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Abstract

We consider random interlacements on Zd, d ≥ 3, when their vacant set is in a strongly
percolative regime. Given a large box centered at the origin, we establish an asymptotic upper
bound on the exponential rate of decay of the probability that the box contains an excessive
fraction ν of points that are disconnected by random interlacements from the boundary of
a concentric box of double size. As an application, we show that when ν is not too large
this asymptotic upper bound matches the asymptotic lower bound derived in [26], and the
exponential rate of decay is governed by the variational problem in the continuum involving
the percolation function of the vacant set of random interlacements that was studied in [27].
This is a further confirmation of the pertinence of this variational problem.
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0 Introduction

In this article we consider random interlacements on Zd, d ≥ 3, when their vacant set is in
a strongly percolative regime. In this regime, several kinds of disconnection events of a large
deviation nature and their resulting effect on the random interlacements have recently been inves-
tigated in [5], [17], [25], [24]. Random interlacements are also closely connected to the Gaussian
free field, see for instance [9], and similar largely deviant disconnection events have likewise been
investigated in the context of the level-set percolation of the Gaussian free field, see [6], [16],
[25], [23]. In the present work, given a large box centered at the origin of side-length of order N ,
we study the asymptotic exponential rate of decay for the probability that the box contains an
excessive fraction ν of points that are disconnected by random interlacements from the boundary
of a concentric box of double size. We establish a general asymptotic upper bound. In particular,
we show that when ν is not too large, this asymptotic upper bound matches in principal order the
asymptotic lower bound of [26], and confirms the pertinence of the variational problem studied
in [27]. Importantly, in contrast to [25], no thickening is involved in the definition of the excess
event that we consider, and the resulting effect is markedly different. It remains open whether
the assumption on the size of ν can be removed, and whether in the case of a large enough ν

macroscopic secluded droplets are present and contribute to the excess volume of disconnected
points. Such a behaviour would share some flavor with the phase separation and the emergence
of a macroscopic Wulff shape for the Bernoulli percolation or for the Ising model, see [3], [2].
However, it should be pointed out that in the present context, and in the case of the Gaussian free
field as well, Dirichlet energy and capacity replaces total variation and perimeter, and the rough
order of the exponential decay of the probability of the large deviations is Nd−2 and not Nd−1.

We will now describe the results of this article in more details. We denote by Iu the random
interlacements at level u ≥ 0 in Zd and by Vu = Zd/Iu the corresponding vacant set. We are
interested in the strongly percolative regime for the vacant set, that is, we assume that

(0.1) 0 < u < u(≤ u∗),
where the precise definition of u from (2.3) of [24] is recalled in (1.26) below, and u∗ denotes
the critical level for the percolation of the vacant set of random interlacements. Thanks to the
results in [11], it is known that u is positive, and it is plausible, and presently the object of active
research, that u = u∗. In the context of the closely related model of the level-set percolation of
the Gaussian free field, the corresponding equality has been established in the recent work [12].

We denote by θ0 the percolation function:

(0.2) θ0(a) = P[0 Va←→/ ∞], a ≥ 0,
where {0 Va

←→/ ∞} stands for the event that 0 does not belong to an infinite component of Va, see
Figure 1. The function θ0 is non-decreasing, left-continuous, identically equal to 1 on (u∗,∞),
with a possible (but not expected) jump at u∗, see [28]. One also knows from [27] that θ0 is C1

and has positive derivative on [0, û), where the definition of û (as the supremum of values v in[0, u∗) such that the no large finite cluster property holds on [0, v]) is recalled in (1.31) below.
One knows from [11] that û > 0, and the equality û = u∗ is also plausible but presently open.
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Fig. 1: A heuristic sketch of the functions θ0 (with a possible but not expected jump
at u∗) and θ∗ in (0.11). The constant c0 stems from Theorem 3.1.

We consider N ≥ 1 and the discrete box centered at the origin

(0.3) DN = [−N,N]d ∩Zd.

We view DN as the discrete blow-up (ND) ∩ Zd of the continuous model shape

(0.4) D = [−1,1]d.
Further, for integer r ≥ 0, we write Sr = {x ∈ Zd; ∣x∣∞ = r} for the set of points in Zd with
sup-norm equal to r and define

(0.5) Cur = the connected component of Sr in Vu ∪ Sr (so Sr ⊆ Cur by convention).

We single out the set of points in DN that get disconnected by Iu from S2N , that is DN/Cu2N ,
and its subset DN /CuN of points in the interior of DN that get disconnected by Iu from SN . We
are interested in their “excessive presence” in DN . More precisely, we consider

(0.6) ν ∈ [θ0(u),1),
and the excess events (where for U finite subset of Zd, ∣U ∣ denotes the number of points in U)

(0.7) AN = {∣DN /Cu2N ∣ ≥ ν ∣DN ∣} ⊇ A0
N = {∣DN /CuN ∣ ≥ ν ∣DN ∣}.

An asymptotic lower bound on P[A0
N ] was derived in (6.32) of [26]. Combined with Theorem 2

of [27] it shows that

lim inf
N

1

Nd−2
logP[A0

N ] ≥ −Ju,ν , where(0.8)

Ju,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈D1(Rd),⨏
D
θ0((√u +ϕ)2)dz ≥ ν}(0.9)

and θ0 stands for the right-continuous modification of θ0, ⨏D ... for the normalized integral
1
∣D∣

´

D
..., with ∣D∣ = 2d the Lebesgue measure of D, and D1(Rd) for the space of locally in-

tegrable functions f on Rd with finite Dirichlet energy that decay at infinity, i.e. such that{∣f ∣ > a} has finite Lebesgue measure for all a > 0, see Chapter 8 of [14].

The lower bound (0.8) is derived via the change of probability method and for ϕ in (0.9),(√u + ϕ)2( .
N
) can heuristically be interpreted as the slowly varying local levels of the tilted
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interlacements that enter the derivation of the lower bound (see Section 4 and Remark 6.6 2)
of [26]). It is an open question whether for large enough ν the minimizers ϕ in (0.9) reach the
value

√
u∗ −

√
u. The region where they reach the value

√
u∗ −

√
u could reflect the occurrence

of droplets secluded by the interlacements that might share the burden of producing an excess
volume of disconnected points, somewhat in the spirit of the Wulff droplet in the case of the
Bernoulli percolation or for the Ising model, see Theorem 2.12 of [3], and [2].

Our main interest here lies with the derivation of an asymptotic upper bound on P[AN](≥ P[A0
N]) that possibly matches (0.8). In the main Theorem 4.3 of this article we show that

there is a dimension dependent constant c0 ∈ (0,1), constructed in Theorem 3.1, so that when
0 < u < u, setting θ∗ to be the function on R+ such that θ∗(v) = θ0(v) for v < (√u+c0(√u−√u))2,
and θ∗(v) = 1 otherwise, see Figure 1, one has for all ν ∈ [θ0(u),1)

lim sup
N

1

Nd−2
logP[AN ] ≤ −J∗u,ν , where(0.10)

J∗u,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈ D1(Rd),⨏
D
θ∗((√u + ϕ)2)dz ≥ ν}.(0.11)

As an application of Theorem 4.3, i.e. (0.10) and (0.11), we are able to show that in the “small
excess” regime the asymptotic upper bound (0.10) matches the asymptotic lower bound (0.8).
More precisely, we show in Corollary 4.5 that

(0.12)
when 0 < u < u ∧ û, there exists ν0 > θ0(u) such that for all ν ∈ [θ0(u), ν0)
lim
N

1

Nd−2
logP[AN ] = lim

N

1

Nd−2
logP[A0

N ] = −Ju,ν .

It is a natural question whether the asymptotics in (0.12) actually holds for all ν in [θ0(u),1).
Incidentally, this issue is also related to the question whether c0 mentioned above (0.10) and that
appears in Theorem 3.1 can be chosen arbitrarily close to 1, see Remarks 4.4 and 4.6 2). As an
aside, if u = u∗ holds, formally setting c0 = 1 one finds that θ∗ coincides with θ0 and J∗u,ν with
Ju,ν . Another natural problem is whether the set of disconnected points can be replaced by the
set of points outside the infinite cluster Cu∞ of Vu, and (0.12) actually holds with AN replaced
by the bigger event {∣DN /Cu∞∣ ≥ ν ∣DN ∣}, when 0 < u < u∗ and θ0(u) ≤ ν < 1, see Remark 4.6 3).

A question of a similar nature to that of the asymptotic behavior of P[A0
N ] was investigated

in [25]. There, CuN was replaced by C̃uN , a certain thickening of CuN (obtained by adding to CuN
points at a suitable sub-macroscopic distance L̃0(N) = o(N) of CuN ). It was in particular shown
in [25] that for ν small enough so that the closed Euclidean ball Bν with center 0 and volume
ν ∣D∣(= 2dν) is contained in the interior of D, one has for 0 < u < u,

(0.13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
lim sup

N

1

Nd−2
logP[∣DN /C̃uN ∣ ≥ ν ∣DN ∣] ≤ −1

d
(√u −√u)2capRd(Bν),

lim inf
N

1

Nd−2
logP[∣DN /C̃uN ∣ ≥ ν ∣DN ∣] ≥ −1

d
(√u∗∗ −√u)2capRd(Bν),

with capRd(Bν) the Brownian capacity of Bν (see for instance [19], p. 57, 58), and u∗∗ (≥ u∗)
the critical level for the strongly non-percolative regime of the vacant set (here again u∗∗ = u∗ is
expected, but currently open, so plausibly the right members in (0.13) are equal).

In the present work (unlike in [25]) there is no thickening of CuN or Cu2N entering the definitions
of A0

N and AN (and both contain the event under the probability in (0.13)). The variational
quantity Ju,ν plays the role of 1

d
(√u∗−√u)2 capRd(Bν) in (0.13) (assuming the equalities u = u∗ =
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u∗∗). Informally, this last quantity corresponds to a choice of a test function ϕ = (√u∗−√u)hBν

in (0.9), with hBν the equilibrium potential in Rd of the ball Bν , and the replacement of θ0(v)
by the smaller function 1{v ≥ u∗}. We refer to Proposition 6.5 of [26] for further links between
these variational quantities.

Let us say a few words about the proof of the main asymptotic upper bound (0.10). The main
step is carried out in Proposition 4.1. A substantial challenge stems from the possible presence
of “bubbles” intersecting DN that can occupy a macroscopic share of volume, on the surface of
which random interlacements have a local level above u∗, thus creating “insulating fences” that
may block connections in Vu between the interior of such bubbles and S2N . Such “bubbles” are
non-local objects and accounting for the cost of their presence is a delicate matter. Importantly,
in the absence of a thickening of Cu2N , the “bubbles” that we are faced with are irregular and lack
inner depth. This specific feature precludes the use of the coarse graining procedure developed
in Section 4 of [17] that played a crucial role in [5] and [25], as well as in [16], [5].

DN

Fig. 2: An informal illustration of the bubble set Bub from (1.47) in red.
The light blue region consists of B1-boxes where the random
set U1 enters deeply enough in B1 (see (1.46)).

In the first main step corresponding to Theorem 2.1 we perform local averaging in the B1-boxes
(of scale L1) contained in DN that lie outside the bubble set Bub. After this step the task of
bounding the probability of AN is replaced by that of bounding the probability of A′N , see (2.11),
that roughly corresponds to the event

(0.14) ∣Bub∣ + ∑
B1⊆DN/Bub

θ̃(uB1
) ∣B1∣ ≥ ν′ ∣DN ∣,

where ν′ is slightly smaller than ν, uB1
denotes the local level of the interlacements in the box

B1 (see (1.45)), and the function θ̃ equals θ0 up to a level close to u and then equals 1. As in
[26] the scale L1 of the B1-boxes is roughly N

2

d , see (1.8), so that (N/L1)d roughly equals Nd−2.
This choice corresponds to the following constraints. The scale L1 should not be too large, so
that with overwhelming probability most B1 boxes behave well with respect to local averaging,
and the scale L1 should not be too small, so that coarse graining for the local levels uB1

of all
B1-boxes in DN can be performed with exp(o(Nd−2)) complexity. The bubble set Bub is defined
in (1.47). It consists of the B1-boxes in DN where a certain random set U1 does not get “deep”
inside B1. The random set U1, see (1.40), as in [17], is defined via exploration starting outside a
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larger box concentric to DN (namely [−3N,3N]d) with B0-boxes of size L0 comparable to N
1

d−1

(much smaller than L1, see (1.7), (1.8)) that have a good local behavior (so-called (α,β, γ)-good
boxes, see (1.38)), and such that the local level of random interlacements in these boxes remains
strictly below u (namely at most β, see (1.40)). The random set U1 brings along a profusion of
highways in the vacant set Vu that permit to exit [−2N,2N]d, and thus reach S2N when starting
in DN . The choice of the scale L0 corresponds to the following constraints. The scale L0 (as
reflected in the choice N

1

d−1 ) should not be too large so that DN contain at least Nd−2 columns
of L0-boxes and the (α,β, γ)-bad boxes do not spoil projection arguments. It should also be
not too small, see (2.73), (2.81), so that the communication between the local levels in B1-boxes
and the local levels in the B0-boxes, which they contain, functions harmoniously. The choice
L0 = [N 1

d−1 ] in (1.7) fits these requirements.

The bubble set Bub that appears in (0.14) thus consists of B1-boxes in DN that are not met
“deep inside” by U1. No thickening is performed in the original question we handle and Bub is
quite irregular. In particular, it lacks sufficient inner depth (roughly corresponding to the “nearly
macroscopic” scale L̂0 in (4.19) of [17]) and the coarse graining procedure of Section 4 of [17] does
not apply. In Section 3 we devise a new coarse graining approach, using a “bird’s-eye view” to
address this central issue. In the crucial Theorem 3.1 we construct a random set Cω that can take
at most exp(o(Nd−2)) shapes, which has small volume, which is made of well-spaced B0-boxes
that are (α,β, γ)-good with local level above β, and which is such that the (discrete) equilibrium
potential of Cω is at least c0 on the bubble set Bub apart from a set of small volume. This is
where the important constant c0 entering the definition of the function θ∗ above (0.10) appears.
The random set Cω is extracted from the B0-boundary of U1 (see below (1.41)), and the coarse
graining procedure that we employ uses some ideas from the method of enlargement of obstacles
(see for instance Chapter 4 in [21]). In Section 4 we complete the proof of Proposition 4.1 (which
is the main step towards (0.10), (0.11)). An important aspect is to find an adequate formulation
implementing the constraint (0.14) that behaves well under scaling limit. This corresponds to
(4.26) - (4.29), where the event A′N gets coarse grained and certain non-negative super-harmonic
functions solving an obstacle problem accounting for the random set Cω from Theorem 3.1 and
the local levels uB1

away from Cω enter the new formulation. After that the proof proceeds along
the same lines as in Section 5 of [26].

We will now describe the organization of this article. Section 1 collects some notation and
recalls various facts about simple random walk, potential theory, and random interlacements.
Lemma 1.2 due to [1] and Lemma 1.1 are related to capacity and their application enters the
coarse graining procedure for the construction of the random set Cω in Theorem 3.1. The
important random set U1 and the bubble set Bub are respectively defined in (1.40) and (1.47).
Section 2 is devoted to the proof of Theorem 2.1 where local averaging is performed, and the
event A′N (in essence corresponding to (0.14)) is introduced. An extensive use is made of the
important soft local time technique of [18] in the version developed by [7]. When looking at well-
separated boxes of a given size it provides access in each box to an “undertow” (corresponding
to the local level of random interlacements in the box) and a “wavelet part” (corresponding to
a collection of excursions) with good independence properties for the wavelet parts. Section 3
is devoted to the construction of the random set Cω in Theorem 3.1. This is where the pivotal
constant c0 appears. Finally, Section 4 contains Theorem 4.3 that proves the crucial upper bound
(0.10), (0.11). However, the main work is carried out in Proposition 4.1. The application to the
small excess regime is presented in Corollary 4.5 where (0.12) is proved. Remark 4.6 lists several
open questions.

To conclude, let us state our convention about constants. Throughout the article we denote
by c, c̃, c′ positive constants changing from place to place that simply depend on the dimension

5



d. Numbered constants c0, c1, c2, . . . refer to the value corresponding to their first appearance in
the text. Dependence on additional parameters appears in the notation.

1 Notation, some useful results and random sets

In this section we introduce some further notation. We recall and collect some facts concern-
ing random walks, potential theory, and random interlacements. We also introduce important
random sets such as U1, see (1.40), and the “bubble set” Bub, see (1.47).

First some notation: for (an)n≥1 and (bn)n≥1 positive sequences, an ≫ bn or bn = o(an)
means that bn/an Ð→

n
0. We write ∣ ⋅ ∣ and ∣ ⋅ ∣∞ for the Euclidean and the supremum norms on Rd.

Throughout we assume that d ≥ 3. Given x ∈ Zd and r ≥ 0, we let B(x, r) = {y ∈ Zd; ∣y − x∣∞ ≤ r}
stand for the closed ball of radius r around x for the supremum distance (note that DN in (0.3)
coincides with B(0,N)). Given L ≥ 1 integer, we say that a subset B of Zd is an L-box when it is
a translate of Zd

∩ [0,L)d. We sometimes write [0,L)d in place of Zd
∩ [0,L)d when no confusion

arises. Given A,A′ subsets of Zd, we denote by d∞(A,A′) = inf{∣x − x′∣∞; x ∈ A,x′ ∈ A′} the
mutual supremum distance between A and A′, and write d∞(x,A′) for simplicity when A = {x}.
We let diam(A) = sup{∣x − x′∣∞; x, x′ ∈ A} stand for the sup-norm diameter of A, and ∣A∣ for
the cardinality of A. We write A ⊂⊂ Zd to state that A is a finite subset of Zd. We denote by
∂A = {y ∈ Zd/A; ∃x ∈ A, ∣y−x∣ = 1} and ∂iA = {x ∈ A; ∃y ∈ Zd/A, ∣y−x∣ = 1} the boundary and the
internal boundary of A. When f, g are functions on Zd, we write ⟨f, g⟩ = ∑x∈Zd f(x)g(x) when
the sum is absolutely convergent. We also use the notation ⟨ρ, f⟩ for the integral of a function f
(on an arbitrary space) with respect to a measure ρ, when this quantity is meaningful.

Concerning connectivity properties, we say that x, y in Zd are neighbors when ∣y −x∣ = 1 and
call π: {0, . . . , n} → Zd a path, when π(i) and π(i − 1) are neighbors for 1 ≤ i ≤ n. For A,B,U

subsets of Zd, we say that A and B are connected in U and write A
U
←→ B when there exists a

path with values in U which starts in A and ends in B. When no such path exists we say A and

B are not connected in U and write A
U
←→/ B .

We turn to the notation concerning continuous time simple random walk on Zd. For U ⊆ Zd,
we write Γ(U) for the set of right-continuous, piecewise constant functions from [0,∞) to U ∪∂U
with finitely many jumps on any finite interval that remain constant after their first visit to ∂U .
For U ⊂⊂ Zd the space Γ(U) conveniently carries the law of certain excursions contained in the
trajectories of the random interlacements. We also view the law Px of the continuous time simple
random walk on Zd with unit jump rate, starting in x ∈ Zd, as a measure on Γ(Zd). We write
Ex for the corresponding expectation. Given U ⊆ Zd, we denote by HU = inf{t ≥ 0; Xt ∈ U} and
TU = inf{t ≥ 0; Xt ∉ U} the respective entrance time in U and exit time from U .

We denote by g(⋅, ⋅) the Green function of the simple random walk:

(1.1) g(x, y) = Ex[ˆ ∞
0

1{Xs = y}ds], for x, y ∈ Zd,

and when f is a function on Zd such that ∑y∈Zd g(x, y) ∣f(y)∣ <∞ for all x in Zd, we write

(1.2) Gf(x) = ∑
y∈Zd

g(x, y)f(y), for x ∈ Zd.

The Green function is symmetric and translation invariant. Further, one knows that g(x, y)(=
g(x − y,0)) ∼ d

2
Γ(d

2
− 1)π− d

2 ∣y − x∣2−d, as ∣y − x∣ →∞ (see Theorem 1.5.4, p. 31 of [13]), and we
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denote by c∗ a positive constant such that

(1.3) g(x, y) ≤ c∗ ∣y − x∣2−d, for x, y ∈ Zd.

Given A ⊂⊂ Zd, we write eA for the equilibrium measure of A and cap(A) for its total mass, the
capacity of A. The equilibrium measure eA is supported by the internal boundary of A and one
knows that

(1.4) GeA = hA where hA(x) = Px[HA <∞], x ∈ Zd, is the equilibrium potential of A.

When A /= φ, we also write eA = eA/cap(A) for the normalized equilibrium measure of A. In the
special case of boxes, one knows (for instance by [13], p. 31) that with B = [0,L)d,
(1.5) cL2 ≤ G1B(x) ≤ c′L2, for x ∈ B and L ≥ 1,
as well as (see (2.16), p. 53 of [13])

(1.6) cLd−2 ≤ cap(B) ≤ c′Ld−2, for L ≥ 1.
Apart from the macroscopic scale N (governing the size of the box DN in (0.3)) two length scales
will play an important role for us:

L0 = [N 1

d−1 ], and(1.7)

L1 = kN L0, where kN is the integer such that kN L0 ≤ N 2

d (logN) 1d < (kN + 1)L0.(1.8)

Note that 1
d−1 < 2

d
so that kN → ∞ and L1/L0 → ∞, with L0 ∼ N

1

d−1 and L1 ∼ N
2

d (logN) 1d as
N →∞. Also 1

d
<

1
d−1 , so that (L1/L0)2 = o(L1) as N →∞, and we will use this feature in the

next section, see (2.73) and (2.81).

We will call B0-box or L0-box any box of the form

(1.9) B0,z = z + [0,L0)d, where z ∈ L0
def= L0Z

d.

Often we will simply write B0 to refer to a generic box B0,z, z ∈ L0 and call z the base point of
B0. Likewise, we will call B1-box or L1-box any box of the form

(1.10) B1,z = z + [0,L1)d, where z ∈ L1
def= L1Z

d(⊆ L0 by (1.8), (1.7)),

and write B1 for a generic box B1,z, z ∈ L1.

At this stage it is perhaps helpful to provide some comments on the role of these boxes and
their size. In essence, following [26], the B1-boxes will be used to perform local averages, see
for instance (2.19). The fact that (N/L1)d is comparable to Nd−2 (up to a logarithmic factor)
ensures on the one hand that with overwhelming probability the local averaging involving the
local level of random interlacements in the box is applicable to most of the B1-boxes that we
consider, and on the other hand that there are not too many boxes, so that we can perform coarse
graining, see below (4.29). As for the B0-boxes, following [17], they will be used to construct the
random set U1 that provides “highways in Vu” to get beyond [−2N,2N]d, see below (1.41). The
bubble set (1.47) will morally correspond to the B1-boxes contained in DN /U1. Here, having L0

comparable to Na with 1
d
< a ≤ 1

d−1 , ensures that the number of columns of B0-boxes in DN is at
least of order Nd−2 so that we can use projection arguments and cope with the occurrence of bad
B0-boxes, see for instance (3.24) - (3.27), but also ensures that the B0-boxes sitting in a B1-box
are large enough and typically receive a sufficient number of excursions, see (2.71) - (2.75).
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The next two lemmas will be applied in the proof of Theorem 3.1 in Section 3 as part of
the construction of the crucial random set Cω (made of B0-boxes) that will help us keep track
of the cost of the bubble set (1.47), see below (3.15) and below (3.57). In the statement below,
coordinate projection refers to any one of the d canonical projections on the respective hyperplanes
of points with vanishing i-th coordinate, for 1 ≤ i ≤ d.
Lemma 1.1. Given K ≥ 100d, a ∈ (0,1), then for large N , for any L-box B with L ≥ L1, and
any set A union of B0-boxes contained in B such that for a coordinate projection π one has

(1.11) ∣π(A)∣ ≥ a ∣B∣ d−1d ,
one can find a subset Ã of A, which is a union of B0-boxes having base points with respective
π-projections at mutual supremum distance at least KL0 (with K = 2K + 3), and such that

(1.12) cap(Ã) ≥ c(a) ∣B∣ d−2d and ∣π(Ã)∣ ≥K −(d−1)∣π(A)∣.
Proof. We first trim A and pick one B0-box in A in each column in the π-direction that intersects
A. The columns of B0-boxes in the π-direction can be split into K d−1 collections of KL0-spaced
columns. Then, we restrict this trimmed set to one of the K d−1 collections so as to obtain

(1.13) { Ã subset of A that contains at most one B0-box per column, in columns that
are KL0-spaced, with π-projection π(Ã) such that ∣π(Ã)∣ ≥K −(d−1)∣π(A)∣.

We then introduce the probability measure µ supported by Ã (see below (1.4) for notation):

(1.14) µ = 1

ñ
∑

B0⊆Ã

eB0
, with ñ = ∣Ã∣∣B0∣ ≥ aK −(d−1)(

∣B∣∣B0∣)
d−1
d (by (1.11), (1.13)).

One has the variational identity cap(Ã) = sup{⟨ρ⊗ ρ, g⟩−1; ρ probability measure supported by
Ã} (where ⊗ denotes the product of measures and g the Green function as in (1.1)). Hence,
cap(Ã) ≥ ⟨µ⊗µ, g⟩−1, and our aim is now to bound ⟨µ⊗µ, g⟩ from above in order to prove (1.12).
We first write with hopefully obvious notation

⟨µ⊗ µ, g⟩ ≤ sup
B0⊆Ã

1

ñ
∑

B′
0
⊆Ã

⟨eB0
⊗ eB′

0
, g⟩

≤ sup
B0⊆Ã

1

ñ
(⟨eB0

⊗ eB0
, g⟩ + ∑

B′
0
⊆Ã,B′

0
/=B0

⟨eB0
⊗ eB′

0
, g⟩).(1.15)

We note that by (1.4)

(1.16) ⟨eB0
⊗ eB0

, g⟩ = cap(B0)−1,
and for the second term in the last line of (1.15), setting x0 as the unique point in L0 ∩B0, see
(1.9), y0 = π(x0), and likewise x′0 as the unique point in the L0 ∩B

′
0, y

′
0 = π(x′0), we see that for

any B0 ⊆ Ã by (1.3)

(1.17)
1

ñ
∑

B′
0
⊆Ã,B′

0
/=B0

⟨eB0
⊗ eB′

0
, g⟩ ≤ c

ñ
∑

B′
0
⊆Ã,B′

0
/=B0

∣y′0 − y0∣−(d−2) def= SB0
,

where it should be observed that due to (1.13), y′0 − y0 ∈KL0Z
d−1 in the last sum (and we have

tacitly identified π(Zd) with Zd−1). We then consider

(1.18)
B̃ the Euclidean ball in KL0Z

d−1 with center 0 and smallest radius R̃
such that B̃ contains ñ points.
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Note that due to the lower bound on ñ in (1.14), for large N , one has

(1.19) c ñ ≥ ( R̃

KL0

)d−1 ≥ c′ ñ.
Looking whether y′0 − y0 lies in B̃ or outside B̃ in the sum defining SB0

in (1.17) we thus find
that for any B0 ⊆ Ã

SB0
≤ c
ñ

∑
0/=y∈B̃∩(KL0 Zd−1)

∣y∣−(d−2) ≤ c′
ñ
(KL0)−(d−2) ∑

1≤ℓ≤cñ1/(d−1)

1

≤ c′′ (KL0)−(d−2) ñ− d−2
d−1

(1.19)≤ c R̃−(d−2).

(1.20)

Thus, coming back to (1.15), we find with (1.16), (1.17) and the above bound that

(1.21) ⟨µ⊗ µ, g⟩ ≤ c

ñLd−2
0

+
c

R̃d−2

(1.19)≤ c′′
Kd−1L0

R̃d−1
+

c

R̃d−2
≤ c

R̃d−2
(1 + c̃ Kd−1L0

R̃
).

This shows that for large N ,

(1.22) cap(Ã) ≥ ⟨µ⊗ µ, g⟩−1 ≥ c R̃d−2(1 + c′Kd−1L0/R̃)−1.
We also know by (1.19) that for large N

(1.23) R̃ ≥ cKL0 ñ
1

d−1

(1.14)≥ ca
1

d−1 L
L≥L1≥ Kd−1L0,

and we find that

(1.24) cap(Ã) ≥ c′R̃d−2
(1.23)≥ c(a)Ld−2 = c(a) ∣B∣ d−2d .

Together with (1.13), this completes the proof of (1.12) and hence of Lemma 1.1.

The next lemma is due to [1], and it will also be used in the construction of the random set
Cω in Theorem 3.1 of Section 3.

Lemma 1.2. (K = 2K + 3)
For K,N ≥ c1, when Ã is a union of B0-boxes with base points that are at mutual ∣ ⋅ ∣∞-distance
at least KL0, then there exists a union of B0-boxes A′ ⊆ Ã such that

(1.25) cap(A′) ≥ c cap(Ã) and
∣A′∣∣B0∣ ≤ c′

cap(Ã)
cap(B0) .

Proof. The claim is a straightforward consequence of Theorem 1.4 of [1].

We will now introduce some notation and collect several facts concerning random interlace-
ments. We also refer to the end of Section 1 of [24] and the references therein for more details.
The random interlacements Iu, u ≥ 0, and the corresponding vacant sets Vu = Zd/Iu, u ≥ 0, are
defined on a certain probability space denoted by (Ω,A,P). In essence, Iu corresponds to the
trace left on Zd by a certain Poisson point process of doubly infinite trajectories modulo time-
shift that tend to infinity at positive and negative infinite times, with intensity proportional to
u. As u grows, Vu becomes thinner and there is a critical value u∗ ∈ (0,∞) such that for u < u∗,
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P-a.s., Vu has an infinite component, and for u > u∗ all components of Vu are finite, see [22],
[20], as well as the monographs [4], [10].

In this work we are mainly interested in the strong percolative regime of Vu that will corre-
spond to u < u, where following (2.3) of [24] we set

(1.26) u = sup{s > 0, such that for all v < u in (0, s), (1.27) and (1.28) hold},
where writing B = [0,L)d, the condition (1.27) is

(1.27) lim
L

1

logL
logP[Vu ∩B has no component of diameter at least L

10
] = −∞,

and the condition (1.28) is that for all B′ = Le +B with ∣e∣ = 1, with D = [−3L,4L)d (a subset
of Zd not to be confused with (0.4)):

lim
L

1

logL
logP [there exist connected components of B ∩ Vu and B′ ∩ Vu of(1.28)

diameter at least L
10

, which are not connected in D ∩ Vv] = −∞.
One knows that u > 0 (by [11]) and that u ≤ u∗, see (2.4), (2.6) of [24]. Also as explained in
Remark 2.1 1) of [24],

for u > v in (0, u),(1.29)

lim
L

1

logL
logP [there exist two connected components of B ∩ Vu of

diameter at least L
10

, which are not connected in D ∩ Vv] = −∞.

Remark 1.3. Let us also mention that with B̃ = [−L,2L)d and D as above

for v > w in (0, u),(1.30)

lim
L

1

logL
logP [there exist two connected components of B̃ ∩ Vv of

diameter at least L
10

, which are not connected in D ∩ Vw] = −∞.

Indeed, to prove (1.30), one considers the scales L′′ = [L/103] ≤ L′ = [L/102] ≤ L. Given v > w in(0, u), except on a set of super-polynomially decaying probability in L, for all boxes z + [0,L′′)d,
z ∈ Zd, intersecting [−2L,3L)d, and with v, v+w

2
in place of u, v all the events corresponding to

the complement of what appears in (1.27), (1.28) are satisfied, as well as for all boxes z+[0,L′)d,
z ∈ Zd, intersecting [−2L,3L)d, with v+w

2
, w in place of u, v, the events corresponding to the

complement of (1.29) are satisfied. Then, for large L on the intersection of the above events,
given A1,A2 connected components of B̃ ∩ Vv with diameter at least L

10
, one can construct a

path of non-intersecting nearest neighbor L′′-boxes in [−2L,3L)d, such that the restriction of A1

to the first box contains a connected component of diameter at least L′′

10
and the last box meets

A2. Then, one can construct a path in V
v+w
2 ∩D starting in A1 with an end point at supremum

distance at most L′′ from A2 belonging to the last box of the path of L′′-boxes. One can then
consider an L′-box with center (in Rd) within supremum distance 1 from the center of last box
in the path of L′′-boxes, and link A2 in Vw ∩D with the path in V

v+w
2 ∩D that linked A1 to a

point of the last box of the path of L′′-boxes. This provides a path in Vw ∩D between A1 and
A2. The claim (1.30) now follows. ◻

The equality u = u∗ is expected but presently open. In the closely related model of the
level-set percolation for the Gaussian free field a corresponding equality can be proved as shown
in the recent work [12].
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An additional critical level û ∈ (0, u∗] has been helpful in the study of the C1-property of the
percolation function θ0 in (0.2), see Theorem 1 of [27]. In the present work, it will show up in
the context of Corollary 4.5, see (0.12), when we identify the exponential rate of decay of P[AN]
(or P[A0

N ]) for ν > θ0(u) close to θ0(u) when 0 < u < u ∧ û. It is defined as (see (3) of [27]):

(1.31) û = sup{u ∈ [0, u∗);NLF (0, u) holds}
where for 0 ≤ v < u∗, NLF (0, v), i.e. the no large finite cluster property on [0, v], is defined as

(1.32)
there exists L(v) ≥ 1, c(v) > 0, γ(v) ∈ (0,1] such that (with S(0,L) = ∂iB(0,L)),
for all L ≥ L(v) and 0 ≤ w ≤ v, P[0 w

←→ S(0,L), 0 w
←→/ ∞] ≤ e−c(v)Lγ(v)

.

One knows by Corollary 1.2 of [11] that û > 0, and by Theorem 1 of [27] that

(1.33) θ0 is C1 and has positive derivative on [0, û).
It is plausible but presently open that the equalities u = û = u∗ hold.

We now introduce further boxes related to the length scale L0, which take part in the defi-
nition of the important random set U1 defined in (1.40) below and in the proof of Theorem 2.1
in the next section. Throughout the integer K implicitly satisfies

(1.34) K ≥ 100.
In the spirit of (2.9), (2.10) of [24], we consider the boxes

B0,z = z + [0,L0)d ⊆ B̃0,z = z + [−L0,2L0)d ⊆D0,z = z + [−3L0,4L0)d
⊆ U0,z = z + [−KL0 + 1,KL0 − 1)d, with z ∈ L0(= L0Z

d).(1.35)

Given a box B0 as above and the corresponding D0, we denote by ZD0

ℓ
, ℓ ≥ 1, the successive

excursions in the interlacements that go from D0 to ∂U0, see (1.41) of [24]. We then denote by
(see also (2.14) and (1.42) of [24]):

Nv(D0) = the number of excursions from D0 to ∂U0 in the interlacement

trajectories with level at most v, for v ≥ 0.(1.36)

The notion of (α,β, γ)-good boxes that we now recall is an important ingredient in the definition
of the random set U1, see (1.40) below. We consider

(1.37) α > β > γ in (0, u)
(eventually we will choose them close to u, see (4.8) in Section 4).

Given an L0-box B0 and the corresponding D0 (and likewise D′0 corresponding to B′0 below),
see (1.35), we say that B0 is an (α,β, γ)-good box (see (2.11) - (2.13) of [24]) if:

(1.38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

α cap(D0)
) contains a connected set with

diameter at least L0

10
(and the set in parenthesis is empty if α cap(D0) < 1),

ii) for any neighboring L0-box B′0 = L0 e +B0 with ∣e∣ = 1, any two connected
sets with diameter at least L0

10
in B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

α cap(D0)
) and

B′0/(rangeZD′
0

1 ∪ ⋅ ⋅ ⋅ ∪Z
D′

0

α cap(D′
0
)
) are connected in

D0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪Z
D0

β cap(D0)
) (with a similar convention as in i))

iii) ∑
1≤ℓ≤β cap(D0)

ˆ TU0

0

eD0
(ZD0

ℓ
(s))ds ≥ γ (with TU0

the exit time of U0),
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and otherwise we say that B0 is (α,β, γ)-bad.

We now fix a level u as in (0.1), that is

(1.39) 0 < u < u
and following (4.27) of [17] (or (3.8) of [25]), we introduce the random set U1 as

U1 = the union of L0-boxes B0 that are either contained in ([−3N,3N]d)c or linked

to an L0-box contained in ([−3N,3N]d)c by a path of L0-boxes B0,zi , 0 ≤ i ≤ n,

which are all except maybe for the last one (α,β, γ)-good and such that

Nu(D0,zi) < β cap(D0,zi).
(1.40)

In addition, as shown in Lemma 6.1 of [24], one has the following connectivity property:

(1.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if B0,zi , 0 ≤ i ≤ n, is a sequence of neighboring L0-boxes which are(α,β, γ)-good, and Nu(D0,zi) < β cap(D0,zi), for 0 ≤ i ≤ n, then, for
any connected set in B0,z0/(rangeZD0,z0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0,z0

α cap(D0,z0
)
) with

diameter at least L0

10
, there is a path starting in this set, contained in( ⋃

0≤i≤n
D0,zi) ∩ Vu, and ending in B0,zn .

Thus, in view of (1.40) and (1.41), the random set U1 provides paths in Vu going from any B0-box
in U1 ∩DN to ([−3N +L0,3N −L0]d)c (and such paths go through S2N ).

We will use the notation ∂B0
U1 to refer to the (random) collection of B0-boxes that are not

contained in U1 but are neighbor of a B0-box in U1.

We will also need a statement quantifying the rarity of (α,β, γ)-bad B0-boxes.

Lemma 1.4. Given K ≥ c2(α,β, γ), there exists a non-negative function ρ(L) depending on
α,β, γ,K, satisfying limL ρ(L) = 0, such that

(1.42)
lim
N

1

Nd−2
logP[BN ] = −∞, where BN stands for the event

BN = {there are more than ρ(L0)Nd−2 (α,β, γ)-bad B0-boxes
intersecting [−3N,3N]d}.

Proof. The constant c2(α,β, γ) corresponds to c8(α,β, γ) above (5.5) of [24]. We only sketch
the proof, which is similar to that of Theorem 5.1 in the same reference, see also Proposition 3.1
of [26]. It revolves around a stochastic domination argument: for finite collections of L0-boxes
with base points at mutual distance at least KL0, the indicator functions of the events that
the boxes are (α,β, γ)-bad are stochastically dominated by i.i.d. Bernoulli variables with success
probability η(L0), for a function η(L) depending on α,β, γ,K such that limL

1
logL

log η(L) = −∞.

One sets ρ(L) = √ logL
∣ log η(L)∣ , and considers for fixed τ ∈ {0, . . . ,K − 1}d the L0-boxes B0,z with

z ∈ L0τ +KL0 that intersect [−3N,3N]d. Setting m = ( 8N

KL0

)d (an upper bound on the number

of such boxes when N is large) and ρ̃ = ρ(L0)Nd−2/(Kd
m), one has log ρ̃

η
∼ log 1

η(L0)
, as N →∞,

see for instance (3.16) of [26], so that (writing η for η(L0) and ρ for ρ(L0)):
m{ρ̃ log ρ̃

η
+ (1 − ρ̃) log (1 − ρ̃

1 − η
)} ∼mρ̃ log 1

η
= ρK−dNd−2 log

1

η

=
√

logL0 log
1

η
K
−d
Nd−2

≫Nd−2, as N →∞.
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The claim (1.42) then follows from the usual exponential bounds on sums of i.i.d. Bernoulli
variables.

We now turn to the length scale L1, see (1.8). In addition to the boxes B1,z, z ∈ L1 in (1.10),
we consider the boxes (with the same K as in (1.34))

(1.43) U1,z = z + [−KL1 + 1,KL1 − 1)d(⊇ B1,z = z + [0,L1)d) for z ∈ L1 = L1Z
d.

Similarly to above (1.36), given a box B1 and the corresponding U1, we denote by ZB1

ℓ
, ℓ ≥ 1, the

successive excursions in the interlacements that go from B1 to ∂U1, and also use the notation

Nv(B1) = the number of excursions from B1 to ∂U1 in the interlacement

trajectories with level at most v, for v ≥ 0.(1.44)

The quantity

(1.45) uB1
= Nu(B1)/cap(B1)

plays the role of the local level (or the “undertow”) of the interlacements (at the level u chosen
in (1.39)) in the box B1.

In essence, we will perform local averaging operations in B1-boxes that will only retain the
information contained in uB1

, see (2.8) and Theorem 2.1.

We then proceed with the definition of the bubble set. First, given a box B1, we denote by
DeepB1 the set

(1.46) DeepB1 = ⋃
z∈L0,D0,z⊆B1

B0,z

obtained in essence by “peeling off” a shell of depth 3L0 from the surface of B1, thus only keeping
the B0-boxes such that the corresponding D0 is contained in B1. One then defines the bubble set

(1.47) Bub = ⋃
B1⊆DN ,U1∩DeepB1=φ

B1

that is the union of the B1-boxes contained in DN such that U1 does not reach DeepB1, see
Figure 2.

We will perform local averaging in boxes B1 outside the bubble set in the next section. But
an important challenge will then be to ascribe a cost to a bubble set of non-negligible volume.
The coarse grained random set Cω constructed in Theorem 3.1 will provide the required tool.

As a last piece of notation, we write

(1.48) Lv
x, x ∈ Zd, for the field of occupation times at level v ≥ 0

that records the total time spent at sites of Zd by trajectories with level at most v in the
interlacements. It will come up in Sections 2 and 4.

13



2 Local averaging: departing from the microscopic picture

The main object of this section is the proof of Theorem 2.1. It shows that we can replace the
excess event AN = {∣DN /Cu2N ∣ ≥ ν ∣DN ∣} of (0.7) with an event A′N , in our quest for an upper
bound on the exponential rate of decay of P[AN ]. This event A′N is solely expressed in terms of
the volume of the bubble set and of the local levels uB1

of the B1-boxes that lie in the complement
of the bubble set in DN .

As in (0.1), see also (0.6), we assume that

0 < u < u, and(2.1)

θ0(u) < ν < 1 .(2.2)

We also pick

α > β > γ in (u,u), and(2.3)

K ≥ 100 .(2.4)

The parameters α,β, γ, u,K (and N) enter the definition of the random sets U1 in (1.40), which
is a union of B0-boxes, and of the bubble set Bub in (1.47), which is a union of B1-boxes.

We introduce an additional parameter ε in (0,1) such that

(2.5) ν > 103ε + θ0(u).
We also choose a finite grid of values for the local levels uB1

(see (1.45)), namely, we consider a
set Σ0(γ,u, ε) determined by d, γ, u, ε such that

(2.6) { Σ0 ⊆ (0, γ] is finite, contains u and γ, and is such that between consecutive points
of {0} ∪Σ0 the functions θ0(⋅) and

√
⋅ vary at most by 10−3ε

(with θ0(⋅) as in (0.2)).

In the course of the proof of Theorem 2.1 below, we will add further points to this grid. For
the time being we record some notation. We write

(2.7) γ− ∈ Σ0 for the largest element of Σ0 smaller than γ,

and given an L1-box B1 with local level uB1
, we write

(2.8) {λ−B1
= the largest element of {0} ∪Σ0 smaller or equal to uB1

,

λ+B1
= the smallest element of Σ0 bigger than uB1

, if uB1
< γ, and γ otherwise.

Thus, when uB1
< γ, we have λ−B1

≤ uB1
< λ+B1

and (λ−B1
, λ+B1

) ∩ Σ0 = φ. We will use λ−B1
as a

discretization of the local level uB1
of the box B1. Further, we denote by C0 and C1 the respective

subsets of L0 and L1, see (1.9), (1.10):

(2.9) C0 = {z ∈ L0;B0,z ⊆DN}, C1 = {z ∈ L1;B1,z ⊆DN},
and routinely write B0 ∈ C0 to mean B0,z with z ∈ C0 and B1 ∈ C1 to mean B1,z with z ∈ C1.

Here is the main object of this section. We recall (0.2), (0.7), (1.47) for notation.
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Theorem 2.1. Given u, ν as in (2.1), (2.2), α > β > γ as in (2.3), and ε as in (2.5), there exists
c3(α,β, γ, u, ε) such that for K ≥ c3

(2.10) lim sup
N

1

Nd−2
logP[AN ] ≤ lim sup

N

1

Nd−2
logP[A′N],

where A′N stands for the event

(2.11) A
′
N = {∣Bub∣ + ∑

B1⊆DN/Bub

θ̃(λ−B1
) ∣B1∣ ≥ (ν − 6ε) ∣DN ∣},

with θ̃(v) = θ0(v)1{v < γ−} + 1{v ≥ γ−}, for v ≥ 0.
One should note that in contrast to the original excess event AN of (0.7) that involves the

microscopic information stating for each x in DN whether x can be linked by a path in Vu to
S2N or not, the event A′N is expressed in terms of the volume of the bubble set (which relies on
U1) and the discretizations λ−B1

of the local levels uB1
for B1 ∈ C1 outside the bubble set. In the

proof of Theorem 2.1 the heart of the matter will correspond to the treatment of the boxes B1

outside the bubble set and such that uB1
< γ−.

Proof of Theorem 2.1: Recall that AN stands for the event {∣DN /Cu2N ∣ ≥ ν ∣DN ∣}, see (0.7). On
the other hand, the left member of the inequality in the definition of A′N is

(2.12) ∣Bub∣ + ∑
B1⊆DN/Bub

θ̃(λ−B1
)∣B1∣ = ∑

uB1
≥γ− or B1⊆Bub

∣B1∣ + ∑
uB1
<γ− and B1∩Bub=φ

θ0(λ−B1
)∣B1∣

where the sum runs over B1 in C1, see (2.9), in the last two sums.

The first step of the proof of Theorem 2.1 will in essence bound ∣DN/Cu2N ∣ from above by
three terms, see (2.17) - (2.18) below. The first and the second term will eventually lead, up to
corrections, to the first and second sum in the right member of (2.12), and the third term will
be negligible.

As a preparation, we first introduce an additional length scale. The function θ0(⋅) from (0.2) is
continuous on [0, γ], and as L tends to infinity the continuous functions θ0,L(v) = P[0 v

←→/ S(0,L)],
v ∈ [0, γ] (with S(0,L) as in (1.32)), are non-decreasing in L, and converge uniformly to θ0(⋅) on[0, γ] (by Dini’s lemma). We can thus find R(γ,u, ε) such that

(2.13) ∣Σ0∣4 sup
v∈[0,γ]

P[0 v
←→ S(0,R) and 0

v
←→/ ∞] ≤ 10−5 ε2.

We also need to refine the finite grid Σ0(⊆ (0, γ]): between any two consecutive points of Σ0 we
introduce 8 equally spaced points. We denote by Σ the enlarged grid. It is determined by Σ0

and hence by d, γ, u, ε. In addition, we have ∣Σ∣ ≤ 9 ∣Σ0∣. We will also routinely use the following
notation: when B1 is such that uB1

< γ−, so that λ−B1
≤ uB1

< λ+B1
≤ γ−, see (2.8), we will write

(2.14) (λ+B1
) < ∨λ+B1

< ∨λ++B1
< λ++B1

< λ̂++B1
< λ̃++B1

< λ̃+++B1
< λ̂+++B1

< λ+++B1
(< γ)

for the 8 inserted values right above λ+B1
.

Sometimes we will also consider some generic element of Σ0
∩(0, γ−], denoted by λ+ and write

∨
λ+ < ∨λ ++ < λ++ < λ̂++ < λ̃++ < λ̃+++ < λ̂+++ < λ+++ for the 8 inserted points of Σ right above λ+.
These inserted values will be used to perform several sprinkling operations, and to define the
basic splitting in (2.17), (2.18) below.
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One last preliminary remark is that setting for each L1-box B1

(2.15) B1,R = {x ∈ B1;B(x,R) ⊆ B1},
for large N the boxes B1,R, with B1 ∈ C1 carry the “principal volume” of DN in the sense that

(2.16) DN ⊇ ⋃
C1
B1 ⊇ ⋃

C1
B1,R and ∣⋃

C1
B1,R∣ / ∣DN ∣Ð→

N
1.

Our first main step corresponds to the splitting stated below. By (2.16) and the definition
AN = {∣DN /Cu2N ∣ ≥ ν ∣DN ∣} of the excess event, we see that

(2.17) for large N on AN , (ν − ε) ∣DN ∣ ≤ ∑
B1∈C1

∑
x∈B1,R

1{x ∉ Cu2N} ≤ I + IIR + IIIR
where we have set (with a similar convention as below (2.12)):

(2.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) I = ∑
uB1
≥γ− or B1⊆Bub

∣B1∣,
ii) IIR = ∑

uB1
<γ− and B1∩Bub=φ

∑
x∈B1,R

1{x ←→/ S(x,R) ∶ B1, λ
+++
B1
}

where the indicator function refers to the event stating that x is not
connected to S(x,R) in B1/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ+++
B1

cap(B1))
iii) IIIR = ∑

uB1
<γ− and B1∩Bub=φ

∑
x∈B1,R

1{x ←→ S(x,R) ∶ B1, λ
+++
B1

and x
u
←→/ S2N}

with a similar notation as in ii)

(we recall that for x ∈ B1,R ⊆DN , x ∉ Cu2N coincides with x
u
←→/ S2N).

The term I in i) above coincides with the first sum in the right member of (2.12). To prove
Theorem 2.1 we will show that

forK ≥ c(γ,u, ε),(2.19)

lim
N

1

Nd−2
log P[IIR > ∑

uB1
<γ− and B1∩Bub=φ

θ0(λ−B1
) ∣B1∣ + 2ε ∣DN ∣] = −∞,

and that

forK ≥ c(α,β, γ, u, ε), lim
N

1

Nd−2
log P[IIIR ≥ 3ε ∣DN ∣] = −∞.(2.20)

In view of (2.12) and (2.17), the claim (2.10) of Theorem 2.1 will then follow. In essence, the
second sum in the right member of (2.12) mainly dominates IIR and IIIR is a negligible quantity.

The proof of (2.19) will mostly be an application of the results of Section 3 of [26] to the
example (2.6) of that same reference, combined with a comparison between θ0,R, see above (2.13),
and θ0 to control the variation of θ0,R.

The proof of (2.20) will be more delicate and will revolve around the intuitive idea that for
most B1-boxes in C1, if their local level uB1

lies below γ− and DeepB1 meets U1 (i.e. B1 is not
in the bubble set, see (1.47)), then most points of B1 that make it to distance R avoiding the
first λ+++B1

cap(B1) excursions ZB1

ℓ
, ℓ ≥ 1, are actually connected to S2N in Vu.
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Thus, there remains to prove (2.19) and (2.20). We begin by the proof of (2.19). We first
compare the variation of θ0,R between two points of [0, γ] with that of θ0. By (43) of [27], one
knows that for 0 ≤ v < v′

θ0(v′) − θ0(v) = θ0,R(v′) − θ0,R(v) + P[0 v′

←→ S(0,R),0 v′

←→/ ∞] − P[0 v
←→ S(0,R),0 v

←→/ ∞](2.21)

and by (2.13) (and ∣Σ0∣ ≥ 2) we have

∣θ0(v′) − θ0(v) − (θ0,R(v′) − θ0,R(v))∣ ≤ 10−5ε, for any v < v′ in [0, γ].(2.22)

We can now apply the results of Section 3 of [26] where we choose the local function F as in (2.6)
of [26] (i.e. for any ℓ ∈ [0,∞)B(0,R), F (ℓ) = 1{any path from 0 to S(0,R) in B(0,R) meets a y

with ℓy > 0} and the corresponding θ(v) def= E[F ((Lv
y)∣y∣∞≤R)] = θ0,R(v), see (1.48) for notation).

We select κ(γ,u, ε) and µ(ε) so that with Σ the refinement of Σ0 introduced below (2.13)

(2.23) (1 + κ)λ < (1 − κ)λ′, for all λ < λ′ in Σ, with 0 < κ < ε, and µ = 10−3ε.
The so-called (Σ, κ,µ)-good boxes of (2.76) of [26] allow to perform local-averaging. In particular,
when B1 is a (Σ, κ,µ)-good box, then for any λ ∈ Σ, one has

∑
x∈B1,R

1{x ←→/ S(x,R) ∶ B1, λ} ≤ (θ0,R((1 + κ)λ) + µ) ∣B1∣
where the indicator function in the left member refers to the event stating that x is not connected
to S(x,R) in B1/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ cap(B1)). Thus, when B1 is a (Σ, κ,µ)-good box, for

any consecutive λ− < λ+ < λ′ in {0} ∪Σ0, one has (see below (2.14) for notation)

∑
x∈B1,R

1{x ←→/ S(x,R) ∶ B1, λ
+++} ≤ (θ0,R((1 + κ)λ+++) + µ) ∣B1∣

(and since (1 + κ)λ+++ < λ′) (2.23)≤ (θ0,R(λ′) + 10−3ε) ∣B1∣
= (θ0,R(λ−) + θ0,R(λ′) − θ0,R(λ−) + 10−3ε)∣B1∣
(2.22)≤ (θ0,R(λ−) + θ0(λ′) − θ0(λ−) + 210−3ε)∣B1∣
(2.6)≤

θ0,R≤θ0
(θ0(λ−) + 410−3ε)∣B1∣.

(2.24)

On the other hand, by Proposition 3.1 and (4.9) of [26], when K is large enough, most B1-boxes
in DN are (Σ, κ,µ)-good, in the sense that

(2.25) for K ≥ c(γ,u, ε), 1

Nd−2
logP[ ∑

B1∈C1
∣B1∣1{B1 is (Σ, κ,µ)-bad} ≥ ε ∣DN ∣] = −∞.

Hence, on the complement of the event under the above probability, using (2.24) for (Σ, κ,µ)-
good boxes, we find that

(2.26) IIR
(2.18) ii)≤
(2.24)

∑
uB1
<γ− and B1∩Bub=φ

θ0(λ−B1
) + 2ε ∣DN ∣,

and this completes the proof of (2.19).

We now turn to the proof of (2.20). The implementation of the rough strategy outlined below
(2.20) to prove that statement relies on the notion of IIIR-good boxes that corresponds to four
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“local properties” satisfied by such boxes, see (2.27) - (2.30) below. We will show that when K is
sufficiently large, with overwhelming probability for large N , the IIIR-bad boxes in DN occupy
a negligible fraction of volume, see Lemma 2.3, and that the contribution of IIIR-good B1-boxes
in DN to IIIR is small, see Lemma 2.2 and (2.35), (2.36).

Given a box B1 here are the four conditions:

(2.27) all B0 ⊆ DeepB1 are (α,β, γ)-good (see (1.46), (1.38) for notation),

(2.28) { for all B0 ⊆ DeepB1 and λ < λ′ in Σ, the excursions ZB1

ℓ
, 1 ≤ ℓ ≤ λ cap(B1)

contain in total strictly less than λ′ cap(D0) excursions from D0 to ∂U0,

(2.29) { for all B0 ⊆ DeepB1 and λ < λ′ in Σ, the excursions ZB1

ℓ
, 1 ≤ ℓ ≤ λ′ cap(B1)

contain in total more than λ cap(D0) excursions from D0 to ∂U0,

and with the notation (1.35) and below (2.14)

(2.30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
for all B0 ⊆ DeepB1 and all λ++ of the grid Σ, if two connected sets in
B̃0/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ++ cap(B1)) have diameter at least L
10

,

then they are connected in D0/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ+ cap(B1)).
We then say that

(2.31) a box B1 is IIIR -good if (2.27) - (2.30) are satisfied, and IIIR-bad otherwise.

With the help of the above notion we can bound IIIR in (2.18) iii) as follows:

(2.32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IIIR ≤ III1,R + III2,R, where

III1,R = ∑
B1∶IIIR−good,uB1

<γ− andB1∩Bub=φ

∑
x∈B1,R

1{x ←→ S(x,R) ∶ B1, λ
+++
B1

and x
u
←→/ S2N}

III2,R = ∑
B1∈C1

∣B1∣1{B1 is IIIR-bad}.
The last term will be handled in Lemma 2.3 below. For the time being we focus on III1,R. Our
next goal is to show that

(2.33) forK ≥ c(γ,u, ε), lim
N

1

Nd−2
logP[III1,R ≥ 2ε ∣DN ∣] = −∞.

With this goal in mind, we observe that when B1 is IIIR-good and uB1
< γ− (such boxes enter the

sum defining III1,R in (2.32)), then by (2.28) for each B0 ⊆ DeepB1, one has Nu(D0) < β cap(D0)
(because the excursions at level at most u from D0 to ∂U0 are part of the Nu(B1) = uB1

cap(B1)
first excursions at level at most u from B1 to ∂U1). Moreover, by (2.27) all B0 ⊆ DeepB1 are(α,β, γ)-good. Thus, in view of the definition of U1 in (1.40), we see that

(2.34) when B1 ∈ C1 is IIIR-good, uB1
< γ−, and U1 ∩DeepB1 ≠ φ, then U1 ⊇ DeepB1.
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Since ∣B1/DeepB1∣ ≤ cL0 L
d−1
1 , we see that

(2.35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

III1,R ≤ c(L0/L1) ∣DN ∣ + ĨII1,R + ÎII1,R, where

ĨII1,R = ∑
B1∶IIIR−good,uB1

<γ−,B1∩Bub=φ
∑

B0⊆DeepB1

∑
x∈B0

1{x ←→ S(x,R) ∶ B1, λ
+++
B1

and x ←→/ S(x, [L0

2
]) ∶ B1, λ

++
B1
},

ÎII1,R = ∑
B1∶IIIR−good,uB1

<γ−,B1∩Bub=φ
∑

B0⊆DeepB1

∑
x∈B0

1{x←→ S(x, [L0

2
]) ∶ B1, λ

++
B1

and x
u
←→/ S2N}.

Our next step towards the proof of (2.33) is to show that

(2.36) ÎII1,R = 0.
For this purpose, we observe that by (2.34), for any B1 entering the sum defining ÎII1,R, all
B0 ⊆ DeepB1 are contained in U1, so that by (1.38) i) and (1.40), (1.41) there is a component
(and actually all such components) in B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZD0

α cap(D0)) with diameter at

least L0

10
, which is linked to S2N in Vu.

Due to (2.28) and uB1
< γ−, such a component in B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZD0

α cap(D0)) is

a connected set in B̃0/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ++
B1

cap(B1)). By (2.30) any x ∈ B0 that is linked

to S(x, [L0

2
]) in B1/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZB1

λ++
B1

cap(B1)) (and hence in B̃0/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪

rangeZB1

λ++
B1

cap(B1)) can be linked to the above mentioned connected set in B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪

rangeZD0

α cap(D0)) via a path in B̃0/(rangeZB1

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
B1

λ+
B1

cap(B1)). Since uB1
< λ+B1

, the

above connected set in B0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

α cap(D0)) (as we already know) and the path
from x to this connected set are contained in Vu, so that x ∈ Cu2N . This proves (2.36).

To complete the proof of (2.33) there remains to bound ĨII1,R in (2.35). This is the objective
of the next

Lemma 2.2.

(2.37) For K ≥ c(γ,u, ε), one has lim
N

1

Nd−2
logP[ĨII1,R ≥ 7

4
ε ∣DN ∣] = −∞.

Proof. As a first reduction we will bound ĨII1,R by a sum of identically distributed variables YB0
,

see (2.39) below, where B0 ranges over C0, see (2.9), and each YB0
solely involves the excursions

ZD0

ℓ
, ℓ ≥ 1. Then we will use the soft local time technique of [18] in the version of [7] to bring

into play stochastic domination by independent variables.

We first note that by (2.28), (2.29) (recall from (2.14) that λ++B1
< λ̂++B1

< λ̂+++B1
< λ+++B1

when
uB1
< γ−):

(2.38)

ĨII1,R ≤ ∑
B1∶IIIR−good,uB1

<γ−,B1∩Bub=φ
∑

B0⊆DeepB1

∑
x∈B0

1{x ←→ S(x,R) ∶D0, λ̂
+++
B1

and x←→/ S(x, [L0

2
]) ∶ D0, λ̂

++
B1
}

(the notation is similar as in (2.18) iii) with D0 in place of B1).

19



Then for any box B0, using the notation below (2.14) for the eight inserted values above a generic
point λ+ of Σ0

∩ (0, γ−], we set

(2.39) YB0
= ∑

λ+≤γ− inΣ0

∑
x∈B0

1{x ←→ S(x,R) ∶ D0, λ̂
+++ and x ←→/ S(x, [L0

2
]) ∶ D0, λ̂

++}
and find that (with K = 2K + 3)

ĨII1,R ≤ ∑
B0∈C0

YB0
= ∑

τ∈{0,...,K−1}d
∑

B0∈C0,τ
YB0

, where(2.40)

C0,τ = C0 ∩ {L0τ +KL0} for each τ ∈ {0, . . . ,K − 1}d (and L0 = L0Z
d, see (1.9)).(2.41)

We will now stochastically dominate each sum ∑B0∈C0,τ YB0
, for τ ∈ {0, . . . ,K − 1}d. For this

purpose we now recall some facts concerning the soft local time technique of [18], [7], and also
refer to Section 4 of [24], and Section 2 of [26] for further details.

Given any τ ∈ {0, . . . ,K − 1}d, the soft local time technique provides a coupling Qτ
0 of the

excursions ZD0

ℓ
, ℓ ≥ 1, B0 ∈ C0,τ of the random interlacements with independent excursions Z̃D0

ℓ
,

ℓ ≥ 1, B0 ∈ C0,τ , respectively distributed as X
.∧TU0

under PeD0
, and independent right-continuous

Poisson counting functions with unit intensity, vanishing at 0, (nD0
(0, t))t≥0, B0 ∈ C0,τ :

(2.42)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

under Qτ
0 , as B0 varies over C0,τ , the ((nD0

(0, t))t≥0, Z̃D0

ℓ
, ℓ ≥ 1) are independent

collections of independent processes with (nD0
(0, t))t≥0-distributed as a Poisson

counting process of intensity 1, and Z̃D0

ℓ
, ℓ ≥ 1, as i.i.d. Γ(U0)-valued variables

(see notation above (1.1)) with same law as X
.∧TU0

under PeD0
.

The coupling Qτ
0 has an important property. For x ∈ Zd denote by Q0

x the joint law of two
independent walks X1

.

and X2
.

respectively starting from x and from the equilibrium measure of
⋃B0∈C0,τ D0, and let Y 0 be the random variable equal to the location where X1

.

enters ⋃B0∈C0,τ D0

if the corresponding entrance time is finite and X2
0 otherwise. The important property of Qτ

0

is the following (see Lemma 2.1 of [7]): if for some δ ∈ (0,1) and all B0 ∈ C0,τ , y ∈ D0 and
x ∈ ∂(⋃z∈C0,τ U0,z)
(2.43) (1 − δ

3
) eD0

(y) ≤ Q0
x[Y 0 = y ∣Y 0 ∈ D0] ≤ (1 + δ

3
) eD0

(y),
then, for any B0 ∈ C0,τ and m0 ≥ 1, on the event

(2.44) Ũ
m0

D0
= {nD0

(m, (1 + δ)m) < 2δm, (1 − δ)m < nD0
(0,m) < (1 + δ)m, for all m ≥m0},

one has for all m ≥m0 the following inclusion among subsets of Γ(U0):
{Z̃D0

1 , . . . , Z̃D0

(1−δ)m} ⊆ {ZD0

1 , . . . ,ZD0

(1+3δ)m},(2.45)

{ZD0

1 , . . . ,ZD0

(1−δ)m} ⊆ {Z̃D0

1 , . . . , Z̃D0

(1+3δ)m},(2.46)

where Z̃D0

v and ZD0

v respectively stand for Z̃D0

[v] and ZD0

[v] when v ≥ 1 and the sets in the left
members of (2.45) and (2.46) are empty when (1 − δ)m < 1. Importantly, the favorable event
Ũm0

D
is defined solely in terms of (nD0

(0, t))t≥0.
We then set

(2.47) m0 = [(logL0)2] + 1.
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Then, as in (4.11) of [24] (see also below (4.16) of the same reference), we can make sure that

(2.48)
when K ≥ c(γ,u, ε), (2.43) holds with a δ(γ,u, ε) ∈ (0,1) such that
1 + 4δ
1 − δ < 1 +

κ

2
and 1 − δ

1 + 4δ > 1 −
κ

2
, with κ as in (2.23).

As a result, see (2.33), (2.34) of [26], for large N so that for all λ ∈ Σ, m = [ λ
1−δ cap(D0)] + 1

satisfies m ≥m0 as well as (1+ 3δ)m < 1+4δ
1−δ λcap(D0), and m′ = [ λ

1+3δ cap(D0)] satisfies m′ ≥m0

as well as (1 − δ)m′ ≥ 1−δ
1+4δ λ cap(D0), one has on the event Ũm0

D0
, for all λ ∈ Σ:

{ZD0

1 , . . . ,ZD0

λ cap(D0)} ⊆ {Z̃D0

1 , . . . , Z̃D0

( 1+4δ
1−δ
)λ cap(D0)

}, and(2.49)

{Z̃D0

1 , . . . , Z̃D0

( 1−δ
1+4δ

)λ cap(D0)
} ⊆ {ZD0

1 , . . . ,ZD0

λ cap(D0)}.(2.50)

We then introduce for B0 ∈ C0,τ (with λ < λ′ elements of Σ in the sum below, and we recall that
the largest element of Σ is γ, see (2.6), and above (2.14))

(2.51) ỸB0
= ∑

λ<λ′
∑

x∈B0

1{x ∼
←→ S(x,R) ∶ D0, λ

′ and x
∼
←→/ S(x, [L0

2
]) ∶ D0, λ}

where “∼” above the arrows means that there is a connection between x and S(x,R) in
D0/(range Z̃D0

1 ∪⋅ ⋅ ⋅∪range Z̃
D0

λ′ cap(D0)) and an absence of connection between x and S(x, [L0

2
]) in

D0/(range Z̃D0

1 ∪⋅ ⋅ ⋅∪range Z̃
D0

λ cap(D0)). By (2.23) we have (1−κ) λ̂+++ > λ̃+++ and (1+κ) λ̂++ < λ̃++
for each term in the sum defining YB0

in (2.39). Thus, making use of (2.48) - (2.50), we see that
for large N ,

(2.52) for any B0 ∈ C0,τ , on Ũm0

D0
, one has YB0

≤ ỸB0
.

In addition, by (2.42), (2.44),

(2.53) the (Ũm0

D0
, ỸB0

), for B0 ∈ C0,τ are i.i.d. under Qτ
0 .

We then introduce the i.i.d. Bernoulli variables

(2.54) X̃B0
= 1(Ũm0

D0
)c∪{ỸB0

≥ε∣B0∣}, for B0 ∈ C0,τ .

Then, by (2.52), for large N , we have

(2.55) ∑
B0∈C0,τ

YB0
≤ ∑

B0∈C0,τ
(ỸB0

(1 − X̃B0
) + ∣Σ∣2∣B0∣ X̃B0

) ≤ ∑
B0∈C0,τ

(ε ∣B0∣ + ∣Σ∣2 ∣B0∣ X̃B0
).

We will now prove that

(2.56)
for large N , and any τ ∈ {0, . . . ,K − 1}d, under Qτ

0 the i.i.d. Bernoulli
variables X̃B0

have success probability at most ε/(2∣Σ∣2).
Once (2.56) is proved, it will follow from usual large deviation bounds on sums of i.i.d. Bernoulli
variables that for large N and each τ ∈ {0, . . . ,K − 1}d, ∑B0∈C0,τ ∣Σ∣2 X̃B0

< 3
4
ε ∣C0,τ ∣ except on a

set of Qτ
0-probability at most exp{−c(γ,u, ε)∣C0,τ ∣}.

Observing that ∣C0,τ ∣ ≥ c(K)(N/L0)d ≫ Nd−2, as N → ∞, see (1.7), we will conclude by
(2.55) that for each τ , limN

1
Nd−2 logP[∑B0∈C0,τ YB0

≥ 7
4
ε∣B0∣ ∣C0,τ ∣] = −∞. Summing over τ and

using (2.40) the proof of Lemma 2.2 will be completed.
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There remains to prove (2.56). By classical exponential Chebyshev bounds on the Poisson
distribution, with Ũm0

B0
as in (2.44), one knows that Qτ

0[(Ũm0

D0
)c] decays exponentially with m0,

see (4.20) of [24]. Hence, (2.56) will follow by Chebyshev inequality once we show that

(2.57)
for K ≥ c(γ,u, ε), for large N and any τ ∈ {0, . . . ,K − 1}d, and
B0 ∈ C0,τ ,EQτ

0 [ỸD0
] ≤ ε2

4∣Σ∣2 ∣B0∣.
Writing v = λ+λ′

2
for any λ < λ′ in Σ, we denote by ND0

v an independent Poisson variable with
parameter v cap(D0). Then we have, see (2.51),

(2.58)

EQτ
0 [ỸB0

] ≤ ∑
λ<λ′

∑
x∈B0

(Qτ
0[ND0

v ∉ (λ cap(D0), λ′ cap(D0))]
+ Qτ

0[ND0

v ∈ (λ cap(D0), λ′ cap(D0)), x ∼←→ S(x,R) ∶ D0, λ
′ and

x
∼

←→/ S(x, [L0

2
]) ∶D0, λ]).

Using large deviation bounds on the Poisson distribution and comparing the effect on B(x, [L0

2
])

ofND0

v independent excursions distributed asX
.∧TU0

under PeD0
to the effect ofND0

v independent
excursions distributed as X

.

under PeD0
(and hence of random interlacement at level v), we find

that for large N , any τ ∈ {0, . . . ,K − 1}d and B0 ∈ C0,τ :

(2.59)

EQτ
0 [ỸB0

] ≤ ∣Σ∣2∣B0∣ e−c(γ,u,ε)Ld−2
0 +

∑
λ<λ′

∑
x∈B0

(P[x v
←→ S(x,R) and x

v
←→/ S(x, [L0

2
])] + P[a trajectory in the

interlacement at level ≤ v enters D0 and after exiting U0 touches B(x,R)])
≤ ∣Σ∣2∣B0∣(e−c(γ,u,ε)Ld−2

0 + supw≤γ P[0 w
←→ S(0,R) and 0

w
←→/ ∞] + cγ Ld−2

0
Rd−2

(KL0)d−2
)

(2.13),∣Σ∣≤10∣Σ0∣≤ ∣B0∣(∣Σ∣2e−c(γ,u,ε)Ld−2
0 +

1

10∣Σ∣2 ε
2
+ ∣Σ∣2 cγ Rd−2

Kd−2
).

Since Σ and R are determined by γ,u, ε (and d) the claim (2.57) holds. This proves (2.56) and
as explained below (2.56) this completes the proof of Lemma 2.2.

We have now established (2.33) (thanks to (2.36) and Lemma 2.2). There remains to show
that with overwhelming probability the term III2,R in (2.32) is small. This is the object of

Lemma 2.3.

(2.60) For K ≥ c(α,β, γ, u, ε) one has lim
N

1

Nd−2
logP[III2,R ≥ ε ∣DN ∣] = −∞.

Proof. Recall that III2,R = ∑B1∈C1 ∣B1∣1{B1 is IIIR-bad} and the event {B1 is IIIR-bad} entails
that one of the conditions (2.27) - (2.30) does not hold. We will first show that

(2.61)
for K ≥ c(α,β, γ), limN

1

Nd−2
logP[IV ≥ ε

3
∣DN ∣} = −∞, where we have set

IV = ∑
B1∈C1

∣B1∣ 1{B1 does not satisfy (2.27)}.
The claim is a variation on (1.42) (it is not an immediate consequence of (1.42) because asN →∞,
by (1.7), (1.8), ∣C1∣ ∼ c(N/L1)d ∼ cNd−2/ logN which might be small compared to ρ(L0)Nd−2

in (1.42)). Keeping the same notation as in the proof of Lemma 1.4, and with K ≥ c2(α,β, γ)
(that corresponds to c8(α,β, γ) above (5.5) of [24]), one finds that for any τ ∈ {0, . . . ,K − 1}d,
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the indicator functions of the events B0 is an (α,β, γ)-bad box, for B0 ∈ C0,τ , are stochastically
dominated by i.i.d. Bernoulli variables with success probability η(L0).

It follows that the indicator functions of the events B1 contains an (α,β, γ)-bad box B0 ∈ C0,τ ,
as B1 varies over C1 are stochastically dominated by i.i.d. Bernoulli variables with success
probability η1 = 1 ∧ {(L1

L0
)d η(L0)}. Hence, from the super-polynomial decay of η, we find that

limN
1

logL1
log η1 = −∞. Then, as in Proposition 3.1 and (4.9) of [26], we can conclude that for

each τ ∈ {0, . . . ,K − 1}d,
lim
N

1

Nd−2
logP[there are at least ε

3K
d
∣C1∣ boxes in C1 that contain an(2.62)

(α,β, γ)-bad box of C0,τ ] = −∞.
Summing over τ and noting that ∣DN ∣ ≥ ∣C1∣ ∣B1∣ the claim (2.61) follows.

Our next step is to show that

(2.63)
for K ≥ c(γ,u, ε), limN

1

Nd−2
logP[V ≥ ε

3
∣DN ∣] = −∞, where we have set

V = ∑
B1∈C1

∣B1∣ 1{B1 does not satisfy (2.28) or (2.29)}.
In analogy with (2.41), for each τ ∈ {0, . . . ,K − 1}d we define

(2.64) C1,τ = C1 ∩ {L1τ +K L1} (where L1 = L1Z
d, see (1.10)).

Replacing in (2.42) - (2.46) D0 by B1 and U0 by U1, one can construct for each τ ∈ {0, . . . ,K−1}d
a coupling Qτ

1 between the excursions ZB1

ℓ
, ℓ ≥ 1, B1 ∈ C1,τ of the random interlacements with

independent excursions Z̃B1

ℓ
, ℓ ≥ 1, B1 ∈ C1,τ respectively distributed as X

.∧TU1
under PeB1

,
and independent right-continuous Poisson counting functions with unit intensity, vanishing at
0, (nB1

(0, t))t≥0, B1 ∈ C1,τ , so that the corresponding statement to (2.42), with B1 in place of
D0 and U1 in place of U0 holds. Then with Q1

x and Y 1 analogously defined as above (2.43),
the coupling has the following property: if for some δ ∈ (0,1) and all B1 in C1,τ , y ∈ B1 and
x ∈ ∂(⋃z∈C1,τ U1,z) one has

(2.65) (1 − δ

3
) eB1

(y) ≤ Q1
x[Y 1 = y ∣Y 1 ∈ B1] ≤ (1 + δ

3
) eB1

(y),
then for B1 ∈ C1,τ on the event

(2.66) Ũ
m1

B1
= {nB1

(m, (1 + δ)m) < 2δm, (1 − δ)m < nB1
(0,m) < (1 + δ)m, for allm ≥m1},

one has for all m ≥m1 the inclusions among subsets of Γ(U1):
{Z̃B1

1 , . . . , Z̃B1

(1−δ)m} ⊆ {ZB1

1 , . . . ,ZB1

(1+3δ)m},(2.67)

{ZB1

1 , . . . ,ZB1

(1−δ)m} ⊆ {Z̃B1

1 , . . . , Z̃B1

(1+3δ)m},(2.68)

(with similar conventions as stated below (2.46)).
We then set

(2.69) m1 = [(logL1)2] + 1.
We now choose δ(γ,u, ε) ∈ (0,1) such that with κ as in (2.23)

(2.70) i) 1 + κ/10
1 − κ/10 (1 + 4δ)

2

(1 − 2δ)2 ≤ 1 + κ4 , and ii) (1 − κ

10
) 1 − δ

1 + 4δ
≥ 1 − κ

4
.
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Then for K ≥ c(γ,u, ε) we can make sure that (2.65) holds (as explained above (2.48)), and
ensure that for B1 ∈ C1,τ on Ũm1

B1
the statements (2.67), (2.68) hold for all m ≥m1.

We further introduce for B1 ∈ C1,τ the good event

G̃B1
= Ũm1

B1
∩ ⋂

B0⊆DeepB1

{Z̃B1

1 , . . . , Z̃B1

m contain at least (1 − κ

10
) cap(D0)
cap(B1) m and

at most (1 + κ

10
) cap(D0)
cap(B1) m excursions from D0 to ∂U0

for all m ≥m′1},
(2.71)

where we set

(2.72) m′1 = [( cap(B1)
cap(D0))

2(logL1)2] + 1.
An important feature of m′1 is that when N goes to infinity

(2.73) m′1 ≥m1, m
′
1(cap(D0)

cap(B1) )
2 ≥ (logL1)2 and m′1 = o(cap(B1))

(the last property stems from the fact that (L1

L0
)2 = o(L1) as N →∞, see below (1.8)).

Note that under Qτ
1

(2.74) the events G̃B1
, B1 ∈ C1,τ are i.i.d..

In addition, when K is large, they are typical in the sense that

(2.75)
forK ≥ c(γ,u, ε), lim

N

1

logL1

logQτ
1[(G̃B1

)c] = −∞
(the above probability does not depend on τ nor on B1 ∈ C1,τ ).

The proof of this fact is very similar to the proof of (4.15) of [24]. In that proof, Lemma 4.2 of
[24] is now replaced by the estimate for B0 ⊆ DeepB1:

(2.76)
cap(D0)
cap(B1) ≥ p def= P eB1

[HD0
< TU1

] ≥ cap(D0)
cap(B1) (1 −

c

Kd−2
)

(the first inequality follows from a straightforward sweeping argument, and the second inequality
comes from writing

P eB1
[HD0

< TU1
] = P eB1

[HD0
<∞] −P eB1

[TU1
<HD0

<∞]
≥ cap(D0)
cap(B1) − sup∂U1

Px[HD0
<∞] ≥ cap(D0)

cap(B1) (1 −
c

Kd−2
) ).

The proof of (2.75) follows the same steps, see (4.27) and (4.30) of [24], as the proof of (4.15)
of [24], with minor adjustments. With p ≥ (1 − κ

20
) cap(D0)
cap(B1) and p̃ = (1 − κ

10
) cap(D0)
cap(B1) the lower

bound on the rate function in (4.26) of [24] is now replaced by c(p − p̃)2 ≥ c((1 − κ
20
) cap(D0)

cap(B1) −(1 − κ
10
) cap(D0)
cap(B1))2 ≥ c′ κ2( cap(D0)

cap(B1) )2, so that now (4.27) of [24] is replaced by the fact that

∑m≥m′
1
exp{−c′ κ2( cap(D0)

cap(B1) )2m} decays super-polynomially in N since ( cap(D0)
cap(B1))2m′1 ≥ (logL1)2,

see (2.73). The bound (4.29) of [24] is in our context essentially unchanged (with
∨
D replaced by

B1 and κ by κ
10

) and at the end we note that cap(D0)
cap(B1) m

′
1 ≥ (logL1)2.
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The interest of the above event G̃B1
in (2.71) comes from the fact that similarly to (4.12),

(4.13) of [24], with δ chosen as in (2.70), as we explain below, it ensures for each B0 ⊆ DeepB1

a good comparison of the successive excursions ẐD0

1 , . . . , ẐD0

ℓ
, . . . between D0 and ∂U0 in the

sequence Z̃B1

1 , . . . , Z̃B1

k
, . . . with the successive excursions ZD0

1 , . . . ZD0

ℓ
, . . . in the random inter-

lacements.

More precisely, first observe that for large N , for any B1 ∈ C1,τ , on G̃B1
one has

(2.77) {Z̃B1

1 , . . . , Z̃B1

(1−δ)m} (2.67)⊆ {ZB1

1 , . . . ,ZB1

(1+3δ)m} (2.68)⊆ {Z̃B1

1 , . . . , Z̃B1

(1+4δ)2

1−δ
m
}, for all m ≥m1.

Next, for B0 ⊆ DeepB1 denote by ẐD0

1 , . . . , ẐD0

ℓ
, . . . the successive excursions from D0 to ∂U0

inscribed in the Z̃B1

1 , . . . , Z̃B1

k
, . . . . We then argue as below (4.17) of [24]. When (1 − δ)m ≥m′1

the set of excursions on the left-hand side of (2.77) contains at least (1− κ
10
)[(1− δ)m] cap(D0)

cap(B1) ≥
t = (1 − κ

10
)(1 − 2δ)m cap(D0)

cap(B1) excursions from D0 to ∂U0, and the set on the right-hand side

contains at most (1 + κ
10
) (1+4δ)2

1−δ m
cap(D0)
cap(B1)

(2.70 i)≤ (1 + κ
4
) t excursions from D0 to ∂U0.

Hence, looking at the first t excursions ẐD0

ℓ
, 1 ≤ ℓ ≤ t (which are inscribed in the set of

excursions on the leftmost member of (2.77)) and the first ZD0

ℓ
, 1 ≤ ℓ ≤ (1 + κ

4
) t (which exhaust

all excursions from D0 to ∂V0 inscribed in the set of excursions in the middle of (2.77)), we see
that

(2.78) {ẐD0

1 , . . . , ẐD0

t } ⊆ {ZD0

1 , . . . ,ZD0

(1+κ
4
) t}.

Moreover, looking at the first t excursions from D0 to ∂U0 contained in the set of excursions in
the middle of (2.77), and at the first (1 + κ

4
) t excursions ẐD0

ℓ
, 1 ≤ ℓ ≤ (1 + κ

4
) t (which exhaust

all excursions from D0 to ∂U0 inscribed within the set of excursions in the rightmost member of
(2.77)), we see that

(2.79) {ZD0

1 , . . . ,ZD0

t } ⊆ {ẐD0

1 , . . . , ẐD0

(1+κ
4
) t}.

Note that [t] covers all integers bigger or equal to (1 − κ
10
)(1 − 2δ) m′1 cap(D0)

cap(B1) as m runs over
the set of integers bigger or equals to m′1, in particular all integers bigger or equal to tN =
cap(B1)
cap(D0) (logL1)2. So we have for large N , for any B1 ∈ C1,τ , on ĜB1

:

(2.80)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i) {ẐD0

1 , . . . , ẐD0

ℓ
} ⊆ {ZD0

1 , . . . ,ZD0

(1+κ
4
) ℓ}, for all ℓ ≥ tN ,

ii) {ZD0

1 , . . . ,ZD0

ℓ
} ⊆ {ẐD0

1 , . . . , ẐD0

(1+κ
4
) ℓ}, for all ℓ ≥ tN .

Note that L0 ∼ N
a as N →∞, with a = 1

d−1 > 1
d
, and in the same spirit as the observation below

(2.73), we now find that

(2.81) tN = o(cap(D0)), as N →∞.

As we now explain,

(2.82)
for large N , for any τ ∈ {0, . . . ,K − 1}d and any B1 ∈ C1,τ , on G̃B1

both (2.28) and (2.29) hold.

We begin with the case of (2.28). Recall from (2.73) that m1 ≤ m′1 = o(cap(B1)), as N → ∞.
Thus, for large N with τ and B1 as above, on G̃B1

for any λ < λ′ in Σ and B0 ⊆ DeepB1, the first
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λcap(B1) excursions {ZB1

1 , . . . ,ZB1

λcap(B1)} are contained by (2.77) in {Z̃B1

1 , . . . , Z̃B1

(1+4δ)2

1−δ
λcap(B1)

}
which contain by definition of G̃B1

in (2.71) at most (1 + κ
10
) (1+4δ)2

1−δ λ cap(D0) (2.70 i)≤ (1 +
κ
4
)λ cap(D0) excursions from D0 to ∂U0. So the excursions from D0 to ∂U0 contained in{ZB1

1 , . . . ,ZB1

λcap(B1)} are among {ẐD0

1 , . . . , ẐD0

(1+κ
4
)λcap(D0)} ⊆ {ZD0

1 , . . . ,ZD0

(1+κ
4
)2 λcap(D0)}, by (2.80)

i). Since (1 + κ
4
)2λ < λ′ when λ < λ′ in Σ by (2.23), this shows that (2.28) holds.

In the case of (2.29), we observe that for large N , with τ and B1 as above, on G̃B1
for λ < λ′

in Σ and B0 ⊆ DeepB1, the first λ′cap(B1) excursions ZB1

1 , . . . ,ZB1

λ′cap(B1) contain by (2.77) the

excursions Z̃B1

1 , . . . , Z̃B1

(1−δ)[ λ′

1+3δ
cap(B1)]

, and by definition of G̃B1
this last collection contains the

excursions ẐD0

ℓ
, 1 ≤ ℓ ≤ (1 − κ

10
) 1−δ
1+4δ λ

′cap(D0), which by (2.80) ii) contain the excursions ZD0

ℓ
,

1 ≤ ℓ ≤ aλ′ cap(D0) where a = 1
1+κ/2 (1− κ

10
) (1−δ)

1+4δ

(2.70)ii)≥ 1−κ/4
1+κ/2 ≥ 1−κ, so that aλ′ > λ by (2.23).

This proves that (2.29) holds. We have thus shown (2.82).

Making use of (2.74), (2.75), a similar calculation as in Proposition 3.1 of [26] (see also (4.9)
of [26]) completes the proof of (2.63).

There remains to handle the case of (2.30). To this effect we first observe that when (2.28)
and (2.29) hold the condition (2.83) below implies that (2.80) holds as well, where we have set
(with the notation below (2.14))

(2.83)

for all B0 ⊆ DeepB1 and all
∨
λ++ in the grid Σ, if two connected sets in

B̃0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

∨
λ++cap(D0)

) have diameter at least L0

10
, then

they are connected in D0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

∨
λ+cap(D0)

).
It is then convenient to say that for λ < λ′ in (0, u) the box B0 is (λ,λ′)-good if

(2.84)
any two connected sets in B̃0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

λ′cap(D0)) having

diameter at least L0

10
are connected in D0/(rangeZD0

1 ∪ ⋅ ⋅ ⋅ ∪ rangeZ
D0

λcap(D0)),
and (λ,λ′)- bad otherwise. Then, in view of (2.61) and (2.63) and the observation above (2.83),
the claim (2.60) will follow, and the proof of Lemma 2.3 will be completed, once we show

(2.85)

for K ≥ c(γ,u, ε), for any τ ∈ {0, . . . ,K − 1}d, and λ < λ′ in Σ,

lim
N

1

Nd−2
logP[there are at least ε

3K
d∣Σ∣2

∣C1∣ boxes B1 that contains

a (λ,λ′)-bad box of C0,τ ] = −∞.
The proof of (2.85) is similar, but substantially simpler than the proof of (2.62). We briefly sketch
the argument. One uses the soft local technique as in (2.42) - (2.46) (using a possibly smaller δ
than in (2.48) and large enough K to ensure (2.43)), and for large N stochastically dominates
the events “B0 is (λ,λ′)-bad”, for B0 ∈ C0,τ , by the events (Ũm0

D0
)c ∪{there are two connected sets

in B̃0/(range Z̃D0

1 ∪ ⋅ ⋅ ⋅ ∪ range Z̃D0

1

7
(λ+6λ′)cap(D0)

) that are not connected in D0/(range Z̃D0

1 ∪ ⋅ ⋅ ⋅ ∪

range Z̃D0

1

7
(6λ+λ′)cap(D0)

)}.
In turn, the probability of such events (that are i.i.d.) is controlled by the probability of(Ũm0

D0
)c∪{B0 is (1

7
(5λ+2λ′), 1

7
(2λ+5λ′))-bad}. Then, to show the super-polynomial decay in L0 of
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the probability of such events one brings into play (1.30) with w = 1
7
(4λ+3λ′) < v = 1

7
(3λ+4λ′) as

well as the unlikely events {Nw(D0) < 1
7
(5λ+2λ′)cap(D0)} and {Nv(D0) > 1

7
(2λ+5λ′)cap(D0)}

(with K ≥ c(λ,λ′), see below (2.22) of [24]). Then one can argue as above (2.62) and conclude
that (2.85) holds. As explained above (2.85) the proof of Lemma 2.3 follows.

With (2.33) and Lemma 2.3 we have thus completed the proof of (2.20). Together with (2.19)
this completes the proof of Theorem 2.1. ◻

3 On the cost of bubbles

From Theorem 2.1 in the previous section we know that we can replace the excess event AN with
the event A′N from (2.11) in our quest for an asymptotic upper bound on P[AN ]. The constraint
expressed by A′N involves the volume of the bubble set. The main objective of this section is to
construct a coarse grained random object (namely, the equilibrium potential of a random set Cω

of “low complexity”) that will endow us with a tool to show that the bubble set induces a cost.
This feature will play a major role in the next section. The challenge stems from the fact that
the bubble set may be very irregular with little depth apart from its constitutive grains of size
L1. There is no additional thickening in the problem we study and this precludes the use of the
coarse graining procedures from Section 4 of [17] (see also [25] and [5]).

In this section we assume that

0 < u < u,(3.1)

α > β > γ belong to (u,u),(3.2)

0 < ε < 10−3.(3.3)

Further, with c1 as in Lemma 1.2 and c2(α,β, γ) as in Lemma 1.4, we assume that

K ≥ c1 ∨ c2(α,β, γ).(3.4)

We also recall the asymptotically negligible bad event BN defined in (1.42) and the bubble set
Bub from (1.47). Here is the main result of this section. We recall that K = 2K + 3.
Theorem 3.1. There exists a dimension dependent constant c0 ∈ (0,1) such that for u,α,β, γ, ε,K
as in (3.1) - (3.4), for large N on BcN , one can construct a random subset Cω of [−4N,4N]d,
which is a union of B0-boxes and satisfies the following properties:

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) for all B0 ⊆ Cω, B0 is (α,β, γ)-good and Nu(D0) ≥ β cap(D0),
ii) the B0 ⊆ Cω have base points at mutual sup-distance at least KL0,

iii) the set SN of possible values of Cω is such that ∣SN ∣ = exp{o(Nd−2)},
iv) the 2KL1-neighborhood of Cω has volume at most ε ∣DN ∣,
v) if hCω stands for the equilibrium potential of Cω (see (1.4)), one has∣{x ∈ Bub;hCω(x) < c0} ≤ ε ∣DN ∣.

Perhaps some comments on the above conditions are helpful at this stage. Condition iii) on
the “combinatorial complexity” of Cω is a coarse graining control. With the help of iii) when
deriving asymptotic bounds on P[A′N ] in the next section, we will be able to fix the value Cω = C
of the above random set and derive bounds uniformly on C in SN . Condition i) will ensure that
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with Lu the field of occupation times as in (1.48), ⟨eD0
,Lu⟩ ≥ γ for each B0 ⊆ C, see (1.38),

and condition iv) that the 2KL1-thickening of C has a negligible volume. This will be combined
with a coarse graining of the values of ⟨eB1

,Lu⟩ with the help of the grid Σ0 in (2.6) for B1 ∈ C1
at distance at least KL1 from C. We will then use an exponential Chebyshev bound for this
coarse grained picture of the occupation time in the spirit of Proposition 5.6 of [26]. The crucial
condition v) will ensure that in the constraints defining A′N , see (2.11), a due cost will be attached
to the volume of the bubble set, at least on the main part A′N/BN of the event A′N .

We need some additional notation. We choose an integer M(≥ 4) solely dependent on the
dimension d such that

(3.6) M2/(3d + 1) > 1 (for instance the smallest such integer).

We will use in the proof of Theorem 3.1 an “M -adic decomposition” in Zd, where L1 (attached
to B1-boxes) corresponds to the bottom (i.e. smallest) scale and the top (i.e. largest) scale
corresponds to M ℓNL1, where

(3.7) M ℓNL1 ≤ N <M (ℓN+1)L1.

We will “view things” from the point of view of the top scale, and 0 ≤ ℓ ≤ ℓN will label the “depth”
with respect to the top scale, setting for such ℓ

Iℓ = the collection of M -adic boxes of depth ℓ, i.e. of boxes of the form

{M ℓN−ℓL1 z + [0,M ℓN−ℓL1)d} ∩Zd, where z ∈ Zd.
(3.8)

Thus, the collections Iℓ, 0 ≤ ℓ ≤ ℓN , are naturally nested, IℓN corresponds to the collection of
B1-boxes and I0 to boxes of approximate size N .

Given ℓ as above and B ∈ Iℓ, the “tower above B” stands for the collection of B′ ∈ ⋃0≤ℓ′≤ℓ Iℓ′

such that B′ ⊇ B. We also denote by

(3.9)
DN the union of boxes in I0 that intersect DN , so that
DN = [−N,N]d ⊆DN ⊆ [−2N,2N]d and ∣DN ∣ ≤ ∣DN ∣ ≤ 2d ∣DN ∣.

Further, given 0 ≤ ℓ ≤ ℓN , we set

(3.10) Iℓ = the collection of boxes in Iℓ that are contained in DN .

We will now give a brief description of the main steps of the proof of Theorem 3.1. The random
set Cω will be extracted from the B0-boundary ∂B0

U1 of the random set U1 in (1.40). We only
need to consider the case when the bubble set has volume at least ε ∣DN ∣. We then distinguish
between the (easy) case when for some B1 in the bubble set, the box of top size in the tower
above B1 has a non-degenerate fraction of its volume occupied by Uc

1 , and the case when no such
B1 exists. In the first case, both U1 and Uc

1 occupy a non-degenerate fraction of the volume of[−4N,4N]d. Then, the isoperimetric controls of [8] together with Lemmas 1.1 and 1.2, and the
rarity of (α,β, γ)-bad boxes on the event BcN , ensure a rather straightforward construction of
Cω.

In the second case, which is more delicate, we cover the bubble set by a collection of pairwise
disjoint maximal M -adic boxes B′j , 1 ≤ j ≤m, in which both U1, and Uc

1 occupy a non-degenerate
fraction of volume. We discard the boxes where too many (α,β, γ)-bad B0-boxes are present
and may spoil the number of columns of B0-boxes in the box that only contains (α,β, γ)-good
boxes. The bad boxes B′j that we discard occupy a small fraction of the total volume of the
B′j , 1 ≤ j ≤ m. However, the remaining B′j may still have too high complexity for the type of
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coarse grained set we are aiming for. We thus use some elements of the method of enlargement
of obstacles, see Chapter 4 of [21]. We introduce a notion of rarefied boxes, where in each box
in the tower above the given box the presence of the good B′j is sparse (i.e. little felt by simple
random walk). We show that rarefied boxes of depth bigger than k (where k solely depends on
the dimension and ε) occupy a small volume. We are then reduced to boxes of depth at most k
where somewhere in the (short) tower above them the good B′j are felt. Combined with Lemmas
1.1 and 1.2, this permits to construct the coarse grained set Cω satisfying (3.5).

Proof of Theorem 3.1: Without loss of generality, we assume that

(3.11) ∣Bub∣ ≥ ε ∣DN ∣
(on the complement in BcN of this event we simply choose Cω = φ, so that on the complement in
BcN of this event (3.5) holds). We also assume that N is large enough so that (see (1.46))

(3.12) ∣DeepB1∣ ≥ 3

4
∣B1∣.

Given B1 ⊆ Bub (that is B1 ⊆DN such that DeepB1 ∩U1 = φ, see (1.47)), we consider the boxes
B in the tower above B1 such that

(3.13) ∣B ∩ Uc
1 ∣ ≥ 1

2
∣B∣,

and note that due to (3.12) and DeepB1 ⊆ Uc
1 , B1 belongs to this collection. We thus denote by

(3.14) B(B1) the maximal element in this collection.

Either we are on the event

(3.15) for some B1 ⊆ Bub, B(B1) ∈ I0 (intersected with BcN ∩ {∣Bub∣ ≥ ε ∣DN ∣}),
or we are on the complement of this event in BcN ∩ {∣Bub∣ ≥ ε ∣DN ∣}.

We first treat the easier case when (3.15) occurs. By definition of U1, see (1.40), U1 ⊇ ([−3N −
L0,3N+L0]d)c, so that for large N on the event in (3.15) both U1 and Uc

1 occupy a non-degenerate
fraction of volume in [−4N,4N]d. By the isoperimetric controls (A.3) - (A.6), p. 480-481 of [8],
there is a projection π on one of the coordinate hyperplanes such that π(∂U1 ∩ [−4N,4N]d) ≥
cNd−1, and hence at least c ( N

L0
)d−1 B0-boxes in ∂B0

U1∩[−4N,4N]d having distinct π-projection
(see below (1.41) for notation).

By definition of BN in (1.42), for large N on the event (3.15), since ( N
L0
)d−1 ∼ Nd−2

≫

ρ(L0)Nd−2 asN →∞, we can find [c′( N
L0
)d−1]B0-boxes with distinct π-projections in [−4N,4N]d

that are all (α,β, γ)-good and in ∂B0
U1, and hence such that Nu(D0) ≥ β cap(D0).

By the combination of Lemmas 1.1 and 1.2 we can extract a subcollection of these B0-boxes
such that their π-projections are at mutual distance at least KL0, the capacity of their union at
least ĉNd−2, and their number [c( N

L0
)d−2]. We denote by Cω the union of these B0-boxes (we

use some deterministic ordering to select Cω if there are several such collections). Then, for large
N , we see that

(3.16) the 2KL1-neighborhood of Cω has volume at most cKL1N
d−1
≤ ε ∣DN ∣,

and since cap(Cω) ≥ ĉNd−2 it also follows that

(3.17) hCω(x) ≥ c̃ on [−4N,4N]d ⊇ Bub.
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In addition, the number of possible shapes for the random set Cω constructed on the event in
(3.15) is at most

(3.18) {c( N
L0

)d}c( N
L0
)d−2 = exp{c log (c N

L0

)( N
L0

)d−2} = exp{o(Nd−2)}.
This shows that for large N the above constructed Cω on the event in (3.15) satisfies all conditions
of (3.5).

We now turn to the more delicate task of constructing Cω on the complement in BcN ∩{∣Bub∣ ≥
ε ∣DN ∣} of the event in (3.15). We thus assume that none of the B(B1), with B1 ⊆ Bub has
maximal size, that is, we consider the event

(3.19) for all B1 ⊆ Bub,B(B1) ∈ ⋃
1≤ℓ≤ℓN

Iℓ (intersected with BcN ∩ {∣Bub∣ ≥ ε ∣DN ∣}).
Then, for each B1 ⊆ Bub, we define B′(B1) the box immediately above B(B1) in the tower above
B1, so that on the event in (3.19)

(3.20) for all B1 ⊆ Bub, B1 ⊆ B(B1) ⊊ B′(B1) with B′(B1) ∈ ⋃
0≤ℓ<ℓN

Iℓ.

Thus, by (3.13), (3.14), since B′(B1) does not satisfy (3.13), we have (see (3.8))

1

2Md
∣B′(B1)∣ ≤ 1

2
∣B(B1)∣ ≤ ∣B(B1) ∩ Uc

1 ∣ ≤ ∣B′(B1) ∩ Uc
1 ∣ ≤ 1

2
∣B′(B1)∣.

Hence, on the event in (3.19) we find that

(3.21) for all B1 ⊆ Bub, 1

2Md
∣B′(B1)∣ ≤ ∣B′(B1) ∩ Uc

1 ∣ ≤ 1

2
∣B′(B1)∣.

By construction, any two sets B′(B1), with B1 ⊆ Bub, are either pairwise disjoint, or one contains
the other. We then denote by

(3.22) B′1, . . . ,B
′
m the maximal elements for inclusion in the collection of B′(B1), B1 ⊆ Bub

(both m and the labelling possibly depend on ω in the event in (3.19)). Thus, on the event in
(3.19) we find that:

(3.23) the B′j , 1 ≤ j ≤m, are pairwise disjoint and Bub ⊆ m⋃
j=1

B′j ⊆DN .

By (3.21) both U1 and Uc
1 occupy a non-vanishing fraction of volume in each B′j, 1 ≤ j ≤ m.

By the isoperimetric controls (A.3) - (A.6), p. 480-481 of [8], for each B′j, 1 ≤ j ≤ m, we can
find a projection π′j on one of the coordinate hyperplanes so that (recall that M is a dimension
dependent constant)

(3.24) there are c4( ∣B′j ∣∣B0∣)
d−1
d columns in the π′j-direction inside B′j that

contain a box of ∂B0
U1.

Now for 1 ≤ j ≤m, we say that

(3.25) “j is bad” if B′j contains more than 1
2
c4( ∣B′1∣∣B0∣)

d−1
d (α,β, γ)-bad B0-boxes and that

“j is good” otherwise.
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We write G = {1 ≤ j ≤m; j is good} for the set of good j in {1, . . . ,m}, and we set

(3.26) a′j = ∣B′j ∣/ m

∑
k=1
∣B′k∣, for 1 ≤ j ≤m.

On the event in (3.19) (which is contained in BcN , see (1.42) for its definition), we have

1

2
c4 ∣Bub∣ d−1d ∑

j bad
a′

d−1
d

j

(3.23),(3.26)≤ 1

2
c4 ∑

j bad
∣B′j ∣ d−1d (3.25)≤

∑
j bad

∑
B0⊆B′j

∣B0∣ d−1d 1{B0 is (α,β, γ)-bad} ≤ (since B′j ⊆ [−2N,2N]d, see (3.20))

Ld−1
0 ∑

B0⊆[−2N,2N]d
1{B0 is (α,β, γ)-bad} (1.42)≤ Ld−1

0 ρ(L0)Nd−2.

As a result we see that on the event in (3.19)

(3.27)
( ∑
j bad

a′j) d−1d ≤ ∑
j bad

a′j
d−1
d ≤ 2

c4
Ld−1
0 Nd−2 ρ(L0) ∣Bub∣− d−1

d

(1.7),(3.11)≤ 2

c4
ρ(L0) ( Nd

ε ∣DN ∣)
d−1
d
Ð→
N

0.

Our goal is to construct a coarse grained Cω of low complexity, see (3.5) iii), and from this
perspective the description of the B′j, j ∈ G, may still involve too many small grains. We will now
aggregate the most part of the B′j, j ∈ G, inside large (nearly macroscopic) boxes that will feel
the presence of the B′j, j ∈ G, which they contain, and hence, see (3.24) - (3.25), the presence of(α,β, γ)-good boxes B0 such that Nu(D0) ≥ β cap(D0). This step will have some flavor of the
“method of enlargement of obstacles”, see Chapter 4 of [21], although in a simplified form.

We introduce the dimension dependent constant (recall c∗ from (1.3)):

(3.28) η = (c∗Md)−1 ∧ { inf
L≥1

cap([0,L)d)
Ld−2

} > 0.
We then say that an M -adic box B in ⋃0≤ℓ≤ℓN Iℓ (see (3.10)) is sparse if

(3.29) cap(B ∩ (⋃
j∈G

B′j)) < η ∣B∣ d−2d ,
and otherwise non-sparse. Note that each B = B′j, j ∈ G satisfies cap(B′j) ≥ η ∣B′j ∣ d−2d , so that

(3.30) B′j is non-sparse for each j ∈ G.
Then, for each j ∈ G, we consider the tower of M -adic boxes above B′j and set

(3.31) B̃(B′j) = the largest non-sparse box in the tower above B′j.

Again, by construction (see (3.8)), we find that

(3.32) the boxes B̃(B′j), as j varies over G, are either pairwise disjoint or equal.

We then say that

(3.33)
an M -adic box B in ⋃

0≤ℓ≤ℓN

Iℓ is rarefied if B and the boxes in the

tower above B are sparse (see (3.29)).
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Note that as a consequence of (3.30)

(3.34) when B is rarefied and B′j ∩B /= φ for some j ∈ G, then B′j ⊊ B.

Our goal in Lemma 3.2 below is to show that the volume of good boxes B′j, j ∈ G, contained in
the union of rarefied boxes of depth k decreases geometrically in k. The proof has some flavor
(although in a somewhat simplified version) of the capacity and volume estimates in the method
of enlargement of obstacles (see Chapter 4 §3 of [21]). We recall the notation (3.10).

Lemma 3.2. For all 0 ≤ k ≤ ℓN ,

(3.35) ∑
B∈Ik ,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣ ≤ c5 ∣DN ∣( M2

3d + 1
)−k.

Proof. We recall the Green operator G from (1.2). Note that when B is a box and A ⊆ B, then
G1A ≤ G1B ≤ c ∣B∣ 2d , see (1.5), so that G1A ≤ c ∣B∣ 2dhA on A. Integrating this last inequality, with
respect to eA, see above (1.4), we find that

(3.36) c6
cap(A)
∣B∣ d−2d ≥ ∣A∣∣B∣ , for all A ⊆ B, with B a box in Zd.

We will now bound the volume in the left member of (3.35) in terms of its capacity with the help
of the above inequality, see (3.37) below. The case k = 0 in (3.35) being immediate to handle
(the left member is at most ∣DN ∣ ≤ 2d ∣DN ∣, see (3.9)), we assume that 1 ≤ k ≤ ℓN . We note that
for each B ∈ Ik, we have ∣B∣ ≤M−kd∣DN ∣, and hence

∑
B∈Ik,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣ ≤ ∣DN ∣
Mkd

∑
B ∈Ik ,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣/∣B∣. .
Thus, using (3.36) with A = B ∩ (⋃j∈G B

′
j), we find that for 1 ≤ k ≤ ℓN :

(3.37) ∑
B∈Ik,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣ ≤ c6 ∣DN ∣
Mkd

∑
B∈Ik,rarefied

cap(B ∩ (⋃j∈G B
′
j))∣

∣B∣ d−2d .

We will now establish an induction over scales in order to control the sum in the right member
of (3.37). For this purpose we consider 0 ≤ ℓ < ℓN and some B ∈ Iℓ and the boxes B̂ ∈ Iℓ+1
contained in B. The bound in (3.38) below has a similar flavor (but is simpler, because we do
not need truncation due to the more restrictive notion of rarefied boxes that we use here) to
Lemma 3.2 on p. 170 in Chapter 4 §3 of [21]. Our aim is to show that

(3.38)
cap(B ∩ (⋃j∈G B

′
j))

∣B∣ d−2d ≥ M2

3d + 1

1

Md
∑

B̂⊆B,B̂ sparse

cap(B̂ ∩ (⋃j∈G B
′
j))

∣B̂∣ d−2d .

This inequality reflects a nearly additive regime of the capacity (up to the multiplicative factor
1/(3d + 1)) when dealing with sparse subboxes of a box of the next scale. We will then iterate
this basic control over scales corresponding to ℓ ranging from k−1 to 0, see (3.42) below. For the
time being we prove (3.38). To this end we introduce the measure (see below (1.3) for notation)

ν = ∑
B̂⊆B,B̂ sparse

e
B̂∩( ⋃

j∈G
B′j)

,
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and note that for each x ∈ ⋃B̂⊆B,B̂ sparse
B̂∩(⋃j∈G B

′
j), denoting by Σ1 and Σ2 the respective sums

over the sparse B̂ ⊆ B, with B̂ containing x, or being a neighbor of the box in Iℓ+1, containing
x for Σ1, and for Σ2 the sum over the remaining sparse B̂ ⊆ B, we have

∑
y
g(x, y)ν(y) ≤ Σ1

B̂

∑
y∈B̂

g(x, y) e
B̂∩(⋃j∈G B′j)

(y)
+ Σ2

B̂

∑
y∈B̂

g(x, y) eB̂∩(⋃j∈G B′
j
)(y)

(1.3)≤ 3d +Σ2

B̂

∑
y∈B̂

c∗∣B̂∣ d−2d cap(B̂ ∩ (⋃
j∈G

B′j))
and since the B̂ in the sum Σ2 are sparse, see (3.29),
and there are at most Md such B̂

≤ 3d + c∗ ηMd
(3.28)≤ 3d + 1.

(3.39)

Noting that ν is supported by the set S = ⋃B̂⊆B,B̂ sparse
B̂ ∩ (⋃j∈G B

′
j), we find that

(3.40) (3d + 1)−1Gν ≤ hS ,
and integrating this inequality with respect to eS , we find that

cap(B ∩ (⋃
j∈G

B′j)) ≥ cap(S)
≥ 1

3d + 1
ν(Zd) = 1

3d + 1
∑

B̂⊆B,B̂ sparse

cap(B̂ ∩ ( ⋃
j∈G

B′j)).(3.41)

Since ∣B∣ =Md ∣B̂∣, dividing both members of (3.41) by ∣B∣ d−2d the inequality (3.38) follows.

We will now apply (3.38) inductively to bound the right member of (3.37). We thus find that

(3.42)

c6
∣DN ∣
Mdk

∑
B∈Ik,rarefied

cap(B ∩ (⋃j∈GB
′
j))

∣B∣ d−2d
(3.38)≤

c6
∣DN ∣

Md(k−1) ( M2

3d + 1
)−1 ∑

B∈Ik−1,rarefied

cap(B ∩ (⋃j∈GB
′
j))

∣B∣ d−2d
induction≤

c6 ∣DN ∣ ( M2

3d + 1
)−k ∑

B∈I0,rarefied

cap(B)
∣B∣ d−2d ≤ c5 ∣DN ∣ ( M2

3d + 1
)−k.

This inequality combined with (3.37) completes the proof of Lemma 3.2.

As an aside, the notion of rarefied box that we use here (where every box in the tower above
a given box is sparse) is more primitive than the notion used in Chapter 4 §3 of [21]. However,
this feature permits the use of (3.38) that does not require truncation in the right member, and
is simpler to iterate than the inequality in Lemma 3.2 on p. 170 of [21], see also Lemma 3.4 on
p. 173 and (3.38) on p. 175 of the same reference.

We now specify our choice of k(ε) (we recall that M is a dimension dependent constant, see
(3.6)) through

(3.43) c5 ( M2

3d + 1
)−k ≤ 1

2
ε.
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Thus, when N is large enough so that ℓN ≥ k, see (3.7), on the event in (3.19) we have by (3.35)
and (3.43)

(3.44) ∑
B∈Ik,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣ ≤ ε

2
∣DN ∣.

We now introduce the set of very good j (recall the definition of G below (3.25)):

(3.45) V G = {j ∈ G; B̃(B′j) ∈ ⋃
0≤ℓ≤k

Iℓ},
in other words, j is very good if it is good and some box of depth at most k in the tower above
B′j is non-sparse.

As we now explain, the volume of the B′j that are good but not very good is small. Indeed,
when ℓN ≤ k, G = V G by (3.30), and when ℓN > k, one has

(3.46) ∑
j∈G/V G

∣B′j ∣ ≤ ∑
B∈Ik,rarefied

∣B ∩ ( ⋃
j∈G

B′j)∣ (3.44)≤ ε

2
∣DN ∣.

In addition, by (3.26), (3.27), we have

(3.47) ∑
j∉G
∣B′j ∣ ≤ ( m

∑
j=1
∣B′j ∣) c′

ε
ρ(L0) d

d−1

(3.23)≤ c

ε
∣DN ∣ ρ(L0) d

d−1 .

As a result, for large N on the event in (3.19), we have

m

⋃
j=1

B′j ⊇ Bub, and(3.48)

∑
j∉V G

∣B′j ∣ ≤ ε

2
∣DN ∣ + c

ε
∣DN ∣ρ(L0) d

d−1 .(3.49)

Note that (see (3.31) for notation) the B̃(B′j) for j ∈ V G belong to ⋃0≤ℓ≤k Iℓ, and are either
pairwise disjoint or equal. Using a total order on ⋃0≤ℓ≤k Iℓ preserving depth we can label the
B̃(B′j), j ∈ V G, as B̃1, . . . , B̃p, so that for large N on the event in (3.19) we have

(3.50) B̃1, . . . , B̃p are pairwise disjoint boxes in ⋃0≤ℓ≤k Iℓ covering ⋃j∈V G B
′
j,

and setting L̃i = ∣B̃i∣ 1d , for 1 ≤ i ≤ p,
L̃1 ≥ L̃2 ≥ ⋅ ⋅ ⋅ ≥ L̃p,(3.51)

for j ∈ G and 1 ≤ i ≤ p when B′j ∩ B̃i /= φ, then j ∈ V G and B′j ⊆ B̃i (due to (3.45)),(3.52)

cap(B̃i ∩ (⋃
j∈G

B′j)) ≥ η ∣B̃i∣ d−2d , for 1 ≤ i ≤ p (due to (3.31)).(3.53)

In essence, the construction of the random set Cω on the event in (3.19) will proceed as follows.
From the above collection B̃i, 1 ≤ i ≤ p, we will retain a sizeable sub-collection of non-adjacent
boxes and in such boxes we will retain a sizeable sub-collection of good boxes B′j . Then, using

Lemma 1.1, each such box B′j for a suitable projection π′j will contain a number of order ( ∣B′j ∣∣B0∣)d−1d
of (α,β, γ)-good boxes B0 with Nu(D0) ≥ β cap(D0) with π′j projections at mutual distance at
least KL0 and union having a capacity comparable to that of B′j . With Lemma 3.2 from each
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such retained B̃i we will select among these B0-boxes a number of order ( ∣B̃i ∣
∣B0∣)d−2d of boxes with

union having a capacity comparable to B̃i. The set Cω will in essence correspond to the union
of these B0-boxes.

More precisely, for large N , on the event (3.19), given the boxes B̃1, . . . , B̃p with respective
sizes L̃1 ≥ ⋅ ⋅ ⋅ ≥ L̃p we construct an attachment map Φ: {1, . . . , p} → {1, . . . , p} as follows.
The set Φ−1(1) consists of the labels i such that B̃i is contained in the L̃1-neighborhood for
the sup-distance of B̃1, Φ−1(2) is empty if 2 ∈ Φ−1(1), and otherwise consists of the labels
i ∈ {1, . . . , p}/Φ−1(1) such that B̃i is contained in the L̃2-neighborhood of B̃2, Φ−1(3) is empty if
3 ∈ Φ−1(1) ∪Φ−1(2), and otherwise consists of the i ∈ {1, . . . , p}/(Φ−1(1) ∪Φ−1(2)) such that B̃i

is contained in the L̃3-neighborhood of B̃3, and so on until the process terminates.

In this fashion we can make sure that

Φ ○Φ = Φ,(3.54)

and when i ∈ rangeΦ, then for i′ ∈ {1, . . . , p}/{i}
⎧⎪⎪⎨⎪⎪⎩

a) Φ(i′) = i implies that B̃i′ is contained in the L̃i-neighborhood of B̃i,

b) i′ ∈ rangeΦ implies that d∞(B̃i, B̃i′) ≥max{L̃i, L̃i′}.(3.55)

Now for any i ∈ rangeΦ we consider the B′j , j ∈ G that are contained in B̃i (such j in fact belong
to V G, and the union of such B′j has a sizeable presence in B̃i, see (3.52), (3.53)). We apply a
similar procedure as above to the collection {j ∈ G;B′j ⊆ B̃i}, and produce an attachment map
Φi: {j ∈ G;B′j ⊆ B̃i}Ð→ {j ∈ G;B′j ⊆ B̃i} so that

Φi
○Φi = Φi(3.56)

and for each j1 ∈ rangeΦi and j2 ∈ {j ∈ G; B′j ⊆ B̃i}/{j1}
⎧⎪⎪⎨⎪⎪⎩

a) Φi(j2) = j1 implies that B′j2 is contained in the ∣B′j1 ∣ 1d -neighborhood of B′j1 ,

b) j2 ∈ rangeΦi implies that d∞(B′j1 ,B′j2) ≥max{∣B′j1 ∣ 1d , ∣B′j2 ∣ 1d }.(3.57)

Now for each j ∈ rangeΦi the box B′j is such that, see (3.24), (3.25), there is a coordinate projec-

tion π′j and at least 1
2
c4( ∣B′j ∣∣B0∣)d−1d (α,β, γ)-good boxes B0 in ∂B0

U1 with distinct π′j-projections.
All such boxes are necessarily such that Nu(D0) ≥ β cap(D0) (otherwise they would belong to
U1, see (1.40)).

Thus, for large N , we can apply Lemma 1.1 and for each j ∈ rangeΦi (where i ∈ rangeΦ) find
a sub-collection of B0-boxes with π′j-projections which are KL0-distant, all (α,β, γ)-good with

Nu(D0) ≥ β cap(D0), their union having capacity at least c ∣B′j ∣ d−2d . By (3.53) and (3.57) a) the
simple random walk starting in B̃i reaches one of theB′j , j ∈ rangeΦi, with a probability uniformly
bounded from below, and hence reaches the above B0-boxes within B′j that are (α,β, γ)-good
with Nu(D0) ≥ β cap(D0) and with mutually KL0-distant π′j-projections, with a probability
uniformly bounded as well. This means that the union of such B0-boxes as j ranges over rangeΦi

has a capacity at least c ∣B̃i∣ d−2d (and these boxes are mutually KL0-distant). We can then
apply Lemma 1.2 and extract a sub-collection of these B0-boxes of at most c̃(∣B̃i∣/∣B0∣)d−2d boxes
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with union having capacity at least c̃′ cap(B̃i). This sub-collection necessarily contains at least[c(∣B̃i∣/∣B0∣)d−2d ] boxes, see (1.6), and we can thus find for each i ∈ rangeΦ a sub-collection
of B0-boxes in B̃i with union denoted by Ai, mutually KL0-distant, all (α,β, γ)-good with
Nu(D0) ≥ β cap(D0), and such that

(3.58) ∣Ai∣/∣B0∣ = [c(∣B̃i∣/∣B0∣)d−2d ] and cap(Ai) ≥ c′cap(B̃i).
Thus, for large N , on the event in (3.19) the union A = ⋃i∈rangeΦAi has the property that when
starting in ⋃1≤i≤p B̃i a simple random walk has a probability, which is at least c′0, to reach A,
and by (3.48) - (3.50),

(3.59) hA ≥ c′0 on Bub except maybe on a set of volume at most ε ∣DN ∣.
Note that the 2KL1-neighborhood of A has volume at most

(3.60) cK
d∣B1∣ ∑

i∈rangeΦ

∣Ai∣∣B0∣
(3.58)≤ cK

d∣B1∣ {( ∣B̃1∣∣B0∣)
d−2
d
+ ⋅ ⋅ ⋅ + ( ∣B̃p∣∣B0∣)

d−2
d } ≤ cpKd∣B1∣ ( ∣DN ∣∣B0∣ )

d−2
d
.

Now by (3.50) (recall k(ε) has been chosen in (3.43))

(3.61) p ≤ ∣Ik ∣ ≤ cMkd,

so that the 2KL1-neighborhood of A has volume at most

(3.62) cMkdK
d∣B1∣ ( ∣DN ∣∣B0∣ )

d−2
d ≤ cMkdK

d
Ld
1

Nd−2

Ld−2
0

(1.7),(1.8)≤ ε ∣DN ∣ for large N.

As for the set of possible shapes of A, we note that the B̃1, . . . , B̃p are pairwise disjoint and
belong to ⋃0≤ℓ≤k Iℓ, and as already observed p ≤ cMkd. There are at most 2∣Ik ∣ possible choices
for each B̃1, . . . , B̃p, so that the number of choices for p, B̃1, . . . B̃p is at most

(3.63) ∑
p≤cMkd

2p∣Ik ∣ ≤ cMkd 2cM
2kd ≤ 2c′M2kd

.

The choice of B̃1, . . . B̃p determines the allocation map Φ and hence the range of Φ. For each
B̃i, i ∈ rangeΦ, there are [c(∣B̃i∣/∣B0∣)d−2d ] B0-boxes constituting Ai, see (3.58), so the number of
possibilities for Ai, i ∈ rangeΦ, is at most
(3.64)

( ∣B̃1∣∣B0∣)
(c ∣B̃1∣

∣B0∣
) d−2d

× ⋅ ⋅ ⋅ × (∣B̃p∣∣B0∣)
(c ∣B̃p ∣

∣B0∣
) d−2d ≤ exp{c log ∣DN ∣∣B0∣ [(

∣B̃1∣∣B0∣ )
d−2
d
+ ⋅ ⋅ ⋅ + ( ∣B̃p∣∣B0∣)

d−2
d ]}

p≤cMkd

≤ exp{cMkd( log ∣DN ∣∣B0∣ ) (
∣DN ∣∣B0∣ )

d−2
d }.

Thus, taking into account the number of possible choices for p, B̃1, . . . B̃p, see (3.63), and for A
with given p, B̃1, . . . B̃p, we find that the number of possible shapes for A is at most:

(3.65) 2c
′M2k

exp{cMkd( log ∣DN ∣∣B0∣ ) (
∣DN ∣∣B0∣ )

d−2
d } = exp{o(Nd−2)}, as N →∞.

Using a deterministic order on the set of possible shapes, we see that for large N on the event
in (3.19) we can select a random set Cω, which for each given ω coincides with one of the sets A
described in (3.58) - (3.59). Combined with the construction of Cω on the event in (3.15) (see
(3.16) - (3.18)), and on the complement of the union of BN with the event in (3.11) (where we
set Cω = φ), we see that for large N the random set Cω is a union of B0-boxes in [−4N,4N]d
that satisfies (3.5) (with c0 = c′0 ∧ c̃). This concludes the proof of Theorem 3.1. ◻
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Remark 3.3. The constant c0 ∈ (0,1) that appears in Theorem 3.1 plays an important role in
the asymptotic upper bounds stated in Theorem 4.3 and Corollary 4.5 of the next section. One
may wonder whether it is possible to choose c0 arbitrarily close to 1 in Theorem 3.1. We refer
to Remark 4.4 below for some of the consequences of a positive answer to this question. ◻

4 The asymptotic upper bound

In this section the key Theorem 4.3 states an asymptotic upper bound on the principal expo-
nential rate of decay of the probability of an excess of disconnected points corresponding to the
event AN = {∣DN /Cu2N ∣ ≥ ν ∣DN ∣} from (0.7). In the case of a small excess, i.e. when ν is close to
θ0(u), with u ∈ (0, u ∧ û), we recover the value Ju,ν from (0.9) and the asymptotic upper bound
that we derive matches the asymptotic lower bound from (6.32) of [26], see Corollary 4.5.

In this section we assume that (see (1.26))

0 < u < u,(4.1)

and recall that

c0 ∈ (0,1) is the dimension dependent constant from Theorem 3.1.(4.2)

We write η(⋅) for the function (see (0.2))

(4.3) η(b) = θ0(b2), b ≥ 0.
We then consider an auxiliary function η̂: R+ → R+ such that

(4.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i) η̂ is non-decreasing, continuous and bounded,

ii) η̂ ≥ η,
iii) b̂

def= inf{b ≥ 0; η̂(b) ≥ 1} <√u + c0(√u −√u).

η̂(⋅)

η(⋅)

1

0
b√

u∗
√
u
√
u + c0(

√
u −
√
u)

Fig. 3 An example of auxiliary function η̂.

The main step towards the key Theorem 4.3 of this section is
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Proposition 4.1. Consider u as in (4.1), η̂ as in (4.4) and ν ∈ [θ0(u),1). Then, one has

lim sup
N

1

Nd−2
logP[AN ] ≤ −Ĵu,ν , where(4.5)

Ĵu,ν = inf { 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈D1(Rd), and ⨏
D
η̂(√u + ϕ)dz ≥ ν}.(4.6)

Remark 4.2. The above infimum is attained as can be shown by a similar compactness argument
as used in the last paragraph of the proof of Corollary 5.9 of [26], i.e. by extracting from a
minimizing sequence ϕn for (4.6) a subsequence converging a.e. and in L2

loc(Rd) to a ϕ ≥ 0 in
D1(Rd) such that

´

Rd ∣∇ϕ∣2dz ≤ lim infn
´

Rd ∣∇ϕn∣2dz = Ĵu,ν . We thus have

(4.7) Ĵu,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈D1(Rd), and ⨏
D
η̂(√u + ϕ)dz ≥ ν}.

◻

It may be useful at this stage to give a brief outline of the proof of Proposition 4.1. Thanks to
Theorem 2.1 we can in essence replace AN by A′N . We use a coarse graining procedure to bound
P[A′N ]. Compared to Section 5 of [26] the main challenge here has to do with the presence in
definition of the event A′N of the bubble set, with its non-local as well as irregular nature. To
address this challenge we use the random set constructed in Theorem 3.1. Thanks to its coarse
grained nature we essentially fix the set Cω, and keep track of discretized versions of the averages⟨eB1

,Lu⟩ of occupation times in B1-boxes away from Cω. A key point is to produce a formulation
accounting for the constraints defining A′N that has a good behavior under scaling limit. For this
purpose we consider certain discrete non-negative superharmonic functions f̂τ solving an obstacle
problem on Zd, see (4.26) and (4.28) for the constraint they satisfy. Once this proper formulation
is achieved, the derivation of probabilistic bounds via exponential Chebyshev estimates expressed
in terms of Dirichlet energies of these superharmonic functions, and the control of the related
scaling limit behavior can be tackled along the same lines as in Section 5 of [26]. The Proposition
4.1 follows then.

Proof of Proposition 4.1: We consider u as in (4.1), η̂ as in (4.4) and ν ∈ (θ0, (u),1) (when
ν = θ0(u), Ĵu,ν = 0, as seen by choosing ϕ = 0 in (4.6), and (4.5) is immediate). We then pick

(4.8) α > β > γ in (u,u) so that b̂ <√u + c0(√γ −√u),
where b̂ is defined in (4.4) iii). We then select ε ∈ (0,1) such that

(4.9) ν > 103 ε + θ0(u) and b̂ + ε <√u + c0(√γ −√u),
as well as the finite grid Σ0(γ,u, ε) from (2.6). By (4.9) and (2.6), we see that (see (2.7) for
notation)

(4.10) b̂ ≤√u + c0(√γ− −√u) (<√γ−).
We then assume that (see Lemma 1.2, Lemma 1.4 and Theorem 2.1 for notation):

(4.11) K ≥ c1 ∨ c2(α,β, γ) ∨ c3(α,β, γ, u, ε),
so that Theorems 2.1 and 3.1 apply. In the notation of (2.11) and (1.42) we set

(4.12) A
′′
N = A′N/BN ,
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and find that as a consequence of (2.10) of Theorem 2.1 and (1.42) of Lemma 1.4:

(4.13) lim sup
N

1

Nd−2
logP[AN ] ≤ lim sup

N

1

Nd−2
logP[A′′N].

Recall the random set Cω from Theorem 3.1. Then, for large N on A′′N by (2.11)

(4.14) (ν − 6ε) ∣DN ∣ ≤ ∑
B1⊆DN/Bub

θ̃(λ−B1
) ∣B1∣ + ∣Bub∣,

and by (3.5) v), except maybe on a set of at most ε ∣DN ∣ points, hCω ≥ c0 on Bub, so that by (4.10),√
u + (√γ

−
−
√
u) hCω ≥ b̂ on Bub except on a set of at most ε ∣DN ∣ points. Taking into account

(4.4) and b̂ ≤√γ
−
, as well as the definition of θ̃ below (2.11), we find that 1 ∧ η̂ (√a) ≥ θ̃(a) for

a ≥ 0. We then see that for large N on A′′N :

(ν − 7ε)∣DN ∣ ≤ ∑
B1⊆DN /Bub

1 ∧ η̂ (√λ−B1
) ∣B1∣

+ ∑
B1⊆Bub

∑
x∈B1

1 ∧ η̂ (√u + (√γ
−
−
√
u)hCω(x))

≤ ∑
B1∈C1

∑
x∈B1

1 ∧ η̂ (√λ−B1
∨ {√u + (√γ

−
−
√
u) hCω(x)})

(4.15)

(with C1 as in (2.9)).

Given C ∈ SN (i.e. the set of possible values of the random set Cω in Theorem 3.1) we define

CC the collection of boxes B1 in C1 at ∣ ⋅ ∣∞-distance at least (K + 1)L1 from C,(4.16)

and for each τ ∈ {0, . . . ,K − 1}d, in the notation of (2.64)

CC,τ = CC ∩ C1,τ .(4.17)

We will now use the grid Σ0 to discretize the square root of the average values ⟨eB1
,Lu⟩ of the

occupation time in boxes B1 ∈ CC . Specifically, for C in SN and τ in {0, . . . ,K − 1}d we define

(4.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FC = {fC = (fB1

)B1∈CC ; fB1
≥ 0, f2B1

∈ {0} ∪Σ0 for each B1 ∈ CC}
FC,τ = {fC,τ = (fB1

)B1∈CC,τ
; fB1

≥ 0, f2B1
∈ {0} ∪Σ0 for each B1 ∈ CC,τ}

as well as

(4.19)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A
fC
= ⋂

B0⊆C

{⟨eD0
,Lu⟩ ≥ γ} ∩ ⋂

B1∈CC
{⟨eB1

,Lu⟩ ≥ (1 − ε)f2B1
}, for fC ∈ FC ,

A
fC,τ
= ⋂

B0⊆C

{⟨eD0
,Lu⟩ ≥ γ} ∩ ⋂

B1∈CC,τ

{⟨eB1
,Lu⟩ ≥ (1 − ε)f2B1

}, for fC,τ ∈ FC,τ .

As below (2.23), we can consider (Σ, κ,µ)-good boxes, where we now choose the local function
F = 0. By Lemma 2.4 of [26] one knows that

(4.20) ⟨eB1
,Lu⟩ ≥ (1 − κ)λ−B1

(2.23)≥ (1 − ε)λ−B1
, when B1 is a (Σ, κ,µ)-good box.

Then by Proposition 3.1 and (4.9) of [26], if we assume that

K ≥ c(γ,u, ε),(4.21)
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it follows that

lim
N

1

Nd−2
logP[B̂N ] = −∞, if B̂N = { ∑

B1∈C1
∣B1∣1{B1 is (Σ, κ,µ)-bad} ≥ ε ∣DN ∣}.(4.22)

Thus, assuming (4.21) in addition to (4.11), we see that

(4.23) lim sup
N

1

Nd−2
logP[AN] ≤ lim sup

N

1

Nd−2
logP[ÂN ], with ÂN = A′′N/B̂N .

We now proceed with the coarse graining of the event ÂN . Choosing f2B1
= λ−B1

when B1 is a(Σ, κ,µ)-good box and setting f2B1
= 0 when B1 is a (Σ, κ,µ)-bad box, we see that for large N and

any C ∈ SN (recalling that all boxes B0 ⊆ Cω are (α,β, γ)-good and satisfy Nu(D0) ≥ β cap(D0)
so that by (1.38) iii) ⟨eD0

,Lu⟩ ≥ γ), we have for large N (with the notation (4.19))

(4.24) ÂN ∩ {Cω = C} ⊆ ⋃
fC∈F̂C

A
fC
, for each C ∈ SN ,

where using (3.5) iv), the definition of B̂N in (4.22), and (4.15), F̂C denotes the sub-collection
of FC of fC = (fB1

)B1∈CC such that

(4.25) (ν − 9ε)∣DN ∣ ≤ ∑
B1∈CC

∑
x∈B1

η̂ (fB1
∨ {√u + (√γ −√u)hC(x)}).

Now for any τ ∈ {0, . . . ,K − 1}d and fC,τ in FC,τ (see (4.18)) we define

f̂τ = the smallest non-negative superharmonic function on Zd such that

f̂τ ≥ (fB1
−
√
u)+ on each B1 ∈ CC,τ and

f̂τ ≥√γ −√u on each D0 for B0 ⊆ C.

(4.26)

In particular, note that f̂τ +
√
u ≥√u+(√γ−√u)hC . Then, for any fC in the sub-collection F̂C

(see above (4.25)), we can consider the fC,τ with τ ∈ {0, . . . ,K − 1}d obtained as restrictions of
fC to CC,τ , and the corresponding non-negative superharmonic functions f̂τ , τ ∈ {0, . . . ,K − 1}d.
It now follows from the above remark that for all fC in F̂C one has

(4.27)

(ν − 9ε) ∣DN ∣ ≤ ∑
τ∈{0,...,K−1}d

∑
B1∈CC,τ

∑
x∈B1

η̂ (√u + f̂τ(x)),
(2.64)≤ ∑

τ∈{0,...,K−1}d
∑

B1∈C1,τ
∑

x∈B1

η̂ (√u + f̂τ(x))
so that for some τ ∈ {0, . . . ,K − 1}d one has

(4.28)
(ν − 9ε)
K

d
∣DN ∣ ≤ ∑

B1∈C1,τ
∑

x∈B1

η̂ (√u + f̂τ(x)).
We thus see that for large N ,

(4.29) ÂN ∩ {Cω = C} ⊆ ⋃
τ∈{0,...,K−1}d

⋃
fC,τ ∈F̂C,τ

A
fC,τ

, for each C ∈ SN ,

where F̂C,τ denotes the sub-collection of FC,τ in (4.18) where (4.28) holds. Note that C varies
in SN and by (3.5) iii) one has ∣SN ∣ = exp{o(Nd−2)}, as N →∞. In addition, for each C and τ ,
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we have ∣F̂C,τ ∣ ≤ ∣FC,τ ∣ ≤ (1+ ∣Σ0∣)∣C1∣ (1.8)≤ (1+ ∣Σ0∣)cNd−2/ logN = exp{o(Nd−2)}, as N →∞. Thus,
by (4.23) and (4.29), we find that

(4.30) lim sup
N

1

Nd−2
logP[AN ] ≤ lim sup

N

sup
C

sup
τ

sup
F̂C,τ

1

Nd−2
logP[A

fC,τ
],

where C varies in SN and τ in {0, . . . ,K − 1}d in the above supremum.

The proofs in Proposition 5.4 of [26] and the exponential Chebyshev bound in Proposition
5.6 of [26] can be repeated in the present context (due to the fact that the B0-boxes in C or
the corresponding D0-boxes have mutual ∣ ⋅ ∣∞-distance at least KL0 by (3.5) ii), and are at∣ ⋅ ∣∞-distance at least KL1 from the B1-boxes in CC,τ by (4.16), (4.17), which themselves are at
mutual ∣ ⋅ ∣∞-distance at least KL1). As a result, setting

(4.31) Iε,K = lim inf
N

inf
C

inf
τ

inf
F̂C,τ

1

Nd−2
E(f̂τ , f̂τ),

where for f : Zd → R, E(f, f) = 1
2 ∑∣x−y∣=1 1

2d
(f(y)−f(x))2(≤∞) stands for the discrete Dirichlet

form, one obtains (see (5.49) of [26]) that for a ∈ (0,1) and K ≥ c7(α,β, γ, u, ε, a)
(4.32) lim sup

N

1

Nd−2
logP[AN ] ≤ −a(1 − ε(1 +√u)) Iε,K + c√uε.

We then introduce for b ≥ 0 and r ≥ 1

J
#
b,r
= inf { 1

2d

ˆ

Rd

∣∇ϕ∣2dz; ϕ ≥ 0 supported in BRd(0,400r),
ϕ ∈H1(Rd),⨏

D
η̂(√u + ϕ)dz ≥ b},(4.33)

with BRd(a, r) the closed ball with center a in Rd and radius r for the supremum distance, and
H1(Rd) the Sobolev space of measurable functions on Rd, which are square integrable together
with their first partial derivatives (see Chapter 7 of [14]). The same proof as in Proposition 5.7
of [26] (actually simplified in the present context by the fact that the constraint (4.28) is directly
expressed in terms of f̂τ and the statement corresponding to (5.68) of [26] easier to obtain) shows
that

(4.34) for K ≥ 100, ε as in (4.9), and integer r ≥ 10, (1 + c8

rd−2
) Iε,K ≥ J#

ν−9ε,r.

Inserting this lower bound in the right member of (4.32) shows that for ε as in (4.9), r ≥ 10

integer, a ∈ (0,1), one has

(4.35) lim sup
N

1

Nd−2
logP[AN] ≤ −a(1 + c8

rd−2
)−1(1 − ε(1 +√u))J#

ν−9ε,r + c
′√uε.

Letting ε→ 0 (see below (5.73) of [26]), then letting r →∞, and then a → 1, we obtain that

lim sup
N

1

Nd−2
logP[AN ] ≤ − inf { 1

2d

ˆ

Rd

∣∇φ∣2dz;ϕ ≥ 0, ϕ ∈ D1(Rd) and

⨏
D
η̂ (√u +ϕ)dz ≥ ν}

(4.6)= −Ĵu,ν .

(4.36)

This concludes the proof of (4.5) and hence of Proposition 4.1. ◻
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We now come to the main result of this section. With u and c0 and in (4.1), (4.2), we consider
the functions (see Figure 1 in the Introduction for a sketch of θ∗):

(4.37)
⎧⎪⎪⎨⎪⎪⎩
θ∗(a) = θ0(a) 1{a < (√u + c0(√u −√u))2} + 1{a ≥ (√u + c0(√u −√u))2}, a ≥ 0,
η∗(b) = θ∗(b2) = η(b) 1{b <√u + c0(√u −√u)} + 1{b ≥√u + c0(√u −√u)}, b ≥ 0.

Theorem 4.3. Consider u as in (4.1) and ν ∈ [θ0(u),1), then

lim sup
N

1

Nd−2
logP[AN ] ≤ −J∗u,ν, where(4.38)

J∗u,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2 dz;ϕ ≥ 0, ϕ ∈ D1(Rd), and ⨏
D
η∗(√u +ϕ)dz ≥ ν}.(4.39)

Proof. The existence of a minimizer for (4.38) is shown by the same argument as in the case of
Ju,ν in (0.9), see Theorem 2 of [27]. To prove (4.39) we will apply Proposition 4.1 to a sequence
of auxiliary functions η̂n, n ≥ 1, satisfying (4.4) and decreasing to η∗.

More precisely, we consider two positive and increasing sequences an < bn, n ≥ 1, tending to√
u + c0(√u −√u), and denote by ψn the continuous piecewise linear functions equal to 0 on[0, an], to 1 on [bn,∞), and linear on [an, bn]. We set η̂n =max(η,ψn), n ≥ 1, with η as in (4.3).

We note that

(4.40)
η̂n satisfies (4.4) for each n ≥ 1, moreover the sequence η̂n, n ≥ 1, is non-increasing
and converges pointwise to η∗.

We denote by Ĵn
u,ν the variational quantity (4.7) corresponding to η̂n, so that by (4.40)

(4.41) the sequence Ĵn
u,ν , n ≥ 1 is non-decreasing and bounded by J∗u,ν .

The claim (4.38) and hence Theorem 4.3 will follow from (4.5) in Proposition 4.1 once we show
that

(4.42) lim
n

Ĵn
u,ν = J∗u,ν .

To this end we consider for each n ≥ 1 a minimizer ϕn for Ĵn
u,ν . Then, by Theorem 8.6, p. 208

and Corollary 8.7, p. 212 of [14], we can extract a subsequence ϕnℓ
, ℓ ≥ 1, converging in L2

loc(Rd)
and a.e. to ϕ ≥ 0 belonging to D1(Rd) such that

(4.43) 1

2d

ˆ

Rd

∣∇ϕ∣2 dz ≤ lim inf
ℓ

1

2d

ˆ

Rd

∣∇ϕnℓ
∣2 dz (4.41)= lim

n
Ĵn
u,ν .

Moreover, we have η∗(√u + ϕ) ≥ lim sup
ℓ

η̂nℓ
(√u + ϕnℓ

) a.e., so that

⨏
D
η∗(√u +ϕ)dz ≥ ⨏

D
lim sup

ℓ

η̂nℓ
(√u +ϕnℓ

)dz
reverse Fatou≥ lim sup

ℓ
⨏
D
η̂nℓ
(√u + ϕη̂ℓ)dz ≥ ν.(4.44)

This shows that J∗u,ν ≤ limn Ĵn
u,ν and with (4.41) we see that (4.42) holds (and in addition that

ϕ above is a minimizer for J∗u,ν in (4.39)). This concludes the proof of Theorem 4.3.

Remark 4.4. If c0 in Theorem 3.1 can be chosen arbitrarily close to 1, then a similar argument
as above shows that one can replace c0 by 1 in (4.37) and obtain the statements corresponding
to (4.38), (4.39) with this replacement. If in addition the plausible (but presently open) equality
u = u∗ holds, this shows that (4.38) holds with Ju,ν in place of J∗u,ν , and this asymptotic upper
bound matches the asymptotic lower bound in (0.8). ◻
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The case of a small excess

We will now discuss an important consequence of Theorem 4.3 in the case of a small excess ν. In
addition to (4.1), we will assume that u < û (see (1.31) for the definition of û). As pointed out
in Section 1, both u and û are positive and smaller or equal to u∗. It is plausible but open at
the moment that u = û = u∗. We recall that A0

N ⊆ AN stand for the respective excess events (see
(0.7)) A0

N = {∣DN /CuN ∣ ≥ ν ∣DN ∣} and AN = {∣DN /Cu2N ∣ ≥ ν ∣DN ∣}. By (6.32) of [26] and Theorem
2 of [27], one knows that when 0 < u < u∗ and θ0(u) ≤ ν < 1,
(4.45) lim inf

N

1

Nd−2
logP[AN ] ≥ lim inf

N

1

Nd−2
logP[A0

N ] ≥ −Ju,ν ,

where

(4.46) Ju,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈D1(Rd), and ⨏
D
θ0((√u +ϕ)2)dz ≥ ν}

(with θ0(⋅) the right-continuous modification of θ0(⋅)).
As we will now see, when 0 < u < u ∧ û and ν is close to θ0(u), Ju,ν governs the exponential

rates of decay of P[A0
N ] and P[AN ].

Corollary 4.5. Assume that 0 < u < u ∧ û. Then there exists ν0 ∈ (θ0(u),1) such that for any
ν ∈ [θ0(u), ν0] one has

(4.47) lim
N

1

Nd−2
logP[A0

N ] = lim
N

1

Nd−2
logP[AN ] = −Ju,ν.

Proof. In view of (4.45) and the inclusion A0
N ⊆ AN we only need to focus on the derivation of

an asymptotic upper bound for P[AN ]. We first pick u0 ∈ (u,u ∧ û) such that (with c0 from
Theorem 3.1):

(4.48)
√
u0 <

√
u + c0(√u −√u).

Recall the notation η(⋅) from (4.3) and η∗ from (4.37). Then, see (1.33), θ0 is C1 and θ′0 positive
on a neighborhood of [0, u0]. One can thus choose a function η̃ from R+ into R+ such that

η∗ ≤ η̃,(4.49)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
η̃ = η on [0,√u0] and η̃ > η on [√u0,+∞),
η̃ is C1 and η̃ ′ bounded uniformly continuous on R+,

η̃ ′ is uniformly positive on each interval [a,+∞), a > 0.
(4.50)

Thus, η̃ satisfies the conditions of Lemma 3 of [27]. Then, as in Lemma 5 of [27], one can set for
ν ≥ θ0(u)
(4.51) J̃u,ν =min{ 1

2d

ˆ

Rd

∣∇ϕ∣2dz;ϕ ≥ 0, ϕ ∈ D1(Rd), and ⨏
D
η̃(√u +ϕ)dz ≥ ν}.

Note that

(4.52) θ0(b2) ≤ η∗(b) ≤ η̃(b), for b ≥ 0 (and Ju,ν ≥ J∗u,ν ≥ J̃u,ν for θ0(u) ≤ ν < 1).
One also knows, see above (98) of [27], that for a suitable c8(u, η̃) > 0, for all ν ∈ [θ0(u), θ0(u)+c8],
any minimizer ϕ̃ for J̃u,ν in (4.51) is bounded by

√
u0−
√
u so that θ0((√u+ ϕ̃)2) = η∗(√u+ ϕ̃) =

η̃(√u + ϕ̃) and this minimizer is also a minimizer for Ju,ν and J∗u,ν , so that

(4.53) for ν ∈ [θ0(u), θ0(u) + c8], Ju,ν = J∗u,ν = J̃u,ν .
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The application of Theorem 4.3 thus yields

(4.54) lim sup
N

1

Nd−2
logP[AN ] ≤ −J∗u,ν = −Ju,ν for all ν ∈ [θ0(u), θ0(u) + c8].

Combined with (4.45), the claim (4.47) now follows with ν0 = θ0(u) + c8.
Remark 4.6. 1) In the small excess regime corresponding to θ0(u) ≤ ν ≤ θ0(u)+c8(u, η̃) in (4.54)
above, one can actually show that all minimizers for Ju,ν are minimizers for J̃u,ν , see below (99)
of [27]. These minimizers are C1,α-regular for all 0 < α < 1 and their supremum norm is at most√
u0 −
√
u (<√u∗ −√u). We refer to Theorem 3 of [27] for more properties of the minimizers of

Ju,ν in the small excess regime.

2) One can naturally wonder whether (4.47) extends beyond the small excess regime and whether
for all 0 < u < u ∧ û,

(4.55) lim
N

1

Nd−2
logP[AN ] = −Ju,ν for all ν ∈ [θ0(u),1)?

(This asymptotics then also holds for A0
N due to (4.45) and the inclusion A0

N ⊆ AN .)

We also refer to Remark 4.4 on the related issue of being able to choose c0 arbitrarily close
to 1 in Theorem 3.1.

3) Letting Cu∞ stand for the infinite cluster of Vu, when u < u∗, one can also wonder whether a
similar asymptotics holds for an excess of points in DN outside the infinite cluster. Does one
have

(4.56) lim
N

1

Nd−2
logP[∣DN /Cu∞∣ ≥ ν ∣DN ∣] = Ju,ν , for 0 < u < u∗ and θ0(u) ≤ ν < 1 ?

(The lower bound corresponding to (4.56) holds by (4.45) and the inclusions DN /CuN ⊆DN /Cu2N ⊆
DN /Cu∞. And from a positive answer to (4.56) the statement (4.55) would follow as well.)

We refer to Theorem 2.12 on p. 21 of [3] for a result concerning a similar question in the
context of the Wulff droplet and Bernoulli percolation.

4) As mentioned in the Introduction it is open whether for large enough ν the minimizers ϕ for
Ju,ν in (4.46) reach the value

√
u∗ −

√
u on a set of positive Lebesgue measure. If the function

θ0 is discontinuous at u∗ (a not very plausible assumption) this is indeed the case, see Remark 2
1) of [27]. Having a better grasp of the of the behaviour of θ0 near u∗ would likely help making
progress on this issue. We refer to Figures 4 and 2 of [15] for the result of simulations in the
(closely) related model of the level-set percolation of the Gaussian free field when d = 3. ◻
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