio cI/gI coincides with the capacity of I, i.e. the
total mass of the equilibrium measure eI of I. We refer to (2.26) for the extension of this
formula to the case where Zd is replaced by a transient weighted graph. One can also
consider the discrete occupation times, where σn is replaced by 1 in (0.2), however this
random field turns out to be somewhat less convenient to handle than (Lx,u)x∈Zd for the
kind of questions we investigate here, see Remark 2.4 5).

The continuous time interlacement point process is related to the Poisson point process
of Markov loops initiated in [18], which later found various incarnations, see for instance
Theorem 2.1 of [3], Section 4 and 3 of [5], [9], Chapter 9 of [8], and was extensively
analyzed in [10], [11]. Heuristically random interlacements correspond to a “restriction
to loops going through infinity” of this Poisson point process, see [11], p. 85. It has been
shown in Theorem 13 of [10], see also [11], p. 61, that the field of occupation times of
the Poisson point process of Markov loops on a finite weighted graph with non-degenerate
killing, at a suitable choice of the level is distributed as half the square of the Gaussian free
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field on the finite graph. No such identity holds in our context when considering a fixed
level u, see Remark 2.4. However, and this is the main object of this article, we present
limiting procedures which relate the field of occupation times of random interlacements
to the Gaussian free field.

The link with the two-dimensional Gaussian free field comes as follows. We look at the
occupation times of long vertical rods in Z3, by random interlacements at properly tuned
levels. Let us incidentally mention that the consideration of long rods in the context
of random interlacements has been helpful in several instances, e.g. Section 3 of [15],
or Section 5 of [20]. They typically have been used as a tool in the detection of long
∗-crossings in planes, left by the trajectories of the random interlacements at level u, and
have enabled to quantify the rarity of such crossings when u is small. Here the rods in
question are the subsets of Z3:

(0.4) Jy = {x = (y, k) ∈ Z3; 1 ≤ k ≤ N}, for y ∈ Z2, and N > 1,

and the corresponding Z2-stationary field of occupation times is given by

(0.5) Ly,u =
∑
x∈Jy

Lx,u, y ∈ Z2, u ≥ 0.

We choose the levels (uN)N>1 and (u′N)N>1, so that

(0.6) i) uN = α
logN

N
, with α > 0, ii)

logN

N
= o(u′N).

The choice in (0.6) i) corresponds to a non-degenerate limiting probability exp{−π
3
α}

that the interlacement at level uN does not meet any given rod Jy, see (4.74), whereas
the choice in (0.6) ii) induces a vanishing limit for the corresponding probability.

If we now introduce the Gaussian free field pinned at the origin, or more precisely, see
(1.29), a centered Gaussian field (ψy)y∈Z2 , with covariance 3(a(y)+a(y′)−a(y′−y)), y, y′ ∈
Z2, where a(·) is the potential kernel of the two-dimensional simple random walk, see (1.6),
and R an independent non-negative random variable, having the law BESo(

√
α, 3

2π
) of a

zero-dimensional Bessel process at time 3
2π

starting in
√
α at time 0, see (1.30), we show

in Theorems 4.2 and 4.9 that when N tends to infinity,

(Ly,uN

logN

)
y∈Z2

converges in distribution to the flat field with value R2,(0.7)

and that

(Ly,uN
−L0,uN√
logN

)
y∈Z2

converges in distribution to the random field (Rψy)y∈Z2 .(0.8)

In the case (0.6) ii) we instead find that when N goes to infinity,

(Ly,u′
N

Nu′N

)
y∈Z2

converges in distribution to the flat field with value 1,(0.9)

and that

(Ly,u′
N
− L0,u′

N√
Nu′N

)
y∈Z2

converges in distribution to (ψy)y∈Z2 .(0.10)
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There is an important connection between random interlacements and the structure left
locally by random walk on a large torus, see [23], [22]. In this light one may wonder
whether some of the above results have counterparts in the case of simple random walk
on a large two-dimensional torus. We refer to Remark 4.10 1) for more on this issue.
Some consequences of the above limit results for discrete occupation times of long rods
can also be found in Remark 4.10 2).

In this article, we yet provide a further link between random interlacements and the
Gaussian free field, by considering the occupation times of random interlacements at a
level u tending to infinity. If (γx)x∈Zd stands for the Gaussian free field on Zd, d ≥ 3, i.e.
the centered Gaussian field with covariance function E[γxγx′] = g(x, x′), x, x′ ∈ Zd, we
show in Theorem 5.1 that when u tends to infinity,

(
1

u
Lx,u

)
x∈Zd

converges in distribution towards the flat field with value 1,(0.11)

and that

(Lx,u − Lx,0√
2u

)
x∈Zd

converges in distribution towards (γx − γ0)x∈Zd.(0.12)

We refer to Remark 5.2 for the extension of these results to the case of random interlace-
ments on a transient weighted graph, and to discrete occupation times.

Let us say a few words concerning proofs. We provide in Theorem 2.1 an expression
for the characteristic function of

∑
x∈Zd V (x)Lx,u, with V finitely supported, which shows

that close to the origin it can be expressed as the exponential of an analytic function. This
identity on the one hand leads to (0.3), see Theorem 2.3. On the other hand, this identity
underlies the general line of attack, which we employ when proving the limit theorems
corresponding to (0.7) - (0.10), and (0.11) - (0.12). Namely we investigate the asymptotic
behavior of the power series representing the above mentioned analytic functions. The
proof of (0.8) is by far the most delicate. We analyze the large N asymptotics of the
power series expressing the logarithm of the characteristic function of

∑
y∈Z2 W (y)Ly,uN

close to the origin, with W finitely supported on Z2, and such that
∑

yW (y) = 0. This
asymptotic analysis relies on certain cancellations, which take place and enable to control
the coefficients of the power series. In the crucial Theorem 4.1 we bound these coefficients,
show the asymptotic vanishing of odd coefficients, and compute the (non-vanishing) limit
of even coefficients. This theorem contains enough information to yield both (0.8) and
(0.10), see Theorem 4.2. Once (0.8), (0.10) are proved, (0.7), (0.8) follow in a simpler
fashion and in essence only require the consideration of one single rod, say J0. The proof
of (0.11), (0.12) in Theorem 5.1 follows a similar pattern, but is substantially simpler.

Let us now describe how this article is organized.

In Section 1 we provide additional notation and collect some results concerning po-
tential theory, the two-dimensional free field, and zero-dimensional Bessel processes.

Section 2 contains the identity for the characteristic functional of the field of occupation
times in Theorem 2.1 and the proof of formula (0.3) for the Laplace functional in Theorem
2.3. The extension of these results to the set-up of weighted graphs can be found in Remark
2.4 4).

In Section 3 we collect estimates as preparation for the study in the next section of
occupation times of long rods in Z3.
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Section 4 presents the limiting results (0.7) - (0.10) , see Theorems 4.2 and 4.9, relating
random interlacements in Z3 to the two-dimensional free field. The heart of the matter
lies in Theorem 4.1, where controls over the relevant power series are derived.

In Section 5 we prove (0.11), (0.12) in Theorem 5.1 and provide in Remark 5.2 the ex-
tension of these results to the case of transient weighted graphs, and to discrete occupation
times.

Finally let us explain our convention concerning constants. We denote with c, c′, c̃, c
positive constants changing from place to place. Numbered constants refer to the value
corresponding to their first appearance in the text. In Sections 1, 2 and 5 constants only
depend on d. In Section 3, where d = 3, they depend on Λ in (3.1), and in Section 3, where
d = 3 as well, on Λ and W , see (4.3). Otherwise dependence of constants on additional
parameters appears in the notation.

1 Notation and some useful facts

In this section we provide some additional notation and recall various useful facts con-
cerning random walks, discrete potential theory, the two-dimensional free field, and zero-
dimensional Bessel processes.

We let N = {0, 1, . . . } denote the set of natural numbers. When u is a non-negative
real number we let [u] stand for the integer part of u. Given a finite set A, we denote by
|A| its cardinality. We write | · | for the Euclidean norm on Rd, d ≥ 1. For A,A′ ⊆ Zd,
we denote by d(A,A′) = inf{|x − x′|; x ∈ A, x′ ∈ A′} the mutual distance of A and A′.
When A = {x}, we write d(x,A′) in place of d(A,A′) for simplicity. We write U ⊂⊂ Zd,
to indicate that U is a finite subset of Zd. Given f, g square summable functions on Zd

we write (f, g) =
∑

x∈Zd f(x)g(x) for their scalar product. When U ⊆ Zd, and f is a
function on U , we routinely identify f with the function on Zd, which vanishes outside U
and coincides with f on U . We denote the sup-norm of such a function with ‖f‖L∞(U),
and sometimes with ‖f‖∞, when there is no ambiguity.

Given U ⊆ Zd, we write HU = inf{n ≥ 0;Xn ∈ U}, H̃U = inf{n ≥ 1;Xn ∈ U}, and
TU = inf{n ≥ 0;Xn /∈ U} for the entrance time of U , the hitting time of U , and the exit
time from U . When ρ is a measure on Zd, we denote by Pρ the measure

∑
x∈Zd ρ(x)Px,

and by Eρ the corresponding expectation. So far Px, x ∈ Zd, has only been defined when
d ≥ 3, see above (0.1). When d = 1 or 2, this notation simply stands for the canonical
law of simple random walk starting at x, and Xn, n ≥ 0, for the canonical process.

When d ≥ 3, we denote by g(·, ·) the Green function

(1.1) g(x, x′) =
∑
n≥0

Px[Xn = x′], for x, x′ in Zd.

It is a symmetric function, and due to translation invariance one has

(1.2) g(x, x′) = g(x′ − x) = g(x− x′), where g(·) = g(·, 0).

Classically one knows that g(·) ≤ g(0), and that, see [7], p. 31,

(1.3) c′(1 ∨ |x|)−(d−2) ≤ g(x) ≤ c(1 ∨ |x|)−(d−2), for x ∈ Zd .
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When K ⊂⊂ Zd, the equilibrium measure of K and the capacity of K, i.e. the total mass
of eK , are denoted by

(1.4) eK(x) = Px[H̃K = ∞] 1K(x), for x ∈ Zd, and cap(K) =
∑
x∈Zd

Px[H̃K = ∞].

One can express the probability to enter K via the formula

(1.5) Px[HK <∞] =
∑

x′∈K
g(x, x′) eK(x

′), for x ∈ Zd.

We will also consider the two-dimensional potential kernel, see (1.40), p. 37 of [7], or
p. 121, 122, 148 of [17]:

(1.6) a(y) = lim
n→∞

n∑
j=0

P0[Xj = 0]− P0[Xj = y], for y ∈ Z2 .

It is a non-negative function on Z2, which is symmetric and satisfies, cf. P2, p. 123 of [17]:

(1.7) lim
y′→∞

a(y + y′)− a(y′) = 0, for any y ∈ Z2.

In Sections 3 and 4, see also (0.4), we consider long vertical rods, which are the subsets
of Z3 defined for y ∈ Z2 and N > 1, by

(1.8) Jy = {y} × J ⊆ Z3, where J = {1, . . .N}.

The next lemma collects limit statements concerning the potentials of long rods, and in
particular relates the difference of such potentials to the two-dimensional potential kernel.

Lemma 1.1. (d = 3, N > 1, y ∈ Z2)

(1.9) lim
N

1

2 logN

∑
|z|≤N

g((0, z)) =
3

2π
, (with z ∈ Z and (0, z) ∈ Z3).

For x = (0, z) in J0 and y ∈ Z2, one has

(1.10)
∑

x′∈J0
g(x, x′)− ∑

x′′∈Jy
g(x, x′′) =

3

2
a(y)− bN(y, z) ,

where bN is a non-negative function on Z2 × J such that

(1.11) bN (y, z) ≤ ψy(d(z, J
c)), where lim

r→∞
ψy(r) = 0, for each y ∈ Z2.

Proof. The claim (1.9) is an immediate consequence of the fact that
∑N

1
1
k
∼ logN , as N

goes to infinity and, cf. Theorem 1.5.4, p. 31 of [7]:

(1.12) g(x) ∼ 3

2π
|x|−1, as x→ ∞ .

We now turn to the proof of (1.10), (1.11). We denote by Ỹ. and Z̃. independent con-
tinuous time random walks on Z2 and Z with respective jump rates 2 and 1, starting at
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the respective origins of Z2 and Z. So (Ỹ., Z̃.) is a continuous time random walk on Z3,
starting at the origin, with jump rate equal to 3, and the left-hand side of (1.10) equals:

(1.13)

3E
[ ∫ ∞

0

1{Ỹs = 0, Z̃s + z ∈ J} ds−
∫ ∞

0

1{Ỹs = y, Z̃s + z ∈ J}ds
]

independence
=

3

∫ ∞

0

(P [Ỹs = 0]− P [Ỹs = y])P [Z̃s + z ∈ J ] ds = 3(I1 − I2),

where we have set

I1 =

∫ ∞

0

P [Ỹs = 0]− P [Ỹs = y] ds,

I2 =

∫ ∞

0

(P [Ỹs = 0]− P [Ỹs = y])P [Z̃s + z /∈ J ] ds,

(1.14)

and note that the integrand in I1 is non-negative as a direct application of the Chapman-
Kolmogorov equation at time s

2
and the Cauchy-Schwarz inequality. If we let Yk, k ≥ 0,

and Tk, k ≥ 0, (with T0 = 0), stand for the discrete skeleton of Ỹ. and its successive jump
times, we see that for T > 0,

(1.15)

∫ T

0

P [Ỹs = 0]− P [Ỹs = y] ds =
∑
k≥0

E[(Tk+1 ∧ T − Tk ∧ T ) 1{Yk = 0}] −

E[(Tk+1 ∧ T − Tk ∧ T ) 1{Yk = y}] independence
=

∑
k≥0

E[Tk+1 ∧ T − Tk ∧ T ](P [Yk = 0]− P [Yk = y]).

Observe that Tk+1−Tk is an exponential variable with parameter 2, which is independent
from Tk, so that for k ≥ 0

(1.16) ak,T
def
= E[Tk+1 ∧ T − Tk ∧ T ] = E

[
Tk ≤ T, 2

∫ ∞

0

s ∧ (T − Tk) e
−2sds

]

decreases to zero as k tends to infinity and increases to 1
2
as T tends to ∞. We set

sk =
∑

0≤j≤k P [Yj = 0] − P [Yj = y], for k ≥ 0, so that by (1.6), limk sk = a(y). After

summation by parts in the last member of (1.15), we find that:

(1.17)

∫ T

0

P [Ỹs = 0]− P [Ỹs = y] ds =
∑
k≥0

(ak,T − ak+1,T )sk .

Using the observations below (1.16) we see that the left-hand side of (1.17) tends to 1
2
a(y)

as T goes to infinity, so that

(1.18) I1 =
1

2
a(y) .

As for I2, which is non-negative due to the remark below (1.14), we see that 3I2 ≤
ψy(d(z, J

c)), where we have set

(1.19) ψy(r) = 3

∫ ∞

0

(P [Ỹs = 0]− P [Ỹs = y]) P [|Z̃s| ≥ r] ds, for r ≥ 0.

If is plain that ψy is a non-increasing function, which tends to zero at infinity by dominated
convergence. This concludes the proof of Lemma 1.1.
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We now turn to the discussion of the two-dimensional massless Gaussian free field
pinned at the origin. For this purpose we begin by the consideration of the more traditional
two-dimensional massless Gaussian free field with Dirichlet boundary conditions outside
the square UL = [−L, L]2, with L ≥ 1, see for instance [2]. It is a centered Gaussian field
ϕy,L, y ∈ Z2, with covariance function

(1.20) E[ϕy,L ϕy′,L] = gL(y, y
′), for y, y′ ∈ Z2,

where gL(·, ·) stands for the Green function of the two-dimensional random walk killed
when exiting UL:

(1.21) gL(y, y
′) = Ey

[ ∑
k≥0

1{Xk = y′, k < TUL
}
]
, for y, y′ ∈ Z2.

Writing H0 in place of H{0}, see above (1.1), it follows from the strong Markov property
and (1.20), (1.21), that for any y ∈ Z2,

ϕy,L − Py[H0 < TUL
]ϕ0,L is orthogonal to ϕ0,L.

Hence defining for any γ ∈ R,

(1.22) Φy,L(γ) = ϕy,L − Py[H0 < TUL
]ϕ0,L + Py[H0 < TUL

] γ, y ∈ Z2 ,

the law of the above random field is a regular conditional probability for the law of
(ϕy,L) given its value at the origin ϕ0,L = γ. The next lemma will provide two possible
interpretations for the centered Gaussian field we consider in the sequel, in terms of the
two-dimensional massless Gaussian free field.

Lemma 1.2. For y, y′ in Z2, one has

a(y) + a(y′)− a(y′ − y) = lim
L→∞

E[(ϕy,L − ϕ0,L)(ϕy′,L − ϕ0,L)]

= lim
L→∞

E[Φy,L(0) Φy′,L(0)] .
(1.23)

Proof. By (1.20) we see that

(1.24)
E[(ϕy,L − ϕ0,L)(ϕy′,L − ϕ0,L)] = gL(y, y

′) + gL(0, 0)− gL(0, y)− gL(0, y
′) =

gL(y, y)− gL(0, y) + gL(0, 0)− gL(0, y
′)− (gL(y, y)− gL(y, y

′)).

From Proposition 1.6.3, p. 39 of [7], one knows that for y1, y2 in UL:

(1.25) gL(y1, y2) =
∑

y′∈∂UL

Py1 [XTUL
= y′] a(y′ − y2)− a(y1 − y2),

so that by (1.7) and a(0) = 0, we find that

(1.26) lim
L→∞

gL(y1, y1)− gL(y1, y2) = a(y1 − y2), for y1, y2 ∈ Z2.

Coming back to (1.24) and keeping in mind the symmetry of gL(·, ·), the first equality of
(1.23) follows. As for the second equality, we note that

(1.27) Φy,L(0) = ϕy,L − ϕ0,L + Py[H0 > TUL
]ϕ0,L.
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By the strong Markov property and the symmetry of gL(·, ·) one has

Py[H0 > TUL
] = (gL(0, 0)− gL(0, y))/gL(0, 0)

(1.26)

≤ c(y)/gL(0, 0),

and by (1.20) one finds that

(1.28) E[ϕ2
0,L] = gL(0, 0) .

Since limL gL(0, 0) = ∞, it follows that the last term of (1.27) converges to 0 in L2 as L
tends to infinity, and the second equality of (1.23) now follows.

We thus introduce on some auxiliary probability space

(1.29)
ψy, y ∈ Z2, a centered Gaussian field with covariance function

E[ψyψy′ ] = 3(a(y) + a(y′)− a(y′ − y)), y, y′ ∈ Z2.

Up to an inessential multiplicative factor
√
3, we can thus interpret ψy, y ∈ Z2, as the

field of “increments at the origin” of the two-dimensional massless free field, or as the
two-dimensional massless free field pinned at the origin.

The last topic of this section concerns zero-dimensional Bessel processes. We denote
by BES0(a, τ) the law at time τ ≥ 0 of a zero-dimensional Bessel process starting from
a ≥ 0. If R is a random variable with distribution BES0(a, τ), the Laplace transform of
R2 is given by the formula, see [14], p. 411, or [6], p. 239:

(1.30) E[e−λR2

] = exp
{
− λa2

1 + 2τλ

}
, for λ ≥ 0 .

We also denote by BESQ0(a2, τ) the law of R2; this is the distribution of a zero-
dimensional square Bessel process at time τ , starting from a2 at time 0.

2 Laplace functional of occupation times

In this section we obtain a formula for the Laplace functional of the occupation times
Lx,u, which proves (0.3), see Theorem 2.3. As a by-product we note the absence for fixed
u of a global factorization for the field Lx,u−L0,u, x ∈ Zd, similar to that of the limit law
in (0.8), even through each individual variable Lx,u − L0,u is distributed as the product
of a time-marginal of a zero-dimensional Bessel process with an independent centered
Gaussian variable, see Remark 2.4 2). The preparatory Theorem 2.1 will be repeatedly
used in the sequel, and shows in particular that the characteristic function of a finite
linear combination of the variables Lx,u, x ∈ Zd, is analytic in the neighborhood of the
origin. This will play an important role in Section 4.

We denote by G the linear operator

(2.1) Gf(x) =
∑

x′∈Zd

g(x, x′) f(x′), x ∈ Zd ,

which is well defined when
∑

x′ g(x, x′)|f(x′)| < ∞, and in particular when f vanishes
outside a finite set. When V is a function on Zd vanishing outside a finite set, we write
GV for the composition of G with the multiplication operator by V , so that GV naturally
operates on L∞(Zd), (we recall that ‖ · ‖∞ denotes the corresponding sup-norm, see the
beginning of Section 1).
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Theorem 2.1. If V has support in K ⊂⊂ Zd, then for ‖V ‖∞ ≤ c(K),

(2.2) ‖GV ‖L∞→L∞ < 1 ,

and for any u ≥ 0,

(2.3) E
[
exp

{ ∑
x∈Zd

V (x)Lx,u

}]
= exp{u(V, (I −GV )−11)}.

Proof. The claim (2.2) is immediate. As for (2.3), we note that defining for x ∈ Zd, u ≥ 0,

the function on Ŵ ∗, (see above (0.1) for notation):

γx(ŵ
∗) =

∑
n∈Z

σn(ŵ) 1{Xn(ŵ) = x}, for any ŵ ∈ Ŵ with π∗(ŵ) = ŵ∗,

we have the identity

(2.4) Lx,u(ω) =
∑
i

γx(ŵ
∗
i ) 1{ui ≤ u}, for ω =

∑
i

δ( bw∗
i ,ui) ∈ Ω, x ∈ Zd, u ≥ 0 .

The interlacement point process ω is Poisson with intensity measure ν̂(dŵ∗)du under P,
and hence when V is supported in K ⊂⊂ Zd and ‖V ‖∞ ≤ c(K), we have

(2.5)

E
[
exp

{ ∑
x∈Zd

V (x)Lx,u

}]

= E
[
exp

{∫

cW ∗×R+

∑
x∈Zd

V (x)γx(ŵ
∗) 1{v ≤ u} dω(ŵ∗, v)

}]

= exp
{
u

∫

cW ∗

(
e

P
x∈Zd

V (x)γx( bw∗)

− 1
)
dν̂(ŵ∗)

}

(0.1)
= exp

{
uEeK

[
e

P
x∈Zd

V (x)
P
k≥0

σk 1{Xk=x}
− 1]

}

= exp
{
uEeK

[
exp

{∫ ∞

0

V (Xs) ds
}
− 1

]}
,

where for s ≥ 0, ŵ ∈ Ŵ+, we have set

Xs(ŵ) = Xk(ŵ), when σ0(ŵ) + · · ·+ σk−1(ŵ) ≤ s < σ0(ŵ) + · · ·+ σk(ŵ),

(by convention the term bounding s from below vanishes when k = 0), i.e. X. is the

natural continuous time random walk on Zd with jump parameter 1 defined on Ŵ+. Thus
for ‖V ‖∞ ≤ c(K) we find by a classical calculation that

(2.6)

EeK

[
e

R ∞

0
V (Xs)ds

]
= EeK

[ ∑
n≥0

1

n!

(∫ ∞

0

V (Xs)ds
)n]

=

∑
n≥0

EeK

[ ∫

0<s1<···<sn<∞
V (Xs1) . . . V (Xsn) ds1 . . . dsn

]
=

cap(K) +
∑
n≥1

∑
x∈K

eK(x)[(GV )n 1](x)

using Fubini’s theorem and the Markov property in the last step. Since V vanishes outside
K, it also follows from (1.5) that for n ≥ 1, one has:

(2.7)
∑
x

eK(x)[(GV )
n 1](x) =

∑
x′

V (x′)[(GV )n−11](x′) = (V, (GV )n−11).
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As a result we see that when ‖V ‖∞ ≤ c(K),

(2.8) EeK

[
e

R ∞

0
V (Xs)ds − 1

]
=

∑
n≥1

(V, (GV )n−11) = (V, (I −GV )−11).

Inserting this identity in the last line of (2.5) concludes the proof of Theorem 2.1.

Remark 2.2. As a staightforward consequence of Theorem 2.1 see that for any finitely
supported real valued function V on Zd and u ≥ 0, the random variable

∑
x∈Zd V (x)Lx,u

has a characteristic function which coincides in the neighborhood of the origin with the
exponential of an analytic function. So this characteristic function is analytic in the sense
of Chapter 7 of [12]. In particular with Theorem 7.1.1, p. 193 of [12], one has the identity

(2.9) E
[
exp

{
z
∑
x

V (x)Lx,u

}]
= ΦV,u(z), z ∈ S,

where in the above formula S stands for the maximal vertical strip in C to which the
function z → exp{u∑n≥1 z

n(V, (GV )n−11)} can be an analytically extended, and ΦV,u for
this extension, (that is, for z ∈ S, exp{z∑x V (x)Lx,u} is integrable, and the equality(2.9)
holds). This fact will be very helpful and repeatedly used in the sequel. �

We now derive an alternative expression for the right-hand side of (2.3), and need
some additional notation for this purpose.

For I ⊂⊂ Zd non-empty, we denote by GI the matrix g(x, x′), x, x′ ∈ I. It is well-
known to be positive definite, see for instance Lemma 3.3.6 of [13], and we introduce

(2.10) gI = det(GI) > 0,

where the right-hand side does not depend on the identification of I with {1, . . . , |I|} we
use. We also set by convention gI = 1, when I = φ. Further we introduce

(2.11) cI = the sum of all coefficients of the matrix of cofactors of GI ,

and note that cI does not depend on the identification of I with {1, . . . , |I|} we employ;
for instance cI/gI coincides with the sum of all coefficients of the inverse matrix of GI .
The above also shows that

(2.12) cI > 0, when I ⊂⊂ Zd is non-empty.

We extend the notation to the case I = φ with the convention cφ = 0. It is known, see
[17], p. 301, that

(2.13) cap(I) = cI/gI , for all I ⊂⊂ Zd.

We are now ready for the main result of this section.

Theorem 2.3. When V has support in K ⊂⊂ Zd, then for ‖V ‖∞ ≤ c(K), u ≥ 0,

(2.14) E
[
exp

{
−∑

x

V (x)Lx,u

}]
= exp

{
− u

∑
I⊂K cI VI∑
I⊂K gI VI

}
,

where VI
def
= Πx∈IV (x), (VI = 1, by convention when I = φ).

In addition (2.14) holds whenever V is non-negative and vanishes outside K.
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Proof. By Theorem 2.1 we know that for ‖V ‖∞ ≤ c(K), the left-hand side of (2.14)
equals exp{−u(V, (I+GV )−11)}. With no loss of generality we assume that |K| ≥ 2. We
identify K with {1, . . . , n}, where n = |K|, via an enumeration x1, . . . , xn of K. Writing
vℓ = V (xℓ), we see that

(2.15) (V, (I +GV )−11) =
n∑

k,ℓ=1

CCCk,ℓ vℓ/det(I +GVGVGV ) ,

where GGG stands for the n × n matrix g(xk, xℓ), 1 ≤ k, ℓ ≤ n, VVV for the diagonal matrix
with coefficients vℓ, 1 ≤ ℓ ≤ n, on the diagonal, III for the identity matrix, and CCC for the
matrix of cofactors of III +GVGVGV . Observe that for 1 ≤ k, ℓ ≤ n, one has

(2.16) CCCk,ℓ = det((III +GVGVGV )k,ℓ),

where (III +GVGVGV )k,ℓ stands for the n× n matrix, where the k-th line and the ℓ-th column
of III +GVGVGV have been replaced by 0, except for the coefficient at their intersection, which
is replaced by 1.

Given an n× n matrix AAA = (ak,ℓ), we develop the determinant of AAA according to the
classical formula

(2.17) detAAA =
∑
σ

sign(σ)
n∏

k=1

ak,σ(k),

where σ runs over the permutations of {1, . . . , n} and sign(σ) denotes the signature of σ.

We now develop the determinant det(III + GVGVGV ). For each subset J ⊆ {1, . . . , n} we
collect the terms corresponding to permutations σ of {1, . . . , n} such that σ(k) = k, for
k ∈ J , the choice of 1 in each term (1 + g(0)vk), k ∈ J , and for any k /∈ J such that

σ(k) = k, the choice of g(0)vk instead. Thus for each such J , setting J̃ = {1, . . . , n}\J ,
the sum of these terms equals det(GGG| eJ× eJ)

∏
ℓ∈ eJ vℓ. Thus summing over all subsets J of

{1, . . . , n} we find:

(2.18) det(III +GVGVGV ) =
∑
I⊆K

gIVI .

We now turn to the numerator of the right-hand side of (2.15). We use the convention
{k, ℓ} = {k} = {ℓ}, when k = ℓ. As above we develop the determinant det((III +GVGVGV )k,ℓ),
see (2.16), (2.17). We can assume that the permutations σ of {1, . . . , n} entering the
development satisfy σ(k) = ℓ. For each J ⊆ {1, . . . , n}\{k, ℓ}, we collect the terms
corresponding to permutations σ such that σ(m) = m, for m ∈ J , the choice of 1 in each
term (1 + g(0)vm), for m ∈ J , and for any m /∈ J ∪ {k, ℓ} with σ(m) = m, the choice of

g(0)vm instead. Setting J̃ = {1, . . . , n}\J , we see that the sum of these terms for a fixed

given J as above equals Πm∈ eJ\{ℓ}vm det(GGGk,ℓ
eJ× eJ), where GGG

k,ℓ
eJ× eJ stands for the matrix where

the k-th line and the ℓ-th column of the matrix GGG| eJ× eJ , (i.e. GGG restricted to J̃ × J̃), are
replaced by zero except for the coefficient at their intersection, which is replaced by 1.
Thus summing over all possible J ⊆ {1, . . . , n}\{k, ℓ} and all k, ℓ in {1, . . . , n}, we obtain

n∑
k,ℓ=1

CCCk,ℓ vℓ =
n∑

k,ℓ=1

∑
H⊇{k,ℓ}

∏
m∈H

vm det(GGGk,ℓ
H×H)

=
∑

φ 6=H⊆{1,...,n}

∏
m∈H

vm
∑

k,ℓ∈H
det(GGGk,ℓ

H×H)
(2.11)
=

∑
I⊆K

VI cI ,
(2.19)

(using the convention cφ = 0 in the last equality).
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Combining (2.15), (2.16), (2.18) we obtain (2.14). Finally in the case of a non-negative
V with support in K, we note that E[exp{−z∑x V (x)Lx,u}] is analytic in the strip
Re z > 0, and coincides for small positive z with the function exp{−u∑I⊆K cIVIz

|I|/∑
I⊆K gIVI z

|I|}, which is analytic in the neighborhood of the positive half-line. Both
functions thus coincide for z = 1, and our last claim follows.

Remark 2.4.

1) Choosing V = λ1K , with λ ≥ 0 and K ⊂⊂ Zd, we deduce from (2.14) by letting λ
tend to infinity that

P[Lx,u = 0, for all x ∈ K] = exp
{
− u

cK

gK

}
, for u ≥ 0.

Introducing the interlacement at level u:

Iu(ω) = {x ∈ Zd; for some i ≥ 0 such that ui ≤ u, ŵ∗
i enters x}, if ω =

∑
i≥0

δ( bw∗
i ,ui),

and taking (2.13) into account, we recover the well-known formula, see (2.16) of [19]:

(2.20) P[Iu ∩K = φ] = exp{−u cap (K)}, for u ≥ 0, K ⊂⊂ Zd .

2) Choosing V = λ1{x}, with λ ≥ 0 and x ∈ Zd, Theorem 2.3 now yields that

(2.21) E[exp{−λLx,u}] = exp
{
− λu

1 + g(0)λ

}
, for λ ≥ 0,

and in view of (1.30) we find that

(2.22) Lx,u is BESQ0
(
u,
g(0)

2

)
distributed.

If x, x′ ∈ Zd are distinct, choosing V = z(1{x} − 1{x′}) in (2.14) with z small and real and
extending the identity to z = it, t ∈ R, with the help of (2.9), we find that

(2.23) E[exp{it(Lx′,u − Lx,u)}] = exp
{
− 2u

(g(0)− g(x′ − x))t2

1 + (g(0)2 − g(x′ − x)2)t2

}
, for t ∈ R.

In view of (1.30) we thus find that

(2.24)

Lx,u − Lx′,u has the law of Rψ, where R and ψ are

independent respectively BES0(
√
u, g(0)+g(x−x′)

4
) and centered

Gaussian with variance 4(g(0)− g(x− x′)) distributed.

Let us however point out that in the case of three distinct points x, x′, x′′ in Zd, the
law of the random vector (Lx′,u − Lx,u, Lx′′,u − Lx,u) does not coincide with that of the
scalar multiplication of a two-dimensional Gaussian vector by an independent BES0(a, τ)-
variable, when u > 0. Indeed one has

P[Lx′,u − Lx,u > 0, Lx′′,u − Lx,u = 0] ≥ P[Iu ∋ x′, Iu ∩ {x, x′′} = φ] > 0,

as a consequence of (2.20) and the fact that cap({x, x′, x′′}) > cap({x, x′′}). But for the
above mentioned distribution both components necessarily vanish simultaneously on a
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set of full measure, and the above probability would equal zero if such an identity in law
was to hold. We will however see in Section 5 how Lx,u, x ∈ Zd, can be related to the
d-dimensional Gaussian free field, by letting u tend to infinity, instead of keeping u fixed.

3) Random interlacements can be related to the Poissonian gas of Markov loops, see
[10], [11]. Heuristically they correspond to “loops passing through infinity”, see [11],
p. 85. The identity for Markov loops corresponding to (2.3) of Theorem 2.1 above can
be found in Corollary 1 of Chapter 4 §1 and Proposition 7 of Chapter 2 §4 of [11]. The
presence of a logarithm and a trace in the expressions leading to Proposition 7 of [11]
is emblematic of the Markov loop measure, and can be contrasted with the expression
in (2.8) for random interlacements, (which is then inserted in the last line of (2.5)). In
the case of a Poissonian gas of Markov loops on a finite weighted graph with a suitable
killing, it is shown in Theorem 13 of [10] that the occupation field of the gas of loops
at level 1

2
, (playing the role of u in the context of [10]), is distributed as half the square

of a centered Gaussian free field with covariance the corresponding Green density. For
similar reasons as in 2) above, no such identity holds for random interlacements at any
fixed level u. We will however present in the next two sections limiting procedures that
relate random interlacements to the Gaussian free field.

4) As we now explain, the results of this section can be extended to the case of continuous
time random interlacements on a transient weighted graph. One considers a countable
connected graph E which is locally finite and endowed with non-negative symmetric
weights ρx,x′ = ρx′,x, which are positive exactly when {x, x′} belongs to the edge set E of E.
One assumes that the induced random walk with transition probability px,x′ = ρx,x′/ρ(x),
where ρ(x) =

∑
x′∈E ρx,x′, is transient. Random interlacements can be constructed on

such a transient weighted graph, see [19], Remark 1.4 and [21]. Continuous time random
interlacements can also be constructed, in essence by the same procedure described in the
Introduction, endowing the discrete doubly infinite paths with i.i.d. exponential variables

of parameter 1. The corresponding expression for the measure Q̂K , for K finite subset of
E, remains the same as in (0.1), simply the expression for eK(·) the equilibrium measure
of K, which appears in (1.4), now has to be multiplied by the factor ρ(x) in the present
context.

The occupation time variables Lx,u, x ∈ E, u ≥ 0, are defined by a similar formula as
in (0.2), but the expression on the right-hand side of (0.2) is now divided by ρ(x). The
linear operator G corresponding to (2.1) operates say on functions f on E with finite
support, via the formula:

Gf(x) =
∑
x′∈E

g(x, x′)f(x′)ρ(x′), x ∈ E,

where g(·, ·) now stands for the Green density, which is obtained by dividing the expression
corresponding to the right-hand side of (1.1) by ρ(x′).

The proof of Theorem 2.1 can be adapted to this context to show that when K
is a finite subset of E, and V has support in K, then for ‖V ‖L∞(E) sufficiently small,
‖GV ‖L∞(E)→L∞(E) < 1, and for any u ≥ 0,

(2.25) E
[
exp

{ ∑
x∈E

V (x)Lx,u ρ(x)
}]

= exp{u(V, (I −GV )−11)},

where now (f, g) stands for
∑

x∈E f(x)g(x)ρ(x), (whenever this sum is absolutely conver-
gent). Likewise the proof of Theorem 2.3 is easily adapted and one finds that for V as
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above, u ≥ 0,

(2.26) E
[
exp

{
− ∑

x∈E
V (x)Lx,u

}]
= exp

{
− u

∑
I⊆K cIΠx∈IV (x)∑
I⊆K gIΠx∈IV (x)

}
,

with gI and cI defined as in (2.10), (2.11), (with g(·, ·) now denoting the Green density).

5) One can define the stationary field of discrete occupation times ℓx,u, x ∈ Zd, u ≥ 0,
analogously to Lx,u, simply replacing σn by 1 in (0.2). When V is a function on Zd with
support contained in K ⊂⊂ Zd, it follows that 1− e−V is a function supported in K with
values in (−∞, 1), and one has the identity

(2.27) E
[
exp

{∑
x

V (x)ℓx,u
}]

= E
[
exp

{∑
x

(1− e−V (x))Lx,u

}]
, u ≥ 0,

as can be seen by integrating out the exponential variables in the right member of (2.27),
(of course both members of the above equality may be infinite). As a result Theorem 2.1
and Theorem 2.3 also yield identities concerning the Laplace functional of (ℓx,u)x∈Zd.

�

3 Preparation for the study of long rods

In this section we introduce notation specific to Z3 and provide estimates in Lemmas
3.1 and 3.2, which will be recurrently used in the next section, when we investigate the
occupation times spent by interlacements at a suitably scaled level in long rods. These
controls will play an important role in the asymptotic analysis of the power series entering
the characteristic functions of these occupation times. Throughout this section we assume
that d = 3, and constants depend on the finite subset Λ of Z2 introduced in (3.1) below.
The notation ‖ · ‖∞ refers to the supremum norm ‖ · ‖L∞(B), where B appears in (3.1).

We consider Λ ⊂⊂ Z2 containing 0 and N > 1. We also define

(3.1) B = Λ× J, where J = {1, . . . , N} .

We write πZ2 and πZ for the respective Z2- and Z-projections on Z3 identified with Z2×Z.
Given a function F on B, we write 〈F 〉 for the function obtained by averaging F on
horizontal layers and 〈F 〉z for the average of F on the layer Λ× {z}, so that

(3.2) 〈F 〉(x) = 〈F 〉z =
1

|Λ|
∑
y∈Λ

F ((y, z)), for x ∈ B with πZ(x) = z.

We also introduce the function

(3.3) [F ]0(x) = F ((0, z)), for x in B with πZ(x) = z.

It is plain that for any function F on B,

(3.4) 〈F − 〈F 〉〉 = 0,

and that

(3.5) F = 〈F 〉, when F only depends on the Z-component.
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We consider non-empty sub-intervals of J :

(3.6) I0 ⊆ I1 ( J, with L = d(I0, J\I1) ≥ 1 ,

(we refer to the beginning of Section 1 for notation). We write

(3.7) C0 = Λ× I0 ⊆ C1 = Λ× I1 ⊆ B.

We recall the convention concerning constants and the notation ‖ · ‖∞ stated at the
beginning of this section. The estimates in the next lemma reflect the decay at infinity
of the Green function, see (1.12), and the fact that the discrete gradient of g(·) has an
improved decay at infinity, see (3.15) below.

Lemma 3.1. For any function F on B, one has:

‖GF‖∞ ≤ c logN ‖F‖∞,(3.8)

‖1C0
G1B\C1

F‖∞ ≤ c log
(
N + 1

L

)
‖F‖∞,(3.9)

‖GF‖∞ ≤ c ‖F‖∞, when 〈F 〉 = 0,(3.10)

‖1C0
G1B\C1

F‖∞ ≤ c

L
‖1B\C1

F‖∞, when 〈F 〉 = 0,(3.11)

‖GF − [GF ]0‖∞ ≤ c ‖F‖∞,(3.12)

‖1C0
(G1B\C1

F − [G1B\C1
F ]0)‖∞ ≤ c

L
‖1B\C1

F‖∞ .(3.13)

Proof. We begin with (3.9) and note that for x ∈ C0,

|(G1B\C1
F )(x)| =

∣∣∣
∑

x′∈B\C1

g(x, x′)F (x′)
∣∣∣
(1.3)

≤ c
( ∑

L≤k≤N

1

k

)
‖F‖∞ ≤ c log

(
N + 1

L

)
‖F‖∞,

whence (3.9). The bound (3.8) is proved in the same fashion.

We then turn to the proof of (3.11), and note that when 〈F 〉 = 0, for x ∈ C0 one has
with the notation x′ = (y′, z′), x = (y, z′) (so that πZ(x

′) = πZ(x) = z′):

(G1B\C1
F )(x) =

∑
x′∈B\C1

g(x, x′)F (x′) =
∑

z′∈J\I1

∑
y′∈Λ

g(x, x′)F (x′)

〈F 〉=0
=

1

|Λ|
∑

z′∈J\I1

∑
y′,y∈Λ

g(x, x′)(F (x′)− F (x))

=
1

|Λ|
∑

z′∈J\I1

∑
y′,y∈Λ

(g(x, x′)− g(x, x))F (x′).

(3.14)

From Theorem 1.5.5, p. 32 of [7], one knows that

(3.15) |g(x+ a)− g(x)| ≤ c |a|
1 + |x|2 , for x ∈ Z3, |a| ≤ diam(Λ),

where diam(Λ) stands for the diameter of Λ. As a result we see that

(3.16) |(G1B\C1
F )(x)| ≤ c ‖1B\C1

F‖∞
∑
k≥L

1

1 + k2
≤ c

L
‖1B\C1

F‖∞ ,
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whence (3.11). One proves (3.10) analogously.

As for (3.13) we note that with the notation x0 = (0, z) when x = (y, z), we have for
x ∈ C0:

|(G1B\C1
F − [G1B\C1

F ]0)(x)| =
∣∣∣

∑
x′∈B\C1

(g(x, x′)− g(x0, x
′))F (x′)

∣∣∣

(3.15)

≤ c
∑
L≥k

1

1 + k2
‖1B\C1

F‖∞ ≤ c

L
‖1B\C1

F‖∞,
(3.17)

whence (3.13). The bound (3.12) is proved analogously.

We conclude this section with the following lemma.

Lemma 3.2. For F,H functions on B, one has

(3.18) ‖〈F (GH)〉‖∞ ≤ c ‖F‖∞ ‖H‖∞, when 〈F 〉 = 0 or 〈H〉 = 0.

Proof. The case 〈H〉 = 0 is immediate thanks to (3.10). In the case where 〈F 〉 = 0, we
write for z ∈ J , with the notation x = (y, z), x = (y, z),

〈F (GH)〉z =
1

|Λ|
∑
y∈Λ

F (x)
∑
x′∈B

g(x, x′)H(x′)

〈F 〉=0
=

1

|Λ|2
∑

y,y∈Λ
(F (x)− F (x))

∑
x′∈B

g(x, x′)H(x′)

=
1

|Λ|2
∑

y,y∈Λ,x′∈B
(g(x, x′)− g(x, x′))F (x)H(x′).

(3.19)

By (3.15) we thus find that with the notation πZ(x
′) = z′,

(3.20) |〈F (GH)〉|z ≤
c

|Λ|2
∑

y,y∈Λ,x′∈B

1

1 + |z − z′|2 ‖F‖∞ ‖H‖∞ ≤ c ‖F‖∞ ‖H‖∞,

and (3.18) follows.

4 Occupation times of long rods in Z3Z3Z3

In this section we relate the field of occupation times of long rods in Z3 by random
interlacements at a suitably scaled level, see (4.1) below, with the two-dimensional free
field pinned at the origin introduced in (1.29). The main results are stated in Theorems
4.2 and 4.9. The approach is roughly the following. By Theorem 2.1 we can express
the characteristic functionals of the scaled fields of occupation times of the long rods as
exponentials of certain power series. The main task is to control the asymptotic behavior
of these power series. This analysis is carried out in the central Theorem 4.1 as well as in
the simpler Theorem 4.8. Throughout this section we assume that d = 3. The constants
depend on the finite subset Λ of Z2, cf. (3.1) and above (4.3), as well as on the function
W with support in Λ that appears in (4.3). As in Section 3 we denote by ‖ · ‖∞ the
supremum norm ‖ · ‖L∞(B), with B as in (3.1).
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We consider α > 0, and a positive sequence γN tending to infinity. We will analyze
the random fields of occupation times of the long rods Jy, y ∈ Z2, with Jy = {y} × J =
{y} × {1, . . . , N} ⊆ Z3, by random interlacements at the scaled levels

(4.1) uN = α
logN

N
and u′N = γN

logN

N
, with N > 1.

The corresponding occupation times of the rods Jy, y ∈ Z2, are

(4.2) Ly,N =
∑
x∈Jy

Lx,uN
, L′

y,N =
∑
x∈Jy

Lx,u′
N
.

Let us point out that sequences of levels converging faster to zero than uN are not inter-
esting in the present context, see Remark 4.3 below.

As in Section 3, we consider some Λ ⊂⊂ Z2 containing 0. Further we introduce a
function W on Z2 such that

(4.3) i) W (y) = 0 outside Λ, ii)
∑
y

W (y) = 0.

We define the functions on Z3,

(4.4) VN(x) =
1√
logN

W (y) 1J(z), V ′
N(x) =

1√
γN

VN(x), with x = (y, z),

so that

LN
def
=

∑
y∈Z2

W (y)
Ly,N√
logN

=
∑
x∈Z3

VN(x)Lx,uN
,(4.5)

and similarly

L′
N

def
=

∑
y∈Z2

W (y)
L′

y,N√
γN logN

=
∑
x∈Z3

V ′
N(x)Lx,u′

N
.(4.6)

It follows from Theorem 2.1 and Remark 2.2 that

(4.7) E[exp{z LN}] = exp
{ ∑

n≥1

aN(n) z
n
}
, for |z| < rN in C,

with rN > 0 and

(4.8) aN(n) = uN(VN , (GVN)
n−11) for n ≥ 1.

As a result of the centering condition (4.3) ii) we have

(4.9) aN(1) = 0.

In a similar fashion we have

(4.10) E[exp{z L′
N}] = exp

{ ∑
n≥1

a′N(n) z
n
}
, for |z| < r′N in C,
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with r′N > 0 and

(4.11) a′N(n) = u′N(V
′
N , (GV

′
N)

n−11)
(4.1),(4.4)

=
1

α
γ
1−n

2

N aN (n), for n ≥ 1.

The heart of the matter for the proof of Theorem 4.2 lies in the analysis of the large N
behavior of the coefficients aN (n), n ≥ 1. There is a dichotomy between the case of odd
n, with an asymptotic vanishing of aN(n), and even n, with a positive limit of aN(n), as
N goes to infinity. The crucial controls are contained in the next theorem. We recall the
convention concerning constants stated at the beginning of this section.

Theorem 4.1.

|aN(n)| ≤ α cn0 , for all n ≥ 1, N > 1,(4.12)

for any k ≥ 0, lim
N

aN(2k + 1) = 0,(4.13)

for any k ≥ 1, lim
N

aN(2k) =
α

2
E(W )

(
3

2π
E(W )

)k−1

,(4.14)

where we have set, see (1.6) for notation,

(4.15) E(W ) = −3
∑
y,y′

W (y)W (y′) a(y′ − y).

Note that due to (4.3) ii) we can express E(W ) in terms of the two-dimensional Gaussian
free field ψy, y ∈ Z2, introduced in (1.29), via the formula:

(4.16) E(W ) = E
[( ∑

y∈Z2

W (y)ψy

)2]
.

Before turning to the proof of Theorem 4.1, we first explain how this theorem enables us
to derive the convergence in law of the appropriately scaled fields Ly,N − L0,N , y ∈ Z2,

and L′
y,N − L′

0,N , y ∈ Z2. We tacitly endow RZ2

with the product topology, so that the
convergence stated in Theorem 4.2 actually corresponds to the convergence in distribution
of all finite dimensional marginals of the relevant random fields. The main result of this
section is the next theorem, which proves (0.8) and (0.10).

Theorem 4.2.

(4.17)
As N goes to infinity,

(Ly,N−L0,N√
logN

)
y∈Z2, converges in

distribution to the random field (Rψy)y∈Z2 ,

where R and (ψy)y∈Z2 are independent and

R is BES0
(√

α,
3

2π

)
-distributed,(4.18)

(ψy)y∈Z2 is the centered Gaussian field introduced in (1.29).(4.19)

Moreover,

(4.20)
as N goes to infinity,

(L′
y,N−L′

0,N√
Nu′

N

)
y∈Z2 converges in

distribution to (ψy)y∈Z2 .
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Proof of Theorem 4.2 (assuming Theorem 4.1). We begin with the proof of (4.17). We
consider W as in (4.3) and LN as in (4.5). By (4.7), (4.12) and Remark 2.2, we see that
exp{zLN} is integrable for any z with c0|Re z| < 1, and that

(4.21) E[exp{zLN}] = exp
{ ∑

n≥1

aN(n)z
n
}
, for any |z| < c−1

0 in C.

In particular (4.12) implies that

(4.22) sup
N

E[cosh(rLN)] <∞, when r < c−1
0 .

As a result the laws of the variables LN are tight, and the variables exp{zLN}, N > 1,
with |Re z| ≤ r < c−1

0 , are uniformly integrable. If along some subsequence Nk, k ≥ 1,
the variables LNk

converge in distribution to L, it follows from Theorem 5.4, p. 32 in [1],
that for |z| < c−1

0 ,

E[exp{zL}] = lim
k

E[exp{zLNk
}]

= lim
k

exp
{ ∑

n≥1

aNk
(n)zn

}

= exp
{
α

2
E(W ) z2/

(
1− 3

2π
E(W )z2

)}
,

(4.23)

using Theorem 4.1 in the last equality. This determines the characteristic function of the
law of L, and by (1.30) shows that S has same distribution as Rψ where R,ψ are inde-
pendent variables with R BES0(

√
α, 3

2π
)-distributed, and ψ a centered Gaussian variable

with zero mean and variance E(W ). This proves that for anyW as in (4.3), LN converges
in distribution to Rψ as above, when N tends to infinity. In view of (4.16), this completes
the proof of (4.17).

The proof of (4.20) is analogous. Due to (4.11), we know that a′N(n) =
1
α
γ
1−n

2

N aN (n),
and in particular a′N (2) =

1
α
aN (2) converges to 1

2
E(W ), whereas for n 6= 2, a′N (n) con-

verges to zero as N goes to infinity. We can use the same arguments as above, and
find that L′

N converges in distribution to a variable L′ such that for small |z| in C,
E[exp{zL′}] = exp{1

2
E(W )z2}. The claim (4.20) then follows immediately. �

Remark 4.3. For the kind of limit theorems discussed here, sequences of levels converging
to zero faster than uN lead to trivial results, as we now explain. In a standard way, see
for instance Remark 3.1 3) in [16], one has the bound cap(Jy) ≤ c N

logN
, for all y ∈ Z2. If

we pick u′′N so that u′′N = o( logN
N

), then (2.20) implies that for all y ∈ Z2, with probability
tending to 1 as N goes to infinity, the interlacement at level u′′N does not intersect Jy.
In particular, if we define L′′

y,N in analogy to Ly,N in (4.2) with u′′N in place of uN , the
random field (L′′

y,N)y∈Z2 converges in distribution to the constant field equal to zero, as
N goes to infinity. �

Proof of Theorem 4.1. We recall the convention concerning constants and the notation
‖ · ‖∞ stated at the beginning of this section. The linear operators under consideration
throughout the proof will be restricted to the space of functions vanishing outside B. The
centering condition (4.3) ii) and the ensuing identity 〈VN〉 = 0 play a crucial role. We will
first prove (4.12), (4.13). Our first step is to control the norm of the operators (GVN)

2.
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Lemma 4.4.

(4.24) ‖(GVN)2‖L∞(B)→L∞(B) ≤ c1 .

Proof. Given a function F on B, we write in the notation of (3.2), (3.3):

(4.25)

(GVN)
2 F = A1 + A2 + A3, where

A1 = GVN G(VN F − 〈VNF 〉)
A2 = GVN [G〈VN F 〉]0
A3 = GVN(G〈VN F 〉 − [G〈VN F 〉]0).

With the help of Lemma 3.1 we see that:

(4.26) ‖A1‖∞
(3.8),(4.4)

≤ c
√
logN ‖G(VN F − 〈VN F 〉)‖∞

(3.10),(4.4)

≤ c ‖F‖∞ .

Since 〈VN [G〈VN F 〉]0〉 = 0, we also find that

(4.27) ‖A2‖∞
(3.10),(4.4)

≤ c√
logN

‖G〈VN F 〉‖∞
(3.8),(4.4)

≤ c ‖F‖∞ .

Finally we have

(4.28) ‖A3‖∞
(3.8),(4.4)

≤ c
√

logN ‖G(VNF − [G〈VNF 〉]0)‖∞
(3.12),(4.4)

≤ c ‖F‖∞ .

Collecting (4.25) - (4.28), the claim (4.24) now follows.

Before proving (4.12), (4.13) we still need the following lemma, which shows that the
kernel of the linear operator F → 〈VNF 〉, is almost invariant under (GVN)

2. We will later
see, cf.(4.61), that the function F = 1B, which belongs to this kernel, is in an appropriate
sense, close to being an eigenvector of (GVN)

2.

Lemma 4.5. When F is a function on B, one has

(4.29) ‖〈VN(GVN)2F 〉‖∞ ≤ c2‖〈VNF 〉‖∞ +
c3

(logN)
3

2

‖F‖∞.

Proof. We use (4.25) and write

(4.30) 〈VN(GVN)2F 〉 = 〈VNA1〉+ 〈VNA2〉+ 〈VNA3〉.
With the help of Lemma 3.2 we find that

‖〈VNA1〉‖∞
(3.18)

≤ c√
logN

‖VNG(VNF − 〈VNF 〉)‖∞
(3.10)

≤ c

(logN)
3

2

‖F‖∞,(4.31)

‖〈VNA2〉‖∞
(3.18)

≤ c√
logN

‖VN [G〈VNF 〉]0‖∞
(3.8)

≤ c ‖〈VNF 〉‖∞,(4.32)

and that

‖〈VNA3〉‖∞
(3.18)

≤ c√
logN

‖VN(G〈VNF 〉 − [G〈VNF 〉]0)‖∞(4.33)

(3.12)

≤ c

(logN)
3

2

‖F‖∞.

Collecting (4.30) - (4.33), we obtain (4.29).
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We now prove (4.12), (4.13). As a result of (4.24), (4.29) we see that for k ≥ 1 and F
a function on B, one has

‖〈VN(GVN)2kF 〉‖∞
(4.29),(4.24)

≤ c2‖〈VN(GVN)2(k−1)F 〉‖∞ +
c3

(logN)
3

2

ck−1
1 ‖F‖∞(4.34)

and by induction

≤ ck2‖〈VNF 〉‖∞ +
c3

(logN)
3

2

(ck−1
1 + c2 c

k−2
1 + · · ·+ ck−1

2 ) ‖F‖∞

≤ ck2‖〈VNF 〉‖∞ +
ck

(logN)
3

2

‖F‖∞.

Keeping in mind that 〈VN〉 = 0, we thus see that for k ≥ 1,
(4.35)

|aN(2k + 1)| (4.1),(4.8)
=

α logN

N
|(VN , (GVN)2k1)| ≤ α logN |Λ| ‖〈VN(GVN)2k1〉‖∞

(4.34)

≤ αck|Λ|√
logN

.

Together with (4.9), this proves (4.13) as well as (4.12) for odd n. When n = 2k, with
k ≥ 1, we note that

|aN (2k)| =
α logN

N
|(VN , (GVN)(GVN)2(k−1)1)|

=
α logN

N
|(GVN , VN(GVN)2(k−1)1)| (by symmetry of G),

≤ α logN |Λ| ‖GVN ‖∞ ‖VN(GVN)2(k−1)1‖∞
(3.10),(4.24)

≤ αck.

(4.36)

The proof of (4.12) is now complete.

There remains to prove (4.14), i.e. to analyze the large N behavior of the even coeffi-
cients aN (2k). To motivate the next lemma we recall that

(4.37) aN (2)
(4.8)
=

α logN

N
(VN , GVN)

(3.2)
=

α logN

N
|Λ| ∑

z∈J
〈VN GVN〉z.

Lemma 4.6. There exists a function Γ(·) on N tending to 0 at infinity such that

(4.38) logN〈VN GVN〉z = 1

2

E(W )

|Λ| + fN(z), for z ∈ J,

with |fN(z)| ≤ Γ(d(z, Jc)).

Moreover if one defines

(4.39) τN =
1

2 logN

∑
|z|≤N

g((0, z)), so that lim
N
τN =

3

2π
by (1.9),
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one has the identity on B

(4.40) (GVN)
21B − τN E(W ) 1B =

1

logN
G(fN ◦ πZ) + kN ,

where for x = (y, z) ∈ B,

(4.41) |kN |(x) ≤
c

logN
log(N/d(z, Jc)).

Proof. We begin with the proof of (4.38). We note that for z ∈ J , x = (y, z) in B and
x′ = (y′, z′) in B, one has

(4.42)

logN〈VNGVN〉z =
1

|Λ|
∑

y∈Λ,x′∈B
W (y) g(x, x′)W (y′)

(4.3)ii)
=

1

|Λ|
∑

y,y′∈Λ,z′∈J
W (y) (g(x, x′)− g(x, (y, z′))W (y′)

=
1

|Λ|
∑

y,y′∈Λ
W (y)W (y′)

∑
z′∈J

(
g(x′ − x)− g((0, z′ − z))

)

(1.10)
=

1

|Λ|
∑

y,y′∈Λ
W (y)W (y′)

(
bN (y

′ − y, z)− 3

2
a(y′ − y)

)

(4.15)
=

1

2

E(W )

|Λ| + fN(z),

where we have set

fN(z) =
1

|Λ|
∑

y,y′∈Λ
W (y)W (y′) bN(y

′ − y, z), for z ∈ J.

The estimate in the second line of (4.38) is now an immediate consequence of (1.11). This
completes the proof of (4.38).

We then turn to the proof of (4.40), (4.41). We write

(4.43) (GVN)
2 1B = G〈VN GVN〉+G(VN GVN − 〈VN GVN〉) def

= a1 + a2.

We know that

(4.44) ‖a2‖∞
(3.10)

≤ c ‖VN GVN‖∞
(3.10)

≤ c′/ logN,

and by (4.38) we find that

a1 =
1

2

E(W )

|Λ|
G1B
logN

+
1

logN
G(fN ◦ πZ)

= τN E(W ) 1B +
1

logN
G(fN ◦ πZ) + rN ,

(4.45)

where for x = (y, z) ∈ B we have set

(4.46) rN(x) =
1

2

E(W )

|Λ|
G1B
logN

− 1

2

E(W )

logN

∑
|z′−z|≤N

g((0, z′ − z)).
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We thus see that, (recall Jy = {y} × J):

|rN(x)| ≤
c

logN
‖G

( 1B
|Λ| − 1J0

)∥∥∥
∞
+

c

logN
‖G1J0 − [G1J0]0‖∞

+
c

logN

∑
|z′−z|≤N,z′ /∈J

g((0, z′ − z))
(3.10),(3.12),(1.3)

≤ c

logN
log(N/d(z, Jc)) .

(4.47)

Collecting (4.43) - (4.47) we have completed the proof of (4.40), (4.41).

As a result of (4.37), (4.38) we see that

(4.48) aN(2) =
α

2
E(W ) +

α|Λ|
N

∑
z∈J

fN(z) −→
N

α

2
E(W ).

This proves (4.14) in the case k = 1. To handle the case k > 1, we will need to control
the propagation of boundary effects corresponding to terms with Z-component close to
the complement of J , when proving the convergence of aN(2k) = α logN

N
(VN , (GVN)

2k−11)
for N → ∞. The next lemma will be useful for this purpose. We first introduce some
notation.

We consider non-empty sub-intervals of J

(4.49) I0 ⊆ I1 ⊆ I2 ( J,

and define

(4.50) L0 = d(I0, J\I1) ≥ 1, L1 = d(I1, J\I2) ≥ 1,

as well as

(4.51) C0 = Λ× I0 ⊆ C1 = Λ× I1 = C2 = Λ× I2 ⊆ B.

We have the following variation on Lemma 4.4.

Lemma 4.7. For F a function on B, one has

(4.52) ‖1C0
(GVN)

2F‖∞ ≤ c4‖1C2
F‖∞ + c5

( 1

L0
+

1

L1
+

1

logN
log

((N + 1)2

L0L1

))
‖F‖∞.

Proof. By Lemma 4.4 we can assume that F vanishes on C2. We use the decomposition
(4.25) of (GVN)

2F . We find that

(4.53)

‖1C0
A1‖∞ = ‖1C0

GVN G(VNF − 〈VNF 〉)‖∞
≤ ‖1C0

GVN 1C1
G(VNF − 〈VNF 〉)‖∞ + ‖1C0

GVN 1B\C1
G(VNF − 〈VNF 〉)‖∞

(3.8),(3.9)

≤ c
√
logN ‖1C1

G(VNF − 〈VNF 〉)‖∞

+
c√

logN
log

(N + 1

L0

)
‖G(VNF − 〈VNF 〉)‖∞

(3.11),(3.10)

≤ c

L1
‖F‖∞ +

c

logN

(N + 1

L0

)
‖F‖∞,
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using the fact that F vanishes on C2 in the last step. In a similar fashion we find that

(4.54)

‖1C0
A2‖∞ = ‖1C0

GVN [G〈VNF 〉]0‖∞
(3.10),(3.11)

≤
c√

logN
‖1C1

[G〈VNF 〉]0‖∞ +
c√

logN

1

L0
‖1B\C1

[G〈VNF 〉]0‖∞
(3.9),(3.8)

≤
c

logN
log

(
N + 1

L1

)
‖F‖∞ +

c

L0
‖F‖∞,

where once again we have used that F vanishes on C2 in the last step. Finally we have

(4.55)

‖1C0
A3‖∞ = ‖1C0

GVN (G〈VNF 〉 − [G〈VNF 〉]0)‖∞
(3.8),(3.9)

≤
c
√
logN ‖1C1

(G〈VNF 〉 − [G〈VNF 〉]0)‖∞
+

c√
logN

log
(
N + 1

L0

)
‖1B\C1

(G〈VNF 〉 − [G〈VNF 〉]0)‖∞

(3.13),(3.12)

≤ c

L1
‖F‖∞ +

c

logN
log

(
N + 1

L0

)
‖F‖∞,

using that F vanishes on C2 in the last step.

Collecting (4.53) - (4.55), we obtain (4.52).

We now introduce the following sequence of possibly empty sub-intervals of J :

(4.56) Jk = {i ≥ 1; 1 + 4k[Ne−
√
logN ] ≤ i ≤ N − 4k[Ne−

√
logN ]}, for k ≥ 0.

There is some freedom in the above definition. The proof below would work with minor
changes if one replaces Ne−

√
logN by N1−εN , with εN → 0, and εN logN → ∞.

Setting Bk = Λ× Jk, we find that for any k ≥ 1, when N ≥ c(k),

∅ 6= Bk ( Bk−1 ( · · · ( B1 ( B,

and that with the notation (4.39)

(4.57)

‖1Bk
((GVN)

2k1B − (τN E(W ))k1B)‖∞ ≤
k−1∑
m=0

‖1Bk
((GVN)

2(m+1)(τN E(W ))k−(m+1)1B − (GVN)
2m(τNE(W ))k−m1B)‖∞ ≤

k−1∑
m=0

(τN E(W ))k−(m+1)‖1Bm+1
(GV )2m((GVN)

21B − τN E(W )1B)‖∞.

We set FN = (GVN)
21B − τN E(W )1B, and now want to bound ‖1Bm+1

(GVN)
2m FN‖∞

with the help of (4.52), when 0 < m < k. To this end we introduce Ĵm with a similar

definition as in (4.56), simply replacing 4k by 2m+ 2, so that Jm+1 ⊆ Ĵm ⊆ Jm play the

role of I0 ⊆ I1 ⊆ I2 in (4.49). We note that d(Jm+1, J\Ĵm) and d(Ĵm, J\Jm) are bigger

than cNe−
√
logN . As a result the expression inside the parenthesis after c5 in (4.52) is

smaller than

cN−1 e
√
logN +

1

logN
log

((N + 1)2

N2
e2

√
logN

)
≤ c√

logN
.
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It thus follows that for 0 < m < k:

‖1Bm+1
(GVN)

2mFN‖∞
(4.52),(4.24)

≤ c4‖1Bm
(GVN)

2(m−1)FN‖∞ +
cm−1
1√
logN

c6‖FN‖∞(4.58)

and by induction

≤ cm4 ‖1B1
FN‖∞ +

c6√
logN

(cm−1
1 + c4 c

m−2
1 + · · ·+ cm−1

4 )‖FN‖∞

≤ cm4 ‖1B1
FN‖∞ +

cm√
logN

‖FN‖∞.

Coming back to the last line of (4.57), we see that for k ≥ 1, N ≥ c(k), each term
under the sum, thanks to the above bound and (4.39), is smaller than c(k)(‖1B1

FN‖∞ +
1√

logN
‖FN‖∞). Hence we see that for k ≥ 1 and N ≥ c(k),

(4.59) ‖1Bk
((GVN)

2k1B − (τN E(W ))k1B)‖∞ ≤ c(k)
(
‖1B1

FN‖∞ +
1√

logN

)
,

where we have used the bound ‖FN‖∞ ≤ c, which follows from (4.24) and (4.39). Note

that the form of the correction term (logN)−
1

2 in (4.59) mainly reflects our choice for the
intervals Jk in (4.56). In view of Lemma 4.6, we also find that

(4.60) ‖1B1
FN‖∞

(4.40)

≤
∥∥∥1B1

G(fN ◦ πZ)
logN

∥∥∥
∞
+ ‖1B1

kN‖∞ −→ 0, as N → ∞,

where we have used the bounds in the second line of (4.38) and (4.41) to conclude in the
last step. Since τN converges to 3

2π
, see (4.39), we can infer from (4.59), (4.60) that

(4.61) ∆k,N
def
=

∥∥∥1Bk

(
(GVN)

2k1B −
(

3

2π
E(W )

)k

1B

)∥∥∥
∞

−→
N

0, for each k ≥ 1.

We can now use this estimate to study the asymptotic behavior of aN(2(k+1)) as N goes
to infinity. Indeed one has

(4.62)

∣∣∣aN (2(k + 1))−
(

3

2π
E(W )

)k

aN(2)
∣∣∣ =

α
logN

N

∣∣∣
(
VN , GVN

(
(GVN)

2k1B −
(

3

2π
E(W )

)k

1B

))∣∣∣ = I1 + I2,

where in the last step, using the symmetry of G, we have set:

I1 = α
logN

N

∣∣∣
(
GVN , VN 1Bk

(
(GVN)

2k1B −
(

3

2π
E(W )

)k

1B

))∣∣∣,

I2 = α
logN

N

∣∣∣
(
GVN , VN 1B\Bk

(
(GVN)

2k1B −
(

3

2π
E(W )

)k

1B

))∣∣∣.

We then observe that

I1 ≤ cα logN ‖GVN‖∞ ‖VN‖∞∆k,N

(3.10)

≤ c′α∆k,N
(4.61)−→
N

0,
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and that

I2
(4.24)

≤ α logN ‖GVN‖∞ ‖VN‖∞ × c(k)× |B\Bk|
N

(3.10)

≤ c′(k)α
|J\Jk|
|J |

(4.56)−→
N

0.

We have thus shown that

(4.63) lim
N

∣∣∣aN(2(k + 1))−
(

3

2π
E(W )

)k

aN (2)
∣∣∣ = 0, for any k ≥ 1.

Combined with (4.48) this completes the proof of (4.14) and hence of Theorem 4.1. �

Our next objective is to study the convergence in distribution of the random fields

(
Ly,N

logN
)y∈Z2 and (

L′
y,N

Nu′
N

)y∈Z2 , as N goes to infinity, where we recall the notation from (4.1),

(4.2). The task is simplified by the fact that we have already proved Theorem 4.2: we only
need to investigate the convergence in distribution of these random fields at the origin.
We now focus on the case where Λ = {0}, and J0 plays the role of B. We further define

ṼN(x) =
1

logN
1J0(x), Ṽ

′
N(x) =

1

γN
ṼN(x), for x ∈ Z3,(4.64)

and set

L̃N =
1

logN
L0,N , L̃′

N =
1

Nu′N
L′

0,N .(4.65)

Just as in (4.7), (4.10), we know by Theorem 2.1 that

(4.66) E[exp{zL̃N}] = exp
{ ∑

n≥1

ãN(n) z
n
}
, for |z| < r̃N in C,

with rN > 0 and where we have set

(4.67) ãN(n) = uN(ṼN , (GṼN)
n−11), for n ≥ 1,

and that

(4.68) E[exp{zL̃′
N}] = exp

{ ∑
n≥1

ã ′
N(n) z

n
}
, for |z| < r̃ ′

N in C,

with r′N > 0 and

(4.69) ã ′
N(n) = u′N(Ṽ

′
N , (GṼ

′
N)

n−11) =
1

α
γ1−n
N ãN(n), for n ≥ 1.

The heart of the matter for the proof of Theorem 4.9 below lies in the control of the large
N behavior of the sequence ãN(n), n ≥ 1.

Theorem 4.8.

0 ≤ ãN (n) ≤ αcn7 , for n ≥ 1, N > 1,(4.70)

for any n ≥ 1, lim
N

ãN(n) = α
(
3

π

)n−1

.(4.71)
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We first explain how Theorems 4.2 and 4.8 enable us to infer the convergence in law
of the appropriately scaled fields Ly,N , y ∈ Z2, and L′

y,N , y ∈ Z2.

Theorem 4.9.

As N goes to infinity, (
Ly,N

logN
)y∈Z2 converges in distribution to a flat random(4.72)

field with constant valued distributed as R2 with R as in (4.18).

As N goes to infinity, (
L′
y,N

Nu′
N

)y∈Z2 converges in distribution to a flat random(4.73)

field with value 1.

Proof of Theorem 4.9 (assuming Theorem 4.8): A repetition of the arguments used in the

proof of Theorem 4.2 shows that L̃N converges in distribution to a non-negative random

variable L̃ with Laplace transform

(4.74) E[exp{−λL̃}] = exp
{
− αλ

1 + 3
π
λ

}
, for λ ≥ 0,

so that by (1.30), L̃ is BESQ0(α, 3
2π
)-distributed, i.e. has same distribution as V 2 in the

notation of (4.18).

Moreover we know from Theorem 4.2 that for any y ∈ Z2, when N goes to infinity,
1

logN
(Ly,N − L0,N) converges to zero in distribution, and (4.72) follows.

In the case of (4.73) we note instead that the arguments used in the proof of Theorem

4.2 now show that L̃′
N converges in distribution to a non-negative random variable with

Laplace transform e−λ, λ ≥ 0, i.e. to the constant 1. Since by Theorem 4.2, 1
Nu′

N

(L′
y,N −

L′
0,N) converges in distribution to zero for any y ∈ Z2, we obtain (4.73).

Proof of Theorem 4.8: We now write ‖ · ‖∞ for the supremum norm on B̃ = J0 and the

linear operators we consider are restricted to functions that vanish outside B̃. The fact
that ãN(n) is non-negative is plain, see (4.64), (4.67). Moreover the right-hand inequality
in (4.70) is a direct consequence of (3.8). This proves (4.70).

We now turn to the proof of (4.71). For k ≥ 1, we introduce B̃k = {0} × Jk, with Jk
as in (4.56), so that for any k ≥ 1, and N ≥ c(k), φ 6= B̃k ( B̃k−1 ( · · · ( B̃1 ( B̃. In a
much simpler fashion than (4.59) we now find that, (see (4.39) for notation),

(4.75) ‖1 eBk
((GṼN)

k1 eB − (2τN )
k1 eB)‖∞ ≤ c(k)

(
‖1 eB1

F̃N‖∞ +
1√
logN

)
,

where we have set
F̃N = (GṼN)1 eB − 2τN 1 eB = GṼN − 2τN 1 eB.

It already follows from the definitions of ṼN and τN in (4.64), (4.39) that

(4.76) lim
N

‖1 eB1
F̃N‖∞ = 0.
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We thus see that for k ≥ 1,

(4.77) lim
N

ãN(k) = lim
N

α
logN

N
(ṼN , (GṼN)

k−11) = α(2 lim
N
τN)

k−1 = α
(
3

π

)k−1

,

and this proves (4.71). �

Remark 4.10.

1) There is an important connection between random interlacements at level u and the
structure left by random walk on a large torus (Z/NZ)d,(here d = 3), at a microscopic
scale of order 1, see [23], or even at a mesoscopic scale of order N1−ε, with 0 < ε < 1,
see [22], when the walk runs for times of order uNd. This naturally raises the question
whether the above limiting results might also be relevant for the field of occupation times
left close to the origin, by continuous time simple random walk with uniform starting
point on a large two-dimensional torus (Z/NZ)2, at times of order αN2 logN (= uN N

3),
or at much larger times u′N N

3. Let us incidentally point out that the time scale αN2 logN
is much smaller than the cover time of the torus which has order 4

π
N2(logN)2, see [4].

2) We can consider the discrete occupation times ℓx,u, x ∈ Zd, u ≥ 0, see Remark 2.4 5),
and define Ly,N and L

′
y,N , for y ∈ Z2, N > 1, as in (4.2), simply replacing Lx,u by ℓx,u.

Theorems 4.2 and 4.9 enable us to show that (
L′
y,N

−L′
0,N√

Nu′
N

)y∈Z2 converges in distribution

to a centered Gaussian field which vanishes at the origin. However this limiting field is
different from (ψy)y∈Z2 in (4.20).

The heart of the matter lies in the fact that for any W (·) as in (4.3), when N tends
to infinity,

(4.78)

∑
y∈Z2 W (y)

L
′
y,N√
Nu′

N

converges in distribution to a Gaussian variable

with variance E(W )−∑
y∈Z2 W (y)2,

(in the case of L′
y,N the limiting variance instead equals E(W )).

Indeed it follows from (2.27) that for real z and N > 1,

(4.79) E
[
exp

{
z
∑
y∈Z2

W (y)√
Nu′

N

L
′
y,N

}]
= E

[
exp

{ ∑
y∈Z2

(
1− e

−z
W (y)√
Nu′

N

)
L′

y,N

}]
,

and for |z| < r and N ≥ c, we can use Taylor’s expansion and write

1− e
−z

W (y)√
Nu′

N = z
W (y)√
Nu′

N

− 1

2
z2

W (y)2

Nu′

N

(1 + εy(z,N)),

where |εy(z,N)| ≤ 1
2
and lim

N
εy(z,N) = 0, for each y ∈ Z2, |z| < r.

Inserting the above identity in (4.79) shows that for |z| < r and N ≥ c, the left-hand
side of (4.79) equals

(4.80) E
[
exp

{
z
∑
y∈Z2

W (y)√
Nu′

N

L′
y,N − 1

2
z2

∑
y∈Z2

W (y)2

Nu′

N

(1 + εy(z,N))L′
y,N

}]
.
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By the end of the proof of Theorem 4.2 we know that for |z| < c,

lim
N

E
[
exp

{
z
∑
y∈Z2

W (y)√
Nu′

N

L′
y,N

}]
= exp

{
z2

2
E(W )

}
.

A straightforward uniform integrability argument combined with (4.73) and (4.80) shows
that for real z with |z| < c,

(4.81) lim
N

E
[
exp

{
z
∑
y∈Z2

W (y)√
Nu′

N

L
′
y,N

}]
= exp

{
z2

2
E(W )− z2

2

∑
y∈Z2

W (y)2
}
.

Similar arguments as in the proof of Theorem 4.2 now yield (4.78).

Note incidentally that Theorems 4.2 and 4.9 are not quite sufficient to study the limit

in law of (
Ly,N−L0,N√

logN
)y∈Z2 . As shown by the above proof, see in particular (4.80), to handle

this case we would in essence need a limiting result for the joint law of the two random
fields that appear in (4.17) and (4.72).

�

5 Occupation times at high level uuu

In this section we relate occupation times at a high level u of the random interlacements
with the d-dimensional Gaussian free field. The limit u → ∞ bypasses the obstructions
present when one considers a fixed level u, see Remarks 2.4 2). Our main result appears in
Theorem 5.1. It has a similar flavor to (4.20) of Theorem 4.2 and (4.73) of Theorem 4.9.
Moreover it can rather straightforwardly be extended to the case of random interlacements
on transient weighted graphs, see Remark 5.2. However we keep the set-up of Zd, d ≥ 3
for the main body of this section, not to overburden notation.

We consider on an auxiliary probability space

(5.1)
ϕx, x ∈ Zd, a centered Gaussian field with covariance function
E[ϕxϕx′] = g(x′ − x) + g(0)− g(x)− g(x′), for x, x′ ∈ Zd.

This field has the same distribution as the field (γx − γ0)x∈Zd of increments at the origin
of the d-dimensional Gaussian free field, (γx)x∈Zd, i.e. the centered Gaussian field with
covariance function E[γxγx′] = g(x, x′), for x, x′ ∈ Zd.

We can now state the main result of this section.

Theorem 5.1. As u→ ∞,

(Lx,u − Lx,0√
2u

)
x∈Zd

converges in distribution to the Gaussian(5.2)

random field (ϕx)x∈Zd in (5.1),

and

( 1
u
Lx,u

)
x∈Zd converges in distribution to the constant field equal to 1.(5.3)
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Proof. We follow the same strategy as in the previous section, the problem is however
much simpler now. It clearly suffices to prove (5.2) and (5.3) with u replaced by a sequence
uN such that

(5.4) uN ≥ 1, for N ≥ 1, and lim
N

uN = ∞.

We thus consider a function V on Zd such that

(5.5) V is finitely supported and
∑
x∈Zd

V (x) = 0.

We define

(5.6) LN =
∑
x∈Zd

1√
2uN

V (x)Lx,uN
, for N ≥ 1.

It follows from Theorem 2.1 and Remark 2.2 that for some fixed r > 0,

(5.7) E[exp{zLN}] = exp
{ ∑

n≥1

cN(n)z
n}, for |z| < r in C,

where we have set for n,N ≥ 1,

(5.8) cN(n) = 2−
n
2 u

1−n
2

N (V, (GV )n−11).

In view of (5.5) we have

(5.9) cN (1) = 0.

By (5.4), (5.8) it is also plain that for n ≥ 2,

(5.10) |cN(n)| ≤ c(V )n,

with c(V ) a positive constant depending on V and d, by our convention. Moreover we
find that

lim
N

cN(n) = 0, for n > 2, and(5.11)

cN(2) =
1

2
(V,GV )

(5.1),(5.5)
=

1

2
E
[(∑

x

V (x)ϕx

)2]
.(5.12)

The same arguments as in the proof of Theorem 4.2 show that

(5.13)

LN converges in distribution to a centered Gaussian variable with variance

E
[(∑

x

V (x)ϕx

)2]
.

Since V in (5.5) and uN in (5.4) are arbitrary, the claim (5.2) follows. We then turn to
the proof of (5.3). It follows by (2.21) that for λ ≥ 0,

(5.14) E
[
exp

{
− λ

uN

L0,uN

}]
= exp

{
− λ

1 + g(0) λ
uN

}
−→ e−λ, as N → ∞.

This shows that 1
uN
L0,uN

converges in distribution to the constant 1 as N goes to infinity.

Since due to (5.2), for any x ∈ Zd, 1
uN

(Lx,uN
− L0,uN

) tends to zero in distribution, as N
goes to infinity, our claim follows.
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Remark 5.2.

1) The results of the present section can straightforwardly be extended to the set-up
of continuous time random interlacements on a transient weighted graph E, as we now
explain. We keep the same notation and assumptions as in Remark 2.4 4). We introduce
a base point x0 ∈ E. In place of (5.1) we consider

(5.15)
ϕx, x ∈ E, a centered Gaussian field with covariance function
E[ϕxϕx′] = g(x, x′) + g(x0, x0)− g(x0, x)− g(x0, x

′), x, x′ ∈ E,

where g(·, ·) now stands for the Green density.

This field has the same distribution as the field of increments (γx − γx0
)x∈E, of the

Gaussian free field (γx)x∈E attached to the transient weighted graph, i.e. the centered
Gaussian field with covariance function E[γxγx′] = g(x, x′), x, x′ ∈ E.

With the help of (2.25), (2.26), the arguments employed in the proof of Theorem 5.1
now show that as u→ ∞,

(5.16)

(Lx,u − Lx,0√
2u

)
x∈E

converges in distribution to the Gaussian

random field (ϕx)x∈E,

and that

(5.17)
(1
u
Lx,u

)
x∈E converges in distribution to the constant field equal to 1.

2) In the case of the discrete occupation times ℓx,u, x ∈ Zd, u ≥ 0, the same arguments
used in Remark 4.10 2) show that when u→ ∞,

(5.18)
(ℓx,u − ℓx,0√

2u

)
x∈Zd

converges in distribution to (νx)x∈Zd,

where (νx)x∈Zd is the centered Gaussian field vanishing at the origin such that for any V
as in (5.5), one has in the notation of (5.1):

(5.19) E
[( ∑

x∈Zd

V (x) νx
)2]

+
1

2

∑
x∈Zd

V (x)2 = E
[( ∑

x∈Zd

V (x)ϕx

)2]
.

Moreover looking at the Laplace functional, one sees with the help of (2.27) and (5.3)
that for u→ ∞,

(5.20)
(1
u
ℓx,u

)
x∈Zd converges in distribution to the constant field equal to 1.

�
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