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Abstract

We consider random interlacements on Zd, d ≥ 3, when their vacant set is in
a strongly percolative regime. We derive an asymptotic upper bound on the prob-
ability that the random interlacements disconnect a box of large side-length from
the boundary of a larger homothetic box. As a corollary, we obtain an asymptotic
upper bound on a similar quantity, where the random interlacements are replaced
by the simple random walk. It is plausible, but open at the moment, that these
asymptotic upper bounds match the asymptotic lower bounds obtained by Xinyi
Li and the author in [12], for random interlacements, and by Xinyi Li in [10], for
the simple random walk. In any case, our bounds capture the principal exponential
rate of decay of these probabilities, in any dimension d ≥ 3.
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0 Introduction

How costly is it for simple random walk in Zd, d ≥ 3, to disconnect a box of large
side-length N from the boundary of a larger homothetic box? In this article, we obtain
an asymptotic upper bound on this probability, as the application of a main result that
provides an asymptotic upper bound on a similar quantity, where the random walk is
replaced by random interlacements at a level u such that the corresponding vacant set
is in a strongly percolative regime. Although open at present, it is plausible that these
asymptotic upper bounds are sharp, and respectively match the asymptotic lower bound
of [12], for random interlacements, and of [10], for simple random walk. In any case,
thanks to the current stand of knowledge concerning the strong percolative regime for
the vacant set of random interlacements, see [5] (and also [23], when d ≥ 5), the bounds
that we obtain in this article establish an exponential decay at rate Nd−2 of the above
mentioned probabilities, in any dimension d ≥ 3. This improves on [22], where such an
exponential decay could only be ascertained in high enough dimension. The strategy that
we employ here is nevertheless strongly influenced by the approach developed in [22]. Yet,
by several aspects, [22] heavily relied on the specific nature of the Gaussian free field, and
on the use of Gaussian bounds. One incidental interest of the present work is to uncover
which objects in the present set-up correspond to the concepts introduced in the context
of [22].

We will now describe our results in a more precise form. We refer to Section 1 for
further details concerning the various objects and notation. Given u ≥ 0, we let Iu
stand for the random interlacements at level u in Zd, d ≥ 3, and Vu = Zd\Iu, for the
corresponding vacant set at level u. We denote by P the probability governing the random
interlacements. As u increases, Vu becomes thinner, and it is by now well-known (see [18],
[16] or [3], [6]), that there is a critical u∗ ∈ (0,∞) such that

(0.1)
for u < u∗, P-a.s., Vu has an infinite connected component,
for u > u∗, P-a.s., all connected components of Vu are finite.

Further, one can introduce a critical value

(0.2) u∗∗ = inf{u ≥ 0; lim inf
L

P[BL

Vu

←→/ ∂B2L] = 0},

where BL stands for the ball in the supremum norm with center 0 and radius L in Zd,
and ∂B2L for the boundary of B2L (see the beginning of Section 1), and the event under
the probability refers to the existence of a nearest-neighbor path in Vu starting in BL and
ending in ∂B2L. One knows (see [14], [19]) that u∗∗ is finite and for u > u∗∗ the vacant
set Vu is in a strongly non-percolative regime, with a stretched exponential decay of the

two-point function P[0
Vu

←→ x] (in fact, an exponential decay, when d ≥ 4, see [14]). It is a
simple fact that u∗ ≤ u∗∗, but an important open problem whether the equality u∗ = u∗∗
actually holds.

In this article, we investigate the large N asymptotic behavior of the probability of
the disconnection event

(0.3) AN = {BN

Vu

←→/ SN},
where there is no nearest-neighbor path in Vu from BN to SN = {x ∈ Zd; |x|∞ = [MN ]},
and where | · |∞ stands for the sup-norm, M > 1 is a fixed (arbitrary) number, and [MN ]
denotes the integer part of MN .
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In the strongly non-percolative regime u > u∗∗ for the vacant set, the event AN
becomes typical for large N , and (see (1.44))

(0.4) lim
N

P[AN ] = 1, when u > u∗∗.

On the other hand, when u ≤ u∗∗, the proof of Theorem 0.1 of [12] yields a lower bound:

(0.5) lim inf
N

1

Nd−2
log P[AN ] ≥ −1

d
(
√
u∗∗ −

√
u)2 capRd([−1, 1]d),

where capRd([−1, 1]d) stands for the Brownian capacity of [−1, 1]d (see for instance [15],
p. 58, for the definition).

The main result of this article is contained in Theorem 6.3 and provides an asymptotic
upper bound on P[AN ], in the strongly percolative regime 0 < u < u of the vacant set,
where u (≤ u∗ ≤ u∗∗) is a certain critical value, see (2.3). Specifically, it is shown in
Theorem 6.3 that

(0.6) lim sup
N

1

Nd−2
logP[AN ] ≤ −1

d
(
√
u−
√
u)2 capRd([−1, 1]d), for 0 < u < u.

Crucially, one knows that u > 0 in all dimensions d ≥ 3, by the results of [5]. In addition,
it is plausible, but open at the moment, that the inequalities u ≤ u∗ ≤ u∗∗ are equalities,
i.e. u = u∗ = u∗∗, so that one would actually infer from (0.5), (0.6) the asymptotic
behavior

(0.7) lim
N

1

Nd−2
logP[AN ] = −1

d
(
√
u∗ −

√
u)2 capRd([−1, 1]d), for 0 < u < u∗.

In any case, (0.6) improves on the results from Section 7 of [22] that came as a consequence
(via a Dynkin-type isomorphism) of upper bounds on similar disconnection probabilities
by the sub-level-sets of the Gaussian free field. Indeed, for one thing, the asymptotic upper
bounds of Section 7 of [22], due to the use of the isomorphism theorem, are not expected
to match the lower bound (0.5), moreover, in the present state of knowledge concerning
the critical levels considered in [22], the results of [22] only ensure an exponential decay
at rate Nd−2 for P[AN ], when the dimension is high enough.

One can also compare (0.5), (0.6) to corresponding results for supercritical Bernoulli
percolation. Unlike what happens in the present context, disconnecting BN from SN in
the percolative phase would involve an exponential cost proportional to Nd−1 (and surface
tension), in the spirit of the study of the existence of a large finite cluster at the origin,
see p. 216 of [8], and Theorem 2.5, p. 16 of [2].

As an application of the main Theorem 6.3 that proves (0.6), we obtain, as a corollary,
an asymptotic upper bound on the probability of a similar disconnection by simple random
walk. If V stands for the complement of the set of sites in Zd visited by the simple random
walk, and P0 for the probability governing the walk starting at the origin, there is a natural
coupling of V under P0 and Vu under P[· | 0 ∈ Iu] that ensures that Vu ⊆ V (this coupling
was already used in Section 7 of [22]). Thus, letting successively N tend to infinity and u
to 0, we show in Corollary 6.4 that

(0.8) lim sup
N

1

Nd−2
logP0[BN

V←→/ SN ] ≤ −1

d
u capRd([−1, 1]d).
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This yields a sharper bound on P[AN ] than the application of (1.10) and Theorem 6.3 of
[24]. It also improves on the results of Section 7 of [22] (for the reasons explained below
(0.7)). In addition, the article [10] establishes the lower bound

(0.9) lim inf
N

1

Nd−2
logP0[BN

V←→/ SN ] ≥ −1

d
u∗∗ capRd([−1, 1]d).

In particular, if u and u∗∗ coincide (and u = u∗ = u∗∗), the combination of (0.8) and (0.9)
would then show that

(0.10) lim
N

1

Nd−2
logP0[BN

V←→/ SN ] = −1

d
u∗ capRd([−1, 1]d).

As an aside, both asymptotic lower bounds (0.5) and (0.9) are proved by the application of

the change of probability method. This involves certain probability measures P̃N (in the

case of (0.5)) and P̃N (in the case of (0.9)) implementing suitable “strategies” to produce
disconnection. If (and of course this point is open at the moment) the critical values
u ≤ u∗ ≤ u∗∗ are identical, the results of the present article show that these strategies are
(near) optimal, and thus hold special significance. With this in mind, let us say a word
about these measures and the disconnection strategies they implement.

In the case of random interlacements, i.e. (0.5) and [12], the measures P̃N correspond
to so-called tilted interlacements that can be viewed as slowly space-modulated random
interlacements at a level (that slowly varies over space) equal to f 2

N(x) = (
√
u+ (

√
u∗∗ −√

u) h( x
N
))2, x ∈ Zd, where h on Rd is the solution of the equilibrium problem

(0.11)

{
∆h = 0 outside [−1, 1]d
h = 1 on [−1, 1]d and h tends to 0 at infinity.

Roughly speaking, the tilted interlacements create a “fence” around BN , on which they
locally behave as interlacements at level u∗∗ (actually one picks u∗∗ + ε in place of u∗∗ in
the formula for fN ). They induce locally on this fence a strong non-percolative regime
for the vacant set, and thus typically disconnect BN .

Informally, the tilted interlacements correspond to a Poisson cloud of bilateral trajecto-

ries, where the motion of a particle is governed by the generator L̃Ng(x) =
1
2d

∑
|x′−x|=1

fN (x′)
fN (x)

(g(x′) − g(x)), instead of the discrete Laplacian (corresponding to

the replacement of fN by a constant function in the above formula) in the case of the
usual random interlacements. The tilted interlacements actually come up as a strategy to
ensure at a preferential entropic cost an expected occupation time that varies over space
and equals f 2

N(x) at site x in Zd, instead of the constant value u for the interlacement
at level u. Remarkably, this time constraint induces tilted interlacements that have ge-
ometrical traces, which behave as random interlacements with a slowly space-modulated
level f 2

N (x). Incidentally, the tilted interlacements possibly offer in a discrete context a
microscopic model for the type of “Swiss cheese” picture advocated in [1] for the mod-
erate deviations of the volume of the Wiener sausage (however, the relevant modulating
functions of [1] are different from those that appear in relation to (0.5)).

In the case of simple random walk, i.e. (0.9) and [10], the measures P̃N correspond
to tilted walks that, informally, behave as the walk started at the origin with generator

LN g(x) = 1
2d

∑
|x′−x|=1

hN (x′)
hN (x)

(g(x′) − g(x)) up to the deterministic time TN , and after-

wards evolve as simple random walk, where now hN (x) = h( x
N
), with h as in (0.11) and TN
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chosen such that by time TN , the expected time spent by the tilted walk at a point x ∈ BN

is u∗∗ h
2
N(x) = u∗∗ (by the choice of h). Again, remarkably, this creates a “fence” around

BN , where the vacant set left by the tilted walk by time TN is locally in a strongly non-
percolative regime (one actually uses u∗∗ + ε in place of u∗∗, and a compactly supported

approximation of h in (0.11)). In this fashion, P̃N ensures that with high probability BN

gets disconnected from SN by the trace of the walk.

We will now present a rough outline of the proof of the main Theorem 6.3 that estab-
lishes (0.6). The general strategy is similar to [22]. A quite substantial coarse graining
takes place, and informally goes as follows. One considers “columns” of boxes of side-

length L (of order (N logN)
1

d−1 ) going from the surface {x ∈ Zd; |x|∞ = N} of BN to
the surface SN of BMN (for simplicity, assume M = 2). The number of such columns

has roughly order (N
L
)d−1 = Nd−2

logN
. For each box B sitting in the columns, one considers

all successive excursions ZD
ℓ , ℓ ≥ 1, going from D to ∂U , in the full collection of random

interlacements of arbitrary levels, see (1.41), where D is a slightly larger box, concentric
with B, and U a much larger box, concentric with B, see (2.9), (2.10). One has “good
decoupling” properties of the excursions ZD

ℓ , when the boxes are sufficiently far apart.
The soft local time technique of [14], especially in the form developed in the Section
2 of [4], offers a very convenient tool to express these properties, see Proposition 4.1,
(4.9) and Remark 4.3. One shows in Theorem 5.1 that in “almost all columns”, for all
boxes within the column, the corresponding excursions ZD

ℓ that originate from random
interlacements, with ℓ slightly below u cap(D), where cap(D) stands for the random walk
capacity of D, leave a vacant set in D that “percolates well”, and spend a substantial
collective time in D, except on an event with super-exponentially decaying probability
(at rate Nd−2). On the other hand, when disconnection by Iu occurs (i.e. AN is realized),
each column must be blocked for the percolation within Vu. This forces the existence
in most columns of a box where the number Nu(D) of excursions from D to ∂U in the
interlacement at level u “essentially” exceeds u cap(D). After a selection of such boxes,
a step with not too high combinatorial complexity, thanks to our choice of L, we can use
the occupation-time estimates of Section 3 (see Theorem 3.2) to bound P[AN ] in essence
by exp{−(

√
u − √u)2 infC cap(C) + o(Nd−2)}, where C =

⋃
B∈C D and C runs over the

various collections of selected boxes B. Using a projection on the surface of BN and a
Wiener-type criterion, as in [22], one obtains an asymptotic lower bound on cap(C) in
terms of cap(BN) uniformly over C, and (2.6) quickly follows.

We will now describe the organization of this article. Section 1 introduces further
notation and recalls various facts concerning random walks, potential theory, and random
interlacements. In Section 2 we introduce the strongly percolative regime u < u for the
vacant set of random interlacements, and the notion of good boxes. We show in Theorem
2.3 a super-polynomial decay in L of the probability that a box B is bad at levels below
u. In Section 3 we develop the occupation-time bounds that enter the proof of (0.6). The
main statement is contained in Theorem 3.2. Section 4 prepares the ground for the next
section. We recall some facts about soft local times from [4] and set up couplings of the
excursions within the interlacements, with independent collections of i.i.d. excursions.
The main controls are contained in Proposition 4.1, see also Remark 4.3. In Section 5
we show the super-exponential decay at rate Nd−2 of the probability of existence of more
than a few columns containing a bad box at levels below u, see Theorem 5.1. In Section
6 we prove the main Theorem 6.3 that establishes (0.6), and derive (0.8) in Corollary 6.4.
The Appendix contains the proof of Lemma 1.3 from Section 1.
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Finally, let us state the convention we use concerning constants. We denote by c, c′, c̃
positive constants changing from place to place that simply depend on d. Numbered
constants such as c0, c1, . . . refer to the value corresponding to their first appearance in
the text. Dependence of constants on additional parameters appears in the notation.

1 Notation and some useful facts

In this section we introduce further notation and collect various facts concerning random
walks, potential theory, and random interlacements. In particular, Propositions 1.4 and
1.5 contain estimates concerning equilibrium measures and entrance distributions that
will be especially useful in Sections 3 and 4. Throughout, we tacitly assume that d ≥ 3.

We begin with some notation. For s, t real numbers, we write s ∧ t and s ∨ t for the
minimum and the maximum of s and t, and denote by [s] the integer part of s, when s is
non-negative. We write | · | and | · |∞ for the Euclidean and the ℓ∞-norms on Rd. Given
x ∈ Zd and r ≥ 0, we let B(x, r) = {y ∈ Zd; |y − x|∞ ≤ r} stand for the closed ℓ∞-ball of
radius r around x. We say that a subset B of Zd is a box when it is a translate of some set
Zd∩ [0, L)d, with L ≥ 1. We often write [0, L)d in place of Zd ∩ [0, L)d, when no confusion
arises. Given A,A′ subsets of Zd, we denote by d(A,A′) = inf{|x− x′|∞; x ∈ A, x′ ∈ A′}
the mutual ℓ∞-distance between A and A′. When A = {x}, we write d(x,A′) for simplicity.
We let diam(A) = sup{|x− x′|∞; x, x′ ∈ A} stand for the ℓ∞-diameter of A, and |A| for
the cardinality of A. We write A ⊂⊂ Zd to state that A is a finite subset of Zd. . We
denote by ∂A = {y ∈ Zd\A; ∃x ∈ A, |y − x| = 1}, and ∂iA = {x ∈ A; ∃y ∈ Zd\A,
|y − x| = 1}, the boundary, and the internal boundary of A. For f, g functions on Zd,
we write f+ = max{f, 0}, f− = max{−f, 0}, and 〈f, g〉 =

∑
x∈Zd f(x)g(x), when the sum

is absolutely convergent. Incidentally, we also use the notation 〈ρ, f〉 for the integral of
a function f (on an arbitrary space) with respect to a measure ρ, when this quantity is
meaningful.

We continue with some notation concerning connectivity properties. We say that
x, y ∈ Zd are neighbors, and sometimes write x ∼ y, when |y − x| = 1. We call π:
{0, . . . , n} → Zd a path, when π(i) ∼ π(i − 1), for 1 ≤ i ≤ n. Given A,B, U subsets of

Zd, we say that A and B are connected in U and write A
U←→ B, when there exists a

path with vales in U(⊆ Zd), which starts in A and ends in B. When no such path exists,

we say that A and B are not connected in U , and write A
U
= B (as in (0.3)).

We now introduce some path spaces, and the set-up for continuous-time simple random

walk. We consider Ŵ+ and Ŵ the spaces of infinite, respectively doubly infinite, Zd ×
(0,∞)-valued sequences, such that the first coordinate of the sequence forms an infinite,
respectively doubly infinite, nearest-neighbor path in Zd, spending finite time in any finite
subset of Zd, and the sequence of second coordinates has an infinite sum, respectively
infinite “forward” and “backward” sums. The second coordinate is meant to describe the
duration of each step corresponding to the first coordinate. We write Ŵ+ and Ŵ for the

respective σ-algebras generated by the coordinate maps. We denote by Px the law on Ŵ+

under which Yn, n ≥ 0, has the law of the simple random walk on Zd, starting from x, and
ζn, n ≥ 0, are i.i.d. exponential variables with parameter 1, where (Yn, ζn)n≥0 stand for

the canonical Zd × (0,∞)-valued coordinates on Ŵ+. We write Ex for the corresponding
expectation. Moreover, when ρ is a measure on Zd, we write Pρ and Eρ, for the measure∑

x∈Zd ρ(x)Px (not necessarily a probability measure) and its corresponding “expectation”
(that is, the integral with respect to the measure Pρ).
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We attach to w ∈ Ŵ+ a continuous-time trajectory Xt(w), t ≥ 0, via

(1.1) Xt(w) = Yk(w), for t ≥ 0, when
k−1∑
i=0

ζi(w) ≤ t <
k∑
i=0

ζi(w)

(if k = 0, the sum on the left is understood as 0).

Thus, under Px, the random trajectory X. describes the continuous-time simple ran-
dom walk with unit jump rate starting from x.

Given U ⊆ Zd and w ∈ Ŵ+, we write HU(w) = inf{t ≥ 0;Xt(w) ∈ U}, TU(w) =
inf{t ≥ 0;Xt(w) /∈ U} for the entrance time in U , and the exit time from U . Further, we

let H̃U(w) = inf{t ≥ ζ1(w); Xt(w) ∈ U} stand for the hitting time of U .

For U ⊆ Zd, we write Γ(U) for the space of right-continuous, piecewise-constant
functions from [0,∞) to U ∪ ∂U , with finitely many jumps on any finite time interval
that remain constant after their first visit to ∂U . The space Γ(U) is endowed with the
canonical shift of trajectories (θt)t≥0 and with the canonical coordinates, still denoted by
(Xt)t≥0. For U ⊂⊂ Zd, the space Γ(U) will be convenient to carry the law of certain
excursions. We will also routinely view the law Px of the continuous-time simple random
walk starting from x, as a measure on Γ(Zd). This will be convenient to carry out certain
calculations.

We now discuss some potential theory attached to the simple random walk. We write
g(·, ·), for the simple random walk Green function, and gU(·, ·), for the Green function of
the walk killed upon leaving U(⊆ Zd):

(1.2) g(x, y) = Ex
[ ∫∞

0
1{Xs = y}ds

]
, gU(x, y) = Ex

[ ∫ TU
0

1{Xs = y}ds
]
, x, y ∈ Zd .

Both g(·, ·) and gU(·, ·) are known to be finite and symmetric, and gU(·, ·) vanishes if
one of its arguments does not belong to U . When f is a function on Zd such that∑

y∈Zd g(x, y)|f(y)| <∞ for all x, in particular, when f is finitely supported, we write

(1.3) Gf(x) =
∑
y∈Zd

g(x, y)f(y), for x ∈ Zd .

Due to translation invariance, g(x, y) = g(x− y, 0) def
= g(x− y), and one knows that (see

Theorem 1.5.4, p. 31 of [9])

(1.4) g(x) ∼ c0|x|2−d, as |x| → ∞, where c0 =
d

2
Γ
(
d

2
− 1

)
π− d

2 .

As a direct consequence of the strong Markov property applied at the exit time of U , one
has the following relation between the Green function and the killed Green function

(1.5) g(x, y) = gU(x, y) + Ex[TU <∞, g(XTU , y)], for x, y ∈ Zd.

Given A ⊂⊂ Zd, we write eA for the equilibrium measure of A,

(1.6) eA(x) = Px[H̃A =∞] 1A(x), for x ∈ Zd

(it is supported by the internal boundary of A), and cap(A) for the capacity of A, which
is the total mass of eA:

(1.7) cap(A) =
∑
x∈A

eA(x).
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In the special case of the box [0, L)d one knows (see (2.16), p. 53 of [9]) that

(1.8) c Ld−2 ≤ cap([0, L)d) ≤ c′Ld−2, for L ≥ 1.

When A ⊂⊂ Zd is non-empty, we will denote by eA the normalized equilibrium measure
of A, namely

(1.9) eA(x) =
1

cap(A)
eA(x), x ∈ Zd.

We further recall (see Theorem T1, p. 300 of [17]) that for A ⊂⊂ Zd

(1.10) Px[HA <∞] =
∑
y∈A

g(x, y) eA(y), for x ∈ Zd.

Moreover, one has the sweeping identity (for instance as a consequence of (1.46) of [18]),
stating that for A ⊂ A′ ⊂⊂ Zd,

(1.11) eA(x) = PeA′
[HA <∞, XHA

= x], for all x ∈ Zd.

We will also need to consider for U ⊆ Zd, and A finite subset of U , the equilibrium
measure of A relative to U and the capacity of A relative to U :

(1.12) eA,U(x) = Px[H̃A > TU ] 1A(x), x ∈ Zd, and capU(A) =
∑
x∈A

eA,U(x).

We will now collect several results concerning continuous-time simple random walk that
will be of use in the next sections. The first result shows a remarkable identification of
the law of

∫∞
0
eA(Xs)ds under PeA that will play a role in the proof of Theorem 2.3 in the

next section, when showing the super-polynomial decay of the probability that boxes are
bad.

Lemma 1.1. Assume that A ⊂⊂ Zd is non-empty. Then, under PeA

(1.13)
∫∞
0
eA(Xs)ds is distributed as an exponential variable of parameter 1.

Proof. By Kac’s moment formula (see Theorem 3.3.2, p. 74 of [13]), we know that for
n ≥ 0

(1.14) EeA
[( ∫∞

0
eA(Xs)ds

)n]
= n!〈eA, (GeA)n1〉,

where (GeA)
n stands for the n-th iteration of the linear operator GeA, composition of G,

see (1.3), and multiplication by eA(·), on the set of bounded functions on Zd. By (1.10)
we see that (GeA)1 = 1 on A, so that (GeA)

n1 = 1 on A, for all n ≥ 0, and hence

(1.15) EeA
[( ∫∞

0
eA(Xs)ds

)n]
= n! for all n ≥ 0.

Thus,
∫∞
0
eA(Xs)ds under PeA has the same moments as an exponential distribution of

parameter 1. By Theorem 3.9, p. 91 in Chapter 2 of [7], this fact uniquely determines the
law of

∫∞
0
eA(Xs)ds under PeA . The claim follows.
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The next two lemmas are, in essence, preparations for the main Propositions 1.4
and 1.5, which provide controls on the equilibrium distribution and on the entrance dis-
tribution. These propositions will play an important role in Section 3, when deriving
occupation-time estimates, see Proposition 3.1, and in Section 4, when setting up the
coupling of excursions based on the soft-local times technique, see Proposition 4.1. The
next lemma offers a comparison between the equilibrium measure and the relative equi-
librium measure. We refer to the beginning of this section for the definition of a box in
Zd.

Lemma 1.2. Let U be a box in Zd and A be a subset of U . Then,

(1.16) eA and eA,U have the same support.

Moreover, one can uniquely define ρA,U(·) vanishing outside the support of eA (or eA,U)
so that

(1.17) eA,U(y) = eA(y)
(
1 + ρA,U(y)

)
, for y ∈ Zd.

Further, one has

(1.18)
1 ≤ 1 + ρA,U(y) ≤ 1

p
, for all y ∈ Zd, where

p = inf
∂U
Px[HA =∞] > 0 ∨

(
1− c cap(A)

d(A,Zd\U)d−2

)
.

Proof. By (1.6), (1.12) we know that eA ≤ eA,U . In addition, when y belongs to the
support of eA,U , then

(1.19) eA,U(y) ≥ eA(y) = Py[H̃A =∞] = Ey
[
H̃A > TU , PXTU

[HA =∞]
]
≥ eA,U(y) p.

Since p > 0 (recall U is a box), we see that y belongs to the support of eA, and the claim
(1.16) follows. We can thus uniquely define ρA,U (vanishing outside the common support
of eA and eA,U) so that (1.17) holds. The first line of (1.18) is an immediate consequence
of (1.19). As for the second line, we already observed that p > 0, and in addition, one has

(1.20) p = 1− sup
∂U

Px[HA <∞] > 1− c cap(A)

d(A, ∂U)d−2
,

by (1.10), (1.7), (1.4). This completes the proof of (1.18), and hence of Lemma 1.2.

The next lemma states a decoupling effect that will play an important role in the
proofs of Propositions 1.4 and 1.5 below. The proof is close to the arguments on p. 50
of [9], and can be found in the Appendix. We recall the end of the Introduction for the
convention concerning constants.

Lemma 1.3. There exist c1 ≥ 2, c2 > 0, such that for K ≥ c1, L ≥ 1, and any
A ⊆ B(0, L), finite U ⊇ B(0, KL), y ∈ A, z ∈ ∂U , one can find a unique ψA,Uy,z with
absolute value at most c2/K such that

(1.21)
Pz[HA < H̃∂U , XHA

= y] = Py[TU < H̃A, XTU = z] =
eA(y)P0[XTU = z](1 + ψA,Uy,z ), and ψA,Uy,z = 0 if eA(y)Py[XTU = z] = 0.

The next proposition will be used in Section 3 in the proof of Proposition 3.1. It
provides a bound on the difference of the equilibrium measure of a set B, when restricted
to a well-separated piece A, with the equilibrium measure of the well-separated piece.
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Proposition 1.4. (see Lemma 1.3 for notation)

If L ≥ 1, K ≥ c1, then for any A ⊆ B(0, L) and finite B such that B∩B(0, KL) = A,
one has for all y ∈ A, setting U = B(0, KL)

(1.22) 0 ≤ eA(y)− eB(y) = eA(y)E0[(1 + ψA,Uy,XTU
), HB\A ◦ θTU <∞ = HA ◦ θTU ]

and the term after 1 in the parenthesis is a.s. smaller in absolute value than c2/K.

Proof. For y ∈ A we have

(1.23) eA(y)− eB(y) = Py[H̃A =∞]− Py[H̃B =∞] = Py[H̃A =∞ > HB\A]

and the left-hand inequality of (1.22) follows. Moreover, the last term above equals

(1.24)

Py[H̃A =∞ > HB\A]
strong Markov

= Ey
[
H̃A > TU , PXTU

[HB\A <∞ = HA]
]

∑
z∈∂U

Py[TU < H̃A, XTU = z]Pz[HB\A <∞ = HA]
(1.21)
=

∑
z∈∂U

eA(y)(1 + ψA,Uy,z )P0[XTU = z]Pz[HB\A <∞ = HA]
strong Markov

=

eA(y)E0[(1 + ψA,Uy,XTU
), HB\A ◦ θTU <∞ = HA ◦ θTU ],

where |ψA,Uy,XTU
| ≤ c2/K, P0-a.s. by (1.21). This proves the claim (1.22).

The next proposition will be important in the proof of Proposition 3.1 and in Section
4, when setting up, by soft local time techniques, a coupling of excursions inside the inter-
lacements, with a collection of independent excursions (see Proposition 4.1). It pertains
to the entrance distribution of the walk starting from afar and conditioned to enter a set
B through a well-separated piece A.

Proposition 1.5. (0 < δ < 1)

If L ≥ 1 and K ≥ c3(δ) ≥ 2, then for any non-empty A ⊆ B(0, L) and finite B
such that B ∩ B(0, KL) = A, and Zd\B is connected, one has for y ∈ A and x ∈
Zd\(B ∪ B(0, KL))

(
1− δ

10

)
eA(y) ≤ Px[XHB

= y|HB <∞, XHB
∈ A] ≤

(
1 +

δ

10

)
eA(y),(1.25)

(
1− δ

10

)
eA(y) ≤ eB(y)

eB(A)
≤

(
1 +

δ

10

)
eA(y)

(
with eB(A) =

∑
z∈A

eB(z)
)
.(1.26)

Proof. We first prove (1.25) and start with a lemma.

Lemma 1.6. For A,B as above, and setting U = B(0, KL), Ũ = Bc, for any x ∈ Ũ\U =
Zd\(B ∪ B(0, KL)) and y ∈ A, one has

(1.27) Px[HB <∞, XHB
= y] =

∑
z∈∂U

gŨ(x, z)Pz[HA < H̃∂U , XHA
= y].

Proof. The proof is similar to the proof of (2.3) on p. 48 of [9]. The identity (1.27) is
obtained by considering the discrete skeleton of the walk and summing over the possible
values of the time of the last visit to ∂U before entering B through y in A, on the event
in the left member of (1.27).

9



We now resume the proof of (1.25) but keep the notation U and Ũ from Lemma 1.6.

Since Ũ is connected and ∂A ⊆ Ũ , it follows that for some y in A the left-hand side of
(1.27) is positive, and hence, gŨ(x, ·) does not identically vanish on ∂U . As a result, the
conditional probability in (1.25) is well-defined, and for any y ∈ A it equals

(1.28)

∑
z∈∂U

gŨ(x, z)Pz[HA < H̃∂U , XHA
= y]

∑
z∈∂U,y′∈A

gŨ(x, z)Pz [HA < H̃∂U , XHA
= y′]

.

When K > c1 ∨ c2 (see Lemma 1.3), the probability in the numerator is at most eA(y)
P0[XTU = z](1 + c2/K) and the sum over y′ of the probabilities in the denominator
is at least cap(A)P0[XTU = z](1 − c2/K). Hence, the expression in (1.28) is at most

eA(y)
1+c2/K
1−c2/K . In a similar fashion, we see that the expression in (1.28) is at least 1−c2/K

1+c2/K
.

The claim (1.25) follows.

We now turn to the proof of (1.26). By Theorem 2.1.3, p. 51 of [9], see also (2.13),
p. 52 of the same reference, one knows that when x tends to infinity in (1.25) Px[XHB

=
y|HB < ∞] tends to eB(y) for each y in B. In particular, letting x tend to infinity in

(1.27) (so that x lies in Ũ\U = Zd\(B ∪ B(0, KL)) when x is sufficiently large), we see

that the conditional probability in (1.25) tends to the ratio eB(y)
eB(A)

= eB(y)
eB(A)

, and the claim

(1.26) follows. This concludes the proof of Proposition 1.5.

For the last result of this section concerning the continuous-time simple random walk,
we consider A ⊆ U , with U a box in Zd, and the number of excursions of the walk from
A to the complement of U (or as a shorthand, from A to ∂U). Formally, we define

(1.29) R1 = HA ≤ D1 ≤ R2 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞,
as the successive times of return to A and departure from U for (Xt)t≥0, and note that
Px-a.s. on {Rk < ∞}, Dk is finite, and each inequality is strict if the left member is
finite (x is an arbitrary point in Zd). The number of excursions of the walk from A to the
complement of U is defined as

(1.30) NA,U = sup{k ≥ 1;Dk <∞}.
Lemma 1.7. (A ⊆ U , U a box in Zd)

Set p = inf∂U Py[HA =∞] as in (1.18). Then, for λ > 0 such that eλ(1− p) < 1, one
has

(1.31) sup
x∈A

Ex[e
λNA,U ] ≤ eλp

1− eλ(1− p)
.

(we recall from (1.18) that p > 0 ∨ (1− c cap(A)
d(A,Uc)d−2 )).

Proof. For simplicity we write N in place of NA,U in this proof. Observe that for x ∈ A,
Px-a.s., N = 1 + (N ◦ θHA

1{HA <∞}) ◦ θTU .
Hence, using the strong Markov property at time TU and then at time HA, we obtain

Ex[e
λN ] = Ex[e

λ(eλN◦θHA
1{HA<∞}) ◦ θTU ]

= eλEx
[
EXTU

[eλN◦θHA1{HA <∞}+ 1{HA =∞}]
]

= eλEx
[
EXTU

[1{HA <∞}EXHA
[eλN ] + 1{HA =∞}]

]
.

(1.32)
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Thus, setting ϕ = supx∈AEx[e
λN ](≥ 1), we find that

(1.33) ϕ ≤ eλ
(
(1− p)ϕ+ p

)
.

The claim (1.31) readily follows.

We will now recall some facts concerning continuous-time random interlacements. We
refer to [20] for more details. In the notation from the beginning of this section, we define

Ŵ ∗ = Ŵ/ ∼, where for w,w′ ∈ Ŵ , w ∼ w′ means that w(·) = w(· + k) for some k ∈ Z.

We also consider the canonical map π∗: Ŵ → Ŵ ∗, and for A ⊂⊂ Zd denote by Ŵ ∗
A the

subset of Ŵ ∗ of trajectories modulo time-shift that intersect A. For w∗ ∈ Ŵ ∗
A, we denote

by w∗
A,+ the unique element of Ŵ+ that follows w∗ step by step from the first time it

enters A.

The continuous-time random interlacements can be constructed as a Poisson point

process on the space Ŵ ∗ × R+, with intensity measure ν̂(dw∗)du, where ν̂ is a σ-finite

measure on Ŵ ∗ such that its restriction to Ŵ ∗
A (denoted by ν̂A) is equal to π

∗ ◦ Q̂A, where

Q̂A is a finite measure on Ŵ such that letting (Xt)t∈R stand for the continuous-time

process attached to w ∈ Ŵ (see (1.7) in [20]), then

(1.34) Q̂A[X0 = x] = eA(x), for x ∈ Zd,

and when eA(x) > 0,

(1.35)
under Q̂A conditioned on X0 = x, (Xt)t≥0 and the right-continuous
regularization of (X−t)t>0 are independent, and respectively distributed

as (Xt)t≥0 under Px, and X after its first jump under Px[· |H̃A =∞].

The space Ω on which the Poisson point measure is defined can be conveniently chosen as

Ω = {ω =
∑

i≥0 δ(w∗

i ,ui)
; with w∗

i ∈ Ŵ ∗ for each i ≥ 0, and ui > 0 pairwise

distinct, and so that ω(Ŵ ∗
A × [0, u]) <∞ and ω(Ŵ ∗

A × R+) =∞,

for any non-empty A ⊂⊂ Zd and u ≥ 0}.
(1.36)

The space Ω is endowed with the canonical σ-algebra and we denote by P the law on Ω
under which ω is a Poisson point process of intensivity measure ν̂ ⊗ du.

Given ω ∈ Ω, A ⊂⊂ Zd and u ≥ 0, we define the point measure µA,u(ω) on Ŵ+

collecting for the w∗
i with label ui at most u that enter A in the cloud ω, the onward

trajectories after the first entrance in A:

(1.37) µA,u(ω) =
∑
i≥0

1{w∗
i ∈ Ŵ ∗

A, ui ≤ u} δ(w∗

i )A,+
, if ω =

∑
i≥0

δw∗

i ,ui
.

The key property of these point-measures, is that for anyA ⊂⊂ Zd, u ≥ 0,

(1.38) under P, µA,u is a Poisson point process on Ŵ+ with intensity measure uPeA.

Then, given ω =
∑

i≥0 δ(w∗

i ,ui)
in Ω and u ≥ 0, the random interlacement at level u,

and the vacant set at level u, are now defined as the random subsets of Zd

(1.39) Iu(ω) = ⋃
i:ui≤u

range(w∗
i ), Vu(ω) = Zd\Iu(ω),
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where for w∗ ∈ Ŵ ∗, range(w∗) stands for the set of points in Zd visited by any w ∈ Ŵ
with π∗(w) = w∗.

Another object of interest for us is Lx,u(ω), the occupation-time at site x and level u
of random interlacements, that is, the total time spent at x by all trajectories w∗

i with
label ui ≤ u in the cloud ω =

∑
i≥0 δ(w∗

i ,ui)
∈ Ω. So, for V : Zd → R supported on

A ⊂⊂ Zd, one has 〈µA,u,
∫∞
0
V (Xs)ds〉 =

∑
x∈Zd V (x)Lx,u. Moreover, E[Lx,u] = u, and

one has the following formula for the Laplace transform of (Lx,u)x∈Zd , see Theorem 2.1 of
[21]. Namely, letting ‖ · ‖∞ stand for the supremum norm and with G as in (1.3),

(1.40)
for any finitely supported V : Zd → R such that ‖GV ‖∞ < 1, and u ≥ 0
E
[
exp

{ ∑
x∈Zd

V (x)Lx,u
}]

= exp{u〈V, (I −GV )−11〉}.

One actually knows more: there is a variational formula for the logarithm of the Laplace
transform, see Sections 2 and 4 of [11], but (1.40) will suffice for our present purpose.

We now turn to the description of the excursions in the interlacements that will be
of interest in the next sections. We consider a box U in Zd (see the beginning of this
section) and A ⊆ U a non-empty set. By definition of Ω, see (1.36), we know that

w(Ŵ ∗
A × [0, u]) < ∞, for all u ≥ 0, but ω(Ŵ ∗

A × R+) = ∞. Moreover, the labels ui
that appear in the point measure ω are all distinct, and each w∗

i that belongs to Ŵ ∗
A

only contains finitely many excursions from A to ∂U (recall that the bilateral trajectory

corresponding to the Zd-valued coordinates of an element of Ŵ only spends finite time in
any finite subset of Zd).

Thus, given ω =
∑

i≥0 δ(w∗

i ,ui)
in Ω, we can rank the infinite sequence of excursions

from A to ∂U by lexicographical order, first by increasing size of ui such that w∗
i ∈ Ŵ ∗

A,

and then by order of appearance inside a given trajectory w∗
i ∈ Ŵ ∗

A. In this fashion we
obtain a sequence of Γ(U)-valued random variables on Ω

(1.41) ZA,U
ℓ (ω), ℓ ≥ 1,

which describes the ordered sequence of excursions from A to ∂U in ω ∈ Ω. We will also
be interested in the number of excursions from A to ∂U at level u ≥ 0 in ω, namely:

NA,U
u (ω) = the total number of excursions from A to ∂U in all w∗

i

such that ui ≤ u and w∗
i ∈ Ŵ ∗

A, if ω =
∑

i≥0 δ(w∗

i ,ui)
,

= 〈µA,u, NA,U〉(ω) (in the notation of (1.37), (1.30)).

(1.42)

We close this section with some facts concerning the strongly non-percolative regime of
Vu. Although these results are not of direct use in the present work, they provide an
instructive context for the introduction of the critical value u at the beginning of the next
section. Recall that u∗∗ has been defined in (0.2), and that 0 < u∗ ≤ u∗∗ < ∞ (see [14]
and [19]). Further, one knows (see the above references) that

(1.43) for u > u∗∗, P[0
Vu

←→ ∂BL] ≤ c(u) e−c
′(u)Lc′′

, for L ≥ 1

(actually, when d ≥ 4, one can choose c′′ = 1, and when d = 3, c′′ = 1
2
or any value in

(0, 1), see [14]). By a union bound, translation invariance, and (1.43), one then sees that

in the notation of (0.3), for any M > 1 and u > u∗∗, P[BN
Vu

←→ SN ] −→
N

0, and as a result

(1.44) lim
N

P[AN ] = 1, when u > u∗∗.
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On the other hand, in the percolative regime, when u < u∗, Vu contains an infinite

component (see (0.1)) and P[BN
Vu

←→ SN ] −→
N

1, so that

(1.45) lim
N

P[AN ] = 0, when u < u∗.

In the next section we will introduce a critical value u and make precise what we mean
by the strongly percolative regime of Vu.

2 Good boxes and the strongly percolative regime

In this section we first introduce a parameter u that will pin down what we mean by the
strongly percolative regime of the vacant set of random interlacements. We then define
a system of boxes. The basic side-length in their construction is L, and it will later be

chosen of order (N logN)
1

d−1 in Section 5, with N having the same interpretation as in
(0.3). Next, we introduce a notion of good box, which, in the present set-up, plays a
similar role to the notion of ψ-good box from Section 5 of [22], see also Remark 2.2 below.
The main result in this section is Theorem 2.3. It shows that when the three parameters
entering the definition of a good box are smaller than u, a box is good except on an event
with super-polynomially decaying probability in L.

We begin with the definition of the critical parameter u. Given u > v > 0, we say
that the vacant set of random interlacements strongly percolates at levels u, v, when for
B = [0, L)d

lim
L

1

logL
log P

[
Vu ∩B has no connected component of diameter,(2.1)

at least L
10

]
= −∞,

and for B′ = Le+B, with |e| = 1, and D = [−3L, 4L)d,

lim
L

1

logL
log P [there exist connected components of B ∩ Vu and B′ ∩ Vu of(2.2)

diameter at least L
10
, which are not connected in D ∩ Vv] = −∞.

We then define the critical value

u = sup{s > 0; the vacant set of random interlacements strongly

percolates at levels u, v, whenever u > v lie in (0, s)}.(2.3)

We then refer to 0 < u < u, as the strongly percolative regime of the vacant set of random
interlacements (as we will soon see, 0 < u ≤ u∗, so the definition is not vacuous, and pins
down a subset of the percolative regime 0 < u < u∗). We will refer to estimates as in
(2.1) or (2.2), as super-polynomial decay in L of the probabilities under consideration.

Remark 2.1.

1) Note that when the vacant set of random interlacements strongly percolates at levels
u > v > 0, then the probability that there exist two connected components of Vu ∩ B
with diameter at least L

10
, which are not connected in D∩Vv, has super-polynomial decay

in L, as a direct consequence of (2.1), (2.2) (and with B,D as in (2.1), (2.2)).
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2) When the vacant set of random interlacements strongly percolates at levels u > v > 0,

it follows from a union bound that P[B(0, L)
Vv

= ∂iB(0, 2L)] has super-polynomial decay in
L (recall from the beginning of Section 1 that ∂iB(0, 2L) stands for the internal boundary
of B(0, 2L)).

Actually, with the help of 1), when u > u > v > w > 0, we can patch up crossings
in Vv from B(0, 2k) to ∂iB(0, 2k+1) in Vw for k ≥ k0 (note that a crossing from B(0, 2k)
to ∂iB(0, 2k+1) has diameter at least 2k, and a crossing from B(0, 2k+1) to ∂iB(0, 2k+2)
has diameter at least 2k+1, so that both 2k and 2k+1 exceed L

10
, when L = 2k+3 + 1,

the side-length of B(0, 2k+2)), and find that Vw percolates with positive probability. By
ergodicity Vw percolates with probability 1, and one thus finds that

(2.4) u ≤ u∗(≤ u∗∗).

3) By Theorem 1.1 of [5] (see also [23], when d ≥ 5), one knows that there are constants
c, c′ > 0, such that for 0 < u < c′,

(2.5)





lim sup
n

1

nc
log P [ the infinite connected component of Vu does not meet

B(0, n)] ≤ −1, and

lim sup
n

1

nc
log P [ there exist two connected subsets of Vu ∩B(0, n) with

with diameter at least n
10
, which are not connected in

Vu ∩ B(0, 2n)] ≤ −1.

It is then straightforward to see that for such an u in (0, c′) when v ∈ (0, u), the vacant set
of random interlacements strongly percolates at levels u, v (note that in the notation of
(2.2), when e = ei, with ei a vector of the canonical basis e1, . . . , ed of R

d, Le+B(0, L) ⊇
B ∪ B′ and Le + B(0, 2L) ⊆ D, whereas B(0, L) ⊇ B ∪ B′ and B(0, 2L) ⊆ D, when
e = −ei). We thus see that

(2.6) u > 0.

It is of course a natural question whether all the above critical values actually coincide,
that is, whether u = u∗ = u∗∗. �

We now introduce a system of boxes that will play an important role in the subsequent
analysis. We consider positive integers

(2.7) L ≥ 1 and K ≥ 100.

We will be interested in the regime where L tends first to infinity, and we will later let

K become large. In fact, in Section 5, we will choose L of order (N logN)
1

d−1 , see (5.1),
where N has the same meaning as in (0.3), and will let N tend to infinity, and operate
with large values of K. We introduce the lattice

(2.8) L = LZd

and the boxes in Zd

B0 = [0, L)d ⊆ D0 ⊆ [−3L, 4L)d ⊆ Ď0 = [−4L, 5L)d

⊆ U0 = [−KL+ 1, KL− 1)d ⊆ Ǔ0 = [−(K + 1)L+ 1, (K + 1)L− 1)d

⊆ B̌0 = [−(K + 1)L, (K + 1)L)d
(2.9)
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as well as the translates of these boxes at the various sites of L:

Bz = z +B0 ⊆ Dz = z +D0 ⊆ Ďz = z + Ď0 ⊆ Uz = z + U0

⊆ Ǔz = z + Ǔ0 ⊆ B̌z = z + B̌0.
(2.10)

This is quite similar to the construction in Section 4 of [22], see (4.3), (4.4), but here we
introduced the additional boxes Ďz and Ǔz. These boxes will play an important role in

Sections 4 and 5, in order to simultaneously handle excursions ZD,U
ℓ , ℓ ≥ 1 and ZD′,U ′

ℓ ,
ℓ ≥ 1, when D = Dz, U = Uz, and D′ = Dz′, U

′ = Uz′, with z, z′ neighbors in L, and
bring to bear soft local time techniques to construct couplings with i.i.d. excursions. This
feature is related to the fact that, in the present context, we do not have at our disposal
a simple decomposition, as in the case of the Gaussian free field, which could be written
as the sum of a local field ψz(·) vanishing outside Uz and an harmonic field hz(·), with
good independence properties of the local fields as z varies, see for instance Lemma 4.1
and Lemma 5.3 of [22].

We now come to the notion of good box alluded to at the beginning of the section.
Very often, for convenience, we will refer to the boxes Bz, z ∈ L, as L-boxes, and write
B,D, Ď, U, Ǔ in place of Bz, Dz, Ďz, Uz, Ǔz with z ∈ L, when no confusion arises. We also
write ZD

ℓ , ℓ ≥ 1, as a shorthand notation for ZD,U
ℓ , ℓ ≥ 1, i.e. the successive excursions

from D to ∂U in the interlacements, see (1.41). Moreover, when t ≥ 1 is a real number,
we write ZD

t in place of ZD
ℓ , with ℓ = [t]. By range(ZD

ℓ ) we mean the set of points in Zd

visited by ZD
ℓ . Given an L-box B and α > β > γ > 0, we say that B is good at levels

α, β, γ, or good(α, β, γ), when

B \(range ZD
1 ∪ . . .∪ range ZD

α cap(D)) contains a connected set with diameter(2.11)

at least L
10

(and the set in parenthesis is empty when α cap(D) < 1),

for any neighboring L-box B′ = Le +B of B (i.e. |e| = 1), any two connected(2.12)

sets with with diameter at least L
10

in B\(range ZD
1 ∪ . . .∪ range ZD

α cap(D)) and

B′\(range ZD′

1 ∪ . . .∪ range ZD′

α cap(D′)) are connected in

D\(range ZD
1 ∪ . . .∪ range ZD

β cap(D)) (with a similar convention as in (2.11))

(note that cap(D) = cap(D′) by translation invariance),

∑
1≤ℓ≤β cap(D)

∫ TU
0

eD
(
ZD
ℓ (s)

)
ds ≥ γ cap(D)(2.13)

(we recall that eD stands for the equilibrium measure of D, see (1.6)).

When B is not good at levels α, β, γ, we say that it is bad(α, β, γ).

Remark 2.2. Informally, (2.11), (2.12) play the role of conditions (5.7) and (5.8) of [22],
for the definition of ψ-good box at levels α, β. In the context of [22] the excursion sets
{ψB ≥ α} ∩ B, {ψB′ ≥ α} ∩ B, and {ψB ≥ β} ∩ D, which involve the local fields ψB

and ψB
′

, are now replaced in the present set-up by B\(rangeZD
1 ∪ . . . ∪ rangeZD

α cap(D)),

B′\(rangeZD
1 ∪. . .∪ rangeZD′

α cap(D′)), and D\(rangeZD
1 ∪. . .∪ rangeZD

β cap(D)), and involve

the excursions ZD
ℓ and ZD′

ℓ′ , with ℓ ≤ α cap(D) (or ℓ ≤ β cap(D)) and ℓ′ ≤ α cap(D′).
The condition (2.13) has no equivalent in [22], and will have an important consequence in
Section 3, where the controls of Theorem 3.2 play a similar role to Corollary 4.4 of [22].

�
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We introduce one more notation. Given z ∈ L, D = Dz, U = Uz and u ≥ 0, we write
the number of excursions from D to ∂U in the interlacement at level u as

(2.14) Nu(D) = ND,U
u (see (1.42)).

We are now ready to state and prove the main result of this section. It plays an analogous
role in the present work to Proposition 5.2 of [22].

Theorem 2.3. (super-polynomial decay of being bad at levels below u)

For any α > β > γ in (0, u) and K ≥ c4(α, β, γ)(≥ 100), one has

(2.15) lim
L

1

logL
log P[B is bad(α, β, γ)] = −∞

(the probability in (2.15) does not depend on the specific choice of the L-box B).

Proof. We first control the probability that (2.11) does not hold. We pick u0, v0 so that

(2.16) u > u0 > α > v0 > β.

We observe that when Nu0(D) ≥ α cap(D), then B\(rangeZD
1 ∪ · · · ∪ rangeZD

α cap(D))
contains B ∩ Vu0 and therefore

P[(2.11) does not hold] ≤ P[Nu0(D) < α cap(D)] +

P[B ∩ Vu0 has no component of diameter ≥ L
10
].

(2.17)

By the choice of u0 in (2.16), and (2.1), the last expression has super-polynomial decay
in L. On the other hand, the number Nu0(D) of excursions from D to ∂U at level u0 is at

least µD,u0(Ŵ+), a Poisson variable with parameter u0 cap(D) (see (1.38)). So, for λ > 0,
by the exponential Chebyshev inequality we have

P[Nu0(D) ≤ α cap(D)] ≤ P[〈µD,u0, 1〉 ≤ α cap(D)]

≤ exp
{
− u0 cap(D)

(
1− e−λ − α

u0
λ
)}
.

(2.18)

Since α
u0
< 1, we can pick λ small and ensure that the expression in parenthesis in the

last line is strictly positive. By (1.8), cap(D) ≥ cLd−2, and it follows from the above that

(2.19) P[(2.11) does not hold] has super-polynomial decay in L.

We now control the probability that (2.12) fails. We pick u1, v1 such that

(2.20) u > α > u1 > v1 > β, for instance u1 =
3α+ β

4
, v1 =

α+ 3β

4
.

Then, consider B and B′ neighboring L-boxes. We note that when Nu1(D) ≤ α cap(D),
Nu1(D

′) ≤ α cap(D) (recall that Nu1(D
′) = ND′,U ′

u1 and cap(D′) = cap(D)), and Nv1(D) ≥
β cap(D), then

B\(rangeZD
1 ∪ . . . ∪ rangeZD

α cap(D)) ⊆ B ∩ Vu1 ,
B′\(rangeZD′

1 ∪ . . . ∪ rangeZD′

α cap(D′)) ⊆ B ∩ Vu1 , and
D\(rangeZD

1 ∪ . . . ∪ rangeZD
β cap(D)) ⊇ D ∩ Vv1 .
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As a result we see that

P [(2.12) does not hold] ≤ P[Nu1(D) > α cap(D)] + P[Nu1(D
′) > α cap(D)]

+ P[Nv1(D) < β cap(D)]+

P [there exist connected sets of B ∩ Vu1 and B′ ∩ Vu1 of diameter ≥ L
10
,

which are not connected in D ∩ Vv1 ].

(2.21)

Inside the last probability we can replace “connected sets” by “connected components”
without changing the event, since Vu1 ⊆ Vv1 . So, by (2.2) the last term of (2.21) has
super-polynomial decay in L. By a similar argument as in (2.18), since v1 > β, the third
probability in the right-hand side of (2.21) also has super-polynomial decay in L. By
translation invariance the first two probabilities in the right-hand side of (2.21) are equal.
We bound them as follows. For λ > 0, we have by the exponential Chebyshev inequality

(2.22)
P [Nu1(D) > α cap(D)] ≤ exp{−λα cap(D)} E[eλNu1 (D)]

(1.42),(1.38)
= exp{cap(D)(−λα + u1EeD [e

λND,U − 1])},

where we recall the notation of (1.30).

By Lemma 1.7, with p as above (1.31), we see that for λ < c̃, K > c′,

EeD [e
λND,U − 1] ≤ eλp

1− eλ(1− p)
− 1 =

eλ − 1

1− eλ(1− p)
≤ eλ − 1

1− eλ cK2−d
,

where we used the lower bound on p in (1.31), as well as the upper bound on cap(D) in
(1.8), and the lower bound d(D,U c) ≥ cKL from (2.9), (2.10). For K ≥ c(α, β) (recall
that u1 =

3α+β
4

< α), we see that

(1− ec̃cK2−d)−1 ≤ 1

2

(
α

u1
+ 1

)
,

and choosing λ > 0 small enough, we have

−λα + u1EeD [e
λND,U − 1] < 0.

Inserting the lower bound for cap(D) from (1.8) in (2.22) we see that

(2.23) when K ≥ c(α, β), P[(2.12) does not hold] has super-polynomial decay in L.

We finally bound the probability that (2.13) fails. We now choose u2 such that

(2.24) β > u2 > γ, for instance u2 =
β + γ

2
.

We observe that when Nu2(D) ≤ β cap(D), then

〈
µD,u2(dw),

∫∞
0
eD

(
Xs(w)

)
ds
〉
=

∑
1≤ℓ≤Nu2 (D)

∫ TU
0

eD
(
ZD
ℓ (s)

)
ds

≤
∑

1≤ℓ≤β cap(D)

∫ TU
0

eD
(
ZD
ℓ (s)

)
ds.

(2.25)

It now follows that for λ > 0,

P[(2.13) does not hold] ≤ P[Nu2(D) > β cap(D)] +

P
[〈
µD,u2,

∫∞
0
eD(Xs)ds

〉
< γ cap(D)

]
.

(2.26)
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Since u2 = β+γ
2

< β, we see as below (2.22) that for K ≥ c(β, γ), the first term on
the right-hand side of (2.26) has super-polynomial decay in L (actually, even exponential
decay at rate Ld−2). As for the last term of (2.26), we see by (1.38) and Lemma 1.1, that
for λ > 0 it is smaller than

exp{cap(D)(λγ + u2EeD [e
−λ

∫
∞

0 eD(Xs)ds − 1])} (1.13)
= exp

{
cap(D) λ

(
γ − u2

1 + λ

)}
.

Since u2 = β+γ
2

> γ, we can choose λ small so that the last expression in parenthesis is
negative. Taking into account the lower bound on cap(D) from (1.8) the term in the last
line of (2.26) has exponential decay at rate Ld−2. We have in particular shown that

(2.27) when K ≥ c(β, γ), P[(2.13) does not hold] has super-polynomial decay in L.

Combining (2.19), (2.23), and (2.27), Theorem 2.3 follows.

3 Occupation-time bounds

In this section we derive uniform controls on the probability that simultaneously, in a
finite collection of L-boxes, which are all good at levels α, β, γ belonging to (u, u), and
well spread-out, the occupation numbers of all corresponding D-boxes exceed β cap(D),
see Theorem 3.2. These estimates will later play an important role in the proof of the
central claim (0.6), see Theorem 6.3. In spirit, the results of this section are similar to
the upper bounds derived in Section 4 of [22], in the context of the level-set percolation of
the Gaussian free field. There, in Corollary 4.4 of [22], uniform upper bounds are derived
on the probability that simultaneously, in a finite collection of B-boxes, the harmonic
averages of the Gaussian free field attached to much larger concentric U -type boxes,
reach a value below a certain negative level −a in the B-boxes. In the present context,
the corresponding condition is that the occupation numbers of the D-boxes at level u each
exceed β cap(D). The additional constraint that the B-boxes are good(α, β, γ) permits,
by (2.13), to translate the information on the occupation numbers at level u, into an
information on the total occupation-time for the interlacement at level u in each D-box
(of the collection). Whereas Gaussian bounds (such as the Borell-TIS inequality and the
Dudley inequality) were central tools in Section 4 of [22], here instead, we are guided by
some insights on the Laplace transform of the occupation-times of random interlacements
and its link to large deviations of the occupation-time profiles of random interlacements,
gained from [11], see Remark 3.3 below.

We keep the notation of the previous section, and recall that L ≥ 1 and K ≥ 100 are
positive integers. We consider (see (2.8) for notation)
(3.1)
C a non-empty finite subset of L with points at mutual | · |∞-distance at least KL,
where K = 2K + 3.

Note that when z1 6= z2 belong to C, then the corresponding B̌z1, B̌z2 (see (2.10)) satisfy

(3.2) d(B̌z1, B̌z2) ≥ L.

For a given C as above, we define

(3.3) C =
⋃
z∈C

Dz.
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We will sometimes say that D is in C to mean D = Dz, with z ∈ C, and write C =
⋃
D∈C D

to mean (3.3). With a similar convention we introduce the function on Zd (see (1.6), (1.9)
for notation)

(3.4) V (x) =
∑
D∈C

eC(D) eD(x), x ∈ Zd

(where eC(D) =
∑

y∈D eC(y), with eC the equilibrium measure of C). As a step towards
the main goal of this section, namely Theorem 3.2, we first prove a proposition that
compares GV to the equilibrium potential GeC (denoted by hC).

Proposition 3.1. (see (1.3) for notation)

Consider ε ∈ (0, 1). Then, for any L ≥ 1, K ≥ c5(ε), and C as in (3.1) one has

(3.5) GV ≤ (1 + ε)hC, where hC = GeC is the equilibrium potential of C (see (1.10)).

Proof. The claim (3.5) will follow once we show that

(3.6) V ≤ (1 + ε) eC .

Both V and eC are supported by C and it suffices to show that for any z ∈ C, and D = Dz,
we have

(3.7) eC(D) eD(x) ≤ (1 + ε) eC(x), for all x ∈ D(⊆ C).

We can apply Proposition 1.5 with the choice A = D − z, B = C − z (recall D = Dz),
and note that by (3.1), (3.2), Zd\(C− z) is connected). Thus, by (1.26) we see that when
K ≥ c5(ε), (3.7) holds. This concludes the proof of Proposition 3.1.

We are now ready for the main result of this section. It plays the role of Corollary 4.4
of [22]. The notion of h-good box, see (5.9) of [22], corresponds to condition Nu(D) ≥
β cap(D) in the present context (see (2.14) for notation).

Theorem 3.2. (u as in (2.3), see (2.11) - (2.13) for the definition of good(α, β, γ))

Consider 0 < u < u, 0 < ε < 1 such that ε(
√
u
u
− 1) < 1, and α > β > γ in (u, u).

Then, for K ≥ c5(ε), L ≥ 1, and C as in (3.1) we have

(3.8)

P
[ ⋂
z∈C
{Bz is good(α, β, γ) and Nu(Dz) ≥ β cap(D)}

]
≤

exp
{
−

(√
γ −

√
u

1−ε(
√

u
u
−1)

)
(
√
γ −√u) cap(C)

}
.

Proof. When B = Bz, with z in C, is good(α, β, γ) and Nu(D) ≥ β cap(D) (with D = Dz),
then, in the notation of (1.37)

(3.9)

〈
µC,u,

∫∞
0
eD(Xs)ds

〉 D⊆C
=

〈
µD,u,

∫∞
0
eD(Xs)ds

〉

≥
β cap(D)∑
ℓ=1

∫ TU
0

eD(Z
D
ℓ (s))ds (since Nu(D) ≥ β cap(D))

(2.13)

≥ γ cap(D).
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Thus, with V as in (3.4), we find that

(3.10)

P
[ ⋂
z∈C

{
Bz is good(α, β, γ) and Nu(Dz) ≥ β cap(D)

}]
≤

P
[ ⋂
D in C

{〈
µC,u,

∫∞
0
eD(Xs)ds

〉
≥ γ cap(D)

}] (3.4)

≤

P
[〈
µC,u,

∫∞
0
V (Xs)

〉
ds ≥ γ cap(C)

]
,

where in the last step we have used that
∑

D in C eC(D) = eC(C) = cap(C). Setting
a = (

√
γ −√u)/√γ ∈ (0, 1), we then see that the last probability in (3.10) equals

(3.11)
P
[〈
µC,u,

∫∞
0
a V (Xs)ds

〉
≥ (
√
γ −√u)√γ cap(C)

] Chebyshev

≤

exp{−√γ(√γ −√u) cap(C)} E
[
exp

{ ∑
x∈Zd

a V (x)Lx,u

}]
.

When K ≥ c5(ε), we know by Proposition 3.1 that ‖GaV ‖∞ ≤ a(1 + ε) = 1 −
√

u
γ
+

ε(1 −
√

u
γ
) < 1, since by assumption ε(

√
γ
u
− 1) ≤ ε(

√
u
u
− 1) < 1. We then see that

‖(I − GaV )−11‖∞ ≤ (1 − a(1 + ε))−1. Hence, by (1.40), the last expectation in (3.11)
equals

(3.12)

exp{u〈aV, (I −GaV )−11〉} ≤ exp
{
u a(1− a(1 + ε)

)−1〈V, 1〉
}
=

exp
{√

u
(
1− ε

(√
γ

u
− 1

))−1

(
√
γ −√u) cap(C)

}
≤

exp
{√

u
(
1− ε

(√
u

u
− 1

))−1

(
√
γ −√u) cap(C)

}
,

where we used the identity 〈V, 1〉 = cap(C) (see (3.4)) and the definition of a. Inserting
this bound in the expectation in the last line of (3.11), and then coming back to (3.10),
we obtain (3.8). This concludes the proof of Theorem 3.2.

Remark 3.3. Informally, the above proof follows the spirit of [11]. The large deviation
results of [11] suggest the following procedure. To control the occurrence of a bump over
C at level γ (> u) for the occupation-times of random interlacements, one applies the
Chebyshev inequality to the Laplace transform of the occupation-times tested against
the function W = −Lf

f
, where L stands for the generator of the continuous-time simple

random walk, and f = (
√

γ
u
− 1) hC + 1, i.e. W = a eC , and a in the notation of (3.11)

equals 1− √
u
γ
. In place of W , we instead use the approximation a V , with V as in (3.4),

which is better suited to cope with the precise type of bump in occupation-times we are
faced with in (3.9).

Later on, the coarse graining procedure developed in the next sections will in essence
show that the disconnection of BN by the random interlacements at level u (< u) is well
controlled, in principal exponential order, by the occurrence of a bump in occupation-
times, at a level γ arbitrarily close to < u, over some C as above, which “surrounds well”
BN , see (6.8)-(6.10) below. In close spirit, the occurrence of bumps in the density profile
of the occupation-times of random interlacements, insulating a macroscopic body, were
investigated in [11], see for instance (0.7) or Theorems 6.2 and 6.4 of [11]. �
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4 Coupling of excursions

In this section we prepare the ground for the next section. We introduce a coupling based

on the soft local time techniques developed in [14] and in [4], between the excursions ZĎ,Ǔ
k ,

k ≥ 1, from Ď to ∂Ǔ in the random interlacements, where Ď, Ǔ runs over a collection
Ďz, Ǔz, z ∈ C, with C a finite subset of L as in (3.1), and a certain collection of i.i.d.

excursions Z̃Ď
k , k ≥ 1, from Ď to ∂Ǔ , which are independent as Ď, Ǔ runs over the same

Ďz, Ǔz, z ∈ C as above. This coupling will play an important role in the next section,
when proving the super-exponential estimate on the probability of finding more than a
few columns containing a bad box in Theorem 5.1. The main result of this section is
Proposition 4.1. It contains the crucial controls on the coupling of excursions that we will
need in the next section.

As in Sections 2 and 3, we consider integers L ≥ 1 and K ≥ 100, as well as a non-
empty subset C of L (= LZd) satisfying (3.1). We recall that the boxes B̌z, z ∈ C are
at pairwise mutual | · |∞-distance at least L, see (3.2). A central object of interest for us

in this section are the excursions ZĎz ,Ǔz

k , k ≥ 1, from Ďz to ∂Ǔz , in the interlacements

(see (1.41)), as z runs over C. As a shorthand we will simply write ZĎ
k , k ≥ 1, in place

of ZĎz ,Ǔz

k , k ≥ 1 (where Ď, Ǔ runs over Ďz, Ǔz, z ∈ C). This is in line with the similar
shorthand notation ZD

ℓ , ℓ ≥ 1, for the excursions from D to ∂U , introduced above (2.11).

The reason for the introduction of the ZĎ
k , k ≥ 1, is the fact that this sequence contains

the information of both sequences ZD
ℓ , ℓ ≥ 1 and ZD′

ℓ , ℓ ≥ 1, when D′ is a “neighboring”
box of D, that is, when D = Dz, D

′ = Dz′, Ď = Ďz, with z ∈ C and z′ in L is a neighbor
of z. Indeed, D and D′ are contained in Ď and U and U ′ are contained in Ǔ by (2.9),
(2.10). This feature will be important when using the coupling constructed in this section
to bound the probability that collections of L-boxes B are bad(α, β, γ), since this last
constraint, via the negation of (2.12), simultaneously involves the excursions ZD

ℓ , ℓ ≥ 1,
and the excursions ZD′

ℓ , ℓ ≥ 1.

The soft local time technique of [14] offers a way to couple the excursions ZĎz

k , k ≥ 1,

z ∈ C, of the random interlacements, with independent excursions Z̃Ďz

k , k ≥ 1, z ∈ C. We
refer to Section 2 of [4] for details. We will use here some facts that we recall below. First
some notation. We introduce the subsets of Zd

(4.1) Č =
⋃
z∈C

Ďz ⊆ V̌ =
⋃
z∈C

Ǔz,

and, for any x ∈ Zd, denote by Qx the probability measure governing two independent
continuous-time walks X1. and X2. on Zd respectively starting from x and from the initial
distribution eČ (the normalized equilibrium measure of Č). We consider the random
variable Y defined as

(4.2) Y =

{
X1
HČ
, on {HČ <∞} (with HČ the entrance time of X1 in Č)

X2
0 , on {HČ =∞}.

With the soft local time technique, one constructs a coupling QC of the law P of the
random interlacements with a collection of independent right-continuous, Poisson counting
functions, with unit intensity, vanishing at 0, (nĎz

(0, t))t≥0, z ∈ C, and with independent

collections of i.i.d. excursions Z̃Ďz

k , k ≥ 1, z ∈ C, having for each z ∈ C the same law on
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Γ(Ǔz) as X·ΛTǓz
under PeĎz

(recall eĎz
stands for the normalized equilibrium measure of

Ďz). For convenience, we also set (for Ď = Ďz, with z ∈ C)

(4.3) nĎ(a, b) = nĎ(0, b)− nĎ(0, a), for 0 ≤ a ≤ b

(the notation is consistent when a = 0).Thus, one has

(4.4)

under QC , as Ď varies over Ďz, z ∈ C, the ((nĎ(0, t))t≥0, Z̃
Ď
k , k ≥ 1) are

independent collections of independent processes, with (nĎ(0, t))t≥0

distributed as a Poisson counting process of intensity 1, and Z̃Ď
k , k ≥ 1,

as i.i.d. Γ(Ǔ)-variables with same law as X· ∧TǓ under PeĎ .

In addition, the coupling governed by QC has the following crucial property, see Lemma
2.1 of [4]. If for some δ ∈ (0, 1), and all Ď = Ďz, z ∈ C, y ∈ Ď, x ∈ ∂V̌

(4.5)
(
1− δ

3

)
eĎ(y) ≤ Qx[Y = y | Y ∈ Ď] ≤

(
1 +

δ

3

)
eĎ(y),

then, on the event (in the auxiliary space governed by QC , and with m0 ≥ 1 arbitrary)

Ũm0

Ď
= {nĎ(m, (1 + δ)m) < 2δm, (1− δ)m < nĎ(0, m) < (1 + δ)m,

for all m ≥ m0},
(4.6)

one has for all m ≥ m0 the following inclusion among subsets of Γ(Ǔ) (see below (1.1) for
notation)

{Z̃Ď
1 , . . . , Z̃

Ď
(1−δ)m} ⊆ {ZĎ

1 , . . . , Z
Ď
(1+3δ)m}, and(4.7)

{ZĎ
1 , . . . , Z

Ď
(1−δ)m} ⊆ {Z̃Ď

1 , . . . , Z̃
Ď
(1+3δ)m},(4.8)

where (similarly as above (2.11)) Z̃Ď
v and ZĎ

v stand for Z̃Ď
[v] and Z

Ď
[v], when v ≥ 1, and the

sets on the left-hand sides of (4.7), (4.8) are empty when (1 − δ)m < 1. Note that the

(favorable) event Ũm0

Ď
, which ensures (4.7), (4.8) is solely defined in terms of the Poisson

counting process (nĎ(0, t))t≥0, and that as Ď varies over Ďz, z ∈ C, these counting
processes are i.i.d. (see (4.4)).

We will now extract excursions from D to ∂U and D′ to ∂U ′ from a sequence of
excursions from Ď to ∂Ǔ , when D, Ď and D′ respectively correspond to Dz, Ďz and Dz′ ,
with z ∈ C and z′ in L neighbor of z (as already mentioned at the beginning of this
section, our motivation comes from later having to handle condition (2.12)). From the

infinite sequence of i.i.d. excursions Z̃Ď
k , k ≥ 1 (with same law as X· ∧TǓ under PeĎ), we

can extract the successive excursions ẐD
ℓ , ℓ ≥ 1 and ẐD′

ℓ , ℓ ≥ 1, from D to ∂U and D′

to ∂U ′ that a.s. appear in Z̃Ď
1 , Z̃

Ď
2 , . . . (so for instance ẐD

1 , Ẑ
D
2 , Ẑ

D
3 are the excursions in

the order of appearance from D to ∂U in Z̃Ď
1 , then ẐD

4 , Ẑ
D
5 are the excursions contained

in Z̃Ď
2 , then Z̃Ď

3 contains no such excursion, ẐD
6 is the unique excursion contained in Z̃Ď

4 ,

and so on ...). Note that for a given Ď, the sequence ẐD
ℓ , ℓ ≥ 1, is typically not i.i.d.

anymore and the sequences ẐD
ℓ , ℓ ≥ 1, and ẐD′

ℓ , ℓ ≥ 1, are typically mutually dependent.
However,

(4.9)
under QC, the collections ẐDz

ℓ , ℓ ≥ 1, Ẑ
Dz′

ℓ , ℓ ≥ 1, with
z′ neighbor of z in L, are independent, as z varies over C
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(indeed, the Z̃Ďz

k , k ≥ 1, are independent as z varies over C, see (4.4)).

We now come to the definition of a favorable event G̃B that will play an important
role in the next section. In the proposition below, we will see that for an adequate choice
of parameters the complement of this favorable event has a probability, which decays
super-polynomially in L.

Given δ and κ in (0, 1
2
), an L-box B in C (i.e. B = Bz, with z ∈ C), and a neighboring

box B′ (this precludes that B′ is in C by (3.1), (3.2)), we set (see (4.6) for notation)

G̃B = Ũm0

Ď
∩
{
Z̃Ď

1 , . . . , Z̃
Ď
m contain at least (1− κ)m cap(D)

cap(Ď)
and at most

(1 + κ)m
cap(D)

cap(Ď)
excursions from D to ∂U , for all m ≥ m0

}

⋂
B′ neighborB

{
Z̃Ď

1 , . . . , Z̃
Ď
m contain at least (1− κ)m cap(D)

cap(Ď)
and at most

(1 + κ)m
cap(D)

cap(Ď)
excursions from D′ to ∂U ′, for all m ≥ m0

}
,

(4.10)

where m0 = [(logL)2] + 1 in the above definition.

Here is the main result of this section.

Proposition 4.1. (m0 = [(logL)2] + 1, δ, κ in (0, 1
2
), C as in (3.1))

(4.11) When K ≥ c6(δ), then (4.5) holds.

When (1− δ)m ≥ m0 and δm0 ≥ 1, then for z ∈ C, z′ neighbor of z in L, QC-a.s. on G̃B,

(4.12)





i) {ẐD
1 , . . . , Ẑ

D
ℓ } ⊆ {ZD

1 , . . . , Z
D
(1+δ̂)ℓ

}, for ℓ ≥ m0,

ii) {ZD
1 , . . . , Z

D
ℓ } ⊆ {ẐD

1 , . . . , Ẑ
D
(1+δ̂)ℓ

}, for ℓ ≥ m0,

(4.13)





i) {ẐD′

1 , . . . , ẐD′

ℓ } ⊆ {ZD′

1 , . . . , ZD′

(1+δ̂)ℓ
}, for ℓ ≥ m0,

ii) {ZD′

1 , . . . , ZD′

ℓ } ⊆ {ẐD′

1 , . . . , ẐD′

(1+δ̂)ℓ
}, for ℓ ≥ m0,

where we have set

(4.14) 1 + δ̂ =
1 + κ

1− κ

(1 + 4δ)2

(1− 2δ)2
.

Moreover, when K ≥ c7(δ, κ) (≥ c6(δ)), then

(4.15) lim
L

1

logL
logQC[G̃c

B] = −∞

(note that the above probability does not depend on the choice of C, or of B in C).
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Proof. We begin with the proof of (4.11). We observe that in the notation of (4.1), (4.2),
for x ∈ ∂V̌ , y ∈ Ď

Qx[Y = y]
(4.2)
= Px[XHČ

= y,HČ <∞] + Px[HČ =∞] eČ(y)

= Px[XHČ
= y|HČ = HĎ <∞]Px[HČ = HĎ <∞] + eČ(y)Px[HČ =∞].

As a result we see that

Qx[Y = y|Y ∈ Ď] =
(
Px[XHČ

= y|HČ = HĎ <∞]Px[HČ = HĎ <∞]

+
eČ(y)

eČ(Ď)
Px[HČ =∞] eČ(Ď)

)

×
( ∑
y′∈Ď

the same terms with y′ in place of y
)−1

.

(4.16)

We can apply Proposition 1.5 with the choice A = Ď − z and B = Č − z, if Ď = Ďz

(note in particular that by (3.1), (3.2), Zd\(Č − z) is connected). When K ≥ c(δ), we

thus find that for all x ∈ ∂V̌ , y′ ∈ Ď, Px[HHČ
= y′|HČ = HĎ <∞] and

eČ(y′)

eČ(Ď)
lie between

(1− δ
10
) eĎ(y

′) and (1+ δ
10
) eĎ(y

′), see (1.25), (1.26). Inserting these bounds inside (4.16),

and using that 1 − δ
3
≤ 1−δ/10

1+δ/10
, as well as 1 + δ

3
≥ 1+δ/10

1−δ/10 , we see that (4.5) holds. This

proves (4.11).

We now turn to the proof of (4.12). We assume that K ≥ c6(δ) so that (4.5) holds.

Hence, we have (4.7), (4.8) on G̃B ⊆ Ũm0

Ď
(recall that presently m0 = [(logL)2] + 1). We

thus find that when m ≥ m0

(4.17) {Z̃Ď
1 , . . . , Z̃

Ď
(1−δ)m} ⊆ {ZĎ

1 , . . . , Z
Ď
(1+3δ)m} ⊆

{
Z̃Ď

1 , . . . , Z̃
Ď
(1+4δ)2

(1−δ)
m

}
,

where, for the last inclusion, we have used that m′ = [ [(1+3δ)m]
1−δ ] + 1 (≥ m0) satisfies

(1 − δ)m′ ≥ [(1 + 3δ)m] and m′ ≤ (1+4δ)
1−δ m, since mδ ≥ m0 δ ≥ 1, so that (1 + 3δ)m′ ≤

(1+4δ)2

1−δ m.

We will first prove (4.12) i). By the definition (4.10), when (1 − δ)m ≥ m0, and

δm0 ≥ 1, on G̃B the set of excursions on the left-hand side of (4.17) contains at least (1−
κ)[(1− δ)m] cap(D)

cap(Ď)
≥ (1−κ)(1−2δ)m cap(D)

cap(Ď)

def
= t excursions from D to ∂U , and the set of

excursions on the right-hand side of (4.17) contains no more than [(1+κ) (1+4δ)2

1−δ m cap(D)

cap(Ď)
] ≤

(1 + δ̃) t excursions from D to ∂U , where 1 + δ̃ = 1+κ
1−κ

(1+4δ)2

(1−δ)(1−2δ)
.

Hence, looking at the “first t excursions” ẐD
ℓ , 1 ≤ ℓ ≤ t (which are inscribed in the

set of excursions on the left-hand side of (4.17)) and at the “first (1 + δ̃) t excursions”

ZD
ℓ , 1 ≤ ℓ ≤ (1 + δ̃) t (which exhaust all excursions from D to ∂U inscribed within the

set of excursions in the middle of (4.17)), we see that on G̃B, when (1 − δ)m ≥ m0 and
δm0 ≥ 1,

(4.18) {ẐD
1 , . . . , Ẑ

D
t } ⊆ {ZD

1 , . . . , Z
D
(1+δ̃)t

}.

As m varies over the range (1 − δ)m ≥ m0, note that [t] covers in particular all integers
with value bigger or equal to m0, and when [t] ≥ m0, then, since δ[t] ≥ δm0 ≥ 1,

(1 + δ̃) t ≤ (1 + δ̃)([t] + δ[t]) = (1 + δ̃)(1 + δ)[t] ≤ (1 + δ̂)[t],
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where we used that 1 + δ ≤ (1− δ)/(1− 2δ) in the last step. Thus (4.12) i) follows from
(4.18). Similarly, for (4.12) ii), we can look at the “first t excursions” ZD

ℓ , 1 ≤ ℓ ≤ t,
from D to ∂U (which are inscribed in the set of excursions in the middle of (4.17)), and

at the “first (1 + δ̃) t” excursions ẐD
ℓ , 1 ≤ ℓ ≤ (1 + δ̃) t, from D to ∂U (which exhaust all

excursions from D to ∂U inscribed within the set of excursions on the right-hand side of
(4.17)), to infer from (4.17) that on G̃B, when (1− δ)m ≥ m0 and m0δ ≥ 1, we have

(4.19) {ZD
1 , . . . , Z

D
t } ⊆ {ẐD

1 , . . . , Ẑ
D
(1+δ̃)t

},

and conclude in the same fashion that (4.12) ii) holds.

Of course by the same reasoning as above, with D′ in place of D, we obtain (4.13) i)
and ii).

We now turn to the proof of (4.15). It is plain from the definition of G̃B in (4.10) and
from (4.4) that the probability in (4.15) does not depend on the choice of C satisfying (3.1)

and of B in C. We will first bound QC((Ũm0

Ď
)c), see (4.6) (with m0 = [(logL)2] + 1). Note

that nĎ(a, b) = nĎ(0, b)− nĎ(0, a), for 0 ≤ a ≤ b, and since nĎ(0, t), t ≥ 0, is a Poisson
counting function of unit intensity (see (4.4)), it follows from a standard exponential
Chebyshev estimate that

(4.20) lim
L

1

m0
logQC((Um0

Ď
)c
)
≤ −c(δ) < 0.

We now control the QC probability of the complement of the event that appears after the
intersection on the first line of (4.10). We will use the following simple fact:

Lemma 4.2. (L ≥ 1, K ≥ c)

(4.21)
cap(D)

cap(Ď)
≥ PeĎ [HD < TǓ ] ≥

cap(D)

cap(Ď)
− c

Kd−2
≥ cap(D)

cap(Ď)

(
1− c′

Kd−2

)
.

Proof. By the sweeping identity (1.11), we have

(4.22) cap(D) = PeĎ [HD <∞] = PeĎ [HD < TǓ ] + PeĎ [TǓ < HD <∞].

The first inequality of (4.21) follows by dividing the above equalities by cap(Ď). To obtain
the last two inequalities of (4.21), we observe that it follows from (4.22) that

PeĎ [HD < TǓ ] = cap(D)− PeĎ [TǓ < HD <∞]

≥ cap(D)− cap(Ď) sup
∂Ǔ

Px[HD <∞]

≥ cap(D)− cap(Ď)
c

Kd−2
(by (1.10), (1.8), (2.9))

≥ cap(D)
(
1− c′

Kd−2

)
(by (1.8) and (2.9)).

Dividing by cap(Ď) we obtain the last two inequalities of (4.21).

We now resume the bound on the QC-probability of the complement of the event after
the intersection on the first line of (4.10). We first control Qℓ(∪m≥m0Fm), where

Fm = {Z̃Ď
1 , . . . , Z̃

Ď
m contains fewer than (1− κ) cap(D)

cap(Ď)
m excursions from D to ∂U}.
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We note that the Z̃Ď
k , k ≥ 1, are i.i.d. and each contain at least one excursion from D

to ∂U with probability p = PeĎ [HD < TǓ ]. Thus, by (4.21), we can assume that for
K ≥ c(κ),

(4.23) p ≥
(
1− κ

2

)
cap(D)

cap(Ď)
.

Hence, for any m ≥ 1, with Yi, i ≥ 1, i.i.d. Bernoulli variables with success probability p,

QC[Fm] ≤ P
[ m∑
i=1

Yi ≤ (1− κ) cap(D)

cap(Ď)
m
]

≤ exp{−mI(p̃)}, by standard exponential Chebyshev bounds,

(4.24)

where we have set

(4.25)





p̃ = (1− κ) cap(D)

cap(Ď)
(< p by (4.23)) and

I(a) = a log
(
a

p

)
+ (1− a) log

(
1− a

1− p

)
, for 0 ≤ a ≤ 1.

Note that

I(p) = 0 = I ′(p) and I ′′(a) =
1

a
+

1

1− a
, for 0 < a < 1, so that

I(p̃) =
∫ p
p̃
−I ′(r)dr =

∫ p
p̃
dr

∫ p
r

1

t
+

1

1− t
dt =

∫
p̃<r<t<p

1

t
+

1

1− t
dt dr

≥ c(p− p̃)2 ≥ c′ κ2.

(4.26)

It thus follows that when K ≥ c(κ), then

(4.27) Qℓ
[ ⋃
m≥m0

Fm
]
≤

∑
m≥m0

e−c
′κ2m = (1− e−c′κ2)−1 e−c

′κ2m0 .

We now continue to bound the QC-probability of the complement of the event after the
intersection on the first line of (4.1). We will now bound QC[

⋃
m≥m0

Hm], where

Hm =
{
Z̃Ď

1 , . . . , Z̃
Ď
m contain more than (1 + κ)

cap(D)

cap(Ď)
m excursions from D to ∂U

}
.

Observe that any Z̃Ď
ℓ is distributed as the continuous-time simple random walk with

starting distribution eĎ, stopped when exiting Ǔ . Hence, the number of excursions from

D to ∂U that Z̃Ď
ℓ contains is stochastically dominated by the number ND,U of excursions

from D to ∂U , see (1.30), for the simple random walk with starting distribution eĎ.
Moreover, setting p = infx∈∂U Px[HD =∞] ≥ 1− c

Kd−2 (see (1.18)), we find that for λ > 0

such that eλ(1− p) < 1,

EeĎ [e
λND,U ] = PeĎ [HD =∞] + EeĎ

[
HD <∞, EXHD

[eλND,U ]
]

= 1 + EeĎ
[
HD <∞, EXHD

[eλND,U ]− 1
]

(1.31)

≤ 1 + PeĎ [HD <∞]
(

eλp

1− eλ(1− p)
− 1

)

= 1 +
cap(D)

cap(Ď)

eλ − 1

1− eλ(1− p)
, with p ≥ 1− c

Kd−2
.

(4.28)
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Then, by (4.28) and an exponential Chebyshev estimate, we see that for K ≥ c̃, 0 < λ <
c′ logK (so that eλ(1− p) < 1), and m ≥ 1,

QC [Hm] ≤ exp
{
−m

[
λ(1 + κ)

cap(D)

cap(Ď)
− log

(
1 +

cap(D)

cap(Ď)

eλ − 1

1− eλ(1− p)

)]}

log(1+a)≤a
≤ exp

{
−m cap(D)

cap(Ď)

[
λ(1 + κ)− eλ − 1

1− eλ(1 − p)

]}
.

(4.29)

If K ≥ c(κ) we can pick λ = log(1 + κ
2
) and assume that 1− (1 + κ

2
) c
Kd−2 ≥ 1+κ/2

1+κ
with c

as in the last line of (4.28). It now follows that

λ(1 + κ)− eλ − 1

1− eλ(1− p)
≥ (1 + κ)

[
log

(
1 +

κ

2

)
− κ/2

1 + κ/2

]
=

(1 + κ)
∫ κ/2
0

1

1 + u
− 1

1 + κ/2
du

def
= ψ(κ) > 0.

Since cap(D)/cap(Ď) ≥ c, coming back to (4.29), we see that for K ≥ c(κ),

(4.30) QC[ ⋃
m≥m0

Hm

]
≤

∑
m≥m0

e−cψ(κ)m = (1− e−cψ(κ))−1 e−cψ(κ)m0 .

Now (4.27) and (4.30) are more than enough to show that when K ≥ c(κ), the QC-
probability of the complement of the event after the intersection on the first line of (4.10)
decays super-polynomially in L (recall m0 = [(logL)2] + 1). The QC-probability of the
complement of the event on the last two lines of (4.10) (relative to excursions from D′ to
∂U ′) is handled in the same fashion. Keeping in mind (4.20), this completes the proof of
(4.15), and hence of Proposition 4.1.

Remark 4.3. The interest of the “favorable” events G̃B is threefold. By construction
these events are independent under QC as B varies over C (see (4.4)). When K ≥ c7(δ, κ),

for large L, the events G̃B are very likely (see (4.15)). And finally, on G̃B we can control
the excursions from D to ∂U and D′ to ∂U ′ in the random interlacements, via (4.12),
(4.13). This feature will be very handy in the next section. �

5 Super-exponential decay

In this section we relate the scale L governing the boxes introduced in Section 2 to the
scale N of basic interest that appears in the main statement (0.6). Theorem 6.3 of the
next section will prove this main statement. The present section contains an important
preparation. We introduce certain columns of L-boxes going from BN to SN (see (0.3) for
notation), and show in Theorem 5.1 that given α > β > γ smaller than the critical value u
(see (2.3)), except on an event of super-exponentially decaying probability at rate Nd−2,
only a small fraction of columns contain a bad(α, β, γ) box (see (2.11) - (2.13)). This
super-exponential estimate relies on the soft local time couplings constructed in Section
4. Theorem 5.1 roughly plays the role of Proposition 5.4 of [22] in the context of level-
set percolation for the Gaussian free field. However, whereas the various independence
properties used in the proof of Proposition 5.4 of [22] were easy facts pertaining to the
built-in independence of the local fields of [22], here, our main tools will come from
Proposition 4.1 and Remark 4.3.
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We now relate the parameter L to the parameter N entering (0.3) (and the main
upper-bound (0.6) we are aiming at). To this end, we introduce a large Γ ≥ 1 and set

(5.1) L = [(ΓN logN)
1

d−1 ] (we recall that L = LZd, see (2.6)).

We also consider K ≥ 100.

We still need to introduce additional notation and definitions, in particular, regarding
columns. Given e ∈ Zd, with |e| = 1, and N > 1, we denote by Fe,N the face in the
direction e of BN , that is Fe,N = {x ∈ BN ; x · e = N}. For each face we consider the
set of columns (attached to the face), where a column consists of L-boxes B contained in
{z ∈ Zd; x · e > N} ∩B(M+1)N , with same projection in the e-direction on {x ∈ Zd; x · e =
N}, which we require to be contained in the face Fe,N of BN (we recall that M > 1 is an
arbitrary number, that SN = {x ∈ Zd; |x|∞ = [MN ]}, see (0.3), and that to be an L-box
means that B = Bz, with z ∈ L, see (2.10)). Incidentally, note that for large N the total

number of columns is bounded by c(N
L
)d−1 ≤ c′

Γ
Nd−2

logN
.

We now consider u from (2.3) as well as

(5.2) α > β > γ in (0, u).

We view δ, κ in (0, 1
2
) as functions of α, β, γ such that

(5.3) u > (1 + δ̂)2α,
α

(1 + δ̂)2
> (1 + δ̂)2β, and

β

(1 + δ̂)2
> γ,

with δ̂ as (4.14). We now define (see (2.11) - (2.13) and (4.10) for notation)

η = P
[
B is bad

(
(1 + δ̂)2α, β, γ

)]
+ P

[
B is bad

(
α

(1 + δ̂)2
, (1 + δ̂)2β, α

)]
+

P[B is bad
(
α,

β

(1 + δ̂)2
, γ

)]
+ 3QC[G̃c

B]
(5.4)

(the last probability does not depend on C satisfying (3.1), nor on B in C, see below
(4.15)).

We assume from now on that K ≥ c8(α, β, γ), so that Theorem 2.3 applies to each of
the first three probabilities in the right-hand side of (5.4) and (4.15) of Proposition 4.1
applies (we recall that we view δ and κ as functions of α, β, γ). We thus see that

(5.5) lim
L→∞

1

logL
log η = −∞,

i.e. η tends to zero super-polynomially in L. We can then define

(5.6) ρ =

√
logL

log 1
η

−→
L→∞

0.

We will see that the following event is “negligible” for our purpose. Namely, we set

(5.7) CN =
{
there are at least ρ

(
N
L

)d−1
columns containing a bad(α, β, γ) box

}
.

Here is the main result of this section. Recall that by (5.2) α > β > γ are in (0, u).
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Theorem 5.1. (super-exponential bound)

When K ≥ c8(α, β, γ),

(5.8) lim
N

1

Nd−2
logP[CN ] = −∞.

Proof. We write L(= LZd) as the disjoint union of the sets y +K L, where y varies over
{0, L, 2L, . . . , (K − 1)L}d and K = 2K + 3 (see (3.1)). We then find that (in the sum
below, y ranges over the set just mentioned)

P[CN ] ≤
∑
y

P

[
at least

ρ

K
d

(
N

L

)d−1

boxes Bz, with Bz in some column, and

z ∈ y +KL are bad(α, β, γ)
]
.

Given any y ∈ {0, L, 2L, . . . , (K − 1)L}d, we denote by Cy the collection of L-boxes Bz,
with z ∈ y +KL that are contained in some column. When N is large, Cy is non-empty
and satisfies (3.1), and we consider the probability QCy (see below (4.2)). We find that in
the notation of (4.10)

P[CN ] ≤
∑
y

QCy
[
at least

ρ

2K
d

(N
L

)d−1
boxes B in Cy are such that G̃c

B holds
]
+

∑
y

QCy
[
at least

ρ

2K
d

(N
L

)d−1
boxes B in Cy are bad(α, β, γ) and

such that G̃B occurs
] def
= A1 + A2.

(5.9)

We first bound A1. We note that the events G̃c
B are independent under QCy , as B varies

over Cy, see Remark 4.3, and identically distributed (see below (4.15)), so that

(5.10) A1 ≤ K
d
P
[ m∑

1

Yi ≥ ρ

2K
d

(N
L

)d−1
]
,

where Yi, i ≥ 1, are i.i.d. Bernoulli variables with success probability η ≥ QCy [G̃c
B] (by

the choice of η in (5.4)), and m denote the total number of boxes in all columns), so that
for large N ,

(5.11) c
(
N

L

)d
≤ m ≤ c′

(
MN

L

)d
.

Then, using the super-polynomial decay in L of η in (5.5), the same calculation as between
(5.22) and (5.27) in Proposition 5.4 of [22] shows that

(5.12) lim
N

1

Nd−2
logA1 = −∞.

We then turn to the control of A2. We observe that when B ∈ Cy is such that G̃B holds
and B is bad(α, β, γ), then some of (2.11), (2.12), (2.13) fail for B. So, for large N , either

a) B\(rangeZD
1 ∪ . . .∪ rangeZD

α cap(D)) does not contain a connected set with diameter at

least L
10
, hence by (4.12) ii)

(5.13)
B\(range ẐD

1 ∪ . . . ∪ range ẐD
α(1+δ̂)cap(D)

) does not contain a connected set

of diameter at least L
10
,
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or

b) there are connected sets with diameter at least L
10

in B\(rangeZD
1 ∪. . .∪rangeZD

α cap(D))

and B′\(rangeZD′

1 ∪ . . .∪ rangeZD′

α cap(D′)), with B
′ some neighboring box of B, which are

not linked by a path in D\(rangeZD
1 ∪ . . .∪rangeZD

β cap(D)). Hence, by (4.12) i) and (4.13)

i) (with ℓ = [ α

(1+δ̂)
cap(D)]) and (4.12) ii) (with ℓ = [β cap(D)]) we find that

(5.14)

there are connected sets of diameter at least
L

10
in

B\(range ẐD
1 ∪ . . . ∪ range ẐD

α

1+δ̂
cap(D)) and

B′\(range ẐD′

1 ∪ . . . ∪ range ẐD′

α

1+δ̂
cap(D)), with

B′ some neighboring box of B, which are not connected

by a path in D\(range ẐD
1 ∪ . . . ∪ range ẐD

(1+δ̂)β cap(D)
),

or

c) we have ∑
1≤ℓ≤β cap(D)

∫ TU
0

eD
(
ZD
ℓ (s)

)
ds < γ cap(D)

so that by (4.12) i) (with ℓ = [ β

(1+δ̂)
cap(D)]), we have

(5.15)
∑

1≤ℓ≤ β

1+δ̂
cap(D)

∫ TU
0

eD
(
ẐD
ℓ (s)

)
ds < γ cap(D).

As a result, we have obtained that for large N , and each y in {0, L, 2L, . . . , (K − 1)L}d
the probability in the sum defining A2 in (5.9) satisfies

QCy [at least ρ

2K
d (

N
L
)d−1 boxes B in Cy are bad(α, β, γ) and such that

G̃B occurs] ≤

QCy [there are at least ρ

2K
d (

N
L
)d−1 boxes B in Cy for which âB ∪ b̂B ∪ ĉB holds],

(5.16)

where âB refers to the event in (5.13), b̂B refers to the event in (5.14), and ĉB to the event

in (5.15). By (4.9), as B varies over Cy, the events âB ∪ b̂B ∪ ĉB are independent under
QCy .

In addition, for large N , for any y ∈ {0, L, 2L, . . . , (K − 1)L}d, and B in Cy

(5.17)

QCy [âB] ≤ QCy [G̃c
B] +QCy [âB ∩ G̃B] ≤ QCy [G̃c

B] +

P[B\(rangeZD
1 ∪ . . . ∪ ZD

(1+δ̂)2α cap(D)
) does not contain a connected set

of diameter ≥ L
10
],

using (4.12) i) in the last inequality (with ℓ = [(1 + δ̂) cap(D)]).
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Similarly, by (4.12) ii), (4.13) ii) (with ℓ = [ α

(1+δ̂)2
cap(D)]) and (4.12) i) (with ℓ =

[(1 + δ̂)β cap(D)]), we find that

(5.18)

QCy [̂bB] ≤ QCy [G̃c
B] +QCy [̂bB ∩ G̃B]

(4.12),(4.13)

≤ QCy [G̃c
B] +

P
[
there are connected sets of diameter at least L

10
in

B\(rangeZD
1 ∪ . . . ∪ ZD

α

(1+δ̂)2
cap(D)) and

B′\(rangeZD′

1 ∪ . . . ∪ ZD′

α

(1+δ̂)2
cap(D′)) with

B′ some neighboring box of B, which are not connected

by a path in D\(rangeZD
1 ∪ . . . ∪ rangeZD

(1+δ̂)2β cap(D)
)
]
,

and likewise, by (4.12) ii) (with ℓ = [ β

(1+δ̂)
cap(D)]),

(5.19)

QCy [ĉB] ≤ QCy [G̃c
B] +QCy [ĉB ∩ G̃B]

(4.12) ii)

≤ QCy [Ĝc
B] +

P

[ ∑
1≤ℓ≤ β

(1+δ̂)2
cap(D)

∫ TU
0

eD
(
ZD
ℓ (s)

)
ds < γ cap(D)

]
.

Collecting (5.17) - (5.19), we see that for large N , for any y in {0, L, 2L, . . . , (K − 1)L)d}
and B in Cy we have

(5.20)
QCy [âB ∪ b̂B ∪ ĉB] ≤ 3QCy [G̃c

B] + P
[
B is bad

(
(1 + δ̂)2α, β, γ

)]
+

P

[
B is bad

(
α

(1 + δ̂)2
, (1 + δ̂)2β, γ

)]
+ P

[
B is bad

(
α,

β

(1 + δ̂)2
, γ

)]
(5.4)
= η

(actually a more careful bound of the left-hand side of (5.20) yields an inequality without
the factor 3 in the first line of (5.20), but this is irrelevant for our purpose).

Keeping in mind the independence stated below (5.16), we thus find with a similar
notation as in (5.10) that

(5.21) A2 ≤ K
d
P

[ m∑
1

Yi ≥ ρ

2K
d

(
N

L

)d−1]
.

As already mentioned below (5.10), the quantity on the right-hand side of (5.21) has
super-exponential decay at rate Nd−2, so that

(5.22) lim
N

1

Nd−2
logA2 = −∞.

Combining (5.9), (5.12), (5.22), we have thus completed the proof of Theorem 5.1.

6 Disconnection upper bounds

In this section, we derive in Theorem 6.3 the main asymptotic upper bound (0.6) on the
probability that random interlacements at level u ∈ (0, u) disconnect BN from SN . The
proof involves the super-exponential estimate of the previous section, the occupation-
time bounds of Section 3, and a coarse-graining procedure in the spirit of the proof of
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Theorem 5.5 of [22]. Once Theorem 6.3 is proved, we quickly obtain in Corollary 6.4 the
main upper-bound (0.8) on the probability that simple random walk disconnects BN from
SN . The argument is similar to the proof of Corollary 7.3 of [22], and involves letting
u tend to 0 in Theorem 6.3 and a natural coupling of Vu under P[· | 0 ∈ Iu] with the
complement V of the trace on Zd of the simple random walk under P0.

We begin with a simple connectivity lemma that will be helpful in the proof of the
main Theorem 6.3. We use the notation of Section 2, and for the time being L ≥ 1,
K ≥ 100 are integers, see (2.7), boxes are defined as in (2.9), (2.10), the definition of
good(α, β, γ) for an L-box B appears in (2.11) - (2.13), and Nu(D) is defined in (2.14).

Lemma 6.1. (α > β > γ > 0 and u > 0)

If Bi, 0 ≤ i ≤ n, is a sequence of neighboring L-boxes, which are good(α, β, γ), and
Nu(D

i) < β cap(D), for i = 0, . . . , n (with Di the D-type box attached to Bi), then

(6.1)
there exists a path in

n⋃
i=0

(Di\(rangeZDi

1 ∪ . . . ∪ rangeZDi

β cap(Di)) ⊆
( n⋃
i=0

Di
)
∩ Vu starting in B0 and ending in Bn

(note that cap(Di) = cap(D0) for all 0 ≤ i ≤ n, in the notation of (2.9)).

Proof. Since each Bi is good(α, β, γ), Bi\(rangeZDi

1 ∪ . . . ∪ rangeZDi

α cap(Di)) contains a

connected set with diameter at least L
10
. By (2.12) the corresponding connected sets

for i and i + 1 (where 0 ≤ i < n) can be linked by a path in Di\(rangeZDi

1 ∪ . . . ∪
rangeZDi

β cap(Di))). As a result we have a path from B0 to Bn in
⋃n−1
i=0 D

i\(rangeZDi

1 ∪ . . .∪
rangeZDi

β cap(D)), and since cap(Di) = cap(D) and Nu(D
i) < β cap(D), for i = 0, . . . , n,

this last set is contained in
⋃n−1
i=0 (D

i∩Vu) = (
⋃n−1
i=0 D

i)∩Vu, and the lemma is proved.

Remark 6.2. The above connectivity result plays the role of (5.14) of Lemma 5.9 of [22].
The notion of an L-box B being ψ-good at level α, β in the context of [22] is replaced
here by B is good(α, β, γ), whereas the notion of an L-box being h-good at level a in [22],
is replaced here by the condition Nu(D) < β cap(D). �

We recall thatM > 1 is a real number, SN = {x ∈ Zd, |x|∞ = [MN ]}, and u is defined
in (2.3). We now come to the main result.

Theorem 6.3. Assume that 0 < u < u. Then, for all M > 1,

(6.2) lim sup
N

1

Nd−2
log P[AN ] ≤ −1

d
(
√
u−
√
u)2capRd([−1, 1]d),

where AN = {BN
Vu

= SN} and capRd([−1, 1]d) stands for the Brownian capacity of [−1, 1]d.

Proof. We first assume M ≥ 2, pick a ∈ (0, 1
10
), and introduce the event

(6.3) ÂN = {B(1+a)N

Vu

←→/ SN}.

As a main step to (6.2), we will first show that for all M ≥ 2 and 0 < a < 1
10
,

(6.4) lim sup
N

1

Nd−2
log P[ÂN ] ≤ −1

d
(
√
u−
√
u)2capRd([−1, 1]d).
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The claim (6.2) will then quickly follow.

We now prove (6.4). We pick Γ ≥ 1 (large), α > β > γ in (u, u), as well as ε in (0, 1)

such that ε(
√

u
u
−1) < 1 and u(1− ε(

√
u
u
−1))−2 < γ. We then pick L = [(ΓN logN)

1
d−1 ]

as in (5.1) and K ≥ c4(α, β, γ) ∨ c5(ε) ∨ c8(α, β, γ), in the notation of Theorems 2.3, 3.2
and 5.1. We then define η as in (5.4) and ρ as in (5.6).

We recall the notation from below (5.1) concerning columns. We know from Lemma
6.1 that for large N , if all boxes in a column are good(α, β, γ), and the variables Nu(D)
corresponding to the various boxes in the column are smaller than β cap(D), then there
exists a path in Vu from B(1+a)N to SN (here, we tacitly use of our choice of a ∈ (0, 1

10
)

and M ≥ 2 > 1 + a). Hence, for large N , on ÂN all columns contain an L-box, which is
bad(α, β, γ), or such that Nu(D) ≥ β cap(D).

By definition of CN in (5.7), we see that for large N ,

(6.5)
on DN = ÂN\CN , except for at most ρ(N

L
)d−1 columns,

all columns contain a box such that Nu(D) ≥ β cap(D).

Thus, on the event DN we can throw away [ρ(N
L
)d−1] columns, and then, for each column

in the remaining set of columns, select a box B, which is good(α, β, γ), and with corre-
sponding Nu(D) ≥ β cap(D). We further remove columns that have their projection on
the face Fe,N attached to the column, at distance less than KL from any other face Fe′,N ,
e′ 6= e (recall that K = 2K+3, see (3.1)). Then, restricting to a sub-lattice, we only keep
columns attached to a given face Fe,N , with |e| = 1, which are at mutual | · |∞-distance
at least KL (specifically, we only keep columns of boxes that have labels z ∈ L such that
the projection of z on the orthogonal space to e belongs to KL).

We write C̃ for the subset of ∂iBN =
⋃

|e|=1 Fe,N (the internal boundary of BN )
obtained by projecting the selected columns onto the face Fe,N attached to the respective
columns, and write FN for the set of points of ∂iBN that belong to a single face Fe,N and
are at | · |∞-distance at least KL from all other faces Fe′,N , e

′ 6= e.

In the fashion described above, selecting a subset of columns in at most 2c(
N
L
)d−1

ways
and in each selected column a box in at most (M + 1)N/L ways, we see that there is a
family with cardinality at most exp{c9(NL )d−1 log((M+1)N)] of finite subsets C of L-boxes
such that

(6.6)





i) the boxes B in C belong to mutually distinct columns,

ii) the columns containing a box of C are at mutual | · |∞-distance
at least KL,

iii) C̃ ⊆ FN ,

iv) at most c10(K)(Nd−2L+ ρNd−1) points of FN are at | · |∞-distance

bigger than KL of C̃,

(recall that C̃ is obtained by projecting the boxes of C on the face of BN attached to the
column where the box sits).

The above procedure yields a “coarse graining” of the event DN , in the sense that for
large N ,

(6.7) DN ⊆
⋃
C
DN,C, where DN,C =

⋂
B∈C
{B is good(α, β, γ) and Nu(D) ≥ β cap(D)}
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(and C runs over a family with cardinality at most exp{c9(NL )d−1 log((M + 1)N)} with
(6.6) fulfilled).

By Theorem 3.2, we can bound P[DN,C] uniformly in the above collection and find
that

(6.8)

lim sup
N

1

Nd−2
log P[DN ] ≤

lim sup
N

{
c9

(
N

L

)d−1 log((M + 1)N)

Nd−2
−

(√
γ −

√
u

1−ε(
√

u
u
−1)

)
(
√
γ −√u) inf

C
cap(C)

Nd−2

}
(5.1)

≤ c9
Γ
−

(
√
γ −
√
ũ)2 lim inf

N

1

Nd−2
inf
C

cap(C),

with ũ = u(1− ε(
√

u
u
− 1))−2 < γ (by our choice of ε below (6.4)), and where we have set

C =
⋃
B∈C B and used that C ⊆ C =

⋃
B∈C D in the notation of (3.3) (the upper bound

in (3.8) of Theorem 3.2 is actually stronger than what we use in (6.8)).

By the same arguments leading to (5.37) of [22] and Lemma 5.6 of the same reference
(which is based on a Wiener-type criterion), we know that

(6.9) lim inf
N

inf
C

cap(C)

cap(C̃)
≥ 1 and lim inf

N
inf
C

cap(C̃)

cap(BN )
≥ 1.

(incidentally, the last inequality actually is an equality).
As a result, coming back to (6.8), we obtain that

lim sup
N

1

Nd−2
log P[DN ] ≤ c9

Γ
− (
√
γ −
√
ũ)2 lim inf

N

cap(BN )

Nd−2

=
c9
Γ
− 1

d
(
√
γ −
√
ũ)2 capRd([−1, 1]d),

(6.10)

where we used (3.14) of [22], and recall that ũ = u(1− ε(
√

u
u
− 1))−2(< γ).

We can now bring into play the super-exponential estimate of Theorem 5.1 and find

lim sup
N

1

Nd−2
logP[ÂN ] ≤ lim sup

N

1

Nd−2
max(log P[DN ], logP[CN ])

≤ c9
Γ
− 1

d
(
√
γ −
√
ũ)2 capRd([−1, 1]d).

Letting Γ tend to infinity, ε tend to zero, and then γ tend to u, we find (6.4).

We will now prove (6.2). We introduce N ′ = [ N
1+a

] with a ∈ (0, 1
10
) as above (6.4),

and M ′ = 2(1 + a)M (so that M ′ ≥ 2). We denote by A′
N the event where N in (6.3) is

replaced by N ′ and M (entering the definition of SN ) is replaced by M ′. For large N , we
have (1 + a)N ′ ≤ N and M ′N ′ ≥ MN , so that AN ⊆ AN ′ . As a result of this inclusion
and (6.4) we see that

lim sup
N

1

Nd−2
logP[AN ] ≤ lim sup

N

(
N ′

N

)d−2 1

N ′(d−2)
logP[A′

N ]

(6.4)

≤ − 1

(1 + a)d−2

1

d
(
√
u−
√
u)2 capRd([−1, 1]d).

(6.11)

Letting a tend to zero, we obtain (6.2). This concludes the proof of Theorem 6.3.
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We will now deduce from Theorem 6.3 an asymptotic upper bound on the probability
that simple random walk disconnects BN from SN . We denote by I the set of points
visited by the simple random walk and by V = Zd\I its complement. We recall that P0

governs the law of the walk starting from the origin, and SN = {x ∈ Zd; |x|∞ = [MN ]}.

Corollary 6.4. (d ≥ 3, u as in (2.3))

For any M > 1,

(6.12) lim sup
N

1

Nd−2
log P0[BN

V←→/ SN ] ≤ −1

d
u capRd([−1, 1]d).

Proof. The argument is similar to that of Corollary 7.3 of [22]. Given u > 0, we can find
a coupling P of Iu under P[· |0 ∈ Iu] and I under P0, so that P -a.s., I ⊆ Iu. As a result,
we have

P0[BN

V←→/ SN ] = P [BN

V←→/ SN ] ≤ P [BN

Vu

←→/ SN ]

= P[BN

Vu

←→/ SN |0 ∈ Iu] ≤ (1− e−
u

g(0) )−1 P[BN

Vu

←→/ SN ],

(6.13)

with g(0) as in (1.4) (and e−
u

g(0) = P[0 ∈ Vu]). By Theorem 6.3, it now follows that for
any 0 < u < u,

(6.14) lim sup
N

1

Nd−2
logP0[BN

V←→/ SN ] ≤ −1

d
(
√
u−
√
u)2 capRd([−1, 1]d).

Letting u→ 0 yields (6.12).

Remark 6.5.

1) As mentioned in the Introduction, it is plausible, but not known at the moment, that
u = u∗ = u∗∗. If this is the case, then [12] and [10] yield matching asymptotic lower
bounds for Theorem 6.3 and for Corollary 6.4.

2) When K is a (suitably regular) compact subset of Rd, and KN = (NK) ∩ Zd its
discrete blow-up, one can wonder whether in the case of random interlacements on Zd

(with hopefully obvious notation)

(6.15) lim
N

1

Nd−2
log P[KN

Vu

←→/ ∞] = −1

d
(
√
u∗ −

√
u)2 capRd(K), for 0 < u < u∗,

and in the case of simple random walk on Zd,

(6.16) lim
N

1

Nd−2
log P0[KN

V←→/ ∞] = −1

d
u∗ capRd(K).

Asymptotic lower bounds, with liminf in place of lim, and u∗∗ in place of u∗, are shown
in [12], in the case of (6.15), and in [10], in the case of (6.16).

3) Possibly, some of the techniques developed in this article might be helpful to improve
the results of [24] concerning the disconnection time of simple random walk with a slight
bias in a discrete cylinder with a large periodic base (see Theorems 1.1, 1.2 and Remark
6.7 of [24]). �
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A Appendix

In this appendix we provide the proof of Lemma 1.3. The arguments are similar to p. 50
of [9]. The proof is included for the reader’s convenience.

Proof of Lemma 1.3. The uniqueness in the statement is immediate. Only the existence is
at stake. We first observe that if z ∈ ∂U does not belong to the boundary the connected
component of U containing B(0, L), all three members of (1.21) vanish (and (1.21) holds
with ψA,Uy,z = 0). We can thus assume from now on that U is connected.

The first equality Pz[HA < H̃∂U , XHA
= y] = Py[TU < H̃A, XTU = z], with y ∈ A and

z ∈ ∂U , is obtained by time-reversal (one sums over the possible values in the discrete
skeleton of the walk, of the entrance time in A, for the probability on the left, and of
the exit time of U , for the probability on the right). It then suffices to show that when
K ≥ c, for y ∈ A, z ∈ ∂U , one has

(A.1) Py[TU < H̃A, XTU = z] = eA(y)P0[XTU = z](1 + ψ), with |ψ| ≤ c′/K.

One introduces the function on Zd

h(x) = Px[XTU = z], for x ∈ Zd.

It is positive and harmonic in U ⊇ B(0, KL). When K ≥ c, it follows from the gradient
control in Theorem 1.7.1, on p. 42 of [9], and the Harnack inequality in Theorem 1.7.2,
on p. 42 of [9], that for x ∈ D ∪ ∂D, where D = B(0, 2L),

(A.2) |h(x)− h(0)| ≤ c
|x|
KL

sup
B(0,KL

2
)

h ≤ c
|x|
KL

h(0)

(using chaining in the last step).

Noting that TD happens before TU , we find that by the strong Markov property

(A.3) Py[TU < H̃A, XTU = z] = Ey
[
TD < H̃A, PXTD

[TU < HA, XTU = z]
]
.

Now, for x ∈ ∂D we have

(A.4)

Px[TU < HA, XTU = z] = h(x)− Px[HA < TU , XTU = z] =

h(x)− Px[HA + TD ◦ θHA
< TU , XTU = z]

strong Markov
=

h(x)− Ex[HA + TD ◦ θHA
< TU , h(XTD ◦ θHA

)] =

h(x)− Ex[HA < TU , h(XTD ◦ θHA
)].

As a result of (A.2) we see that

(A.5) ϕ =
1

h(0)

(
h− h(0)

)
satisfies sup

D∪∂D
|ϕ| ≤ c̃/K.

In addition, it follows by (A.4) that for x ∈ ∂D

(A.6) Px[TU < HA, XTU = z] = h(0)(Px[TU < HA]+ϕ(x)−Ex[HA < TU , ϕ(XTD ◦θHA
)]).

Further, we note that for x ∈ ∂D

(A.7) Px[TU < HA] ≥ Px[HB(0,L) =∞] ≥ c,
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and setting for x ∈ ∂D

(A.8) ϕ̃(x) = ϕ(x)/Px[TU < HA], we have sup
∂D
|ϕ̃| ≤ c/K.

As a result, we obtain that for x ∈ ∂D

(A.9) Px[TU < HA, XTU = z] = h(0)Px[TU < HA]
(
1 + γ(x)

)
,

where we have set

(A.10) γ(x) = ϕ̃(x)− 1

Px[TU < HA]
Ex[HA < TU , ϕ(XTD ◦ θHA

)], so that sup
∂D
|γ| ≤ c/K.

Coming back to (A.3) we obtain (with XTD playing the role of x in (A.9)) that

(A.11)

Py[TU < H̃A, XTU = z] = h(0)Ey
[
TD < H̃A, PXTD

[TU < HA]
(
1 + γ(XTD)

)]
=

P0[XTU = z] eA(y)
Py[TU < H̃A]

Py[H̃A =∞]
Ey[1 + γ(XTD) | TU < H̃A],

where we note that when eA,U(y) = Py[TU < H̃A] > 0, then eA(y) = Py[H̃A = ∞] > 0
(because eA,U(y) ≤ eA,B(0,KL)(y) and (1.16)), and the ratio above is understood as 1 if
eA(y) vanishes. We thus see that the ratio in the last line of (A.11) lies between 1 and
1 + ρA,B(0,KL) ≤ (1− c

Kd−2 )
−1
+ , by (1.18) of Lemma 1.2 and (1.8).

Thus, looking at the last line of (A.11), we see that when K ≥ c,

Py[TU < H̃A, XTU = z] = eA(y)P0[XTU = z](1 + ψ) with |ψ| ≤ c′/K,

i.e. (A.1) holds and this proves Lemma 1.3. �
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[23] A. Teixeira. On the size of a finite vacant cluster of random interlacements with
small intensity. Probab. Theory Relat. Fields, 150(3-4):529–574, 2011.

[24] D. Windisch. On the disconnection of a discrete cylinder by a biased random walk.
Ann. Appl. Probab., 18(4):1441–1490, 2008.

38


