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Abstract

In this article we obtain uniform estimates on the absorption of Brownian
motion by porous interfaces surrounding a compact set. An important ingre-
dient is the construction of certain resonance sets, which are hard to avoid for
Brownian motion starting in the compact set. As an application of our results,
we substantially strengthen the results of [22], and obtain when d ≥ 3, large
deviation upper bounds on the probability that simple random walk in Zd, or
random interlacements in Zd, when their vacant set is in a strongly percola-
tive regime, disconnect the discrete blow-up of a regular compact set from the
boundary of the discrete blow-up of a box containing the compact set in its
interior. Importantly, we make no convexity assumption on the compact set.
It is plausible, although open at the moment, that the upper bounds that we
derive in this work match in principal order the lower bounds of [15] in the case
of random interlacements, and of [14] for the simple random walk.
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0 Introduction

The notion of capacity has many facets. Given a compact subset A of Rd, d ≥ 3,
its Brownian capacity cap(A) can for instance be viewed as a measure of its size
for Brownian motion coming from far away, see [18], p. 58. But it also equals the
infimum of the Dirichlet energies of smooth compactly supported functions equal to
1 on a neighborhood of A, see [20], p. 87, and also alternatively the inverse of the
infimum of the energies of probability measures supported by A, see [20], p. 76. It
is a classical fact of potential theory that any compact set S that separates A from
infinity has a Brownian capacity cap(S), which is bounded from below by cap(A).
However, when such an “interface” S is replaced by a “porous deformation” Σ, uniform
comparisons between cap(A) and cap(Σ) become more delicate, in part due to the
possible degenerations of the interfaces and porous interfaces under consideration.
When A is convex, the problem can sometimes be circumvented with the help of the
projection attached to A, but the issue becomes acute when no convexity assumption
is made on A. The challenge is then to bring into play a notion of porous interfaces,
which has meaningful consequences, and is relevant for applications.

In this article we make no convexity assumption on A. We introduce a notion of
porous interfaces Σ surrounding A, and obtain uniform estimates for the absorption
by Σ of Brownian motion starting in A. These solidification estimates readily lead
to uniform comparisons between cap(A) and cap(Σ). An important ingredient in
proving such solidification estimates is the construction of certain resonance sets,
which are hard to avoid for Brownian motion starting in A, and where on many scales
the local densities of the interior and the exterior of the segmentation underlying Σ
remain balanced.

As an application of these estimates, we are able to substantially strengthen the
results of [22] and obtain large deviation upper bounds on the probability that simple
random walk in Zd, or random interlacements in Zd, when their vacant set is in a
strongly percolative regime, disconnect the discrete blow-up of a regular compact set
A from the boundary of the discrete blow-up of a box containing A in its interior.
Whereas the results of [22] handled the case when A is itself a box, and the methods of
[22] might conceivably have been extended to handle the case of a regular compact
convex set A, the case treated here, when A is a regular compact set, requires a
genuinely new approach to the coarse graining procedure, which is employed. Quite
plausibly, the upper bounds that we derive in this work are sharp and match in
principal order the large deviation lower bounds obtained in [14] and [15].

We will now describe our results in a more precise form. We consider Rd, mainly
when d ≥ 3 (although d ≥ 2 throughout Section 1). We consider a non-empty compact
subset A of Rd, and a collection of “interfaces” S = ∂U0 = ∂U1, where U0 is a bounded
Borel subset of Rd and U1 its complement. To control the “distance” of A to U1, we
define for `∗ non-negative integer

U`∗,A = the collection of bounded Borel subsets U0 for which the
local density of U1 for any box centered at a point of A with
side-length 2 ⋅ 2−` is at most 1

2 when ` ≥ `∗
(0.1)

(this last condition is for instance satisfied when the sup-distance of A to U1 = Rd/U0

exceeds 2−`∗).
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At a heuristic level the “interface” S = ∂U0 = ∂U1 can be viewed as a kind
of segmentation of the “porous interfaces”, which we now introduce. For a given
U0 ∈ U`∗,A, and ε > 0, η ∈ (0,1) respectively measuring the distance from S at which
the porous interface is felt, and the strength with which it is felt, we consider in the
hard obstacle case

SU0,ε,η = the collection of compact subsets Σ of Rd such that
Px[HΣ < τε] ≥ η for all x ∈ S (= ∂U0),

(0.2)

where Px stands for the Wiener measure starting from x, governing the canonical
Brownian motion X on Rd, HΣ = inf{s ≥ 0;Xs ∈ Σ} for the entrance time of X in Σ,
and τε = inf{s ≥ 0; ∣Xs −X0∣∞ ≥ ε} for the first time X moves at sup-distance ε from
its starting point.

U1

s

e

S

2ell

A

U0

Fig. 1: An illustration of a U0 in U`∗,A and Σ in SU0,ε,η

In the soft obstacle case, we instead consider

VU0,ε,η = the collection of non-negative, locally bounded,
measurable functions V on Rd, such that
Ex[exp{−

´ τε
0 V (Xs)ds}] ≤ 1 − η, for all x ∈ S (= ∂U0),

(0.3)

where Ex stands for the expectation relative to the measure Px.

Asymptotic solidification estimates play a central role in this work. They appear
in Theorem 3.1 and for given A and η they provide controls in the limit where ε/2−`∗
tends to zero, on the trapping probability of Brownian motion starting in A by the
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porous interface, uniformly over Σ ∈ SU0,ε,η or V ∈ VU0,ε,η, U0 ∈ U`∗,A, and over the
starting point x in A. Namely, for given A and η, we show that

(0.4) lim
u→0

s̃up Px[HΣ =∞] = 0

(where s̃up stands for the supremum over ε ≤ u2−`∗ , U0 ∈ U`∗,A, Σ ∈ SU0,ε,η, and
x ∈ A), and

(0.5) lim
u→0

ŝup Ex[ exp{ −

ˆ ∞

0
V (Xs)ds}] = 0

(where ŝup stands for the supremum over ε ≤ u2−`∗ , U0 ∈ U`∗,A, V ∈ VU0,ε,η, and
x ∈ A), and actually, the quantities under the “limu→0” sign in both (0.4) and (0.5)
are maximal when A = {0} (see also Remark 3.6 2) for a reformulation of (0.4), (0.5),
using scaling when A = {0}).

As an application of (0.4), we show in Corollary 3.4 an asymptotic lower bound
on capacity that plays a pivotal role in our treatment of the disconnection problems
that we consider in Section 4. Namely when cap(A) > 0, with a similar meaning as
below (0.4), one has

(0.6) lim
u→0

ĩnf cap(Σ)/cap(A) = 1.

Importantly, no convexity assumption is made on A. When A is convex, asymptotic
lower bounds on cap(Σ) are often easier to achieve, as explained in Remark 3.6 3).

As a (straightforward) illustration of (0.5), we consider the time spent by Brow-
nian motion in the ε-neighborhood of S (= ∂U0) for the sup-distance, and show in
Corollary 3.5 that for any a > 0 and `∗ ≥ 0,

(0.7) lim
ε→0

sup
U0∈U`∗,A

sup
x∈A

Ex[ exp{ −
a

ε2

ˆ ∞

0
1{d(Xs, S) ≤ ε}ds}] = 0.

The difficulty in proving (0.4) (or (0.5)) stems from the fact that U0 varies over the
whole class U`∗,A and the interface S as well as the porous interface Σ may undergo
degenerations and become brittle in certain parts of space (where, for instance, they
can behave as a soft potential due to an effect of a “constant capacity regime”, see
Remark 3.6 1)).

An important ingredient in the proof of Theorem 3.1 (cf. (0.4), (0.5)) is the
construction of certain resonance sets, where on well-separated spatial scales the
local densities of both U0 and its complement U1 are non-degenerate. Specifically,
given U0 and integers J ≥ 1, L ≥ L(J) (see (1.27)) and I ≥ 1 the resonance set is (see
(2.5))

(0.8) Res = {x ∈ Rd; ∑
`∈A∗

1{σ̃`(x) ∈ [α̃,1 − α̃]} ≥ J},

where α̃ = 1
3 4−d is a dimensional constant, σ̃`(x) denotes the local density of U1

in the closed box B(x,4 ⋅ 2−`) of center x and side-length 8 ⋅ 2−`, and ` ranges over
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A∗ ⊆ LN, which in essence, see (2.3) for the precise definition, consists of the first
I(J + 1) integers in LN that are bigger or equal to `∗.

The resonance set need not separate A from infinity (see Remark 2.3 1)), but
crucially, as shown in Theorem 2.1, it is hard for Brownian motion starting in A
to avoid the resonance set when I is large. We even obtain stretched-exponential
bounds on the avoidance probability and show in Theorem 2.1 that for any J ≥ 1,

lim
I→∞

I−1/2J−1

log ( sup
`∗≥0

sup
U0∈U`∗,A

sup
L≥L(J)

sup
x∈A

Px[HRes =∞]) ≤ −c(J) < 0(0.9)

(with HRes = inf{s ≥ 0;Xs ∈ Res} the entrance time of X in the
resonance set Res).

Actually, as shown in Theorem 2.1, the quantity under the logarithm is maximal
when A = {0}.

Equipped with the crucial estimate (0.9), we can use the resonance set in (0.8) as
a substitute for a Wiener criterion, and infer that the porous interfaces Σ, or the soft
obstacles V , whose presence is felt in the ε-vicinity of S = ∂U0 = ∂U1, have massive
trapping power as quantified by (0.4) and (0.5), see Theorem 3.1 and its proof.

In Section 4, we apply Corollary 3.4 (see (0.6)), to a disconnection problem for
simple random walk on Zd, or for random interlacements on Zd, when their vacant
set Vu is in the strongly percolative regime u ∈ (0, u), with u the critical level from
[22], cf. (2.3) in this reference. We consider a non-empty compact subset A of Rd
contained in the interior of a box of side-length 2M centered at the origin, as well as
the discrete blow-up of A and the interior boundary of the discrete blow-up of the
above mentioned box:

(0.10) AN = (NA) ∩Zd and SN = {x ∈ Zd; ∣x∣∞ = [MN]}

(where [⋅] denotes the integer part).

In the case of random interlacements, we are interested in the disconnection event
corresponding to the absence of paths in Vu between AN and SN , denoted by

(0.11) D
u
N = {AN

Vu
←→/ SN}

(DuN coincides with the full sample space if AN happens to be empty).

When the compact set A is regular in the sense that

(0.12) cap(A) = cap(Å) (with Å the interior of A),

we show that for u ∈ (0, u), that is in the strongly percolative regime for Vu, one has

(0.13) lim sup
N

1

Nd−2
logP[DuN ] ≤ −

1

d
(
√
u −

√
u)2 cap(A).

Our results are actually more general, see Theorem 4.1 and also Remark 4.5 3).
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In the case of the simple random walk, we similarly consider the vacant set V
that is the complement of the set of sites visited by the canonical walk on Zd. We
are then interested in the disconnection event corresponding to the absence of paths
in V between AN and SN

(0.14) DN = {AN
V
←→/ SN}

(and DN coincides with the full canonical space if AN happens to be empty).

As a rather straightforward consequence of (0.13) (this formally corresponds to
letting u→ 0), we show in Corollary 4.4 that when A fulfills the regularity condition
(0.12), then for any x in Zd

(0.15) lim sup
N

1

Nd−2
logPZd

x [DN ] ≤ −
u

d
cap(A)

(with PZd
x the canonical law of simple random walk starting at x).

Again, our results are more general, see Corollary 4.4 and Remark 4.5 3). Actu-
ally, it is plausible that the upper bounds (0.13), (0.15) catch the correct principal
exponential decay of the probabilities under consideration, and match the lower
bounds respectively derived in [15] and [14]. This feature rests on the identification
(open at the moment) of u with the box-to-box critical level u∗∗ for the percola-
tion of the vacant set of random interlacements, so that one would then have the
equalities u = u∗ = u∗∗, with u∗ the critical level for the percolation of the vacant
set of random interlacements. Incidentally, the recent work [11] might lead to some
progress towards a proof of u∗ = u∗∗. The coincidence of the three critical levels
would then show that under (0.12),

lim
N→∞

1

Nd−2
logP[DuN ] = −

1

d
(
√
u∗ −

√
u)2 cap(A), for 0 < u < u∗,

and

lim
N→∞

1

Nd−2
logPZd

x [DN ] = −
u∗
d

cap(A), for x in Zd.

The lower bounds in [15] for the case of random interlacements, and [14] for the
case of simple random walk are based on the change of probability method. They
respectively involve probability measures P̃N (in the case of random interlacements)
and P̃N (in the case of simple random walk) implementing certain “strategies” to
produce disconnection. If the critical values u ≤ u∗ ≤ u∗∗ actually coincide, the
results of the present work show that these strategies are (nearly) optimal and thus
hold special significance. We briefly sketch what these strategies are.

In the case of random interlacements, the measures P̃N from [15] correspond to
so-called tilted interlacements that are slowly space-modulated interlacements at a
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level (slowly varying over space) equal to f2
N(x) = (

√
u+(

√
u∗∗−

√
u)h( xN ))2, x ∈ Zd,

where h on Rd is the solution of the equilibrium problem

(0.16)
⎧⎪⎪
⎨
⎪⎪⎩

∆h = 0 outside Ã ,

h = 1 on Ã and h tends to zero at infinity,

with Ã a slight thickening of A. Informally, the tilted interlacements create a “fence”
around AN on which they locally behave as interlacements at level u∗∗ (one actually
chooses u∗∗ + δ in place of u∗∗ in the formula for fN , with δ a small positive num-
ber). They produce locally on this fence a strongly non-percolative regime for the
vacant set, and typically disconnect AN from SN , when N is large. Informally, the
tilted interlacements correspond to a Poisson cloud of bilateral trajectories, which
are governed by the generator L̃N g(x) = 1

2d ∑∣x′−x∣=1
fN (x′)
fN (x) (g(x′)− g(x)), instead of

the discrete Laplacian (corresponding to the case when fN is a constant function).

In the case of the simple random walk, the measures P̃N from [14] correspond to
tilted walks that in essence behave as a walk with generator LN g(x) =
1
2d ∑∣x′−x∣=1

hN (x′)
hN (x) (g(x′)− g(x)) up to a deterministic time TN and afterwards move

as a simple random walk, where hN(x) = h( xN ), with h as in (0.16) and TN is chosen
such that the expected time spent by the tilted walk at a point x ∈ AN amounts to
(u∗∗+δ)h2

N(x) = u∗∗+δ (with the choice of h in (0.16)). Again, this creates a “fence”
around AN , where the vacant set left by the tilted walk at time TN is locally in a
strongly non-percolative regime, and typically disconnects AN from SN , for large N
(one actually chooses a compactly supported approximation of h in (0.16) for the
definition of the tilted walk).

Let us emphasize that no convexity assumption is made on A in the derivation of
the upper bounds (0.13), (0.15). This represents an important progress on [22], where
A was assumed to be a box. We use a different approach to the coarse graining of the
disconnection event DuN . The notion of porous interfaces and Corollary 3.4 (cf. (0.6))
play a pivotal role in the derivation of (0.13). The scale ε in (0.6) roughly corresponds
to L̂0

N , cf. (4.19), where L̂0 is a scale slightly smaller than N , on which we perform a
“segmentation” of an interface of “blocking boxes” of a much smaller scale L0, slightly
bigger than (N logN)

1
d−1 , cf. (4.19), which is present when the disconnection event

occurs. In a sense we follow a refined version of the strategy for the tracking of
interfaces underpinning Section 2 of [7]. After removal of a “bad event” of negligible
probability from the disconnection event DuN , we obtain the effective disconnection
event D̃uN , cf. (4.41). We partition D̃uN into a not too large collection of events DN,κ
(where κ runs over a set of exp{o(Nd−2)} elements). This partition embodies the
coarse graining, cf. (4.45). In essence, each event DN,κ corresponds to the selection
of discrete “blocking boxes” of side-length L0 having “substantial presence” in each
of the selected boxes of side-length 2L̂0 (see Figure 2). If C denotes the union of all
selected boxes of side-length L0, we have an exponential estimate on the probability
of each DN,κ in terms of capZd(C), cf. (4.14). With the help of Proposition A.1 in
the Appendix, we can in essence replace capZd(C) by 1

dN
d−2cap(Σ), where Σ (the

porous interface) corresponds to the solid Rd-filling of C
N . At this point crucially
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Corollary 3.4 enables us to obtain an asymptotic uniform lower bound of cap(Σ) in
terms of cap(A). In our application of Corollary 3.4, it should be underlined that
both the interface S and the porous interface Σ are “constructs of the coarse graining
procedure”, cf. (4.48), (4.49) (in particular S is by no means a priori given). We refer
to Section 4 below (4.26) for a more detailed outline of the proof of Theorem 4.1
(cf. (0.13)).

L0

LaN

Lsk

SN

AN

Fig. 2: An illustration of some features entering the definition of the event DN,κ
with the selected boxes of side-length 2L̂0 on the left-hand side, and the
blow-up of one such box with the selected boxes of side-length L0 (in
black), on the right-hand side.

Plausibly, the methods of this article might be pertinent in the context of level-
set percolation of the Gaussian free field and lead to an improvement of the results
of [21], see Remark 4.5 1). One may also wonder whether in the spirit of the Wulff
shape theory for the existence of a large finite cluster at the origin in supercritical
Bernoulli percolation, cf. [3] and the references therein, some insight might be gained
concerning the behavior of a large finite connected component at the origin for the
vacant set of random interlacements Vu in the strongly percolative regime u ∈ (0, u).

Let us now describe the organization of this article. Section 1 collects several
results concerning the local density functions. In particular, Proposition 1.4 pro-
vides in essence a lower bound for the probability that Brownian motion enters the
resonance set when starting at a good point. In Section 2, the main Theorem 2.1
shows that when starting in A, Brownian motion can hardly avoid the resonance set,
cf. (0.9). Lemma 2.2 contains an important induction step for the proof of Theorem
2.1. In Section 3, we introduce the notion of porous interfaces and show the central
solidification estimates in Theorem 3.1, see also (0.4), (0.5). We then provide a first
application with the capacity lower bound (0.6) in Corollary 3.4 and a second (and
quicker) application to the estimate (0.7) in Corollary 3.5. In section 4, we derive
with the help of Corollary 3.4 the large deviation upper bounds (0.13), (0.15) on the
probability of the disconnection events (0.11), (0.14) in Theorem 4.1 and Corollary
4.4. Additional estimates appear in Remark 4.5 3). In the Appendix, we provide in
Proposition A.1 an asymptotic comparison between the simple random walk capacity
of arbitrary finite unions of well-separated large boxes and the Brownian capacity of
the solid filling of these boxes.
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Finally, let us explain our convention concerning constants. We denote by c, c′, c̃
positive constants changing from place to place that simply depend on d. Numbered
constants such as c0, c1, c2, . . . refer to the value corresponding to their first appear-
ance in the text. Dependence of constants on additional parameters appears in the
notation.

1 Local density functions

In this section we develop several controls concerning certain local density functions
that will help us track the presence of interfaces. The main result is contained
in Proposition 1.4. In essence, it provides a lower bound on the probability that
Brownian motion starting at a point where the local density on a certain scale is
well-balanced, visits before moving at a distance comparable to that scale a point
where on several well-separated smaller scales the local densities are well-balanced.
This result will be of direct use in the proof of Theorem 2.1 in the next section. We
begin with some notation.

Throughout this section we assume that d ≥ 2. We denote by ∣x∣∞ and ∣x∣1 the
respective sup-norm and `1-norm of x ∈ Rd. For r ≥ 0, we let B(x, r) stand for the
closed ball in sup-norm with center x and radius r. When A is a subset of Rd, we
write A for its closure, Å for the interior, and ∂A = A/Å for its boundary. We let
d(x,A) = inf{∣x − y∣∞; y ∈ A} denote the sup-norm distance of x to A. When A is a
Borel subset of Rd, we sometimes write ∣A∣ for its Lebesgue measure.

We denote by (Xt)t≥0 the canonical Rd-valued process on C(R+,Rd), the space
of continuous Rd-valued functions on R+, which we endow with the canonical σ-
algebra F and the canonical right-continuous filtration denoted by (Ft)t≥0. We let
(θt)t≥0 stand for the canonical shift (so that θt(w)(⋅) = w(t + ⋅), for w ∈ C(R+,Rd)
and t ≥ 0). We denote by Px the Wiener measure starting from x ∈ Rd, and by Ex
the corresponding expectation. So, under Px the process (Xt)t≥0 is the canonical
Brownian motion on Rd starting from x. When A is a closed subset of Rd, we write
HA = inf{s ≥ 0,Xs ∈ A} for the entrance time of X in A, H̃A = inf{s > 0; Xs ∈ A} for
the hitting time of A, and when U is an open subset of Rd, we write TU = inf{s ≥ 0;
Xs ∉ U} (=HUc) for the exit time of U . They all are (Ft)-stopping times.

We consider

(1.1) U0 /= ∅, a bounded Borel subset of Rd and U1 = Rd/U0, its complement.

The boundary

(1.2) S = ∂U0 = ∂U1

is a compact subset of Rd. In Section 3 the porous interface corresponding to Σ in
the hard obstacle case, or to V in the soft potential case, will be “palpably” present
in the vicinity of every point of S. At a heuristic level, S will be some kind of
“segmentation” for the porous interface.
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In this section we are mainly concerned with the development of various controls
on certain local density functions (in dyadic scales), which we now introduce. For
x ∈ Rd and ` ∈ Z, we set

(1.3)
⎧⎪⎪
⎨
⎪⎪⎩

σ̂`(x) = ∣B(x,2−`) ∩U1∣ / ∣B(x,2−`)∣,

σ̃`(x) = ∣B(x,4 ⋅ 2−`) ∩U1∣ / ∣B(x,4 ⋅ 2−`)∣ = σ̂`−2(x) .

Eventually, our main interest will lie in the case ` ≥ 0, i.e. in the local scale picture,
but for the time being in this section, we do not impose any restriction on the sign
of `. As a shorthand for the average of a locally integrable function f on a sup-norm
ball B(x,2−`), with x ∈ Rd, ` ∈ Z, we write

(1.4) ⨏
B(x,2−`)

f(y)dy =
1

∣B(x,2−`)∣

ˆ
B(x,2−`)

f(y)dy

and we introduce the normalized Lebesgue measure restricted to B(x,2−`)

(1.5) µx,`(dy) =
1

∣B(x,2−`)∣
1B(x,2−`)(y)dy .

We first collect some facts concerning the Lipschitz character of the local densities
σ̂`(⋅) and σ̃`(⋅), and we relate σ̂`(⋅) to the average of σ̂`′ on B(x,2−`) when `′ > `.

Lemma 1.1. For x, y ∈ Rd, ` ∈ Z, one has

∣σ̂`(x + y) − σ̂`(x)∣ ≤ 2`∣y∣1,(1.6)

∣σ̃`(x + y) − σ̃`(x)∣ ≤ 2`−2
∣y∣1.(1.7)

Moreover, for `′ > ` in Z and x ∈ Rd one has

(1.8) ∣σ̂`(x) − ⨏
B(x,2−`)

σ̂`′(y)dy∣ ≤ c0 2`−`
′
, where c0 = d2d−1.

Proof. We begin with the proof of (1.6), and note that the claim follows from the
fact that for y collinear to a vector of the canonical basis of Rd,

∣σ̂`(x + y) − σ̂`(x)∣ ≤
1

∣B(x,2−`)∣
∣B(x,2−`)∆B(x + y,2−`)∣

(with ∆ the symmetric difference)

≤
2∣y∣1 (2 ⋅ 2

−`)d−1

(2 ⋅ 2−`)d
= 2`∣y∣1 .

(1.9)

The claim (1.6) readily follows. The claim (1.7) follows as well since σ̃` = σ̂`−2,
cf. (1.3). We now turn to the proof of (1.8). We consider `′ > ` in Z and note that
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for x ∈ Zd,

⨏
B(x,2−`)

σ̂`′(y)dy = ∣B(0,2−`)∣−1
∣B(0,2−`

′
)∣
−1

ˆ
1{∣y − x∣∞ ≤ 2−`}1{∣z − y∣∞ ≤ 2−`

′
}1U1(z)dy dz

= ∣B(0,2−`)∣−1

ˆ
1U1(z)ψ

x
`,`′(z)dz,

(1.10)

where ψx`,`′ stands for the continuous compactly supported function

(1.11) ψx`,`′(z) = ∣B(0,2−`
′
)∣
−1

ˆ
1{∣y − x∣∞ ≤ 2−`}1{∣z − y∣∞ ≤ 2−`

′
}dy,

so that

0 ≤ ψx`,`′ ≤ 1, and ψx`,`′ = 1 on B(x,2−` − 2−`
′
),

ψx`,`′ = 0 on Rd/B(x,2−` + 2−`
′
).

(1.12)

Coming back to (1.10), we find that

⨏
B(x,2−`)

σ̂`′(y)dy ≥ ∣B(x,2−`)∣−1

ˆ
B(x,2−`−2−`′)

1U1(z)dz

≥ σ̂`(x) − ∣B(x,2−`)/B(x,2−` − 2−`
′
)∣/∣B(x,2−`)∣

= σ̂`(x) − (1 − (1 − 2`−`
′
)
d) = σ̂`(x) −

ˆ 1

1−2`−`′
dud−1du

≥ σ̂`(x) − d2`−`
′
.

(1.13)

In a similar fashion, we have

⨏
B(x,2−`)

σ̂`′(y)dy ≤ ∣B(x,2−`)∣−1

ˆ
B(x,2−`+2−`′)

1U1(z)dz

≤ σ̂`(x) + ∣B(x,2−` + 2−`
′
)/B(x,2−`)∣/∣B(x,2−`)∣

= σ̂`(x) + (1 + 2`−`
′
)
d
− 1 = σ̂`(x) +

ˆ 1+2`−`
′

1
dud−1du

≤ σ̂`(x) + d2d−12`−`
′
.

(1.14)

Collecting (1.13) and (1.14), we find (1.8). This concludes the proof of Lemma 1.1.

The next lemma will show that when `′ > ` and σ̂`′ has an average β′ in a box
B(x,2−`), then, either σ̂`′ takes with sizeable measure in the box B(x,2−`) values
bigger and values smaller than β′ by a certain amount, or that σ̂`′ takes with sizeable
measure in the box B(x,2−`) values close to β′. This lemma will later be useful
when showing in Proposition 1.3 that Brownian motion starting at x has a sizeable
probability to reach points where σ̂`′ is close to β′ before exiting B(x,2−`).
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Lemma 1.2. For x ∈ Rd and `′ > ` in Z, set

(1.15) β′ = ⨏
B(x,2−`)

σ̂`′(y)dy.

Then, for 0 ≤ δ ≤ β′ ∧ (1 − β′) at least one of i) or ii) below holds:

(1.16)
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

i) µx,`({σ̂`′ > β
′ + δ}) ≥

δ

2
and µx,`({σ̂`′ < β

′ − δ}) ≥
δ

2

ii) µx,`({β
′ − δ ≤ σ̂`′ ≤ β

′ + δ}) ≥
1

4
−
δ

2

(we refer to (1.5) for the definition of µx,`).

Proof. We introduce on some auxiliary probability space governed by the probability
P , with corresponding expectation denoted by E[⋅], a [0,1]-valued random variable
Y with same law as σ̂`′ under µx,`, so that β′ = E[Y ]. We let F (u) = P [Y > u]

for u ∈ R, and note that F (u) = 0 for u ≥ 1, and β′ = E[Y ] =
´ 1

0 F (u)du. Given
0 ≤ δ ≤ β′ ∧ (1 − β′), either

(1.17)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

a) F (β′ + δ) ≥
δ

2
or
b) F (β′ + δ) <

δ

2
.

In case b), we also find that

ˆ β′+δ

0
F (u)du +

δ

2
≥

ˆ β′+δ

0
F (u)du +F (β′ + δ) ≥

ˆ β′+δ

0
F (u)du +

ˆ 1

β′+δ
F (u)du = β′,

so that ˆ β′+δ

0
F (u)du ≥ β′ −

δ

2
.

At the same time, since F ≤ 1,
´ β′−δ

0 F (u)du ≤ β′ − δ, so that

ˆ β′+δ

β′−δ
F (u)du ≥ β′ −

δ

2
− (β′ − δ) =

δ

2
.

Dividing both members by 2δ, we find, since F is non-increasing, that F (β′ − δ) ≥ 1
4 .

Since we are in case b), we also have F (β′+δ) < δ
2 . It now follows that in case (1.17)

b) we additionally have

(1.18) P [β′ − δ ≤ Y ≤ β′ + δ] ≥
1

4
−
δ

2
.

We now consider Z = 1 − Y , so that 0 ≤ Z ≤ 1, E[Z] = 1 − β′. We further note that
0 ≤ δ ≤ β′ ∧ (1−β′) = E[Z]∧ (1−E[Z]). We can then introduce FZ(u) = P [Z > u] =
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P [Y < 1 − u] for u ∈ R. If we now let Z take the role of Y in the alternative (1.17),
we see that either

(1.19)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c) FZ(1 − β
′ + δ) (= P [Y < β′ − δ]) ≥

δ

2
or

d) FZ(1 − β
′ + δ) (= P [Y < β′ − δ]) <

δ

2
.

Additionally, we know that in case d)

P [1 − β′ − δ ≤ Z ≤ 1 − β′ + δ] (= P [β′ − δ ≤ Y ≤ β′ + δ]) ≥
1

4
−
δ

2
.

Thus, when either b) in (1.17) or d) in (1.19) holds we obtain (1.16) ii). So, when
(1.16) ii) does not hold, necessarily both a) in (1.17) and c) in (1.19) hold. This
yields (1.16) i) and concludes the proof of Lemma 1.2.

We will now see that when `′ > ` and σ̂`′ has an average β′ over B(x,2−`),
which is not too close to 0 or 1, Brownian motion starting at x has a non-degenerate
probability of entering a region where σ̂`′ takes values close to β′ before exiting
B(x,2−`). For r ≥ 0, we introduce the first time when X moves at ∣ ⋅ ∣∞-distance r
from its starting point (an (Ft)-stopping time):

(1.20) τr = inf{s ≥ 0; ∣Xs −X0∣∞ ≥ r}.

We can now state

Proposition 1.3. For x ∈ Rd, `′ > ` in Z, we set β′ = ⨏B(x,2−`) σ̂`′(y)dy. Then, we
have

(1.21) ∣σ̂`(x) − β
′
∣ ≤ c0 2`−`

′
(with c0 as in (1.8)),

and for 0 ≤ δ ≤ β′ ∧ (1 − β′) ∧ 1
4 ,

(1.22) Px[H{σ̂`′∈[β′−δ,β′+δ]} < τ2−`] ≥ c1(δ)

(where H{σ̂`′∈[β′−δ,β′+δ]} denotes the entrance time of X in the closed set {σ̂`′ ∈ [β′ −
δ, β′ + δ]}).

Proof. We first observe that (1.21) is a restatement of (1.8) and we only need to
prove (1.22). We use the alternative (1.16) from Lemma 1.2. If (1.16) i) holds, we
use translation invariance and scaling to choose δ′ ∈ (0,1) solely depending on δ,
such that µx,`({y ∶ ∣y − x∣∞ > 2−`(1 − δ′)}) ≤ δ

4 , so that

(1.23)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µx,`({σ̂`′ > β
′ + δ} ∩B(x,2−`(1 − δ′))) ≥

δ

4
and

µx,`({σ̂`′ < β
′ − δ} ∩B(x,2−`(1 − δ′))) ≥

δ

4
.
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Letting U stand for the interior of B(x,2−`) (i.e. U = {y ∶ ∣y −x∣∞ < 2−`}), we find by
translation invariance, scaling, and standard estimates for Brownian motion killed
outside B̊(0,1) that

(1.24)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Px[H{σ̂`′≥β′+δ}∩B(x,2−`(1−δ′)) < TU ] ≥ c(δ) and

Py[H{σ̂`′≤β′−δ}∩B(x,2−`(1−δ′)) < TU ] ≥ c(δ) for all

y ∈ B(x,2−`(1 − δ′)) .

It then follows from the strong Markov property that Brownian motion starting at x
enters {σ̂`′ ≥ β

′ + δ} and then {σ̂`′ ≤ β
′ − δ} before exiting U with probability at least

c′(δ)(= c(δ)2). By the continuity of σ̂`′ , any such trajectory of Brownian motion
enters {σ̂`′ = β

′} before exiting U . So, when (1.16) i) holds, we find that

(1.25) Px[H{σ̂`′=β′} < τ2−`] ≥ c
′
(δ).

On the other hand, when (1.16) ii) holds, then

µx,`({σ̂`′ ∈ [β′ − δ, β′ + δ]}) ≥
1

4
−
δ

2
≥

1

8
,

and it follows from standard estimates on killed Brownian motion (as above) that

(1.26) Px[H{σ̂`′∈[β′+δ,β′+δ]} < τ2−`] ≥ c.

Collecting (1.25) and (1.26) we find (1.22). This proves Proposition 1.3.

We will now consider decreasing scales 2−`0 > 2−`1 > ⋅ ⋅ ⋅ > 2−`J , which are well-
separated, and see that when starting at x in Rd such that σ̂`0(x) = 1

2 , there is
a non-degenerate probability for Brownian motion to reach before moving at sup-
distance 3

2 2−`0 the set of points where all local densities σ̃`j(⋅), 0 ≤ j ≤ J , lie within
the fixed interval [α̃,1 − α̃], with α̃ the constant from (1.35) below. More precisely,
we consider J ≥ 1, c0(= d2d−1) as in (1.8), and we define

(1.27) L(J) = the smallest integer L ≥ 5 such that c0 2−L ≤ (200J)−1.

We also consider a sequence of decreasing spatial scales 2−`0 > 2−`1 > ⋅ ⋅ ⋅ > 2−`J , which
are well-separated in the sense that

(1.28) `j+1 ≥ `j +L(J), for 0 ≤ j < J.

Further, we introduce the increasing sequence of compact sub-intervals of (0,1):

(1.29) Ij = [
1

2
−

j

100J
,

1

2
+

j

100J
], 0 ≤ j ≤ J,

as well as the non-decreasing sequence of stopping times

(1.30) γ0 =H{σ̂`0∈I0} and for 0 ≤ j < J, γj+1 = γj +H{σ̂`j+1
∈Ij+1} ○ θγj .

The next proposition will enter the proof of the main Theorem 2.1 in Section 2. We
recall (1.3) and (1.20) for notation.
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Proposition 1.4. Assume that J ≥ 1, and that `j ,0 ≤ j ≤ J , satisfy (1.28). Denote
by C the event

(1.31) C = {γ0 = 0} ∩ ⋂
0≤j<J

{γj+1 < γj + τ2−`j ○ θγj}.

Then, for x in Rd such that σ̂`0(x) =
1
2 , one has

(1.32) Px[C] ≥ c2(J).

Moreover, on the event C, one has

sup{∣Xs −Xγj ∣∞; γj ≤ s ≤ γJ} ≤
3

2
2−`j , for all 0 ≤ j < J , and(1.33)

σ̃`j(XγJ ) ∈ [α̃,1 − α̃], for all 0 ≤ j ≤ J , where(1.34)

α̃ =
1

3
4−d.(1.35)

Proof. We first prove (1.32). We will use induction and Proposition 1.3. We choose
(in the notation of Proposition 1.3)

(1.36) δ = (200J)−1( ≤
1

4
).

We want to show by induction on 0 ≤ j ≤ J (with c1(δ) as in (1.22)) that

(1.37)
Px[Cj] ≥ c1(δ)

j , with
Cj = {γ0 = 0, γ1 < γ0 + τ2−`0 ○ θγ0 , . . . , γj < γj−1 + τ2−`j−1 ○ θγj−1}.

When j = 0, since σ̂`0(x) = 1
2 , we find that Px[γ0 = 0] = 1 and (1.37) is true.

Assume now that for some 0 ≤ j < J , (1.37) is satisfied. We now define β′j+1 =

⨏B(Xγj ,2
−`j ) σ̂`j+1

(y)dy and note that on Cj due to (1.30), one has σ̂`j(Xγj) ∈ Ij .

Moreover, by (1.21) and (1.28), we have

(1.38)

∣σ̂`j(Xγj) − β
′
j+1∣ ≤ c0 2−L(J)

(1.27)
≤ (200J)−1(= δ), so that

β′j+1 ∈ [
1

2
−

j

100J
−

1

200J
,

1

2
+

j

100J
+

1

200J
] and

β′j+1 + [ −
1

200J
,

1

200J
] ⊆ Ij+1.

We can now apply the strong Markov property at time γj and find that

Px[Cj+1] = Px[Cj ∩ {γj+1 < γj + τ2−`j ○ θγj}]

= Ex[Cj , PXγj [H{σ̂`j+1
∈Ij+1} < τ2−`j }]

(1.22),induction
≥ c1(δ)

j+1.
(1.39)
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This completes the proof by induction of (1.37) and hence of (1.32) with c2(J) =

c1(δ)
J . As for (1.33), we note that on C, for any 0 ≤ j < J , one has

sup{∣Xs −Xγj ∣∞; γj ≤ s ≤ γJ} ≤ 2−`j + 2−`j+1 + ⋅ ⋅ ⋅ + 2−`J−1

(1.28)
≤ 2−`j ∑

m≥0
2−mL(J) <

3

2
2−`j ,

(1.40)

since L(J) ≥ 5, so that 1 − 2−L(J) > 2
3 . This proves (1.33).

We then turn to the proof of (1.34). We note that by (1.33), on the event C, one
has for any 0 ≤ j ≤ J , B(Xγj ,2

−`j) ⊆ B(XγJ ,4 ⋅ 2
−`j), and σ̂`j(Xγj) ∈ Ij ⊆ [1

3 ,
2
3], so

that σ̃`j(XγJ ) ∈ [1
3 4−d,1 − 1

3 4−d] = [α̃,1 − α̃], and (1.34) follows. This concludes the
proof of Proposition 1.4.

2 Resonances

In this section we introduce certain resonance sets where at least J among a larger
collection of local densities σ̃` of U1, corresponding to well-separated spatial scales,
simultaneously take non-degenerate values in [α̃,1 − α̃], cf. (1.35). Our main object
is Theorem 2.1 below. It shows that for Brownian motion starting at a location
where all but finitely many of the local densities σ̂` are at most 1

2 , it is hard to avoid
such a resonance set. An important induction step for the proof of Theorem 2.1 is
contained in Lemma 2.2. We will then use Theorem 2.1 as a main tool in the next
section when considering porous interfaces which are markedly felt in the vicinity of
S = ∂U0 = ∂U1. The approach we use remains pertinent in the two-dimensional case,
but the formulation of a relevant version of Theorem 2.1 when d = 2 involves some
modification of the set-up (with some killing of Brownian motion). For conciseness
and because the application in Section 4 only pertains to the case d ≥ 3, we assume
from now on that

(2.1) d ≥ 3.

As in the previous section, we consider U0 a non-empty, bounded, Borel subset of Rd
and the associated local density functions σ̂`, σ̃`, cf. (1.3). We now want to introduce
the resonance set. To this end, we consider `∗ ≥ 0 (so that 2−`∗ will bound from above
the scales under consideration, and in some sense bound from below the distance of
the starting point of Brownian motion to U1), J ≥ 1 will control the strength of
the resonance, L ≥ L(J) (with L(J) as in (1.27)), will govern the separation of
scales, and I ≥ 1, will control the number of scales inspected. We then define (with
N = {0,1,2, . . .})

`0 = inf{` ∈ (J + 1)LN; ` ≥ `∗},(2.2)

A∗ = {` ∈ LN; `0 ≤ ` < `0 + I(J + 1)L} (so that ∣A∗∣ = I(J + 1)),(2.3)

A = {` ∈ (J + 1)LN; `0 ≤ ` < `0 + I(J + 1)L} (so that ∣A∣ = I).(2.4)
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The resonance set is then defined (with α̃ as in (1.35)) as:

(2.5) Res = {x ∈ Rd; ∑
`∈A∗

1{σ̃`(x) ∈ [α̃,1 − α̃]} ≥ J},

and we sometimes write Res(U0, `∗, J,L, I), if we want to recall the parameters en-
tering its definition. Note that the functions σ̃`, ` ≥ 0, are continuous, cf. Lemma 1.1,
and A∗ finite, so that the resonance set Res is a (possibly empty) compact subset of
Rd.

To describe the collection of subsets U0 under consideration in the bounds we
wish to derive in Theorem 2.1, we consider some non-empty compact subset A in Rd
and introduce for `∗ ≥ 0 as above,

U`∗,A = the collection of bounded Borel subsets U0 of Rd such that

σ̂`(x) ≤
1
2 , for all x ∈ A and ` ≥ `∗,

(2.6)

as well as

(2.7) U`∗ = U`∗,A={0}.

We are now ready to state the main result of this section. It provides stretched
exponential bounds in I on the probability that Brownian motion starting in A
avoids the resonance set if U0 ∈ U`∗,A, L ≥ L(J) and I is large. Incidentally, let us
point out that the resonance set need not “block” A in a topological sense: A may
well lie in the unbounded component of the complement of the resonance set, see
Remark 2.3.

Theorem 2.1. For J, I ≥ 1, A non-empty compact subset of Rd, define (with Res as
in (2.5))

ΦJ,I,A = sup
`∗≥0

sup
U0∈U`∗,A

sup
L≥L(J)

sup
x∈A

Px[HRes =∞], and

ΦJ,I = ΦJ,I,A={0}.
(2.8)

Then, the case A = {0} is maximal in the sense that

(2.9) ΦJ,I,A ≤ ΦJ,I ,

and as I →∞, one has the stretched exponential bound:

(2.10) lim sup
I

I−1/2J−1

log ΦJ,I ≤ log (1 − c2(J))(< 0).

Proof. We first prove (2.9). To this end, we simply note that U0 ∈ U`∗,A and x ∈ A
implies that U0 − x ∈ U`∗ and Res(U0 − x, `∗, J,L, I) = Res(U0, `∗, J,L, I) − x. The
claim (2.9) simply follows by translation invariance of Brownian motion.

We now turn to the proof of (2.10). We consider `∗ ≥ 0, J ≥ 1, L ≥ L(J), I ≥ 1,
as well as some U0 ∈ U`∗ . We then introduce the notion of an I-family, which is
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constituted of stopping times Si, 0 ≤ i ≤ I, of a random finite subset L of (J +1)LN,
and of random integer valued functions ̂̀

i,1 ≤ i ≤ I, such that

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) 0 ≤ S0 ≤ S1 ≤ ⋅ ⋅ ⋅ ≤ SI are P0-a.s. finite (Ft)-stopping times,

ii) L is an FS0-measurable finite subset of (J + 1)LN, with ∣L∣ ≥ I,

iii) ̂̀
i,1 ≤ i ≤ I, are respectively FSi-measurable, distinct and
L-valued,

iv) P0-a.s., σ̂̂̀
i
(XSi) =

1

2
, for 1 ≤ i ≤ I.

We recall that σ̂`(0) ≤ 1
2 for ` ≥ `∗, in particular for all ` ∈ A in (2.4). As a result,

P0-a.s., for all ` ∈ A, the continuous non-negative functions s ≥ 0 ↦ σ̂`(Xs) start at
a value smaller or equal to 1

2 and reach at some point the value 1
2 (they eventually

become equal to 1 for large s). There is however in general no prescribed order in
which these “crossings” happen, see Remark 2.3. An example of an I-family to keep
in mind thus corresponds to the choice

(2.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = A (see (2.4)),

S0 = 0,

S1 = inf {s ≥ 0; σ̂`(Xs) =
1

2
, for some ` ∈ L},

̂̀
1 = max{` ∈ L; σ̂`(XS1) =

1

2
}, if S1 <∞, and

̂̀
1 = max{` ∈ L}, if S1 =∞,

S2 = inf {s ≥ S1; σ̂`(Xs) =
1

2
, for some ` ∈ L/{̂̀1}},

̂̀
2 = max{` ∈ L/{̂̀1}, σ̂`(XS2) =

1

2
}, if S2 <∞, and

̂̀
2 = max{` ∈ L/{̂̀1}}, if S2 =∞,

⋮

SI = inf {s ≥ SI−1; σ̂`(Xs) =
1

2
, for ` ∈ L/{̂̀1, . . . , ̂̀I−1}},

̂̀
I = the unique element of L/{̂̀1, . . . , ̂̀I−1} (when SI =∞ note that

max{` ∈ L/{̂̀1, . . . , ̂̀I−1}} coincides with the unique element of
L/{̂̀1, . . . , ̂̀I−1}).

The formulas for ̂̀
i when Si = ∞ are merely here for completeness and pertain to

P0-negligible events.

Given an I-family as in (2.11), we also define the stopping times

(2.13) Ti = inf{s ≥ Si; ∣Xs −XSi ∣∞ ≥ 2 ⋅ 2−
̂̀
i}

(understood as +∞, if Si =∞), for 1 ≤ i ≤ I,
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as well as the FS0-measurable subsets of “intermediate labels” and of “labels”

(2.14) Lint = {` + jL; ` ∈ L, 1 ≤ j ≤ J} and L∗ = L ∪Lint.

Note that L ⊆ (J + 1)LN, so that

(2.15) L ∩Lint = ∅,

and that in the notation of (2.3), (2.4)

(2.16) when L = A, then L∗ = A∗.

Further we introduce for 1 ≤ k ≤ J the (L∗, k)-resonance set

(2.17) ResL∗,k = {x ∈ Rd; ∑
`∈L∗

1{σ̃`(x) ∈ [α̃,1 − α̃]} ≥ k}

(so when L = A as in (2.4), and k = J , we recover the resonance set Res(U0, `∗, J,L, I)
from (2.5)).

We now introduce an important quantity on which we will derive upper bounds
by induction on k in the crucial Lemma 2.2 below. Namely, for 1 ≤ k ≤ J and I ≥ 1,
we set

(2.18) Γ
(J)
k (I) = supP0[inf{s ≥ S0;Xs ∈ ResL∗,k} > max

1≤i≤I
Ti],

where the supremum is taken over all I-families (a non-empty collection by (2.12)),
and we set by convention

(2.19) Γ
(J)
k (I) = 1, when 1 ≤ k ≤ J and I ≤ 0.

We will also drop the superscript (J) from the notation when this causes no confu-
sion.

At this point, the Reader may first read the statement of the next lemma, skip
its proof, and directly proceed above (2.34) to see how the proof of Theorem 2.1 is
completed. We now have (where we fix `∗ ≥ 0, J ≥ 1, L ≥ L(J), U0 ∈ U`∗):

Lemma 2.2.

(2.20) Γ
(J)
1 (I) = 0, for all I ≥ 1,

and for 1 ≤ k < J , I ≥ 1, setting ∆ = [
√
I] (≥ 1),

(2.21) Γ
(J)
k+1(I) ≤ (1 − c2(J))

√
I−1

+ I1+ k−1
2 Γ

(J)
k (∆ − k + 1).

Proof. We first prove (2.20). We consider I ≥ 1 and some I-family, cf. (2.11). Then,
P0-a.s., σ̂̂̀

1
(XS1) =

1
2 , so that U1 and U0 have relative volume 1

2 in B(XS1 ,2
−̂̀1). It

thus follows that P0-a.s., σ̃̂̀
1
(XS1) lies in [1

2 ⋅ 4
−d,1 − 1

2 ⋅ 4
−d] ⊆ [α̃,1 − α̃], so that

XS1 ∈ ResL∗,1. Hence, the probability in the right-hand side of (2.18) equals 0, when
k = 1 and (2.20) follows.
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We now turn to the proof of (2.21). We introduce the notation

(2.22) m∆ = [
I − 1

∆
], so that 1 +m∆ ∆ ≤ I < 1 + (m∆ + 1)∆.

We first assume that I ≥ 2, (the case I = 1 will be straightforward to handle) and
note that, as we explain below,

(2.23) I −∆ ≥ 1

(indeed for I = 2, ∆ = 1, for I = 3, ∆ = 1, and for I ≥ 4, I −∆ ≥ I −
√
I =

√
I(

√
I −1) ≥√

I ≥ 2).

We thus consider 1 ≤ k < J as well as I ≥ 2, and want to prove (2.21). We consider
an I-family and write

(2.24)

P0[inf{s ≥ S0;Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti] ≤ a1 + a2, where

a1 = P0[Ti < Si+∆ for all 1 ≤ i ≤ I −∆, and

inf{s ≥ S0; Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti],

a2 = P0[Ti ≥ Si+∆ for some i ∈ {1, . . . , I −∆}, and

inf{s ≥ S0; Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti].

We first bound a1. As a shorthand we write i∆ = 1 +m∆ ∆, and find that

a1 ≤ P0[S1 < T1 < S1+∆ < T1+∆ < ⋅ ⋅ ⋅ < Si∆ < Ti∆ < inf{s ≥ S0;Xs ∈ ResL∗,k+1}].

We can use the strong Markov property at time Si∆ and find that the last expression
is smaller or equal to

E0[S1 < T1 < ⋅ ⋅ ⋅ < Si∆ < inf{s ≥ S0;Xs ∈ ResL∗,k+1},

P̃XSi∆
[inf{s ≥ 0; ∣X̃s − X̃0∣∞ ≥ 2 ⋅ 2−

̂̀
i∆} <

inf{s ≥ 0; X̃s ∈ ResL∗,k+1}]],

(2.25)

where X̃. denotes the canonical Brownian motion under the Wiener measure P̃XSi∆
starting from XSi∆

, and the respectively FS0-measurable map L∗ (with an at most
countable set of possible values), and the FSi∆ -measurable map ̂̀

i∆ are not integrated
under the measure P̃XSi∆

.

If we now choose x = XSi∆
in (1.32) (and `0 = ̂̀

i∆ ∈ L, by (2.11) iii)), then
Proposition 1.4 and the fact that P0-a.s., σ̂̂̀

i∆
(XSi∆

) = 1
2 (by (2.11) iv)), imply that

P0-a.s.,

(2.26)
P̃Xsi∆

[inf{s ≥ 0; ∣X̃s − X̃0∣∞ ≥ 2 ⋅ 2−
̂̀
i∆} >

inf{s ≥ 0; X̃s ∈ ResL∗,k+1}] ≥ c2(J).
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Hence, the expression in (2.25) is at most

(2.27) P0[S1 < T1 < ⋅ ⋅ ⋅ < Ti∆−∆ < inf{s ≥ 0, Xs ∈ ResL∗,k+1}](1 − c2(J)).

By induction, we then find that

a1 ≤ (1 − c2(J))
m∆ P0[S1 < T1 < inf{s ≥ S0; Xs ∈ ResL∗,k+1}]

≤ (1 − c2(J))
m∆+1

≤ (1 − c2(J))
√
I−1
, since

m∆ + 1
(2.22)
> (I − 1)∆−1

≥ (I − 1)/
√
I ≥

√
I − 1.

(2.28)

We now bound a2 (cf. (2.24)). To this end, we first note that

a2 = P0[Ti ≥ Si+∆ for some i ∈ {1, . . . , I −∆},

inf{s ≥ S0; Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti]

≤ I max
1≤i0≤I−∆

P0[Si0+∆ ≤ Ti0 and

inf{s ≥ S0;Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti].

(2.29)

Denote by F the event inside the probability in the last member of (2.29). As we
now explain, P0-a.s. on F , there are at most (k − 1) integer values of i ∈ (i0, i0 +∆]

such that Ti0 ≤ Ti. Indeed, otherwise we can find k values of i in (i0, i0+∆] such that
with P0-positive measure on F , ∣XTi0

−XSi ∣∞ ≤ 2 ⋅2−
̂̀
i . Including i0 to this list yields

k+1 values in [i0, i0+∆] such that with P0-positive measure on F , σ̂̂̀
i
(XSi) =

1
2 and

∣XTi0
−XSi ∣∞ ≤ 2 ⋅2−

̂̀
i , and hence σ̃̂̀

i
(XTi0

) ∈ [1
2 ⋅ 4−d,1− 1

2 ⋅4
−d] ⊆ [α̃,1− α̃] for these

k + 1 values. This would force that with P0-positive measure on F , XTi0
∈ ResL∗,k+1,

which is impossible by the very definition of F .

Assume for the time being that ∆ ≥ k, and denote by (i0, i0 + ∆]′ an arbitrary
subset of (i0, i0 + ∆] with ∆ − (k − 1) elements. The number of possible choices of
such a subset is at most ∆k−1. It now follows from the remark in the paragraph
above and from (2.29) that

a2 ≤ I∆k−1 max
1≤i0≤I−∆

max
(i0,i0+∆]′

P0[Si0 ≤ Si ≤ Ti ≤ Ti0 <

inf{s ≥ S0,Xs ∈ ResL∗,k+1}, for all

i ∈ (i0, i0 +∆]
′ ]

(2.30)

(and max(i0,i0+∆]′ denotes the maximum over all possible subsets (i0, i0 + ∆]′ of
(i0, i0 +∆] with ∆ − (k − 1) elements).

We then set

L
′
= L/{̂̀i0} (an FSi0 -measurable subset of (J + 1)LN, with

∣L
′
∣ = ∣L∣ − 1 ≥ I − 1

(2.23)
≥ ∆ ≥ ∆ − (k − 1) ≥ 1).

(2.31)

20



Now L′, Si0 , Si, i ∈ (i0, i0 + ∆]′, ̂̀
i, i ∈ (i0, i0 + ∆]′ yield (up to the deterministic

increasing relabeling of [i0, i0+∆]′ into [0,∆−(k−1)]) a ∆−(k−1)-family, cf. (2.11).
In addition, on the event under the probability in (2.30), one has for all s ∈ [Si0 , Ti0],
∣Xs −XSi0

∣∞ ≤ 2 ⋅ 2−
̂̀
i0 , so that P0-a.s. on this event, σ̂̂̀

i0
(XSi0

) = 1
2 and σ̃̂̀

i0
(Xs) ∈

[α̃,1 − α̃] for all s ∈ [Si0 , Ti0].

It follows that P0-a.s. on the event under the probability in (2.30), Ti0 < inf{s ≥
S0; Xs ∈ ResL′∗,k} (where L′∗ is defined as in (2.14) with L′ now playing the role of
L). This shows that

a2 ≤ I∆k−1 max
1≤i0≤I−∆

max
(i0,i0+∆]′

P0[ inf{s ≥ Si0 ;Xs ∈ ResL′∗,k}

> max
(i0,i0+∆]′

Ti] ≤ I∆k−1Γk(∆ − (k − 1))
(2.32)

(and as mentioned below (2.19) we dropped the superscript (J) from the notation).

Since Γk(m) = 1, for m ≤ 0, by convention, see (2.19), one can remove the
assumption ∆ ≥ k and find that (recall ∆ = [

√
I])

(2.33) a2 ≤ I∆k−1 Γk(∆ − (k − 1)) ≤ I1+ k−1
2 Γk(∆ − (k − 1)).

Adding the bounds (2.28) and (2.33), we find, coming back to (2.24), that

P0[ inf{s ≥ S0; Xs ∈ ResL∗,k+1} > max
1≤i≤I

Ti] ≤

(1 − c2(J))
√
I−1

+ I1+ k−1
2 Γk(∆ − k + 1).

Taking the supremum over all possible I-families yields (2.21) when I ≥ 2. However,
when I = 1, the right-hand side of (2.21) is at least 1 due to the first term in the
right-hand side, and (2.21) holds as well. This completes the proof of (2.21) and
hence of Lemma 2.2.

We now resume the proof of (2.10) of Theorem 2.1. We introduce the quantity
(for given J ≥ 1)

(2.34) Γ̃
(J)
k (I) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sup
`∗≥0

sup
U0∈U`∗ ,L≥L(J)

Γ
(J)
k (I), for 1 ≤ k ≤ J and I ≥ 1,

1, for 1 ≤ k ≤ J and I ≤ 0.

From the definition of Γ
(J)
k (I), see (2.18), (2.17), and from the I-family (2.12), as

well as (2.16), we see that in the notation of (2.8), for J, I ≥ 1, one has

(2.35) ΦJ,I = sup
`∗≥0

sup
U0∈U`∗

sup
L≥L(J)

P0[HRes =∞] ≤ Γ̃
(J)
J (I).
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On the other hand, by Lemma 2.2 and (2.34), we see that

(2.36)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Γ̃
(J)
1 (I) = 0, for all I ≥ 1, and

Γ̃
(J)
k+1(I) ≤ (1 − c2(J))

√
I−1

+ I1+ k−1
2 Γ̃

(J)
k (∆ − k + 1),

for 1 ≤ k ≤ J and I ≥ 1.

We will now prove by induction on k that for 1 ≤ k ≤ J ,

(2.37) lim sup
I

I−1/2k−1

log Γ̃
(J)
k (I) ≤ log (1 − c2(J)).

Choosing k = J will complete the proof of (2.10) in view of (2.35).

By the first line of (2.36), the claim (2.37) is immediate when k = 1. Then, we
assume that (2.37) holds for some 1 ≤ k < J . We have

(2.38)

lim sup
I

I−1/2k log Γ̃
(J)
k+1(I)

(2.36)
≤

lim sup
I

I−1/2k max{(
√
I − 1) log (1 − c2(J)), (1 +

k − 1

2
) log I+

log Γ̃
(J)
k ([

√
I] − k + 1)} ≤ max{ log (1 − c2(J)),

lim sup
I

I−1/2k([
√
I] − k + 1)1/2k−1 log Γ̃

(J)
k ([

√
I] − k + 1)

([
√
I] − k + 1)1/2k−1

}
induction

≤

log (1 − c2(J)).

This proves (2.37) and as explained above concludes the proof of Theorem 2.1.

Remark 2.3. 1) We describe a simple example showing that the compact set A may
lie in the unbounded component of the complement of the resonance set defined in
(2.5) (in particular, the resonance set need not “block” A in a topological sense).

We consider J ≥ 2, L ≥ L(J) (≥ 5), and set `i = `0 + iL, for i ≥ 0, where `0 = `∗ so
that (2.2) holds. We choose A = {0}, denote by e1 the first vector of the canonical
basis of Rd, and define

U0 = ⋃
k≥0

Wk, where

W0 = B(0,4 ⋅ 2−`0) and for k ≥ 1, Wk =Wk−1 ∪ (xk−1 + 2−`kV )

with xk−1 the rightmost point ofWk−1 on R+ e1 and V = [0,8⋅2L]×[−4,4]d−1. That is,
Wk is obtained by piling onWk−1 in the positive e1-direction a small thin rectangular
parallelepiped of length 8 ⋅ 2−`k−1 in the e1-direction and side-length 8 ⋅ 2−`k in the
other directions. As a shorthand notation we set δk = 8 ⋅ 2−`k , for k ≥ 0.

Note that U0 is bounded and d(0, U1) = 4 ⋅ 2−`0 , so U0 ∈ U`∗=`0 in the notation of
(2.7). As we now explain, one also has

(2.39) ∑
k≥0

1{σ̃`k(w(t)) ∈ [α̃,1 − α̃]} ≤ 1 for all t ≥ 0, if w(t) = t e1 for t ≥ 0,
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and consequently, for any I ≥ 1,

(2.40) w(t) ∉ Res(U0, `∗, J,L, I) for all t ≥ 0.

To prove (2.39), we set for k ≥ 0, sk = xk ⋅ e1 −
1
2 δk, tk = xk ⋅ e1 +

1
2 δk (recall that

δk = 8 ⋅2−`k). Then, the function t ≥ 0↦ σ̃`k(w(t)) is continuous and non-decreasing.
For t ≤ sk, we have d(w(t), U1) ≥ 4 ⋅ 2−`k , so that σ̃`k(w(t)) = 0, and for t ≥ tk, we
have d(w(t),Wk) ≥ 4 ⋅ 2−`k , so that 1 − σ̃`k(w(t)) ≤ 2−L(d−1), which is smaller than
α̃ = 1

3 ⋅ 4
−d (because 2(L−2)(d−1) > 12, since L ≥ 5 and d ≥ 3). It follows that

(2.41) for any k ≥ 0, {t ≥ 0; σ̃`k(w(t)) ∈ [α̃,1 − α̃]} ⊆ [sk, tk] .

On the other hand, for any k ≥ 0, tk < sk+1 and the intervals [sk, tk], k ≥ 0, are
pairwise disjoint. The claims (2.39) and (2.40) follow.

2) Here is another simple example showing that the order in which the level sets
{σ̃` ∈ [α̃,1 − α̃]} are crossed along a Brownian path is in general random. We keep
the same notation as in 1) above but now define (see Figure 3)

U0 =W2 ∪ W̃1/T2 ,
where

W̃1= [−x1 ⋅ e1, −x0 ⋅ e1] × [ −
δ1
2
,
δ1
2
]
d−1 and

T2 = (−∞,−x1 ⋅ e1 + δ1) × ( −
δ2
2
,
δ2
2
)
d−1
.

U0

0

l2l1l2

ll1

l0l0

l0

l1

Fig. 3: An illustration of U0

In this case similar calculations as in 1) show that the trajectory w(t) = te1,
t ≥ 0, first reaches the level set {σ̃`0 ∈ [α̃,1− α̃]}, then the level set {σ̃`1 ∈ [α̃,1− α̃]},
and then the level set {σ̃`2 ∈ [α̃,1 − α̃]}. On the other hand, w̃(t) = −w(t) first
crosses the level set {σ̃`0 ∈ [α̃,1 − α̃]}, then the level set {σ̃`2 ∈ [α̃,1 − α̃]}, and
then the level set {σ̃`1 ∈ [α̃,1 − α̃]}. This order remains the same for trajectories in
small tubular neighborhoods around w and w̃. These tubular neighborhoods have
positive measure for P0 (the Wiener measure) and the order in which the level sets
{σ̃` ∈ [α̃,1 − α̃]}, ` ∈ {`0, `1, `2} are crossed along a Brownian path is thus random.
Similar considerations also apply when one instead considers the order in which the
level sets {σ̂` =

1
2} are crossed (recall that σ̂` = σ̃`+2, cf. (1.3)). ◻
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3 Solidification of porous interfaces

We now apply the results of the last section to the study of porous interfaces. The
porous interfaces under consideration will be felt within a small distance denoted by
ε from each point of S = ∂U0, where U0 ∈ U`∗,A, cf. (2.6), with a strength measured
by η (we recall that 2−`∗ controls in a suitable sense the distance of A to U1 = Rd/U0,
cf. (2.6)). The porous interfaces will correspond to hard obstacles or to soft obstacles,
and the main Theorem 3.1 of this section provides uniform controls on the trapping
probability of Brownian motion starting in A by the porous interface when the ratio
ε/2−`∗ goes to zero. We then derive an asymptotic lower bound on the capacity of the
porous interface in Corollary 3.4 that will play a crucial role in the next section. We
also provide an application in the soft obstacle case in Corollary 3.5. In a heuristic
fashion the “interfaces” S = ∂U0 can be thought of as some sort of “segmentation” of
the porous interfaces. One should emphasize that in the classes over which they vary,
the interfaces and porous interfaces may undergo degenerations. In certain regions
of space they may become brittle and have little trapping power, see for instance
Remark 3.6 1). Throughout this section we assume d ≥ 3.

We first need some notation. We consider U0 as in (1.1), a non-empty bounded
Borel subset of Rd and S = ∂U0 = ∂U1 (with U1 = Rd/U0) as in (1.2). In the hard
obstacle case, given ε > 0 and η ∈ (0,1), the porous interfaces will vary in the class

SU0,ε,η = the class of compact subsets Σ of Rd such that
Px[HΣ < τε] ≥ η, for all x ∈ ∂U0,

(3.1)

with HΣ the entrance time of Brownian motion in Σ and τε the first time it moves
at sup-distance ε from its starting point, cf. (1.20). In the soft obstacle case, the
porous interfaces will instead vary in the class

VU0,ε,η = the class of locally bounded measurable functions V ≥ 0 on Rd

such that Ex[ exp{ −
´ τε

0 V (Xs)ds}] ≤ 1 − η, for all x ∈ ∂U0.
(3.2)

The next theorem is the main result of this section. It provides in the limit ε/2−`∗
going to zero uniform controls on the killing of Brownian motion starting in A, when
U0 ∈ U`∗,A (with `∗ ≥ 0), in the presence of a porous interface corresponding to
Σ ∈ SU0,ε,η in the hard obstacle case, or to V ∈ VU0,ε,η in the soft obstacle case.

Theorem 3.1. (Solidification of porous interfaces)

Consider a non-empty compact subset A of Rd and η ∈ (0,1). Then, in the hard
obstacle case, one has

(3.3) lim
u→0

sup
ε≤u2−`∗

sup
U0∈U`∗,A

sup
Σ∈SU0,ε,η

sup
x∈A

Px[HΣ =∞] = 0,

and the expression under limu→0 supε≤u2−`∗ is maximal for the choice A = {0}.
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Likewise, in the soft obstacle case, one has

(3.4) lim
u→0

sup
ε≤u2−`∗

sup
U0∈U`∗,A

sup
V ∈VU0,ε,η

sup
x∈A

Ex[ exp{ −

ˆ ∞

0
V (Xs)ds}] = 0,

and the expression under limu→0 supε≤u2−`∗ is maximal for the choice A = {0}.

(When A = {0}, scaling can also be applied to reformulate (3.3) and (3.4), see
Remark 3.6 2).)

Proof. Note that in the hard obstacle case, cf. (3.1), when x ∈ A, U0 ∈ U`∗,A, Σ ∈

SU0,ε,A, then U0 − x ∈ U`∗ (= U`∗,{0}, see (2.7) for notation), Σ − x ∈ SU0−x,ε,η and
Px[HΣ = ∞] = P0[HΣ−x = ∞], so the maximality statement for the case A = {0}
stated below (3.3) follows. In the soft obstacles case, cf. (3.2), when x ∈ A, U0 ∈ U`∗,A
as above, and V ∈ VU0,ε,η, then V (⋅ + x) ∈ VU0−x,ε,η and

Ex[ exp{ −

ˆ ∞

0
V (Xs)ds}] = E0[ exp{ −

ˆ ∞

0
V (Xs + x)ds}],

whence the maximality of the case A = {0} stated below (3.4).

We now prove (3.3) in the case A = {0} (the general case follows by the maximality
property explained above). The following lemma will be useful (we recall (1.3), (1.35)
and above (1.1) for notation). Incidentally, the Reader may possibly first skip its
proof and proceed above (3.8) to see how the proof of (3.3) follows.

Lemma 3.2. For Σ ∈ SU0,ε,η, ` ≥ 0 with ε ≤ 1
4 2−`, x0, y ∈ Rd such that σ̃`(x0) ∈

[α̃,1 − α̃] and ∣y − x0∣∞ ≤ 1
4 2−`, one has

(3.5) Py[HΣ < TB̊(x0,5⋅2−`)] ≥ c3(η) (> 0) .

Proof. Note that ∣y − x0∣∞ ≤ 1
4 2−` and σ̃`(x0) = ∣B(x0,4 ⋅ 2

−`) ∩ U1∣/∣B(x0,4 ⋅ 2
−`)∣ ∈

[α̃,1 − α̃], so that using classical properties of the Dirichlet heat kernel, see for
instance [20], p. 13, 18, as well as scaling and translation invariance, we find that

Py[X4−` ∈ U0, X2⋅4−` ∈ U1 and 2 ⋅ 4−` < TB̊(x0,
9
2
⋅2−`)] ≥ c.

The event under the probability above is contained in {HS < TB̊(x0,
9
2
⋅2−`)} (indeed the

continuous trajectory X. encounters U0 und U1 during the time interval [0,2 ⋅ 4−`],
and hence meets S = U0 ∩U1 during the same time interval). So we have

(3.6) Py[HS < TB̊(x0,
9
2
⋅2−`)] ≥ c.

Then, by the strong Markov property and (3.1), we see that since ε ≤ 1
4 2−`,

(3.7)
Py[HΣ ○ θHS +HS < TB̊(x0,5⋅2−`)] ≥

Ey[HS < TB̊(x0,
9
2
⋅2−`), PXHS [HΣ < τε]]

(3.1),(3.6)
≥ c η

def
= c3(η).

This completes the proof of Lemma 3.2.
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We can now resume the proof of (3.3) (when A = {0}). We pick J ≥ 1, L ≥ L(J)
(see (1.27)), and for I ≥ 1, `∗ ≥ 0 and U0 ∈ U`∗ , we write Res for the resonance set
Res(U0, `∗, J,L, I), see (2.5). We recall the notation A∗ from (2.3), so A∗ ⊆ LN
satisfies

∣A∗∣ = I(J + 1), minA∗ ≥ `∗, maxA∗ ≤ `∗ + (I + 1)(J + 1)L, and

Res = {x ∈ Rd, ∑
`∈A∗

1{σ̃`(x) ∈ [α̃,1 − α̃]} ≥ J}.(3.8)

We then consider u > 0 and 0 ≤ ε ≤ u2−`∗ . As we now explain:

(3.9)
when u < 1

4
2−(I+1)(J+1)L, then for any x0 ∈ Res, Σ ∈ SU0,ε,η, one has

Px0[HΣ > TB̊(x0,5⋅2−minA∗)] ≤ (1 − c3(η))
J
.

Indeed, one has ε ≤ u2−`∗ ≤ 1
4 2−maxA∗ by (3.8). One applies the strong Markov

property at the successive times of exit of the balls B̊(x0,5 ⋅ 2
−`), when ` ∈ A∗, and

notes that when `′ > ` in A∗, then `′ ≥ `+L (≥ `+5, see (1.27)) so that 5 ⋅2−`
′
≤ 1

4 ⋅2
−`.

One can then repeatedly apply (3.5) and obtain that

(3.10) Px0[HΣ > TB̊(x0,5⋅2−minA∗)] ≤ (1 − c3(η))
∑
`∈A∗

1{σ̃`(x0)∈[α̃,1−α̃]}
,

and (3.9) follows since x0 ∈ Res.

Thus, for u < 1
4 2−(I+1)(J+1)L and ε ≤ u2−`∗ , we find that for U0 ∈ U`∗ and

Σ ∈ SU0,ε,η

(3.11)
P0[HΣ =∞] ≤ P0[HRes =∞] +E0[HRes <∞, PXHRes

[HΣ =∞]]
(3.9)
≤

P0[HRes =∞] + (1 − c3(η))
J (2.8)

≤ ΦJ,I + (1 − c3(η))
J
.

If we now take the supremum over Σ ∈ SU0,ε,η, U0 ∈ U`∗ and ε ≤ u2−`∗ , we find after
letting u tend to zero that

(3.12) lim sup
u→0

sup
ε≤u2−`∗

sup
U0∈U`∗

sup
Σ∈SU0,ε,η

P0[HΣ =∞] ≤ ΦJ,I + (1 − c3(η))
J
.

Letting I tend to infinity, the first term in the right member of (3.12) goes to zero
by (2.10) of Theorem 2.1. We can then let J tend to infinity and obtain (3.3) when
A = {0} (and hence in the general case).

Let us briefly explain how one obtains (3.4). With analogous arguments as for
Lemma 3.2, one shows instead with the help of (3.2):

Lemma 3.3. For V ∈ VU0,ε,η, ` ≥ 0 with ε ≤ 1
4 2−`, x0, y ∈ Rd such that σ̃`(x0) ∈

[α̃,1 − α̃] and ∣y − x0∣∞ ≤ 1
4 ⋅ 2

−`, one has

(3.13) Ey[ exp{ −

ˆ T
B̊(x0,5⋅2−`)

0

V (Xs)ds}] ≤ 1 − c4(η).
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From this lemma and the strong Markov property, one deduces in place of (3.9)
that when u < 1

4 2−(I+1)(J+1)L, and ε ≤ u2−`∗ , then for any U0 ∈ U`∗ , x0 ∈ Res,
V ∈ VU0,ε,η, one has

(3.14) Ex0[ exp{ −

ˆ τ
5⋅2−minA∗

0

V (Xs)ds}] ≤ (1 − c4(η))
J
.

One then concludes as below (3.11). This completes the proof of Theorem 3.1.

We can now state a corollary of Theorem 3.1 that will play an important role in
the next section in our treatment of certain disconnection problems for random inter-
lacements and the simple random walk on Zd. We denote by cap(F ) the Brownian
capacity of a compact subset or a bounded open subset F of Rd, cf. [18], p. 57, 58.

Corollary 3.4. (Capacity lower bound)

Consider a compact subset A of Rd with positive capacity and η ∈ (0,1). Then, one
has

(3.15) lim
u→0

inf
ε≤u2−`∗

inf
U0∈U`∗,A

inf
Σ∈SU0,ε,η

cap(Σ)/cap(A) = 1.

Moreover, for any η ∈ (0,1) one has

(3.16) lim
u→0

inf
ε≤u2−`∗

inf
A

inf
U0∈U`∗,A

inf
Σ∈SU0,ε,η

cap(Σ)/cap(A) = 1

(A varies over the collection of compact sets of positive capacity in the infimum).

Proof. We begin with (3.15). Note that the quantity under the limu→0 is non-
increasing in u, so the limit exists. We first prove that it is at least 1. Denote
by g(⋅, ⋅) the Brownian Green function on Rd (which is known to be symmetric), and
for C compact subset of Rd, let eC and hC respectively stand for the equilibrium
measure and the equilibrium potential of C. Then (see for instance [18], p. 58 or
Chapter 2 §3 and §4 of [20]), one has

(3.17) hC(x) = Px[H̃C <∞] =

ˆ
g(x, y) eC(dy), for all x ∈ Rd,

and hC = 1 on C except on a set of zero capacity. Moreover, eC is supported by C,
has total mass cap(C), and does not charge sets of zero capacity.

Now for A as above (3.15), for u > 0, `∗ ≥ 0, 0 < ε ≤ u2−`∗ , U0 ∈ U`∗,A, and
Σ ∈ SU0,ε,η, we have

(3.18)

cap(Σ) ≥

ˆ
hA(y) eΣ(dy)

(3.17)
=

symmetry

¨
g(x, y) eA(dx) eΣ(dy)

(3.17)
=

ˆ
hΣ(x) eA(dx) =

ˆ
Px[HΣ <∞] eA(dx)

≥ inf
x∈A

Px[HΣ <∞] cap(A),

where the second equality in the second line of (3.18) follows from the fact that the
set of irregular points x for which Px[H̃Σ <∞] /= Px[HΣ <∞], has zero capacity and
hence null eA-measure.
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Thus, cap(Σ)/cap(A) ≥ infx∈A Px[HΣ <∞], and taking the infimum in the right
member over Σ ∈ SU0,ε,η, U0 ∈ U`∗,A, ε ≤ u2−`∗ , and letting u tend to zero, we see
that the limit in (3.15) is at least 1 by (3.3) of Theorem 3.1.

To show that it equals 1, denote by A`∗ the set of points at sup-distance at most
2−`∗ from A. Then for ε ≤ u2−`∗ , choosing U0 = A`∗ = Σ, we see that U0 ∈ U`∗,A and
Σ ∈ SU0,ε,η. In addition, cap(A`∗) ↓ cap(A) as `∗ → ∞, cf. [18], p. 60. Letting ε go
to 0 and `∗ to ∞ in such a way that ε2`∗ tends to 0, the limit in (3.15) is at most 1.

We now turn to the proof of (3.16). A similar monotonicity argument as in the
proof of (3.15) shows the existence of the limit. This limit is at most equal to the
limit in (3.15) (with A an arbitrary compact set of positive capacity) and thus is at
most 1. The limit is also bigger or equal to 1 as we now explain. Indeed, as above
one has cap(Σ)/cap(A) ≥ infx∈A Px[HΣ <∞], and it now follows from (3.3) and the
maximality of the case A = {0} that the limit in (3.16) is at least 1. This concludes
the proof of (3.16), and hence of Corollary 3.4.

We also state an immediate consequence of Theorem 3.1 in the case of soft ob-
stacles concerning the time spent by Brownian motion in the ε-neighborhood of
S = (∂U0 = ∂U1), for any U0 ∈ U`∗,A. We recall that d(x,S) stands for the sup-
distance of x to S (see the beginning of Section 1).

Corollary 3.5. For any non-empty compact set A in Rd, `∗ ≥ 0 and a > 0,

(3.19) lim
ε→0

sup
U0∈U`∗,A

sup
x∈A

Ex[ exp{ −
a

ε2

ˆ ∞

0
1{d(Xs, S) ≤ ε}ds}] = 0.

Proof. We write V (y) = a
ε2

1{d(y,S) ≤ ε}, and note that in the notation of (3.2)
V ∈ VU0,ε,η, where 1 − η = E0[exp{−a τ1}] (see (1.20) for notation). The claim now
follows from (3.4) of Theorem 3.1.

Remark 3.6. 1) We briefly sketch here an example showing that the interfaces and
porous interfaces under consideration may undergo degenerations in certain parts
of space, where they may become brittle and have little trapping power (see Fig. 4
below).

We consider d ≥ 4, 0 ≤ ε < 1, r(ε) = n(ε) ε, where n(ε) = [ε−
2
d−1 ], so that

(3.20) r(ε) ∼ ε
d−3
d−1 and r(ε)/ε→∞, as ε→ 0.

We let L̃ε denote the cable graph consisting of solid segments between neighboring
sites in r(ε)Zd. We also consider the discrete set Lε of sites placed at regular spacings
ε along each solid edge of L̃ε. We endow Lε with its natural graph structure and set
Γε = Lε ∩B(0,100).

We consider 0 ≤ a < 1
2 (fixed) and assume that Σ (the “porous interface”) is such

that Σ ∩B(0,100) coincides with the restriction of ⋃x∈Γε Bx,aε to B(0,100) (where
Bz,u stands for the closed Euclidean ball of center z and radius u). One can arrange
Σ so that Σ ∈ SU0,ε,η for a suitable U0 and η (depending on a). For instance, one can
consider some spanning tree of Γε rooted at a point on the inner boundary of Γε in
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Lε, and let U0 behave in the ε2-neighborhood of B(0,100) as a “cactus-like” structure
thickening this spanning tree with thin tubes of radius ε2 with a stem hanging out
at the root.

x

e

re

Fig. 4: An illustration of a part of U0 and Σ, where Σ consists of the union of
the black balls (with radius aε). The black lines correspond to thin tubes
of radius ε2 (their union constitutes the “cactus-like” structure), and the
point x belongs to Mε.

We then consider Mε, the set of points at Euclidean distance ε from L̃ε and
sup-distance at most r(ε)

4 from the middle-point of a solid segment of L̃ε contained
in B(0,10). As we now explain, for some constants c > 0 and 0 < c′ < 1,

(3.21) lim
ε→0

inf
x∈Mε

Px[HΣ > τc] ≥ c
′,

and Σ has little trapping power on Brownian motion starting in Mε.

To see (3.21), denote byDε the set of points at Euclidean distance at least r(ε)/10
from L̃ε. As we now explain, one has a constant c′′ > 0 such that

(3.22) lim
ε→0

inf
x∈Mε

Px[HΣ >HDε∩B(0,20)] ≥ c
′′.

Indeed, to each x in Mε, one can attach a unique solid segment of L̃ε, and tak-
ing as origin the middle of the segment, one can decompose Brownian motion into
a 1-dimensional motion parallel to the segment and a (d − 1)-dimensional motion
transversal to the segment. One can make sure that the (d− 1)-dimensional compo-
nent reaches radius r(ε)/10 before time C r(ε)2 and reaching radius ε

2 with a non-
degenerate probability. One can also force the 1-dimensional component not to move
by more than r(ε)/8 from its starting point up to time C r(ε)2, with non-degenerate
probability. The lower bound (3.22) now follows by independence.
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Then, for y ∈ B(0,20) ∩Dε, v ≤ 1 and aε < v, we have

(3.23)

Py[HΣ < τv] ≤ ∑
z∈Lε∩B(y,2v)

Py[HBz,aε <∞] =

(with similar notation as below (3.16))

∑
z∈Lε∩B(y,2v)

ˆ
g(y, y′) eBz,aε(dy

′
) ≤ ∑

k∈Zd/{0}
∣kr(ε)∣∞≤c′v

c

∣kr(ε)∣d−2

r(ε)

ε
ad−2 εd−2

≤

c′′
εd−3

r(ε)d−3
(

v

r(ε))
2
ad−2

(3.20)
≤ c v2 ad−2

≤
1

2
if we choose v = c̃ small.

The strong Markov property combined with (3.22) and (3.23) now yields (3.21).
Although we will not need it, let us mention that a more detailed analysis of the
above example along the lines of the constant capacity regime of small obstacles (see
for instance [1], [5], and also [20], p. 116-120) would reveal that c can be chosen equal
to 1 in (3.21), but that one does indeed feel Σ when starting in B(0,10), in the sense
that limε→0 sup∣x∣∞≤10 Px[HΣ > τ1] ≤ 1 − c(a).

2) In Theorem 3.1, when A = {0}, scaling can be applied to reformulate (3.3) and
(3.4). Indeed, for any `∗ ≥ 0, U0 ∈ U`∗ is equivalent to 2`∗U0 ∈ U0. Moreover, given
U0 ∈ U`∗ , for ε > 0, η ∈ (0,1), then Σ ∈ SU0,ε,η is equivalent to 2`∗Σ ∈ S2`∗U0,ε2`∗ ,η and
P0[HΣ < ∞] = P0[H2`∗Σ < ∞]. Likewise, V ∈ VU0,ε,η is equivalent to 4−`∗V (2−`∗ ⋅) ∈
V2`∗U0,ε2`∗ ,η, and

E0[ exp{ −

ˆ ∞

0
V (Xs)ds}] = E0[ exp{ −

ˆ ∞

0
4−`∗V (2−`∗Xs)ds}].

As a result, when A = {0}, (3.3) can be restated as

(3.24) lim
ε→0

sup
U0∈U`∗=0

sup
Σ∈SU0,ε,η

P0[HΣ =∞] = 0,

and (3.4) can be restated as

(3.25) lim
ε→0

sup
U0∈U`∗=0

sup
V ∈VU0,ε,η

E0[ exp{ −

ˆ ∞

0
V (Xs)ds}] = 0.

3) In the context of Corollary 3.4 the situation is typically simpler when A is a
convex set. If πA denotes the projection on A, then πA is a contraction for the
Euclidean distance. If Σ is a porous interface and Σ′ = πA(Σ), then one knows that
cap(Σ′) ≤ cap(Σ), see [12], p. 58, or [17], p. 126. In good cases Σ′ satisfies a Wiener
criterion (see for instance [20], p. 72), which quantifies that Σ′ is felt on many scales
when starting from A, and permits one to show that infx∈∂A Px[HΣ′ <∞] is close to
1. One can then infer from this fact a lower bound on cap(Σ). ◻
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4 Disconnection

We will now apply the results of the previous section, specifically Corollary 3.4, to
derive large deviation upper bounds on the probability that random interlacements
in Zd, when their vacant set is in a strongly percolative regime, or the simple random
walk disconnect a large macroscopic body from the boundary of a large box of com-
parable size, which contains this body, cf. Theorem 4.1, Corollary 4.4, and Remark
4.5 3). The macroscopic body in question will correspond to the discrete blow-up of
a compact set A in Rd, with non-empty interior, see (4.4), and also Remark 4.5 3)
for a variant of this set-up. The main novelty compared to [22], where A was itself
a box, and the method could plausibly have been adapted to the case of a regular
compact convex set A, is that here we do not require any convexity assumption on
A. The interfaces S and the porous interfaces Σ will arise in the context of a coarse
graining procedure, which underlies the large deviation upper bounds that we derive,
see (4.48), (4.49).

We briefly introduce some notation concerning random interlacements, and refer
to the end of Section 1 of [22] and the references therein for more details. Throughout
we assume d ≥ 3. The random interlacements Iu, u ≥ 0, and the corresponding vacant
sets Vu = Zd/Iu are defined on a certain probability space (Ω,A,P). In essence, Iu

corresponds to the trace left on Zd by a certain Poisson point process of doubly
infinite trajectories modulo time-shift that tend to infinity at positive and negative
infinite times, with intensity proportional to u. As u grows, Vu becomes thinner
and it is by now well-known (see for instance [4], [9]) that there is a critical level
u∗ ∈ (0,∞) such that

(4.1)
for u < u∗, P-a.s., Vu has an infinite component,

for u > u∗, P-a.s., all connected components of Vu are finite.

One can further introduce critical values

0 < u ≤ u∗ ≤ u∗∗ <∞, where(4.2)

u∗∗ = inf{u ≥ 0; lim inf
L

P[BZd(0, L)
Vu
←→ ∂BZd(0,2L)] = 0}(4.3)

(the event under the probability corresponds to the existence of a nearest neigh-
bor path in Vu between BZd(0, L)

def
= B(0, L) ∩ Zd and the exterior boundary of

BZd(0,2L)).

We refer to (2.3) of [22] for the precise definition of u. It is known to be positive
thanks to Theorem 1.1. of [10] (and also [23], when d ≥ 5). The ranges u > u∗∗ and
0 < u < u respectively correspond to strongly non-percolative and strongly percolative
regimes of the vacant set Vu. It is plausible but open at the moment that actually
u = u∗ = u∗∗.

We are interested here in the strongly percolative regime 0 < u < u for the vacant
set Vu. We consider

(4.4) a compact subset A of Rd,
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and we assume that M > 0 is such that

(4.5) A ⊆ B̊(0,M).

Given N ≥ 1, the discrete blow-up of A is defined as

(4.6) AN = (NA) ∩Zd,

and we write

(4.7) SN = {x ∈ Zd; ∣x∣∞ = [MN]}.

We note that for large N , i.e. N ≥ N0(A,M),

(4.8) AN ⊆ BZd(0,MN)/SN .

Our interest lies in the disconnection event

(4.9) D
u
N = {AN

Vu
←→/ SN}

(corresponding to the absence of a nearest neighbor path in Vu between AN and
SN ), and we tacitly assume from now on that N ≥ N0(A,M). The main result of
this section is the following asymptotic upper bound.

Theorem 4.1. Assume that A is a compact subset of Rd and M > 0 satisfies (4.5).
Then, for 0 < u < u, one has (with Å the interior of A)

(4.10) lim sup
N

1

Nd−2
logP[DuN ] ≤ −

1

d
(
√
u −

√
u)2cap(Å).

Of course, when the compact set A is regular in the sense that cap(A) = cap(Å),
one can replace cap(Å) by cap(A) in the right member of (4.10). Theorem 4.1 has
a direct application that yields a similar asymptotic upper bound on the probability
that simple random walk disconnects AN from SN , see Corollary 4.4 at the end of
this section.

Before starting the proof of Theorem 4.1, we introduce some further notation
and recall three results from [22]. We consider 0 < u < u, as well as

(4.11) α > β > γ in (u,u), and ε̃ ∈ (0,1) such that ε̃(
√

u

u
− 1) < 1

(the parameter ε̃ corresponds to ε in [22], but we use here a different notation to
avoid a confusion with the parameter ε of Section 3). We consider from now on an
integer K ≥ c(α,β, γ, ε̃) (≥ 100, this constant corresponds as below (6.4) of [22] to
c4(α,β, γ) ∨ c5(ε̃) ∨ c8(α,β, γ), in the notation of Theorem 2.3, Proposition 3.1 and
Theorem 5.1 of [22]). We also consider an integer L ≥ 1, and for any z ∈ L def

= LZd,
we set

Bz = z + [0, L)d ∩Zd ⊆Dz =

z + [−3L,4L)d ∩Zd ⊆ Uz = z + [−KL + 1,KL − 1)d ∩Zd.
(4.12)
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We refer to (2.11) - (2.13) of [22] for the notion of a good(α,β, γ)-box Bz (which
is otherwise bad(α,β, γ)). The details of the definition will not be important here.
In essence, one looks at the excursions of the interlacements between Dz and the
complement of Uz. One can order them in a natural fashion, and for a good(α,β, γ)-
box Bz, the complement of the first α capZd(Dz) excursions leaves in Bz a connected
set with sup-norm diameter at least L/10, which is connected to similar components
in neighboring boxes of Bz via paths in Dz avoiding the first β capZd(Dz) excursions
(and capZd(⋅) stands for the capacity attached to the simple random walk on Zd).
In addition, the first β capZd(Dz) excursions spend a substantial “local time” on the
(inner) boundary of Dz, which is at least γ capZd(Dz).

We also need the notation Nu(Dz), see (2.14) of [22], which refers to the number
of excursions from Dz to ∂Uz (the exterior boundary of Uz in Zd), contained in the
interlacement trajectories up to level u.

We now recall three facts from [22]. First, a connectivity statement, cf. Lemma
6.1 of [22]:

(4.13)

if Bzi , 0 ≤ i ≤ n, is a sequence of neighboring L-boxes
(i.e. the zi,0 ≤ i ≤ n, form a nearest-neighbor path in L), which are
good(α,β, γ), and for i = 0, . . . , n, Nu(Dzi) < β capZd(Dzi), then there
exists a path in (⋃

n
i=0Dzi) ∩ V

u starting in Bz0 and ending in Bzn .

Second, an exponential bound, cf. Theorem 3.2 of [22], namely, if C is a non-empty
finite subset of L with points at mutual sup-distance at least KL, where K = 2K +3,
then

(4.14)
P[ ⋂

z∈C
{Bz is good(α,β, γ) and Nu(Dz) ≥ β capZd(Dz)}] ≤

exp{ − (
√
γ −

√
u

1 − ε̃ (
√

u
u
− 1)

)(
√
γ −

√
u) capZd(C)},

where C = ⋃z∈C Bz (and capZd(Dz) does not depend on z by translation invariance).
The third fact, cf. (5.1) of [22] (with the choice Γ = 1), as well as (5.6) and Theorem
5.1 of [22], is a super-exponential bound (its proof in [22] uses decoupling via the soft
local time technique in the form of Section 2 of [6]). Namely, there exists a positive
function ρ(L) (depending on α,β, γ,K) with limL ρ(L) = 0, such that setting

NL = Ld−1
/ logL, when L > 1,(4.15)

lim
L→∞

N
−(d−2)
L logP[there are at least ρ(L)(NLL )d−1 columns in(4.16)

[−NL,NL]
d in the direction e containing

a bad(α,β, γ)-box] = −∞,

where for e vector of the canonical basis of Rd, a column in [−NL,NL]
d in the

direction e refers to the collection of L-boxes Bz intersecting [−NL,NL]
d with same

projection on the discrete hyperplane {x ∈ Zd;x ⋅ e = 0}, and (4.16) holds for all
vectors e of the canonical basis.
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It is convenient to introduce the non-increasing function

ρ∗(u) = sup{ρ(L′); L′ ≥ [u]}, for u ≥ 0, so that

ρ∗(L) ≥ρ(L) for integer L, and lim
u→∞

ρ∗(u) = 0.
(4.17)

We will now specify the choice of L as a function of N (that enters Theorem 4.1).
We do this in a different fashion from [22] (we use here a slightly bigger scale). First,
we choose a positive sequence γN , N ≥ 1, such that

(4.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) γN ≤ 1,

ii) γ2d
N /ρ∗((N logN)

1
d−1 )Ð→

N
∞,

iii) γ
d+1
2

N /(logN N−(d−2))Ð→
N

∞,

iv) γN → 0

(such a choice is possible since limu→∞ ρ∗(u) = 0).

We then define (L0 will stand for our choice of L as a function of N)

(4.19) L0 = [(γ−1
N N logN)

1
d−1 ] and L̂0 = 100d[

√
γN N].

By (4.18) iii) for large N , L0 is smaller than L̂0. Heuristically, L̂0 can be thought
of as “nearly macroscopic” (i.e. of size N). As an aside, L̂0/N (which is comparable
to √

γ
N

for large N) will in essence correspond to the parameter ε of Section 3.
Together with these choices, we introduce the lattices

(4.20) L0 = L0 Zd and L̂0 =
1

100d
L̂0 Zd = [

√
γN N]Zd.

As a last preparation for the proof of Theorem 4.1, we have

Lemma 4.2. As N →∞, one has in the notation of (4.15), (4.19)

(4.21) ρ(L0) (
NL0

L0
)
d−1

/(L̂0/L0)
d−1
Ð→
N

0.

In addition, if one defines the event (where e runs over the canonical basis of Rd),

BN =⋃
e
{there are at least ρ(L0) (

NL0

L0
)
d−1

columns of L0-boxes

in the direction e in BZd(0,10(M + 1)N) that contain
a bad(α,β, γ)L0-box},

(4.22)

then one has

(4.23) lim
N

1

Nd−2
logP[BN ] = −∞ (super-exponential bound).
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Proof. We first prove (4.21). For large N , on the one hand, we have

(4.24) (L̂0/L0)
d−1

(4.19)
≥ c γ

d−1
2
+1

N
Nd−2

logN
(which tends to ∞ by (4.18) iii)),

and on the other hand

(4.25)

ρ(L0) (NL0/L0)
d−1 (4.15)

= ρ(L0)(L
d−2
0 / logL0)

d−1
(4.19)
≤

ρ(L0)γ
−(d−2)
N (N logN)d−2(logL0)

−(d−1) (4.19)
≤

c ρ(L0)γ
−(d−2)
N (N logN)d−2(logN)−(d−1) (4.17)−(4.19)

≤

c ρ∗((N logN)
1
d−1 )γ

−(d−2)
N

Nd−2

logN

(4.18) ii)
≤ c γd+2

N
Nd−2

logN
.

Since γN tends to zero, cf. (4.18) iv) and d+2 > d−1
2 +1, the claim (4.21) follows from

(4.24), (4.25).

We now turn to the proof of (4.23). We note that for large N , one has

(4.26) NL0

(4.15)
=

Ld−1
0

logL0

(4.19)
≥ c γ−1

N
N logN

logL0
≥ c′ γ−1

N N ≥ 10(M + 1)N.

Hence, for large N the event BN is contained in the union over e of the events under
the probability in (4.16) where L0 replaces L. In addition, by (4.26), we know that
NL0 ≥ N for large N and (4.23) follows from (4.16). This completes the proof of
Lemma 4.2.

We are now ready to begin the proof of Theorem 4.1. Here is an outline of the
proof. We use a coarse graining procedure. In essence, for large N , on the discon-
nection event DuN , cf. (4.9), there will be an interface of L0-boxes, either bad(α,β, γ)
or with Nu(Dz) ≥ β capZd(Dz), blocking the way between AN and the complement
of BZd(0, (M + 1)N). We will track this interface through boxes of size L̂0 (much
larger than L0, but small compared to the macroscopic size N), where the interface
will have a substantial presence. This step will involve the inspection of a certain
local density in scale L̂0, cf. (4.28), and selecting a region where it is non-degenerate,
cf. (4.32). After discarding the bad event BN , which is negligible for our purpose,
thanks to the super-exponential bound (4.23), there will be few bad(α,β, γ) L0-boxes
in each L̂0-boxes, and we will be able to extract a “porous interface” made of boxes
of size L̂0, so that in each such box there will be a substantial presence of boxes Bz
of size L0, all good(α,β, γ), with Nu(Dz) ≥ βcapZd(Dz), at mutual distance at least
KL0 (with K = 2K + 3 as required in (4.14)). This selection of L0-boxes will use
isoperimetric controls of Deuschel and Pisztora [8] based on an elementary inequality
of Loomis and Whitney [16], in a similar spirit as in Section 2 of [7]. These choices
will have a small combinatorial complexity, namely exp{o(Nd−2)}, and will produce
a coarse graining of the event DuN/BN . By the exponential bound (4.14), we will
then be reduced to the derivation of a uniform lower bound on capZd(C), for C the
union of the selected L0-boxes. With the help of Proposition A.1 of the Appendix,
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we will be able to replace discrete boxes and random walk capacity with Rd-boxes
and Brownian capacity (first letting N tend to infinity, and then choosing K large).
The desired uniform lower bound on the capacity will be provided by Corollary 3.4,
where in essence ε corresponds to L̂0

N (∼ const.
√
γ
N
). The bound in Theorem 4.1

will then follow by letting K tend to infinity, and then letting successively ε̃ go to
zero and γ (together with α,β) go to u.

Proof of Theorem 4.1: We recall the definitions of L0 and L̂0 in (4.19). Without
loss of generality we assume that Å /= ∅ (otherwise (4.10) is immediate) and that
N ≥ N0(A,M) so that (4.8) holds. We are going to introduce a local density function
σ̂(⋅), see (4.28) below, in order to track in scale L̂0 an interface of “blocking L0-boxes”,
when DuN occurs. More precisely, we introduce the random subset

U
1
= the union of all L0-boxes Bz that are either contained in
BZd(0, (M + 1)N)c or linked to an L0-box contained in
BZd(0, (M + 1)N)c by a path of L0-boxes Bzi , 0 ≤ i ≤ n,
which are all, except maybe for the last one, good(α,β, γ)
and such that Nu(Dzi) < βcapZd(Dzi).

(4.27)

We then define the local density function

(4.28) σ̂(x) = ∣U
1
∩BZd(x, L̂0)∣/∣BZd(x, L̂0)∣, for x ∈ Zd.

We note that σ̂(⋅) has slow variation in the sense that

(4.29) ∣σ̂(x + e) − σ̂(x)∣ ≤
2

2L̂0 + 1
≤

1

L̂0

, for all x, e in Zd with ∣e∣1 = 1.

When BZd(x, L̂0 + L0) ⊆ BZd(0, (M + 1)N)c, any L0-box intersecting BZd(x, L̂0) is
contained in BZd(0, (M + 1)N)c and hence in U1, so that

(4.30) σ̂(x) = 1, when BZd(x, L̂0 +L0) ⊆ BZd(0, (M + 1)N)
c.

On the other hand, when BZd(x, L̂0 +L0) ⊆ AN(
(4.6)
= (NA) ∩Zd), any L0-box inter-

secting BZd(x, L̂0) is contained in AN . When N is large, if such a box is contained
in U1, then by (4.27) and the connectivity property (4.13), there is a path in Vu

between AN und BZd(0,MN)c and DuN does not occur. So, we find that

(4.31) for large N on DuN , σ̂(x) = 0 when BZd(x, L̂0 +L0) ⊆ AN .

Loosely speaking, the random set ŜN that we will now introduce, provides a “seg-
mentation” in (nearly macroscopic) scale L̂0 of the interface of blocking (and much
smaller) L0-boxes we are interested in. Specifically, we consider the random subset
of L̂0 (see (4.20) for notation)

(4.32) ŜN = {x ∈ L̂0;
1

4
≤ σ̂(x) ≤

3

4
},

as well as the compact subset of Rd

(4.33) ∆N = ⋃
x∈ŜN

B(
x

N
,

1

50d

L̂0

N
)
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(in essence, the unbounded component of the complement of ∆N will play the role
of U1 in the first three sections of this article, see (4.49) below).

The Reader may possibly wish to read the statement of the next lemma, first
skip its proof, and proceed above (4.39) to see how the proof of Theorem 4.1 unfolds.

Lemma 4.3. (Insulation property of ∆N )

For large N ,

(4.34) ŜN ⊆ BZd(0, (M + 2)N) ∩ L̂0,

and on DuN ,

(4.35) the compact set {z ∈ A;d(z, ∂A) ≥
L̂0 +L0 + 1

N
} is contained

in the union of the bounded components of the open set Rd/∆N .

Proof. By (4.30), we see that for large N , σ̂(x) = 1, when ∣x∣∞ > (M + 2)N , and
(4.34) follows. To prove (4.35), we will first show that

(4.36) for large N , on DuN the compact set in (4.35) does not intersect ∆N .

Indeed, otherwise scaling up by N and choosing some point in Zd within ∣⋅∣∞-distance
1 of the intersection, we could find y ∈ Zd with BZd(y, L̂0 + L0) ⊆ AN and within
∣ ⋅ ∣∞-distance ( 1

50d L̂0 + 1) of ŜN . This would imply σ̂(y) = 0 by (4.31). But also by
(4.32) and (4.29) that σ̂(y) ≥ 1

4 − d(
1

50d L̂0 + 1) 1
L̂0

≥ 1
8 , a contradiction. This proves

the claim (4.36).

As a next step in the proof of (4.35), we will show that

(4.37)
for large N , on DuN , any continuous path ψ(⋅): [0,1]→ Rd, such that
ψ(0) is within ∣ ⋅ ∣∞-distance 1 of {x ∈ AN : BZd(x, L̂0 +L0) ⊆ AN} and
∣ψ(1)∣∞ ≥ (M + 2)N , comes within distance 1

50d L̂0 of ŜN .

This will imply that any continuous path in Rd starting in the compact set in (4.35)
and with end point of ∣ ⋅ ∣∞-norm at least M +2 necessarily meets ∆N . Together with
(4.36), this will complete the proof of (4.35). There remains to prove (4.37).

Given ψ(⋅) as in (4.37), we can construct a Zd-valued ∗-path yi,0 ≤ i ≤ ` (i.e.
∣yi+1 − yi∣∞ = 1, for 0 ≤ i < `) such that y0 ∈ {x ∈ AN ; BZd(x, L̂0 + L0) ⊆ AN} and
∣y`∣∞ > (M+1)N+L̂0+L0 and {y0, . . . , y`} is contained in the closed 1-neighborhood of
ψ([0,1]) for the ∣ ⋅ ∣∞-distance. Indeed, one constructs by induction a non-decreasing
sequence of times ti ∈ [0,1] and points yi,1 ≤ i ≤ `, so that ti is the first time after ti−1

(with t0 = 0) when the continuous path ψ moves at ∣ ⋅ ∣∞-distance 1 from the current
point yi−1 of the sequence to choose the next yi in Zd so that ∣ψ(ti) − yi∣∞ ≤ 1

2 and
∣yi − yi−1∣∞ = 1. The procedure stops after finitely many steps (by the continuity of
ψ) with a point y` that satisfies ∣y`−ψ(1)∣∞ ≤ 1 (whence ∣y`∣∞ > (M +1)N + L̂0+L0).

It now follows from (4.30) and (4.31) that σ̂(y0) = 0 and σ̂(y`) = 1. In addition,
∣yi+1 − yi∣1 ≤ d, for 0 ≤ i < `, and by (4.29), we find that necessarily for some 0 ≤ j ≤ `,
one has ∣σ̂(yj) −

1
2 ∣ ≤

d
L̂0

.
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For large N , if we now choose ŷ ∈ L̂0 such that ∣ŷ − yj ∣∞ ≤ 1
100d L̂0, cf. (4.20), we

find that

(4.38) ∣σ̂(ŷ) −
1

2
∣
(4.29)
≤

1

L̂0

∣ŷ − yj ∣1 +
d

L̂0

≤
1

100
+

d

L̂0

<
1

4
.

This shows that ŷ belongs to ŜN , cf. (4.32). In addition, ψ(⋅) comes within ∣ ⋅ ∣∞-
distance 1

100d L̂0 + 1 ≤ 1
50d L̂0 of ŷ, and thus of ŜN . This yields (4.37) and concludes

the proof of Lemma 4.3.

We are now on our way to introduce a coarse graining of the event DuN/BN (we
refer to (4.22) for the definition of the “bad” event BN ), see (4.42), (4.43) below. As a
next step, we extract a (measurable random) subset S̃N of the (measurable random)
finite set ŜN such that:

(4.39) S̃N is a maximal subset of ŜN such that the BZd(x,2L̂0), x ∈ S̃N ,
are pairwise disjoint.

For any x ∈ S̃N , we have σ̂(x) ∈ [1
4 ,

3
4] by (4.32). By the isoperimetric controls

(A.3) - (A.6), p. 480-481 of [8], we have a projection π̃x on the hyperplane of points
with vanishing ĩx-coordinate, such that the π̃x-image of the points in BZd(x, L̂0)/U

1

having a neighbor in BZd(x, L̂0) ∩ U
1 has cardinality at least c L̂d−1

0 (see (4.27) for
notation). Any such point in BZd(x, L̂0)/U

1, which is a neighbor of a point in
BZd(x, L̂0) ∩ U

1, belongs to a (uniquely defined) L0-box Bz, z ∈ L0, which is not
contained in BZd(0, (M + 1)N)c (otherwise the point would belong to U1), but also
cannot be both good(α,β, γ) and with Nu(Dz) < β cap(Dz) (otherwise the point
would again belong to U1, since a neighboring L0-box is contained in U1).

As a result, we see that for large N ,

(4.40)

for each x ∈ S̃N , there is a collection of L0-boxes intersecting BZd(x, L̂0)

with π̃x-projection at mutual distance ≥KL0 (where K = 2K + 3),
and cardinality at least ( cK

L̂0

L0
)d−1, such that each Bz in the collection

is either bad(α,β, γ) or Nu(Dz) ≥ β capZd(Dz).

Now for large N , on the complement of the event BN in (4.22), in each coordinate
direction, the number of columns of L0-boxes in BZd(0,10(M + 1)N) that contain a
bad(α,β, γ) L0-box is at most ρ(L0)(

NL0

L0
)d−1 ≤ ( c

2K
L̂0

L0
)d−1 by (4.21). This obser-

vation combined with (4.40) shows that

(4.41)

for large N , on the event D̃uN = DuN/BN , for each x ∈ S̃N there is a
collection C̃x of L0-boxes intersecting BZd(x, L̂0) with π̃x-projection
at mutual distance at least KL0 and cardinality [( c

′
K

L̂0

L0
)d−1], such

that for each z ∈ C̃x, Bz is good(α,β, γ) and Nu(Dz) ≥ β capZd(Dz).

Thus, for large N , we can define a random variable

(4.42) κN = (ŜN , S̃N , (π̃x, C̃x)x∈S̃N ) on D̃uN(= D
u
N/BN)
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with the above mentioned properties. As we now explain

(4.43) the set KN of possible values of κN has cardinality ∣KN ∣ = exp{o(Nd−2)}.

Indeed, for large N , by (4.34), (4.39), there are at most 22∣L̂0∩BZd(0,(M+2)N)∣ possible
choices for the couple (ŜN , S̃N), and this quantity is at most

exp{c(Md
+ 1)(

N

L̂0

)
d
} ≤ exp{c(Md

+ 1)γ
− d

2
N }.

Then, for any such choice of ŜN and S̃N , for any x ∈ S̃N , we can choose (π̃x, C̃x) in

at most d(c L̂0

L0
)
(c L̂0
L0

)d−1

ways, and hence the number of choices for (π̃x, C̃x)x∈S̃N is at
most

(4.44) exp{c′(Md
+ 1)(

N

L̂0

)
d
( log d + (

L̂0

L0
)
d−1

log (c
L̂0

L0
))}.

Note that for large N , one has

(
N

L̂0

)
d
(
L̂0

L0
)
d−1

log (
L̂0

L0
) = (

N

L̂0

) (
N

L0
)
d−1

log (
L̂0

L0
)

(4.19)
≤

c γ
− 1

2
N γN

Nd−2

logN
logN = c γ

1
2
N N

d−2.

We thus find that for large N , the number ∣KN ∣ of possible values of κN is at most

exp{c(Md + 1)(γ
−d/2
N + γ

1/2
N Nd−2)}

(4.18)i),iii),iv)
= exp{o(Nd−2)}, whence (4.43).

For large N , the coarse graining of D̃uN will specifically correspond to the parti-
tion:

D̃
u
N = ⋃

κ∈KN

DN,κ, where DN,κ = D̃uN ∩ {κN = κ}, for κ ∈ KN(4.45)

(and ∣KN ∣ = exp{o(Nd−2)}).

We can now combine the super-exponential bound in (4.23) and the above coarse
graining to find that

lim sup
N

1

Nd−2
logP[DuN ]

(4.23)
≤ lim sup

N

1

Nd−2
logP[D̃uN ]

(4.45)
≤ lim sup

N
sup
κ∈KN

1

Nd−2
logP[DN,κ].

(4.46)

To each κ ∈ KN , we will associate a “segmentation” (corresponding to U0 or S in (4.49)
below) and a “porous interface” (corresponding to Σ in (4.48) below), as follows. If
κ = (Ŝ, S̃, (π̃x, C̃x)x∈S̃) ∈ KN , we define

(4.47) C = ⋃
x∈S̃

⋃
z∈C̃x

Bz (⊆ Zd),
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its “scaled Rd-filling”:

(4.48) Σ =
1

N
(⋃
x∈S̃

⋃
z∈C̃x

z + [0, L0]
d
) (⊆ Rd),

as well as

U1 = the unbounded component of Rd/{ 1

N
( ⋃
x∈Ŝ

B(x,
1

50d
L̂0))}

U0 = Rd/U1, S = ∂U0 = ∂U1.
(4.49)

Note that on DN,κ the open set U1 coincides with the unbounded component of
Rd/∆N in the notation of (4.33). Thus, by Lemma 4.3, for large N and all κ in KN ,
on DN,κ, the compact set {z ∈ A;d(z, ∂A) ≥ L̂0+L0+1

N } in (4.35) of Lemma 4.3 does
not intersect U1. We then consider a compact subset A′ of Å and some `∗(A,A′) ≥ 0
such that, for large N and all κ ∈ KN ,

(4.50) d(A′, U1) ≥ 2−`∗ (and hence U0 ∈ U`∗,A′ , see (2.6)).

In addition, by (4.39), (4.41), and the definition of Σ in (4.48), that for large N
and all κ ∈ KN and x ∈ S̃, cap(⋃z∈C̃x z + [0, L0]

d) ≥ c(K)L̂d−2
0 (using a projection

argument, see [17], p. 126), and

(4.51) Px[HΣ < τ
10

L̂0
N

] ≥ c(K), for all x ∈ S (= ∂U0 = ∂U1).

This will enable us to apply Corollary 3.4 of the previous section. We now come
back to (4.46), and note that by the exponential bound (4.14), as well as our choice
of C̃x in (4.41) and the notation (4.47),

(4.52)

lim sup
N

1

Nd−2
logP[DuN ] ≤

−(
√
γ −

√
u

1 − ε̃(
√

u
u − 1)

)(
√
γ −

√
u) lim inf

N
inf
κ∈KN

1

Nd−2
capZd (C).

Taking a liminf over K and using Proposition A.1, we find with Σ as in (4.48):

(4.53)

lim sup
N

1

Nd−2
logP[DuN ] ≤

−(
√
γ −

√
u

1 − ε̃(
√

u
u − 1)

)(
√
γ −

√
u) lim

K
lim
N

inf
κ∈KN

1

d
cap(Σ).

We can now take (4.50), (4.51) into account, and by Corollary 3.4, we find that

(4.54) lim inf
N

inf
κ∈KN

cap(Σ) ≥ cap(A′
).

Inserting this inequality in the last expression of (4.53), and letting successively ε̃
tend to zero and α,β, γ tend to u yields

(4.55) lim sup
N

1

Nd−2
logP[DuN ] ≤ −

1

d
(
√
u −

√
u)2 cap(A′

).
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Letting A′ increase to Å now yields (4.10), by Proposition 1.13, p.60 of [18]. This
completes the proof of Theorem 4.1.

◻

In the proof of the above Theorem 4.1, we applied Corollary 3.4 with a fixed `∗,
which does not vary with N , see (4.50). We refer to Remark 4.5 3) below for an
application where `∗ depends on N .

Theorem 4.1 has an immediate application to a similar asymptotic upper bound
in the case of disconnection by a simple random walk. We first introduce some
notation. We denote by Zn, n ≥ 0, the canonical simple random walk on Zd, (recall
d ≥ 3), and by PZd

x the canonical law of the walk starting at x ∈ Zd. We write
I = {Zn;n ≥ 0} ⊆ Zd for the set of points visited by the walk and V = Zd/I for
its complement. With AN and SN as in (4.6), (4.7), and N ≥ N0(A,M) such that
AN ⊆ BZd(0,MN)/SN , we consider the disconnection event where there is no path
in V between AN and SN ,

(4.56) DN = {AN
V
←→/ SN}.

We have

Corollary 4.4. Assume that A is a compact subset of Rd and M > 0 satisfies (4.5),
then for any x ∈ Zd,

(4.57) lim sup
N

1

Nd−2
logPZd

x [DN ] ≤ −
1

d
u cap(Å).

Proof. The proof is similar to that of Corollary 6.4 of [22] (or that of Corollary 7.3
of [21]) and relies on the fact that one can find a coupling P of Iu under P[⋅∣x ∈ Iu]
and of I under Px, so that P -a.s., I ⊆ Iu. The claim (4.57) then follows by the
application of Theorem 4.1 to u ∈ (0, u), and then letting u → 0 (see the above
mentioned references for details).

Remark 4.5. 1) The approach developed in this section should remain pertinent in
the context of level-set percolation of the Gaussian free field on Zd, d ≥ 3. Plausibly,
one should be able to adapt the strategy of the proof of Theorem 4.1 to instead derive
asymptotic upper bounds on the probability that the excursion-set of the Gaussian
free field below level α disconnects the macroscopic body AN from SN , when α is such
that the excursion-set of the Gaussian free field above α is in a strongly percolative
regime (i.e. α < h in the notation of [21]). The case when AN is the discrete blow-up
of a box centered at the origin was treated in [21].

2) As mentioned in the introduction, it is plausible but presently open that the
critical levels u ≤ u∗ ≤ u∗∗ actually coincide (incidentally, some progress towards a
possible proof of the equality u∗ = u∗∗ has been made in [11]). If this is the case and
u = u∗ = u∗∗, then when the compact set A is regular in the sense that

(4.58) cap(A) = cap(Å),
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the asymptotic upper bounds in Theorem 4.1 and Corollary 4.4 respectively match
the asymptotic lower bounds from [15] in the case of random interlacements, and
from [14] in the case of simple random walk and under (4.58)

lim
N

1

Nd−2
logP[DuN ] = −

1

d
(
√
u∗ −

√
u)2 cap(A), when 0 < u < u∗,(4.59)

and

lim
N

1

Nd−2
logP[DN ] = −

1

d
u∗ cap(A).(4.60)

3) Assume that for each rationals α > β > γ in (0, u), ε̃ ∈ (0,1) and integer K ≥

c(α,β, γ, ε̃) (in the notation below (4.11)) one chooses a positive sequence γN as
in (4.18). Then, the proof of Theorem 4.1 can straightforwardly be adapted to the
situation where in place of AN in (4.6) one considers the discrete blow-up ÂN =

(NAδN ) ∩Zd with AδN the closed δN -neighborhood in ∣ ⋅ ∣∞-distance of the compact
set A, for a sequence δN Ð→

N
0 in such a fashion that δN/( L̂0

N )Ð→
N

∞ (i.e. δN/
√
γ
N
Ð→
N

∞), for all above choices of γN . Such a sequence δN can for instance be constructed
by a diagonal procedure. In essence, one only needs to replace A by AδN and ∂A
by ∂(AδN ) in (4.35), and then A′ by A and `∗ by the smallest non-negative integer
such that 2−`∗ ≤ 1

2 δN in (4.50) (so L̂0

N /2−`∗ tends to zero with N). If one denotes by
D̂uN and D̂N the disconnection events respectively corresponding to (4.9) and (4.56)
with ÂN in place of AN , one obtains that for any compact set A in Rd and M > 0
such that (4.5) holds

lim sup
N

1

Nd−2
logP[D̂uN ] ≤ −

1

d
(
√
u −

√
u)2 cap(A), when 0 < u < u,(4.61)

and

lim sup
N

1

Nd−2
logPZd

x [D̂N ] ≤ −
1

d
u cap(A), for x ∈ Zd.(4.62)

◻

A Appendix

In this appendix we state and prove Proposition A.1 that provides a uniform com-
parison between the discrete capacity of arbitrary finite unions of discrete L-boxes
at mutual distance KL with the Brownian capacity of their Rd-filling, when both K
and L tend to infinity.

We first introduce some notation and recall some facts. We write g̃(x, y), with
x, y ∈ Zd, for the Green function of the simple random walk on Zd, d ≥ 3. If we set
g̃(x) = g̃(0, x), x ∈ Zd, and g(x) = g(0, x), x ∈ Rd (with g(⋅, ⋅) the Green function of
Brownian motion), so that g̃(x, y) = g̃(y−x), for x, y ∈ Zd, and g(x, y) = g(y−x), for
x, y ∈ Rd, then one knows by [13], p. 31, that

(A.1) as x→∞ in Zd, g̃(x) ∼ dg(x) (and g(x) = 1
2πd/2 Γ(d

2 − 1) ∣x∣2−d).
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We consider integers L ≥ 1 andK ≥ 100 and recall the notation from (4.12) concerning
L-boxes: Bz = z+ [0, L)d∩Zd, for z ∈ L(= LZd). For C ⊆ L, a non-empty finite subset
of L, we write

(A.2) C = ⋃
z∈C
Bz (and as a shorthand C = ⋃

B∈C
B).

We denote by B̂z the Rd-filling of Bz:

(A.3) B̂z = z + [0, L]d(⊆ Rd),

and set

(A.4) Γ = ⋃
z∈C
B̂z (and write as a shorthand Γ = ⋃

B∈C
B̂).

Of special interest for this appendix is the case when the boxes in C are at mutual
distance at least KL, i.e.

(A.5) z /= z′ in C implies that ∣z − z′∣∞ ≥KL.

For F finite subset of Zd, we let ẽF (⋅) and c̃ap(F ) stand for the respective equilibrium
measure and capacity of F attached to the discrete Green function g̃(⋅, ⋅) (so c̃ap(F ) =

capZd(F ) in the notation of Section 4). One knows that when K is large and (A.5)
holds, the equilibrium measure of C “conditioned on being in the L-box B ∈ C”, it is
very close to the normalized equilibrium measure ẽB = ẽB/c̃ap(B).

More precisely, by Proposition 1.5 of [22], for any δ ∈ (0,1), when K ≥ c(δ),

(A.6)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

for any L ≥ 1, and any C ⊆ L non-empty finite satisfying (A.5),
one has (1 − δ) µ̃ ≤ ẽC ≤ (1 + δ) µ̃, where

µ̃(y) = ∑
B∈C

ẽC(B) ẽB(y) for y ∈ Zd.

Finally, we recall that in the case of an L-box B and its Rd-filling B̂, one has the
large L equivalence of capacities, cf. Lemma 2.2 of [2] and [19], p. 301, namely

(A.7) aL = d
c̃ap(B)

cap(B̂)
Ð→
L→∞

1.

The main object of this Appendix is the following strengthening of this asymptotic
equivalence:

Proposition A.1.

lim inf
K,L→∞

inf
C
d

c̃ap(C)

cap(Γ)
≥ 1,(A.8)

lim sup
K,L→∞

sup
C

d
c̃ap(C)

cap(Γ)
≤ 1,(A.9)

where in (A.8) and (A.9), C varies over the collection of non-empty finite subsets of
L(= LZd) satisfying (A.5).
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Proof. We consider δ ∈ (0,1) and assume K ≥ c(δ) so that (A.6) holds. We also
introduce the quantity (recall the notation (A.3))

(A.10) ηK = sup
L≥1

sup
z1,z2∈L

∣z1−z2 ∣∞≥KL

sup
x1∈Bz1 ,x2∈Bz2
x′
1
∈B̂z1 ,x′2∈B̂z2

max{
g̃(x1, x2)

dg(x′1, x
′
2)
,
dg(x′1, x

′
2)

g̃(x1, x2)
},

and note that by (A.1)

(A.11) lim
K→∞

ηK = 1.

We now consider C, a non-empty subset of L satisfying (A.5), as well as µ̃ in (A.6)
and the finite measure µ on Rd:

(A.12) µ(dy) = d ∑
B∈C

ẽC(B) eB̂(dy), so µ(Rd) = d ẽC(Zd) = d c̃ap(C)

(and eB̂(dy) stands for the normalized equilibrium measure of the Rd-filling B̂ of B,
i.e. eB̂(dy) = eB̂(dy)/cap(B̂)).

For x ∈ Γ (see (A.4)), so that x ∈ B̂∗ with B∗ ∈ C, we choose x∗ ∈ B∗, such that
∣x − x∗∣∞ ≤ 1. We then have

(A.13)

ˆ
g(x, y)µ(dy) = d ẽC(B∗)

ˆ
g(x, y) eB̂∗(dy) +

∑
B/=B∗

d ẽC(B)

ˆ
g(x, y) eB̂(dy).

The first term in the right-hand side of (A.13) equals (see (A.7) for notation)
d ẽC(B∗)/cap(B̂∗) = ẽC(B∗)/c̃ap(B∗)aL.

By (A.10), (A.11), we see that on the one hand

(A.14)

ˆ
g(x, y)µ(dy)

(A.10)
≤

ẽC(B∗)

c̃ap(B∗)
aL + ηK ∑

B/=B∗
ẽC(B)∑

y
g̃(x∗, y) ẽB(y)

≤ max(aL, ηK) ∑
B∈C

ẽC(B)∑
y
g̃(x∗, y) ẽB(y)

= max(aL, ηK)∑
y
g̃(x∗, y) µ̃(y)

(A.6)
≤ max(aL, ηK) (1 − δ)−1

∑
y
g̃(x∗, y) ẽC(y)

= max(aL, ηK) (1 − δ)−1 (since x∗ ∈ B∗ ⊆ C).

In a similar fashion, we see that

(A.15)

ˆ
g(x, y)µ(dy) ≥ min(aL, η

−1
K )∑

y
g̃(x∗, y) µ̃(y)

(A.6)
≥ min(aL, η

−1
K ) (1 + δ)−1

∑
y
g̃(x∗, y) ẽC(y)

= min(aL, η
−1
K ) (1 + δ)−1.

44



Note that µ is supported by Γ, see (A.12), and (A.15) holds for arbitrary x in Γ.
It then follows by integration of (A.14) and (A.15) with respect to the equilibrium
measure of Γ that

(A.16) (1 − δ)−1 max(aL, ηK) cap(Γ) ≥ µ(Rd) (A.12)
=

d c̃ap(C) ≥ (1 + δ)−1 min(aL, η
−1
K ) cap(Γ).

Since δ ∈ (0,1) is arbitrary, the claims (A.8) and (A.9) readily follow by (A.7) and
(A.11).
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