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Abstract

We consider the Dirichlet eigenvalues of the Laplacian among a Poissonian cloud

of hard spherical obstacles of fixed radius in large boxes of R
d, d ≥ 2. In a large

box of side-length 2ℓ centered at the origin, the lowest eigenvalue is known to be

typically of order (log ℓ)−2/d. We show here that with probability arbitrarily close

to 1 as ℓ goes to infinity, the spectral gap stays bigger than σ(log ℓ)−(1+2/d), where
the small positive number σ depends on how close to 1 one wishes the probability.

Incidentally, the scale (log ℓ)−(1+2/d) is expected to capture the correct size of the

gap. Our result involves the proof of new deconcentration estimates. Combining

this lower bound on the spectral gap with the results of Kerner-Pechmann-Spitzer,

we infer a type-I generalized Bose-Einstein condensation in probability for a Kac-

Luttinger system of non-interacting bosons among Poissonian spherical impurities,

with the sole macroscopic occupation of the one-particle ground state when the

density exceeds the critical value.
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0 Introduction

In this article we are interested in the Kac-Luttinger model [12], [13], and consider the
Dirichlet eigenvalues of the Laplacian among a Poissonian cloud of hard spherical obstacles
in large boxes of Rd, d ≥ 2. Our main result states an asymptotic lower bound for the
spectral gap, that is, for the difference between the second lowest and the lowest Dirichlet
eigenvalues. In a large box of side-length 2ℓ centered at the origin, the lowest eigenvalue is
known to be typically of order (log ℓ)−2/d. We show here that with probability arbitrarily
close to 1 as ℓ goes to infinity, the spectral gap stays bigger than σ(log ℓ)−(1+2/d), where the
small positive number σ depends on how close to 1 one wishes the probability. Incidentally,
(log ℓ)−(1+2/d) is expected to capture the correct size of the spectral gap. Whereas detailed
information on the statistics of eigenvalues in large boxes is known for various kinds of
random potentials, see [3], [11], Chapter 6 §3 of [17], or Section 6 of [2], much less seems
to be known in the case of hard or soft Poissonian obstacles. Part of the difficulty stems
from the delicate nature of the competition between the so-called “clearings”. Loosely
speaking, these are nearly spherical pockets of rough size (log ℓ)1/d with a rarefied presence
of the obstacles that underpin low eigenvalues. Various facets of these questions emerge
in related studies concerning Brownian motion in a Poissonian potential and kindred
models, see [28], [17], [2], and references therein, as well as [6], [5], and [25] for some
recent developments. In the present work we bring new deconcentration estimates. We
also have a different purpose. Combining the lower bound on the spectral gap, the known
Lifshitz tail behavior of the model, and the results of Kerner, Pechmann and Spitzer in
[16], we infer a so-called type-I generalized Bose-Einstein condensation in probability for
a Kac-Luttinger system of non-interacting bosons among Poissonian spherical impurities
in the thermodynamic limit, which appears to be novel, see [19], [16], [24].

We now describe the results in more detail, and refer to Section 1 for additional
notation and references. We consider Rd, d ≥ 2, and the canonical law P on the space
Ω of locally finite simple point measures on Rd, of a Poisson cloud of constant intensity
ν > 0. To each point of the cloud we attach a spherical obstacle corresponding to a closed
ball of radius a > 0 centered at the point. Given ℓ > 0 and the open box of side-length 2ℓ
centered at the origin Bℓ = (−ℓ, ℓ)d, we denote by Bℓ,ω the complement of the obstacle set
in Bℓ. We write

(0.1) 0 < λ1,ω(Bℓ) ≤ λ2,ω(Bℓ) ≤ ⋅ ⋅ ⋅ ≤ λi,ω(Bℓ) ≤ ⋅ ⋅ ⋅ ≤∞,

for the successive Dirichlet eigenvalues of −1
2
∆ in Bℓ,ω, repeated according to their mul-

tiplicity, with the convention that λi,ω(Bℓ) =∞ for all i ≥ 1, when Bℓ,ω = ∅ (otherwise all
λi,ω(Bℓ) are finite).

We let ωd stand for the volume of an open ball of radius 1, λd for the corresponding
principal Dirichlet eigenvalue of −1

2
∆, and define

R0 = ( d

νωd
)
1/d

, the radius of a ball of volume d
ν
,(0.2)

c0 = λd( d

νωd
)
−2/d

, the principal Dirichlet eigenvalues of −1
2
∆ in an open ball(0.3)

of radius R0.
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One knows from Theorem 4.6, p. 191 of [28] (which treats the more delicate case of soft
obstacles, see (1.18), but remains valid in the present context) that

there exists χ ∈ (0, d) and γ > 0 such that on a set of full P-measure, for large ℓ(0.4)

c0(log ℓ)−2/d − (log ℓ)−(2+χ)/d ≤ λ1,ω(Bℓ) ≤ c0(log ℓ)−2/d + γ(log ℓ)−3/d.

The main result of the present article is Theorem 6.1. It proves an asymptotic lower
bound on the spectral gap. Namely, it shows that

(0.5) lim
σ→0

limsup
ℓ→∞

P[λ1,ω(Bℓ) <∞ and λ2,ω(Bℓ) − λ1,ω(Bℓ) < σ(log ℓ)−(1+2/d)] = 0,
and as an immediate consequence that for any aℓ = o((log ℓ)−(1+2/d)), as ℓ→∞,

(0.6) lim
ℓ→∞

P[λ1,ω(Bℓ) <∞ and λ2,ω(Bℓ) − λ1,ω(Bℓ) < aℓ] = 0.
As an aside, it is plausible that (log ℓ)−(1+2/d) captures the correct size of the spectral
gap, so that its product with (log ℓ)1+2/d remains tight as ℓ → ∞: the bounds on the
fluctuations of λ1,ω(Bℓ) derived in Section 3 of [27] and their link with the behavior of the
spectral gap studied here, make a compelling case, see Remark 6.5 1). It should also be
pointed out that the discrepancy between the upper and lower bounds in (0.4) is much
bigger than (log ℓ)−(1+2/d), and the proof of (0.5) does not consist in getting a “good lower
bound” on λ2,ω(Bℓ), and a “good upper bound” on λ1,ω(Bℓ). Perhaps, to illustrate the
significance of the scale (log ℓ)−(1+2/d), one can mention that when λ(ℓ) ∼ c0(log ℓ)−2/d, as
ℓ→∞, and λ′(ℓ) = λ(ℓ)+σ(log ℓ)−(1+2/d), the balls with principal Dirichlet eigenvalues for
−

1
2
∆ corresponding to λ and λ′ have volumes equivalent to d

ν
(log ℓ), as ℓ →∞, but the

difference of their volumes ωd(λd/λ)d/2 − ωd(λd/λ′)d/2 tends to the constant d2 σ/(2c0 ν),
see also (0.9).

With this in mind let us describe the strategy of the proof of Theorem 6.1 (see (0.5)).
It first involves showing in Theorem 4.1, with the help of the method of enlargement of
obstacles, see Chapter 4 of [28], and quantitative Faber-Krahn inequalities, see [4] and
[10], that for large ℓ on most of the event in (0.5) there are distant balls B̂ and B̂′ in
Bℓ with same radius R̂ slightly bigger than R0(log ℓ)1/d, see (0.2), such that the principal
Dirichlet eigenvalues λ1,ω(B̂) and λ1,ω(B̂′), see (1.9), are both within close range (slightly
bigger than σ(log ℓ)−(1+2/d)) of λ1,ω(Bℓ).

Then, from this fact one reduces in Proposition 5.3 the task of showing (0.5) to the
proof of a deconcentration type estimate for the distribution of λ1,ω(D0), with D0 an open
box of side-length L0 = 10(⌈R0⌉+1)(log ℓ)1/d, see (0.2), in a specific deviation regime of low
values, with additional information on the corresponding principal Dirichlet eigenfunction.
Namely, one introduces a suitable level tℓ such that P[λ1,ω(D0) ≤ tℓ] is of order (log ℓ)/ℓd,
see (5.9) (tℓ depends on an additional parameter Γ, which eventually tends to infinity,
and tℓ is equivalent to c0(log ℓ)−2/d, as ℓ→∞). To prove (0.5), it then suffices to show the
suitable smallness of (with η̂ a positive real provided by Theorem 4.1):

(0.7) limsup
ℓ→∞

ℓd

(log ℓ) sup
t≤tℓ

P[λ1,ω(D0) ∈ [t, t + εℓ], ϕ1,D0,ω ≤ e−(log ℓ)
η̂

in D0/Dint
0 ],
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whereDint
0 stands for the closed concentric sub-box ofD0 of side-length (2⌈R0⌉+4)(log ℓ)1/d,

ϕ1,D0,ω for the principal Dirichlet eigenfunction attached to D0 in the configuration ω, see
(1.14), and εℓ for a quantity slightly bigger than σ(log ℓ)−(1+2/d), see (5.17).

The control of (0.7) and the resulting lower bound on the spectral gap (0.5), i.e. The-
orem 6.1, hinges on the main deconcentration estimate (6.2) in Theorem 6.2, which em-
bodies a central new aspect of this work. It allows to dominate up to a multiplicative
constant the probability that appears in (0.7) by P[λ1,ω(D0) ∈ Ji] for any i, for a suitable
(large) collection J1, . . . , Jm of pairwise disjoint sub-intervals of (0, tℓ). Whereas increasing
λ1,ω(D0) is a comparatively easier task (it can be achieved by the addition of one single
obstacle in a location where ϕ1,D0,ω is not too small), decreasing λ1,ω(D0) in a controlled
fashion, as required by the constraint that the many disjoint J1, . . . , Jm remain in (0, tℓ),
is more delicate. For this task we do not leverage the geometric information concerning
the underlying near spherical clearings of Theorem 4.1. This information is anyway too
coarse. We instead perform a “gentle expansion” of the Poisson cloud by homotheties
of ratio exp{ui/∣D0∣} for suitable u1 < ⋅ ⋅ ⋅ < um in (0,1) in the proof of Theorem 6.2, see
(6.49). They dilute the Poisson point process and tendentially decrease eigenvalues. This
is tailored so that the expansion corresponding to ui takes λ1,ω(D0) from [t, t + εℓ] to Ji.
Incidentally, the constraint on ϕ1,D0,ω in (0.7) is important and ensures a proper centering
of the underlying clearing in D0, shielding it from damage at the boundary of D0 under
the gentle expansion. We also refer to Lemma 3.3 of [5] for other kinds of transforma-
tions involving the removal of obstacles, which however do not seem adequate for the
task of proving (6.2), and to the proof of Proposition 1.12 of [8] for a recent instance of
deconcentration estimates in a percolation context. Let us also mention that unlike the
results of the previous sections, which rather straightforwardly could be adapted to the
case of Poissonian soft obstacles, see (1.18), the proof of the deconcentration estimates
in Theorem 6.2 makes a genuine use of the hard spherical Poissonian obstacles (and the
continuity of the space, as in [8]).

Owing to the work Kerner-Pechmann-Spitzer [16], our results have a natural applica-
tion to a version of the problem investigated by Kac and Luttinger in [12], [13] concerning
the Bose-Einstein condensation of a gas of non-interacting bosons among hard obstacles
corresponding to balls of radius a > 0 centered at the points of a Poisson cloud of intensity
ν > 0 on Rd, d ≥ 2. In the one-dimensional case we refer to the results in [15], [16] for the
related Luttinger-Sy model, and in [24] for soft Poissonian obstacles.

In the model under consideration here, one knows, see (7.9), (7.10), that the density
of states m(dλ) is a measure on R+ with Laplace transform:

(0.8) ∫[0,∞) e
−tλ m(dλ) = (2πt)−d/2Et

0,0[exp{−ν ∣W a
t ∣}], for t > 0,

where Et
0,0 denotes the expectation for a Brownian bridge in time t in Rd from the origin

to itself, and W a
t stands for the Wiener sausage in time t and radius a of that bridge (i.e.

the closed a-neighborhood of the bridge trajectory). The density of states has a so-called
Lifshitz tail behavior, see for instance Corollary 3.5 of [26], the original proof going back
to the work of Donsker-Varadhan [7], see also Chapter 10.B of [22]:

(0.9) m([0, λ]) = exp{ − νωd(λd/λ)d/2(1 + o(1))}, as λ→ 0.
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One then has (see Section 2 of [16]) a finite critical density for the system at inverse
temperature β > 0:

(0.10) ρc(β) = ∫ ∞

0
(eβλ − 1)−1m(dλ) <∞.

Thus, in the thermodynamic limit, for a fixed density ρ ∈ (0,∞), one lets the particle
number N ≥ 1 and the length scales ℓN , such that N = ρ ∣BℓN ∣ tend to infinity. One then
defines suitably truncated λj,ω(BℓN ), j ≥ 1, see (7.5), which coincide with the λj,ω(BℓN ),
j ≥ 1, when BℓN ,ω /= ∅ (an increasing sequence of events with P-probability tending to 1),
and corresponding occupation numbers n j,ωN of the j-th eigenstate for a grand-canonical
version of non-interacting bosons with density ρ in BℓN in the presence of the spherical
impurities attached to ω, see (7.7). As an application of the lower bound on the spectral
gap in Theorem 6.1 and the results in [16], we show in Theorem 7.1 that when ρ > ρc(β)
a so-called type-I Bose-Einstein condensation in probability in a single mode takes place:

as N →∞, n 1,ω
N /N tends to (ρ − ρc(β))/ρ in P-probability, and(0.11)

for all j ≥ 2, n j,ω/N tends to 0 in P-probability.

This seems to be the first multi-dimensional example in the natural class of random
Poissonian obstacles for which type-I condensation has been established, see [16].

We will now describe the organization of this article. Section 1 collects notation as
well as some basic results concerning the Dirichlet eigenvalues and the eigenfunctions
under consideration. It also states the quantitative Faber-Krahn inequality of [4], see
(1.17). Section 2 briefly recalls the results of the method of enlargement of obstacles from
Chapter 4 of [28] that will be used in Sections 3 and 4. Section 3 introduces a certain
event T in (3.24), encapsulating typical configurations in scale ℓ, of probability tending
to 1 as ℓ goes to infinity. In Section 4, the main result is Theorem 4.1, which in particular
reduces the analysis to the consideration of two distant balls of radius R̂ slightly bigger
than R0(log ℓ)1/d within Bℓ, with principal Dirichlet eigenvalues within close range (almost
σ(log ℓ)−(1+2/d)) of λ1,ω(Bℓ). In Section 5, the proof of the lower bound on the spectral
gap is reduced to proving (0.7) in Proposition 5.3. Section 6 proves the deconcentration
estimates in Theorem 6.2 from which the lower bound on the spectral gap, see (0.5), follows
in Theorem 6.1. Section 7 contains the application to the Bose-Einstein condensation for
the version of the Kac-Luttinger model, which we consider.

Finally, throughout the article we denote by c, c̃, c′, . . . positive constants changing
from place to place, which depend on d. From Section 3 onwards they will also implicitly
depend, unless otherwise stated, on the parameters selected there in the context of the
method of enlargement of obstacles. As for numbered constants such as c0, c1, c2, . . . , they
refer to the value corresponding to their first appearance in the text (for instance see (0.3)
for c0).

Acknowledgements: The author wishes to thank Joachim Kerner, Maximilian Pech-
mann, and Wolfgang Spitzer for several stimulating discussions during the conference “On
mathematical aspects of interacting systems in low dimension” that took place in Hagen
in June 2019.
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1 Set-up and some useful facts

In this section we collect further notation as well as some results concerning eigenvalues
and eigenfunctions. We also state the quantitative Faber-Krahn Inequality at the end of
the section. Throughout we assume that d ≥ 2.

When I is a finite set we let ∣I ∣ stand for the number of elements of I. We write
N = {0,1, . . . } for the set of non-negative integers. For a, b real numbers we write a ∧ b,
resp. a ∨ b, for the minimum, resp. the maximum, of a and b. Given r ≥ 0 we denote
by [r] the integer part of r and by ⌈r⌉ the ceiling of r. For (an)n≥1 and (bn)n≥1 positive
sequences, the notation an ≫ bn or bn = o(an) means that limn bn/an = 0. We write ∣ ⋅ ∣
and ∣ ⋅ ∣∞ for the Euclidean and the supremum norms on Rd. We denote by B(x, r) and
○

B(x, r) the closed and open Euclidean balls with center x ∈ Rd and radius r ≥ 0. We write

B∞(x, r) and ○

B∞(x, r) in the case of the supremum norm, and also refer to them as the
closed and open boxes with center x and side-length 2r. Given A,B ⊆ Rd, we denote by
d(A,B) = inf{∣x − y∣;x ∈ A,y ∈ B} the mutual Euclidean distance between A and B, and
by diam(A) = sup{∣x−y∣;x, y ∈ A} the diameter of A. We define d∞(A,B) and diam∞(A)
in an analogous fashion with ∣ ⋅ ∣∞ in place of ∣ ⋅ ∣. We write B(Rd) for the collection of
Borel subsets of Rd, and for A ∈ B(Rd) we let ∣A∣ stand for the Lebesgue measure of A
(hopefully this causes no confusion with the notation for the cardinality of A). When f
is a function f+ =max{f,0}, f− =max{−f,0} stand for the positive and negative parts of
f , and ∥f∥∞ for the supremum norm of f . When 1 ≤ p < ∞ and A ∈ B(Rd) we denote
by Lp(A) the Lp-space of p-integrable functions for the Lebesgue measure that vanish
outside of A, and write ∥ ⋅ ∥p for the Lp- norm. Given U an open subset of Rd, we write
H1(U) and H1

0(U) for the usual Sobolev spaces (corresponding to W 1,2(U) and W 1,2
0 (U)

in [1], p. 45).

We turn to the description of the random medium. The canonical space Ω consists
of locally finite, simple point measures on Rd, endowed with the canonical σ-algebra G
generated by the applications ω ∈ Ω→ ω(A) ∈ N∪{∞}, for A = B(Rd). We routinely write
ω = Σi δxi for a generic ω ∈ Ω, and x ∈ ω to denote that x belongs to suppω (the support
of ω). On Ω endowed with the above σ-algebra, we let (see also [18]):

(1.1)
P stand for the law of the Poisson point process on Rd with constant
intensity ν > 0.

The radius of the obstacles is given by

(1.2) a > 0,

and the obstacle set in the configuration ω is the closed subset of Rd

(1.3) Obsω = ⋃
x∈ω

B(x, a).
For U an open subset of Rd and ω ∈ Ω, we write

(1.4) Uω = U / Obsω
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for the possibly empty open subset remaining after deletion of the obstacle set. When
U is bounded, Uω has finitely many connected components (since ω is locally finite). Of
special interest for us is the case when U is an open box of side-length 2ℓ centered at the
origin:

(1.5) Bℓ = (−ℓ, ℓ)d, ℓ ≥ 10.
Note that Bℓ,ω is non-decreasing in ℓ, and that by a routine Borel-Cantelli type argument
P-a.s., Bℓ,ω is not empty for large ℓ, i.e.

(1.6) P(Ω∞) = 1 where Ω∞ = {ω ∈ Ω;Bℓ,ω /= ∅, for large ℓ}.
We then proceed with some notation concerning Brownian motion. We denote by

(1.7) p(t, x, y) = (2πt)−d/2 exp{ − ∣y − x∣2
2t
}, t > 0, x, y ∈ R

d,

the transition density for Brownian motion. When x ∈ Rd, we let Px stand for the Wiener
measure starting from x, i.e. the canonical law of Brownian motion starting at x on
the space W = C(R+,Rd) of continuous Rd-valued trajectories. We write (Xt)t≥0 for the
canonical process, (Ft)t≥0 for the canonical right-continuous filtration, and (θt)t≥0 for the
canonical shift. Given an open subset U of Rd and w ∈W , we denote by TU(w) = inf{s ≥
0;Xs(w) ∉ U} the exit time from U . When F is a closed subset of Rd and w ∈ W , we
write HF (w) = inf{s ≥ 0;Xs(w) ∈ F} for the entrance time in F . These are (Ft)-stopping
times.

For U open subset of Rd and ω ∈ Ω, we denote by

(1.8) rU,ω(t, x, y) ( ≤ p(t, x, y)) for t > 0, x, y ∈ R
d,

the transition kernel of Brownian motion killed outside Uω, see (3.4), p. 13 of [28]. It is
jointly measurable, symmetric in x, y, it vanishes if x or y does not belong to Uω, satisfies
the Chapman-Kolmogorov equations, see pp. 13,14 of [28], and it is a continuous function
of (t, x, y) in (0,∞)×Uω ×Uω, see Proposition 3.5, p. 18 of [28]. If U satisfies an exterior
cone condition, so does Uω, and the proof of Proposition 3.5, p. 18 of [28] can be adapted
(see (3.20) on p. 18 of this reference) to show that rU,ω(t, x, y) is a continuous function on(0,∞) ×Rd × Rd. We will use this fact when U is an open box in Rd.

We now proceed with the discussion of the eigenvalues and eigenfunctions. Given a
bounded open subset U of Rd, we denote by

(1.9) 0 < λ1,ω(U) ≤ λ2,ω(U) ≤ ⋅ ⋅ ⋅ ≤ λi,ω(U) ≤ ⋅ ⋅ ⋅ ≤∞,
the successive Dirichlet eigenvalues of −1

2
∆ in Uω, repeated according to their multiplicity,

with the convention that λi,ω(U) =∞ for all i ≥ 1, if Uω = ∅. They are measurable in ω (as
follows for instance from the min-max principles, see Version 3 in Theorem 12.1, p. 301
of [20]). Note that the open set Uω need not be connected (even when U is connected)
and the λi,ω(U), i ≥ 1, correspond to the non-decreasing reordering of the collection of
Dirichlet eigenvalues of −1

2
∆ in the finitely many connected components of Uω. Also

some of the λi,ω(U), i ≥ 1, may not be simple, for instance in the case U = Bℓ, and no
obstacle falls into Bℓ, i.e. when Bℓ,ω = Bℓ, an event of positive probability.
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When Uω /= ∅ and λ is a Dirichlet eigenvalue of −1
2
∆ in Uω, an eigenfunction ϕ attached

to λ will be square integrable and satisfy

(1.10) ϕ(x) = eλt ∫ rU,ω(t, x, y)ϕ(y)dy, for all t > 0 and x ∈ Rd.

In particular, we will implicitly choose the version of ϕ, which is continuous in Uω and
identically equal to 0 outside Uω. When U satisfies an exterior cone condition and Uω /= ∅,
such an eigenfunction ϕ will be continuous on Rd by the remark above (1.9). The next
lemma will be used repeatedly.

Lemma 1.1. When U is a bounded open subset of Rd, ω ∈ Ω, and Uω /= ∅, then for any
Dirichlet eigenvalue λ of −1

2
∆ in Uω, and eigenfunction ϕ for λ of unit L2-norm, one has

(1.11) ∥ϕ∥∞ ≤ c1 λd/4 (with c1 = (4π)−d/4 e).
Moreover, when O is a connected component of Uω, and O′ an open subset of O with
principal Dirichlet eigenvalue λ′ for −1

2
∆ bigger than λ, then

(1.12) ϕ(y) = Ey[ϕ(XTO′
) exp{λTO′}, TO′ < TUω

], for all y ∈ O′.

Proof. We first prove (1.11). We use (1.10) with t = λ−1, so that for any x ∈ Uω one has:

ϕ(x) = e∫ rU,ω(t, x, y)ϕ(y)dy Cauchy−Schwarz≤

e (∫ rU,ω(t, x, y)2dy)1/2(∫ ϕ2(y)dy)1/2
symmetry= e (∫ rU,ω(t, x, y) rU,ω(t, y, x)dy)1/2 Chapman−Kolmogorov= e rU,ω(2t, x, x)1/2
≤ ep(2t, x, x)1/2 = e(4πt)−d/4 = e(λ/4π)d/4,

(1.13)

and (1.11) follows.

As for the identity (1.12), it follows from the application of (1.54), p. 107 of [28].

As already mentioned, when U is a bounded open set and ω ∈ Ω, the open set Uω need
not be connected, and the eigenvalue λ1,ω(U) need not be simple. To take care of this
feature, when Uω /= ∅, we denote by ϕ1,U,ω the L2-normalized orthogonal projection of the
function 1 on the eigenspace attached to λ1,ω(U):

(1.14) ϕ1,U,ω(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

limt→∞∫ rU,ω(t, x, y)dy / ∥∫ rU,ω(t, ⋅, y)dy∥
2
if x ∈ Uω,

0, if x ∉ Uω.

Note that ϕ1,U,ω(x) is positive exactly when x belongs to a connected component of
Uω with principal Dirichlet eigenvalue for −1

2
∆ equal to λ1,ω(U). By convention, when

Uω = ∅, we simply set ϕ1,U,ω = 0.
From time to time for U bounded open subset of Rd, we will use the notation

(1.15) λ− 1

2
∆(= λ1,ω=0(U)) for the principal Dirichlet eigenvalue of −1

2
∆ in U,
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so that in (0.3) with the notation from the beginning of this section

(1.16) λd = λ− 1

2
∆( ○B(0,1)).

We proceed with the statement of the quantitative Faber-Krahn inequality. The classical
Faber-Krahn inequality states that for U bounded open subset of Rd, λ− 1

2
∆(U) is bigger

or equal to the principal Dirichlet eigenvalue of −1
2
∆ in an open ball of same volume as

U , that is λd (ωd/∣U ∣)2/d. We will use in the proofs of Theorems 4.1 and 4.2 the following
quantitative version of Faber-Krahn’s inequality, see the Main Theorem on p. 1781 in [4]:
One has a dimension dependent constant c2 such that for any bounded non-empty open
subset U of Rd:

(1.17) λ− 1

2
∆(U)( ∣U ∣ωd

)2/d / λd − 1 ≥ c2A(U)2,
where A(U) = inf{ ∣U∆B∣

∣B∣ ; B a ball with ∣B∣ = ∣U ∣} is the Fraenkel asymmetry of U (and ∆

stands for the symmetric difference).

The Theorem 1.1 of [10] states a similar inequality with A(U)2 replaced by A(U)4
(and a different constant), which would also suffice for our purpose in Section 4.

Finally, in several places we refer to soft obstacles. This corresponds to the case when
we have a function W (⋅), non-negative, bounded, measurable, compactly supported, and
not a.e. equal to zero, and for each ω = ∑i δxi in Ω we consider the non-negative locally
bounded function (the random potential ):

(1.18) V (x,ω) =∑
i

W (x − xi), x ∈ Rd.
The objects of study are now the Dirichlet eigenvalues and corresponding eigenfunctions
of −1

2
∆+V (⋅, ω) in bounded open subsets U of Rd. The hard obstacles under consideration

in this article informally correspond to the choice W (⋅) =∞1{∣⋅∣≤a}.

2 Inputs from the method of enlargement of obsta-

cles

In this section we collect various facts from the method of enlargement of obstacles, see
Chapter 4, Sections 1 to 3 of [28], which will be employed or underpin some of the results
in the next two sections.

We begin with an informal description. In a nutshell the method of enlargement of
obstacles is a procedure, which for ℓ positive real (say bigger than 10) and a configuration
ω ∈ Ω attaches in a measurable fashion two disjoint subsets of Rd the density set Dℓ(ω)
and the bad set Bℓ(ω), so that ω has no point outside Dℓ(ω) ∪Bℓ(ω):
(2.1) ω(Rd / (Dℓ(ω) ∪Bℓ(ω))) = 0 and Dℓ(ω) ∩ Bℓ(ω) = ∅.
In the presentation made here (log ℓ)1/d corresponds to the unit scale in Chapter 4 of [28]
and ε = (log ℓ)−1/d to the small parameter in the same reference. The statements recalled
below will hold in the large ℓ limit (i.e. small ε limit) but uniformly in ω.
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In essence, adding Dirichlet boundary conditions on Dℓ(ω) (the closure of Dℓ(ω))
does not increase too much Dirichlet eigenvalues of type λ1,ω(U) when they are below
M(log ℓ)−2/d (see Theorem 2.1 below), and the bad set Bℓ(ω) has small relative volume
on each box of side-length (log ℓ)1/d in Rd, see Theorem 2.4. In addition, the sets Dℓ(ω)
and Bℓ(ω) have “low combinatorial complexity”: their restriction to each cube

(2.2) Cq = (log ℓ)1/d (q + [0,1)d), q ∈ Zd,
is a union of disjoint cubes in an L-adic decomposition of Cq, of size larger than (and of
order) (log ℓ)(1−γ)/d in the case of the density set Dℓ(ω), and (log ℓ)(1−β)/d in the case of the
bad set Bℓ(ω), where 0 < γ < β < 1. This feature constrains the number of possible shapes
of the restriction of Dℓ(ω) and of Bℓ(ω) to any such cube Cq, to at most 2(log ℓ)

γ
in the case

of Dℓ(ω), and at most 2(log ℓ)
β
in the case of Bℓ(ω), see (2.12). This reduced combinatorial

complexity of the density set and of the bad set underpins the coarse graining aspect of
the method, and its power when bounding the probability of events of a large deviation
nature.

We now turn to the precise statements that will be helpful for us in the next two
sections. One first selects parameters that fulfill the requirements in (3.66), p. 181 of [28]
(see also (3.27), p. 173 and (3.64), p. 180). These parameters are 0 < α < γ < β < 1, an
integer L ≥ 2 (entering the L-adic decomposition of the boxes Cq, q ∈ Zd in (2.2)), δ > 0
(entering the definition of the density set), ρ > 0 (governing the quality of the eigenvalue
estimates), κ > 0 (governing the local volume of the bad set). As mentioned above they
are chosen so as to satisfy (3.66), p. 181 of [28]. With this choice performed, the results
in Chapter 4, Sections 2 and 3 of [28] apply in the context of the hard spherical obstacles
considered here (see (1.3)). They yield the following statements:

Theorem 2.1. (Eigenvalue estimate)

For any M > 0,

(2.3) lim
ℓ→∞

sup
ω,U

(log ℓ)ρ/d [{λ1,ω(U /Dℓ(ω))(log ℓ)2/d} ∧M − {λ1,ω(U)(log ℓ)2/d} ∧M] = 0,
where in the supremum ω runs over Ω and U over all bounded open sets in Rd (and ∧
refers to the minimum, see the beginning of Section 1).

See Theorem 2.3, p. 158 of [28] for the proof. In the next sections we will only need
the value M = 2c0 (with c0 from (0.3)). The statement above can actually be extended to
arbitrary open sets U , but here in (1.9) we have only defined λ1,ω(U) for bounded open
sets U , a general enough set-up for our purpose.

One also has an estimate, which provides a lower bound on the probability that Brow-
nian motion enters the obstacle set before moving at distance L(log ℓ)(1−α)/d:
Lemma 2.2. For large ℓ one has that for any ω ∈ Ω and x ∈ Dℓ(ω),

(2.4)

Px[τL(log ℓ)(1−α)/d <HObsω] ≤ 1
2
, where

for u > 0, τu = inf{s ≥ 0; ∣Xs −X0∣∞ ≥ u} and we recall the notation (1.3), and

HObsω is the entrance time in Obsω, see above (1.8).
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For the proof, see Lemma 2.1, p. 154 (and (2.19)’, p. 157) of [28]. One actually has a
much stronger estimate in the quoted reference, but (2.4) will suffice for our purpose.

The next result that we quote corresponds to the case of

(2.5) U2 ⊇ U1 bounded open sets and A a closed set in Rd,

so that outside of A ∪ Dℓ(ω), U2 has “small relative volume” in all boxes Cq, q ∈ Zd,
namely, one has r > 0 with

(2.6) sup
q∈Zd

∣(U2 / (A ∪Dℓ(ω))∣ ∩Cq ∣ < rd,
and in addition, one has R > 0 so that U1 contains the trace on U2 of an R-neighborhood
of A ∩U2 for the supremum distance, that is

(2.7) d∞(U2 /U1, A ∩U2) ≥ R.
The next theorem provides a setting in which λ1,ω(U1) is not much bigger than λ1,ω(U2).
Once again, only the choice M = 2c0 will be used in Sections 3 and 4.

Theorem 2.3. For any M > 0 there exists constants c3(d) > 0, c4(d,M) ∈ (1,∞),
r0(d,M) ∈ (0, 14) such that

(2.8) lim
ℓ→∞

s̃up exp{c3[R
4r
]}[{λ1,ω(U1)(log ℓ)2/d} ∧M − {λ1,ω(U2)(log ℓ)2/d} ∧M] ≤ 1,

where s̃up denotes the supremum over all ω ∈ Ω, U2 ⊇ U1, A, R > 0, r > 0, such that
(2.5) - (2.7) hold and

L(log ℓ)(1−α)/d < r < r0(log ℓ)1/d (recall L governs the L-adic decomposition),(2.9)

R

4r
> c4.(2.10)

For the proof we refer to Theorem 2.6, p. 164 of [28]. Concerning the volume estimate
for the bad set, one has

Theorem 2.4.

(2.11) lim
ℓ→∞

sup
q∈Zd,ω∈Ω

(log ℓ)κ/d ∣Bℓ(ω) ∩Cq ∣
∣Cq ∣ = 0.

For the proof, see Theorem 3.6, p. 181 of [28].

As for the combinatorial complexity of the density set and the bad set, one has

(2.12)
for each ℓ ≥ 10, q ∈ Zd and ω ∈ Ω, the sets Cq ∩Dℓ(ω) and Cq ∩Bℓ(ω) take
at most 2(log ℓ)

β
possible shapes.

These shapes corresponds to the various unions of L-adic subboxes of Cq of the same size,
which is bigger or equal to (log ℓ)(1−γ)/d in the case of the density set, see (2.7) and (2.13),
pp. 151-152 of [28], and bigger or equal to (log ℓ)(1−β)/d in the case of the bad set, see
(3.43) - (3.46), p. 177 of the same reference.
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3 Setting up typical configurations

In this section we collect some first consequences of the method of enlargement of ob-
stacles. We will introduce an event depending on ℓ, of high probability as ℓ → ∞, see
(3.24), (3.25), which will encapsulate the nature of “typical configurations”, and will be
very convenient in the analysis of the first and second Dirichlet eigenvalues λ1,ω(Bℓ) and
λ2,ω(Bℓ) for large ℓ, see (1.9), (1.5) for notation. With the exception of Lemma 3.1, we
mainly collect here results from Section 4 in Chapter 4 of [28], which although written
in the context of soft obstacles remains valid in the (simpler) context of hard spherical
obstacles. We recall that a > 0 denotes the radius of these spheres, ν > 0 the intensity of
the Poisson point process, and we have selected a fixed choice of admissible parameters
0 < α < γ < β < 1, L ≥ 2 integer, δ > 0, ρ > 0, κ > 0 that satisfy the requirements in (3.66),
p. 181 of [28] so that the results stated in the previous section apply. We further choose
as in (4.41), p. 189 of [28]

(3.1) β′ ∈ (β,1).
Unless otherwise specified, the positive constants will implicitly depend on the dimension
d and the above parameters, as explained at the end of the Introduction. We recall that
throughout we assume d ≥ 2 and ℓ > 10. Corresponding to r in (4.22), p. 186 of [28], we
have a (“small enough”, see the quoted reference)

(3.2) r1(d, ν) ∈ (0, r0(d,M = 2c0))
(with r0 as in Theorem 2.3) and we define R1(d, ℓ, ν) corresponding to R in (4.23), p. 186
of [28], as the smallest positive integer for which, in the notation of Theorem 2.3,

(3.3)
R1

4r1
> c4(d,M = 2c0) and c3(d) [R1

4r1
] ≥ 3 log log ℓ.

We then define the random open set

O = the open R1(log ℓ)1/d-neighborhood for the ∣ ⋅ ∣∞-norm of the union of boxes

Cq (see (2.2)) for which ∣Cq /Dℓ(ω)∣ ≥ rd1(log ℓ).(3.4)

(In the terminology of [28] the boxes Cq satisfying the above condition are the so-called
clearing boxes).

Then, by (4.25), (4.26) in Proposition 4.2, p. 186 of [28], we have a constant

(3.5) γ1(d, ν) > 0,
such that setting for ℓ > 10

Cℓ = the collection of boxes B = (log ℓ)1/d(q + (0, [γ1 log log ℓ])d), q ∈ Zd

that intersect Bℓ,
(3.6)

the event

C = {ω ∈ Ω; all connected components of O intersecting Bℓ are contained,
in some B ∈ Cℓ},(3.7)

satisfies

(3.8) P[C] ≥ 1 − ℓd, for large ℓ.
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Moreover, see Proposition 4.3, p. 188 of [28], one can choose a constant γ2(d, ν, a) > 0
such that the event

(3.9)

F =
{ω ∈ Ω; c0

(log ℓ)2/d +
γ2

(log ℓ)3/d ≥ inf
B∈Cℓ

λ1,ω(B ∩Bℓ) ≥ λ1,ω(Bℓ) ≥ inf
B∈Cℓ

λ1,ω(B ∩Bℓ) − δℓ},
with δℓ = (log ℓ)−(2+2/d),

satisfies

(3.10) P[F ] ≥ 1 − 2ℓ−d, for large ℓ.
Further, see (4.42), p. 189 of [28], we introduce the event (see Section 2 for notation):

(3.11) G = {ω ∈ Ω; sup
B∈Cℓ

∣B / (Dℓ(ω) ∪ Bℓ(ω))∣ ≤ d
ν
(log ℓ) + (log ℓ)β′}.

Then, by Lemma 4.4, p. 189 of [28], we have

(3.12) P[G] ≥ 1 − exp { − ν
2
(log ℓ)β′}, for large ℓ.

We also wish to discard the boxes in Cℓ that are too close to the boundary of Bℓ. To this
effect, with γ1, γ2 as in (3.5) and (3.9) above, we define the event

E = {for all B ∈ Cℓ such that d∞(B,Bc
ℓ) ≤ 100 [γ1 log log ℓ](log ℓ)1/d, one has

λ1,ω(B) > c0(log ℓ)−2/d + 100γ2(log ℓ)−3/d},(3.13)

and introduce the sub-collections of interior boxes and boundary boxes in Cℓ:

(3.14)
C intℓ = {B ∈ Cℓ, d∞(B,Bc

ℓ) > 100 [γ1 log log ℓ](log ℓ)1/d} and
Cboundℓ = Cℓ /C intℓ .

One then has

Lemma 3.1.

(3.15) For large ℓ, P[E] ≥ 1 − exp{ − ν
2
(log ℓ)β′}.

Proof. We define the event

(3.16) Ẽ = {ω ∈ Ω; for all B ∈ Cboundℓ , ∣B / (Dℓ(ω) ∪ Bℓ(ω))∣ < d − 1
ν
(log ℓ) + (log ℓ)β′}.

We will show that for large ℓ, the event Ẽ has high probability, and one has the inclusion
Ẽ ⊆ E. With this in mind, we first note that as in (4.44), p. 189 of [28], for large ℓ and
any B ∈ Cℓ, one has:

(3.17)
P[∣B / (Dℓ(ω) ∪ Bℓ(ω))∣ ≥ d − 1

ν
(log ℓ) + (log ℓ)β′] ≤

22γ
d
1
(log log ℓ)d(log ℓ)β exp{−(d − 1) log ℓ − ν(log ℓ)β′}.
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Then, by a union bound and the fact that ∣Cboundℓ ∣ ≤ 2d ℓd−1 for large ℓ, we find that

(3.18) P[Ẽc] ≤ ∣Cboundℓ ∣22γd1 (log log ℓ)d(log ℓ)β ℓ−(d−1) e−ν(log ℓ)β′ ≤ e− ν
2
(log ℓ)β′ , for large ℓ.

As we now explain,

(3.19) for large ℓ, Ẽ ⊆ E.

Indeed, when ℓ is large, then for any ω ∈ Ẽ/E, one can find B ∈ Cboundℓ such that λ1,ω(B) ≤
c0(log ℓ)−2/d +100γ2(log ℓ)−3/d, so that with ρ as in Theorem 2.1, λ1,ω(B)+ (log ℓ)−(2+ρ)/d <
2c0(log ℓ)−2/d. Thus by (2.3) with M = 2c0, for large ℓ, for any ω ∈ Ẽ/E, one can find
B ∈ Cboundℓ such that λ1,ω(B) ≤ c0(log ℓ)−2/d + 100γ2 (log ℓ)−3/d and

λ1,ω(B) ≥ λ1,ω(B /Dℓ(ω)) − (log ℓ)−(2+ρ)/d
Faber−Krahn≥ λd{ωd / ∣B /Dℓ(ω)∣}2/d − (log ℓ)−(2+ρ)/d
(2.1)= λd{ωd / (∣B / (Dℓ(ω) ∪ Bℓ(ω))∣ + ∣B ∩Bℓ(ω)∣)}2/d − (log ℓ)−(2+ρ)/d

(3.16),(2.11)≥ λd{ωd / (d − 1
ν
(log ℓ) + (log ℓ)β′ + γd1(log log ℓ)d(log ℓ)1−κ/d)}2/d

− (log ℓ)−(2+ρ)/d
> c0(log ℓ)−2/d + 100γ2(log ℓ)−3/d, since c0 (0.3)= λd{ωd ν/d}2/d,

(3.20)

a contradiction. This proves (3.19).

Combining (3.18) and (3.19), the claim (3.15) follows. This proves Lemma 3.1.

We now introduce (see above (4.56), p. 192 of [28]):

C̃ℓ = the collection of boxes B̃ = (log ℓ)1/d(q + (0,2[γ1 log log ℓ])d),
q ∈ Zd that intersect Bℓ.

(3.21)

(The side-length of the boxes in C̃ℓ is the double of that of the boxes in Cℓ, see (3.6).)

Then, we consider the event, see (4.56) on p. 192 of [28] (where we have chosen ζ = 3
4
):

H = {ω ∈ Ω ∶ for all B,B′ in Cℓ with B ∩B′ = ∅ and diam(B ∪B′) ≤ ℓ3/4(log ℓ)1/d,
∣B/(Dℓ(ω) ∪Bℓ(ω))∣ + ∣B′/(Dℓ(ω) ∪Bℓ(ω))∣ ≤ d

ν
(1 + 3

4
)(log ℓ) + (log ℓ)β′

and for all B̃ ∈ C̃ℓ, ∣B̃/(Dℓ(ω) ∪Bℓ(ω))∣ ≤ d
ν
(log ℓ) + (log ℓ)β′

(3.22)

It then follows from Lemma 4.8 on p. 192 of [28] that

(3.23) for large ℓ,P[H] ≥ 1 − exp { − ν
2
(log ℓ)β′}.

(We could replace 3
4
by any ζ ∈ (0,1) arbitrarily close to 1 in the definition (3.22) with a

corresponding (3.23), but the choice ζ = 3
4
will suffice for our purpose).

13



We now define the event encapsulating the nature of the typical configurations ω,
which we will consider in the analysis of λ1,ω(Bℓ) and λ2,ω(Bℓ), in the next two sections.
We recall (3.7), (3.9), (3.11), (3.13), (3.22) and set

(3.24) T = C ∩E ∩ F ∩G ∩H,
so that by (3.8), (3.10), (3.12), (3.15), (3.23),

(3.25) for large ℓ,P[T ] ≥ 1 − 5 exp { − ν
2
(log ℓ)β′}.

4 Localization

We now proceed with the investigation of the first two eigenvalues λ1,ω(Bℓ), λ2,ω(Bℓ),
see (1.5), (1.9), when ℓ is large, under the occurrence of the likely event T , see (3.24).
Whereas λ1,ω(Bℓ) is comparable to c0(log ℓ)−2/d on T (with c0 from (0.3)), we introduce
a certain “resonance event” R in (4.5), where λ2,ω(Bℓ) < λ1,ω(Bℓ) + σ(log ℓ)−(1+2/d) (with
fixed σ > 0). The main Theorem 4.1 of this section shows that for large ℓ on T ∩R, one can
find two distant sub-boxes of side-length of order (log ℓ)1/d contained in Bℓ, with principal
Dirichlet eigenvalues, which are close to λ1,ω(Bℓ) in scale (log ℓ)−(1+2/d). In addition, the
principal Dirichlet eigenfunctions attached to these boxes are well localized in balls of
radius R0(log ℓ)1/d(1 + o(1)) with centers close to the respective centers of these boxes.
These results will in essence follow from the application of the method of enlargement of
obstacles recalled in Section 2, and the quantitative Faber-Krahn inequality (1.17). The
reduction to the analysis of boxes with size of order (log ℓ)1/d (unlike the boxes in Cℓ, see
(3.6)) will be important in Section 6 for the quality of the deconcentration estimates in
Theorem 6.2. We refer to the beginning of Section 3 concerning the choices of parameters
(notably for the method of enlargement of obstacles), which remain in force, and for the
convention concerning positive constants.

We first need some additional notation. We introduce the length

(4.1) L0 = 10(⌈R0⌉ + 1)(log ℓ)1/d (with R0 from (0.2) and ℓ > 10 throughout),

and consider the open boxes of side-length L0 and center in (log ℓ)1/dZd:

(4.2) D0,q = q(log ℓ)1/d + ( − L0

2
,
L0

2
)d, q ∈ Z

d.

We will typically write D0 or speak of an L0-box to refer to a generic box of the form D0,q.
Given such a box D0, we will refer to

(4.3)
the central box of D0 to denote the closed box of side-length 2(log ℓ)1/d
and same center as D0.

To define the resonance set, we first pick

(4.4) σ > 0.
We will eventually let σ tend to 0 in Section 6. The resonance event is then

(4.5) R = {ω ∈ Ω;λ1,ω(Bℓ) <∞ and λ2,ω(Bℓ) < λ1,ω(Bℓ) + ρℓ}, where ρℓ = σ(log ℓ)−(1+2/d).
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We will show in Theorem 6.1 that limσ→0 limsupℓ→∞P[R] = 0 (this will be the lower bound
on the spectral gap). For the time being the main object of this section is the proof of
Theorem 4.1. The simpler Theorem 4.2 is also of interest. We recall from (3.9), (4.5) that
δℓ = (log ℓ)−(2+2/d), ρℓ = σ(log ℓ)−(1+2/d), and γ2 is the constant from (3.9). The likely event
T is defined in (3.24).

Theorem 4.1. There exist η̂1, η̂ in (0, 1
d
) and ℓ0 ≥ 10 such that for ℓ ≥ ℓ0, on the event

T ∩R, one has boxes D0,D
′

0 contained in Bℓ with d∞(D0,D
′

0) ≥ ℓ3/4 such that

(4.6) { λ1,ω(Bℓ) ≤ λ1,ω(D0) ≤ λ1,ω(Bℓ) + ρℓ + δℓ + e−(log ℓ)η̂ ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d,
with similar inequalities for λ1,ω(D′0).

and there are open balls B̂, B̂′ with centers having rational coordinates, belonging to the
respective central boxes (see (4.3)) of D0 and D′0 with radius R̂ = R0(log ℓ)1/d + 2e−(log ℓ)η̂1
(and R0 from (0.2)), such that

(4.7) { λ1,ω(D0) ≤ λ1,ω(B̂) ≤ λ1,ω(D0) + e−(log ℓ)η̂ ,
with similar inequalities for λ1,ω(D′0), λ1,ω(B̂′),

and (with the notation (1.14))

(4.8) { ϕ1,D0,ω ≤ e−(log ℓ)η̂ onD0/B̂,
with a similar inequality for ϕ1,D′

0
,ω on D′0/B̂.

We stated (4.7) for completeness but our main interest in view of Sections 5 and 6 lies
in (4.8). The rational coordinates of the centers of the balls are mentioned to highlight
the measurability of the events under consideration. One also has the simpler

Theorem 4.2. With η̂1, η̂ as in Theorem 4.1, there exists ℓ1 > 10 such that for ℓ ≥ ℓ1, on
the event T , one has a box D0 contained in Bℓ such that

(4.9) λ1,ω(Bℓ) ≤ λ1,ω(D0) ≤ λ1,ω(Bℓ) + δℓ + e−(log ℓ)η̂ ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d,
and an open ball B# with center having rational coordinates, belonging to the central box
of D0 with radius R̂, such that the first lines of (4.7) and (4.8) hold with B# in place of
B̂.

The proof of Theorem 4.2 is simpler than that of Theorem 4.1 and is also quite similar.
We mainly focus on the proof of Theorem 4.1 in the remainder of this section. In Remark
4.7 1) we briefly sketch the main steps in the proof of Theorem 4.2.

It may be appropriate to describe here the general line of the arguments, which we
use. We begin with two lemmas, which for large ℓ on T ∩R provide us with two distant
boxes B,B′ in C intℓ (see (3.14)) with principal Dirichlet eigenvalues, essentially within ρℓ
(= σ(log ℓ)−(1+2/d)) from λ1,ω(Bℓ), and such that after deletion of the closure of the density
set, the corresponding principal Dirichlet eigenvalues do not increase too much (but may
well be much bigger than λ1,ω(Bℓ) + ρℓ). In the Proposition 4.5 we combine the volume

estimates and the eigenvalue estimates for B/Dℓ(ω) and B′/Dℓ(ω) with the quantitative
Faber-Krahn inequality (1.17) to bring into play two balls of same respective volumes as
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the above two sets, and symmetric differences with these respective sets of small volume.
We also find two suitable boxes of C̃ℓ (see (3.21)) each containing one of the above balls
close to their center, and such that after deletion of the ball and Dℓ(ω), the volume of the
remaining set in each box is small compared to log ℓ. Once Proposition 4.5 is proved, we
can apply Theorem 2.3, and also use the representation formula (1.12) for eigenfunctions
combined with Lemma 2.2, to establish the existence of two distant L0-boxes (concentric
with the above boxes of C̃ℓ) having the desired principal Dirichlet eigenvalue estimates, and
adequately small principal Dirichlet eigenfunctions outside balls of deterministic radius R̂
(see above (4.7)) with suitable centers in the central boxes (see (4.3)) of these L0-boxes.

With this plan in mind, the first step is a deterministic statement.

Lemma 4.3. For ℓ > 10 and ω ∈ Ω,

(4.10)
when λ1,ω(Bℓ) <∞, one can find disjoint open subsets U,U ′ in Bℓ such that
λ1,ω(U) and λ1,ω(U ′) belong to the interval [λ1,ω(Bℓ), λ2,ω(Bℓ)].

Proof. When λ1,ω(Bℓ) <∞ (or equivalently when Bℓ,ω /= ∅, see (1.4)), as noted below (1.9),
the eigenvalues λi,ω, i ≥ 1, correspond to the reordering of the union (with multiplicities)
of the Dirichlet eigenvalues of −1

2
∆ in each of the finitely many connected components of

Bℓ,ω. Thus, at least one of the items below occurs:

(4.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i) λ1,ω(Bℓ) and λ2,ω(Bℓ) correspond to principal Dirichlet eigenvalues
of −1

2
∆ in distinct connected components of Bℓ,ω,

ii) λ1,ω(Bℓ) and λ2,ω(Bℓ) are the first two Dirichlet eigenvalues
of −1

2
∆ in one of the connected components of Bℓ,ω.

When (4.11) i) occurs, the claim (4.10) is immediate: one simply chooses U and U ′ as the
connected components mentioned in (4.11) i).

We thus assume that (4.11) ii) occurs. We denote by W a connected component of
Bℓ,ω such that the first two Dirichlet eigenvalues of −1

2
∆ in W respectively coincide with

λ1,ω(Bℓ) and λ2,ω(Bℓ) and by ψ an L2-normalized Dirichlet eigenfunction in W corre-
sponding to λ2,ω(Bℓ). Note that W satisfies an exterior cone condition (each boundary
point ofW belongs to Bc

ℓ or to a closed ball of radius a inW c). As explained below (1.10),
the function ψ is continuous and it equals 0 outside W . Since ψ is attached to the second
Dirichlet eigenvalue of −1

2
∆ (and orthogonal to the principal Dirichlet eigenfunction on

the connected open set W ), it changes sign, and we can choose non-empty connected
components U of {ψ > 0} and U ′ of {ψ < 0}. As we now explain

(4.12) λ1,ω(U) and λ1,ω(U ′) are equal to λ2,ω(Bℓ).
This will complete the proof of (4.10). We now prove (4.12) and consider the case of
U . The eigenfunction ψ satisfies −1

2
∆ψ = λ2,ω(Bℓ)ψ in U (in a classical sense, see for

instance Theorem 11.7, p. 279 of [20]). As we now explain ψ1U belong to H1
0(U). Indeed,

for α > 0, (ψ −α)+1U is compactly supported in U , and has gradient equal to ∇ψ1U∩{ψ>α},
see Corollary 6.18, p. 153 of [20]. As α tends to 0, (ψ − α)+1U is thus Cauchy in H1

0(U)
and converges in L2(Rd) to ψ1U , so that ψ1U ∈H1

0(U).
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We write ϕ as a shorthand for ϕ1,U,ω, see (1.14). Consider now two sequences ψn and
ϕn of smooth functions compactly supported in U respectively converging in H1

0(U) to
ψ1U and ϕ. Then for each n ≥ 1, we have

(4.13)
i) λ2,ω(Bℓ)∫ ψϕn dx = ∫ −12 ∆ψϕn dx

int. by parts= 1

2 ∫ ∇ψ∇ϕn dx.

ii) λ1,ω(U)∫ ϕψn dx = ∫ −12 ∆ϕψn dx
int. by parts= 1

2 ∫ ∇ϕ∇ψn dx.

Thus, letting n tend to infinity, we find that the right expressions in i) and ii) both
converge to ∫U ∇ψ∇ϕdx and the left expressions respectively converge to λ2,ω(Bℓ) ∫ ψϕdx
and λ1,ω(U) ∫ ϕψ dx. The integral being positive, this shows that λ1,ω(U) = λ2,ω(Bℓ). In
a similar fashion one has λ1,ω(U ′) = λ2,ω(Bℓ) and (4.12) follows. This completes the proof
of Lemma 4.3.

We recall that ρℓ = σ(log ℓ)−(1+2/d), see (4.5), and δℓ = (log ℓ)−(2+2/d), see (3.9). The
next step towards the proof of Theorem 4.1 is

Lemma 4.4. For large ℓ, on T ∩R there exist B,B′ in C intℓ (see (3.14)) such that

(4.14) d∞(B,B′) ≥ 1

2d
ℓ3/4(log ℓ)1/d,

(4.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i) λ1,ω(Bℓ) ≤ λ1,ω(B) ≤ λ1,ω(Bℓ) + ρℓ + δℓ ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d,
ii) λ1,ω(B/Dℓ(ω)) ≤ λ1,ω(B) + (log ℓ)−(2+ρ)/d,
and similar inequalities as i) and ii) with B′ in place of B.

(With γ2 as in (3.9) and ρ as in Theorem 2.1).

Proof. We first observe that for large ℓ on T ∩R we have by (3.9) and (4.5)

(4.16) λ2,ω(Bℓ) ≤ c0(log ℓ)−2/d + γ2(log ℓ)−3/d + ρℓ ≤ c0(log ℓ)−2/d + 3
2
γ2(log ℓ)−3/d

and by Lemma 4.3 there are disjoint open subsets U,U ′ of Bℓ such that λ1,ω(U) and
λ1,ω(U ′) are at most λ2,ω(Bℓ) < 2c0(log ℓ)−2/d − δℓ.

Then, as in (4.54) on p. 192 of [28] (using the fact that C ⊆ T , see (3.7), (3.24), and
Theorem 2.3 with M = 2c0), one can find boxes B,B′ in Cℓ such that

(4.17)

⎧⎪⎪⎨⎪⎪⎩
λ2,ω(Bℓ) ≥ λ1,ω(U) ≥ λ1,ω(U ∩B) − δℓ,
λ2,ω(Bℓ) ≥ λ1,ω(U ′) ≥ λ1,ω(U ′ ∩B′) − δℓ.

In addition, since λ1,ω(B) and λ1,ω(B′) are at most λ2,ω(Bℓ)+δℓ ≤ c0(log ℓ)−2/d+2γ2(log ℓ)−3/d,
by (4.16), and keeping in mind that T ⊆ E, see (3.13), (3.14), we can additionally assume
(ℓ being large enough) that

(4.18) B,B′ belong to C intℓ (and in particular are included in Bℓ).
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This already proves that

(4.19) the statement (4.15) i) and the corresponding statement for B′ hold.

Next, as a result of Theorem 2.1 (with M = 2c0), when ℓ is large so that in particular
c0(log ℓ)−2/d +ρℓ+δℓ+(log ℓ)−(2+ρ)/d < 2c0(log ℓ)−2/d, on T ∩R in addition to (4.16) - (4.19),
one has

λ1,ω(U ∩B) ≥ λ1,ω((U ∩B) /Dℓ(ω) ) ∧ (2c0(log ℓ)−2/d) − (log ℓ)−(2+ρ)/d
= λ1,ω((U ∩B) /Dℓ(ω) ) − (log ℓ)−(2+ρ)/d

Faber−Krahn≥ λd{ωd / ∣(U ∩B) /Dℓ(ω) ∣}2/d − (log ℓ)−(2+ρ)/d
≥ λd{ωd / [∣(U ∩B) / (Dℓ(ω) ∪ Bℓ(ω))∣ + ∣B ∩Bℓ(ω)∣]}2/d
− (log ℓ)−(2+ρ)/d

(4.20)

Then, making use of Theorem 2.4 and (3.6) to bound ∣B∩Bℓ(ω)∣, and arguing in the same
fashion for U ′ and B′, we see that for large ℓ on T ∩ R, one has in addition to (4.16) -
(4.19)

(4.21)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ1,ω(U ∩B) ≥ λd{ωd / [∣(U ∩B) / (Dℓ(ω) ∪Bℓ(ω))∣+
γd1(log log ℓ)d (log ℓ)1−κ/d]}2/d − (log ℓ)−(2+ρ)/d

and similar inequalities with U ′,B′ in place of U,B.

Now, both λ1,ω(U ∩B) and λ1,ω(U ′ ∩B′) are at most c0(log ℓ)−2/d + γ2(log ℓ)−3/d + ρℓ + δℓ
by (4.17), (4.16), and c0 = λd{ωd ν/d}2/d by (0.3). It now follows from this observation
and (4.21) that both ∣(U ∩ B)/(Dℓ(ω) ∪ Bℓ(ω))∣ and ∣(U ′ ∩ B′)/(Dℓ(ω) ∪ Bℓ(ω))∣ exceed
d
ν
(1 − cℓ) log ℓ where cℓ is a deterministic function of ℓ tending to 0 as ℓ goes to infinity.

Moreover, U and U ′ are disjoint, and if B∩B′ /= ∅ then B∩B′ is contained in some B̃ ∈ C̃ℓ
for which

(4.22)
∣B̃ / (Dℓ(ω) ∪Bℓ(ω))∣ ≥ ∣(U ∩B) / (Dℓ(ω) ∪Bℓ(ω))∣ +
∣(U ′ ∩B′) / (Dℓ(ω) ∪ Bℓ(ω))∣ ≥ 2d

ν
(1 − cℓ).

On the other hand, it follows from the inclusion T ⊆ H , see (3.22), (3.24), that the left
member of (4.22) is at most d

ν
(log ℓ) + (log ℓ)β′ . So when ℓ is large, we can in addition

assume that B ∩B′ = ∅ and coming back to (3.22) that diam(B ∪B′) ≥ ℓ3/4(log ℓ)1/d so
that (4.14) holds.

The claim (4.15) ii) and the corresponding claim for B′ now follow from the application
of Theorem 2.1, the bound λ1,ω(B) + (log ℓ)−(2+ρ)/d < 2c0(log ℓ)−2/d and the similar bound
for B′, which are consequences of (4.15) i) and the corresponding bound for B′ (ℓ being
large). This concludes the proof of Lemma 4.4.

We will now gather upper bounds on eigenvalues and on volume, and combine them
with the quantitative Faber-Krahn inequality (1.17) in the course of the proof of the
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next proposition. We recall the definition of C̃ℓ in (3.21), and we define the central box
of B̃ℓ in C̃ℓ similarly as in (4.3), namely as the closed concentric box of B̃ℓ with side-
length 2(log ℓ)1/d. The parameter α appeared in the selection made for the method of
enlargement of obstacles, see Lemma 2.2 and Remark 4.6 below.

Proposition 4.5. There exist µ̂ ∈ (1 − α,1) and η̂0 < η̂1 in ( µ̂
d
, 1
d
) such that for large

ℓ on T ∩ R, there are two boxes B̃ and B̃′ in C̃ℓ, included in Bℓ, with d∞(B̃, B̃′) ≥ ℓ3/4,
which respectively contain open balls B̂ and B̂′ with centers having rational coordinates that
belong to the respective central boxes of B̃ and B̃′, and have same radius R̂ = R0(log ℓ)1/d+
2(log ℓ)η̂1. These balls have the property that denoting by B̂int and B̂′int the smaller closed

concentric balls with radius R̂int = R0(log ℓ)1/d + (log ℓ)η̂0 , one has

(4.23)

⎧⎪⎪⎨⎪⎪⎩
∣B̃ / (Dℓ(ω) ∪ B̂int)∣ ≤ (log ℓ)µ̂,
and a similar inequality with B̃′ and B̂′int in place of B̃ and B̂int,

as well as (in the notation of (4.5) and (3.9))

(4.24)

⎧⎪⎪⎨⎪⎪⎩
λ1,ω(Bℓ) ≤ λ1,ω(B̃) ≤ λ1,ω(Bℓ) + ρℓ + δℓ ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d,
and similar inequalities with B̃′ in place of B̃.

Proof. We first choose (recall that β′, κ, ρ are among the parameters selected at the be-
ginning of Section 3)

(4.25) µ′ ∈ (max (β′,1 − κ
d
),1) and χ′ ∈ (0,min (1 − µ′, 1 ∧ ρ

d
)).

Then by Lemma 4.4, for large ℓ, on T ∩R we have two boxes B,B′ ∈ C intℓ , which satisfy
(4.14), (4.15). By the inclusion G ⊆ T , see (3.11), (3.24), and the volume bound on the
bad set from Theorem 2.4, we can further assume that

∣B /Dℓ(ω) ∣ ≤ ∣B / (Dℓ(ω) ∪Bℓ(ω))∣ + ∣B ∩ Bℓ(ω)∣ ≤ d
ν
(log ℓ) + (log ℓ)β′+

γd1(log log)d(log ℓ)1−κ/d,
and a similar bound for ∣B′/Dℓ(ω)∣.

So, by our choice of µ′ in (4.25), we can further assume that

(4.26) ∣B /Dℓ(ω)∣ ≤ d
ν
(log ℓ) + (log ℓ)µ′ and a similar inequality with B′ in place of B.

By (4.15) i) and ii) we additionally know that

(4.27)
λ1,ω(B /Dℓ(ω)) ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d + (log ℓ)−(2+ρ)/d
and a similar inequality with B′ in place of B.

The eigenvalues in (4.27) are bigger or equal to λ
−

1

2
∆(B/Dℓ(ω)) and λ

−
1

2
∆(B′/Dℓ(ω))

respectively. With c0 = λd(νωd/d)2/d, see (0.3), and the choice of χ′ in (4.25), we can thus
assume that for large ℓ on T ∩ R we have B,B′ in C intℓ satisfying (4.14), (4.15), (4.26),
(4.27) and

(4.28)
0 ≤ {λ

−
1

2
∆(B /Dℓ(ω)) /λd} {∣B /Dℓ(ω)∣ /ωd}2/d − 1 ≤ (log ℓ)−χ′

and similar inequalities with B′ in place of B.

(The first inequality in (4.28) results from the Faber-Krahn inequality).
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By the quantitative Faber-Krahn inequality (1.17) one can then find balls B̌ and B̌′

with centers having rational coordinates, with same respective volumes as ∣B/Dℓ(ω)∣ and∣B′/Dℓ(ω)∣ and so that the ratio of the volumes of the symmetric differences (B/Dℓ(ω))∆ B̌

and (B′/Dℓ(ω))∆ B̌′ to the respective volumes ∣B̌∣ and ∣B̌′∣ is smaller than 2/√c2(log ℓ)−χ′/2 < 1
2
. In particular, the centers of B̌ and B̌′ respectively belong to B and

B′ (otherwise the above mentioned ratios would be at least 1
2
).

In addition, by (4.27) and the Faber-Krahn inequality, due to the value of c0 recalled
above (4.28), and the choice χ′ < (1 ∧ ρ)/d in (4.25), we can additionally assume that

(4.29)
∣B /Dℓ(ω)∣ ≥ ωd λd/2d λ

−
1

2
∆(B /Dℓ(ω))−d/2 (4.27)≥ d

ν
(log ℓ) − (log ℓ)1−χ′

and a similar inequality with B′ in place of B.

Thus, combining (4.26) and (4.29), we have upper and lower bounds on the volumes of

B/Dℓ(ω) and B′/Dℓ(ω) which respectively coincide with ∣B̌∣ and ∣B̌′∣. By the bound on
the volumes of the symmetric differences stated below (4.28), we see that, ℓ being large,
we can assume that

∣(B /Dℓ(ω)) ∩ B̌∣ ≥ ∣B̌∣ (1 − 2/√c2 (log ℓ)−χ′/2)
(4.29),(4.26)≥ d

ν
(log ℓ) − (log ℓ)1−χ′ − c(log ℓ)1−χ′/2,

with similar inequalities for B′, B̌′, so that

(4.30)

⎧⎪⎪⎨⎪⎪⎩
∣(B /Dℓ(ω)) ∩ B̌∣ ≥ d

ν
(log ℓ) − c (log ℓ)1−χ′/2

with a similar lower bound with B′ and B̌′ in place of B and B′.

We have thus established that for large ℓ on T ∩R there are boxes B, B′ in C intℓ , which
satisfy (4.14), (4.15) and balls B̌ and B̌′ with centers having rational coordinates respec-

tively belonging to B and B′ with same respective volumes as B/Dℓ(ω) and B′/Dℓ(ω),
which are at most d

ν
(log ℓ)+ (log ℓ)µ′ , see (4.26), at least d

ν
(log ℓ)− (log ℓ)1−χ′ , see (4.29),

and so that (4.30) holds.

We can now find boxes B̃, B̃′ ∈ C̃ℓ, see (3.21), such that the centers of B̌ and B̌′ belong
to the respective central boxes of B̃, B̃′, and so that B ⊆ B̃, B′ ⊆ B̃′. Further, ℓ being
large, we can assume that B̌ ⊆ B̃ and B̌′ ⊆ B̃′, and since B,B′ ∈ C intℓ satisfy (4.14), (4.15
i) that in addition

(4.31) B̃, B̃′ ⊆ Bℓ satisfy (4.24) and d∞(B̃, B̃′) ≥ 1

3d
ℓ3/4 (log ℓ)1/d.

As we now explain, there is little volume in B̃ outside B̌ ∪ Dℓ(ω) and in B̃′ outside
B̌′ ∪Dℓ(ω) (the remaining claim (4.23) will quickly follow). Indeed, for large ℓ on T ∩R,

20



we can further assume that

∣B̃ / (B̌ ∪Dℓ(ω))∣ = ∣B̃ /Dℓ(ω)∣ − ∣(B̃ /Dℓ(ω)) ∩ B̌∣
(4.30)≤ ∣B̃ / (Dℓ(ω) ∪ Bℓ(ω))∣ + ∣B̃ ∩ Bℓ(ω)∣ − d

ν
(log ℓ) + c (log ℓ)1−χ′

2

(3.22),(2.11)≤ d

ν
(log ℓ) + (log ℓ)β′ + 2d γd1 (log log ℓ)d (log ℓ)1−κ

d

−
d

ν
(log ℓ) + c (log ℓ)1−χ′

2

≤ (log ℓ)µ̂
and a similar inequality with B̃′, B̌′ in place of B, B̌,

(4.32)

where we have chosen µ̂ in (0,1) bigger than max{1 − α,β′,1 − κ/d,1 − χ′/2} (see also
Remark 4.6 below).

As mentioned above, the balls B̌ and B̌′ have volume at most d
ν
(log ℓ) + (log ℓ)µ′ , see

(4.26), and below (4.28). Thus, choosing η̂0 < η̂1 in ( µ̂
d
, 1
d
), both bigger than 1

d
− (1 − µ′),

we see that for large ℓ, the balls B̌ and B̌′ are contained in the balls B̂int and B̂′int with

same respective centers as B̌ and B̌′ and radius equal to R̂int = R0(log ℓ)1/d + (log ℓ)η̂0 .
The claim (4.3) follows. This concludes the proof of Proposition 4.5.

Remark 4.6. The conditions µ̂ > 1 − α and µ̂

d
< η̂0 < η̂1 will be helpful in the proof of

Theorem 4.1 below when bounding the principal Dirichlet eigenvalues in B̂ and B̂′ as well
as the size of the principal Dirichlet eigenfunctions outside B̂int and B̂′int. ◻

We now proceed with the

Proof of Theorem 4.1: We know by Proposition 4.5 that for large ℓ on T ∩ R we have
B̃, B̃′ in C̃ℓ (see (3.21)) with d∞(B̃, B̃′) ≥ ℓ3/4 contained in Bℓ and concentric balls B̂int,
B̂ and B̂′int, B̂

′ with radii R̂int, R̂ and centers with rational coordinates in the respective

central boxes of B̃, B̃′ so that (4.23), (4.24) hold. We recall that B̂int, B̂
′

int are closed balls

and B̂, B̂′ open balls. We denote by (see below (4.2) for the terminology)

(4.33) D0,D
′

0 the L0-boxes with same respective centers as B̃ and B̃′.

Our main task is to show that λ1,ω(B̂) and λ1,ω(B̂′) are not much bigger than λ1,ω(B̃) and
λ1,ω(B̃′) respectively, and that ϕ1,D̃0,ω

and ϕ1,D0,ω are small outside B̂ and B̂′ respectively.
The first point combined with (4.24) will yield (4.6), (4.7), and the second point will prove
(4.8).

We begin with the first point. With µ̂, η̂0 < η̂1 as in Proposition 4.5, we apply Theorem

2.3 with the choices M = 2c0, r = (log ℓ) µ̂d , R = 1√
d
(log ℓ)η̂1 , U2 = B̃ (or B̃′), U1 = B̂ (or

B̂′), A = B̂int (or B̂′int). We note that by (4.23) and the fact that 1−α
d
< µ̂

d
< η̂0 < η̂1 < 1

d
, for

large ℓ for any ω in T ∩R, the assumptions (2.5) - (2.7) and (2.9), (2.10) are fulfilled. We
then set

(4.34) η̂ = (η̂1 − η̂0)/2,
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and find by Theorem 2.3, and the upper bounds on λ1,ω(B̃) and λ1,ω(B̃′) in (4.24), that
for large ℓ on T ∩R (with the above choices for R and r):

(4.35)

⎧⎪⎪⎨⎪⎪⎩
λ1,ω(B̂) ≤ λ1,ω(B̃) + 2c0(log ℓ)−2/d exp{ − c3 [R

4r
]} ≤ λ1,ω(B̃) + exp{−(log ℓ)η̂}

and similar inequalities with B̂′, B̃′ in place of B̂, B̃.

Taking into account the inclusions B̂ ⊆D0 ⊆ B̃ ⊆ Bℓ and B̂′ ⊆D′0 ⊆ B̃′ ⊆ Bℓ for large ℓ, the
claims (4.6), (4.7) follow.

We now turn to the second point, namely the proof of (4.8). Recall that η̂0 > µ̂/d >(1 − α)/d. Using Lemma 2.2, we assume from now on that ℓ is large enough so that for

any y ∈ Dℓ(ω), the Brownian motion starting at y enters the obstacle set before moving
at ∣ ⋅ ∣∞-distance 1

2
(log ℓ)η̂0 with probability at least 1

2
, see (2.4):

(4.36) Py[HObsω < τ 1

2
(log ℓ)η̂0 ] ≥ 1

2
, for all y ∈ Dℓ(ω).

We prove (4.8) in the case of D0 and B̂ (the case of D′0 and B̂′ is handled in the same
fashion). By (4.23) for any x ∈ B̃/B̂int the ∣ ⋅ ∣∞-ball with center x and volume 2(log ℓ)µ̂
has at least half of its volume occupied by B̃c ∪ B̂int ∪ Dℓ(ω). Thus, Brownian motion

starting at x enters B̃c ∪ B̂int ∪Dℓ(ω) before exiting the concentric box of double radius
with a probability at least c(d) > 0. Since µ̂/d < η̂0 and ℓ is large, the strong Markov
property and (4.36) shows that the Brownian motion starting at x exits B̃ω/B̂int (i.e.
enters B̃c ∪ B̂int ∪Obsω) before moving at ∣ ⋅ ∣∞-distance (log ℓ)η̂0 with a non-degenerate
probability, namely:

(4.37) for x ∈ B̃/B̂int, Px[TB̃ω/B̂int
< τ] ≥ c5(d) ∈ (0,1),

where we have set τ = τ(log ℓ)η̂0 in the notation of (2.4).

We now write ϕ as a shorthand for ϕ1,D0,ω, see (1.14). Since η̂0 < 1
d
and ℓ is large,

using (4.6), we can further assume that (see (1.5) for notation):

(4.38) λ1,ω(D0) < 2c0(log ℓ)−2/d < 1

2
(log ℓ)−2η̂0 λ

−
1

2
∆(B1)( = 1

2
λ
−

1

2
∆(B(log ℓ)η̂0)).

Then, for any x ∈D0,ω (see (1.4)), with ϕ(x) > 0 (or equivalently such that the connected
component of D0,ω containing x has a principal Dirichlet eigenvalue of −1

2
∆ equal to

λ1,ω(D0), see below (1.14)), we have by (1.12):

(4.39) ϕ(x) = Ex[ϕ(Xτ) exp{λ1,ω(D0) τ}, τ < TD0,ω
].

Denote by τk, k ≥ 0, the iterates of the stopping time τ , that is

(4.40) τ 0 = 0, τ 1 = τ , and τk+1 = τk + τ ○ θτk , for k ≥ 1

(with (θt)t≥0 the canonical shift, see below (1.7)). Using the strong Markov property and
induction, it then follows that

(4.41) ϕ(x) = Ex[ϕ(Xτk) exp{λ1,ω(D0) τk}, τk < TD0,ω
], for all k ≥ 1.
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When in addition x ∈ D0,ω/B̂ and k(log ℓ)η̂0 < 1√
d
(log ℓ)η̂1 (≤ d∞(x, B̂int)), we find that,

with s̃upz denoting the supremum over z in D0,ω with d∞(z, B̂int) > (log ℓ)η̂0 ,
ϕ(x) (4.41)≤ ∥ϕ∥∞Ex[eλ1,ω(D0) τk , τk < TD0,ω

]
strong Markov≤ ∥ϕ∥∞ (s̃upz Ez[eλ1,ω(D0) τ , τ < TD0,ω

])k
Cauchy−Schwarz≤ ∥ϕ∥∞ (s̃upz Ez[e2λ1,ω(D0) τ ] Pz[τ < TD0,ω

])k/2.
(4.42)

Note that for z ∈D0,ω with d∞(z, B̂int) > (log ℓ)η̂0 we have

(4.43) Pz[τ < TD0,ω
] = Pz[τ < TD0,ω/B̂int

] (4.37)≤ (1 − c5).
Thus, coming back to (4.42), using translation invariance and scaling for the expectation
in the last line of (4.42), we find for large ℓ (see (2.4) for notation):

ϕ(x) ≤ ∥ϕ∥∞ (E0[e2λ1,ω(D0)(log ℓ)2η̂0 τ1](1 − c5))k/2
(1.11),(4.38)≤ c(d, ν)(log ℓ)−1/2 (E0[exp{4c0(log ℓ)2(η̂0− 1

d
) τ1}] (1 − c5))k/2

η̂0<
1

d≤ c(d, ν)(log ℓ)−1/2 (1 − c5
2
)k/2, for x ∈D0,ω/B̂ and k < 1√

d
(log ℓ)η̂1−η̂0 .

(4.44)

With η̂ as in (4.34), and ℓ being large, we see that

(4.45) ϕ1,D0,ω ≤ e−(log ℓ)
η̂

onD0,ω/B̂.
A similar bound holds for ϕ1,D′

0
,ω on D′0,ω/B̂′ so that (4.8) is proved. This concludes the

proof of Theorem 4.1. ◻

Remark 4.7. 1) The proof of Theorem 4.2 is simpler, but similar to the proof of Theorem
4.1. One shows the statement corresponding to Lemma 4.4 with one single box B in C int

ℓ

and the statement corresponding to (4.15) i), ii) with ρℓ set to 0 (the item i) already
follows from T ⊆ E ∩ F , see (3.9), (3.13)). The statement corresponding to Proposition
4.5 now involves a single box B̃ and a single ball B̂int, with ρℓ set to 0 in the statement
corresponding to (4.24). The proof then proceeds as that of Theorem 4.1 below Remark
4.6.

2) As already mentioned, we will mainly use (4.6) and (4.8) of Theorem 4.1 in what
follows. The statement (4.7) is there for clarity and completeness. ◻

5 Tuning and resonance control

In this section we derive an asymptotic upper bound on the resonance event R, see (4.5),
in the large ℓ limit, in terms of a quantity, which measures the deconcentration of the
law of λ1,ω(D0) in a suitably tuned regime of low values, with an additional information
on the corresponding eigenfunction ϕ1,D0,ω, see Proposition 5.3. In the next section we
will prove deconcentration estimates, which will bound the above quantity, and lead to
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a lower bound on the spectral gap. We recall the definition of D0-boxes in (4.2). Their
side-length is L0 = 10(⌈R0⌉ + 1)(log ℓ)1/d, see (4.1).

Our first task in this section is to suitably tune the “low level” of λ1,ω(D0) that is
pertinent for our purpose. We first need some notation. For ℓ > 10 we define

Ĉℓ the collection of D0-boxes included in Bℓ,(5.1)

Ĉ∗ℓ the sub-collection of Ĉℓ consisting of boxes D0,q ⊆ Bℓ(5.2)

such that q ∈ 20(⌈R0⌉ + 1)Zd (see (4.2) for notation).

Thus, for large ℓ,

the boxes in Ĉ∗ℓ have mutual ∣ ⋅ ∣∞-distance at least (log ℓ)1/d,(5.3)

Ĉℓ is covered by ĉ translates of Ĉ∗ℓ (the choice ĉ = {40(⌈R0⌉ + 1)}d will do).(5.4)

Also, given an L0-box D0, we write

(5.5) Dint
0 for the closed concentric box to D0 with side-length (2⌈R0⌉ + 4)(log ℓ)1/d.

Note that for large ℓ, in the terminology of (4.3), with R̂ as above (4.7),

(5.6) any ball with center in the central box of D0 and radius R̂ is contained in Dint
0 .

To specify the relevant low levels of λ1,ω(D0) for our purpose, we further pick (a large)

(5.7) Γ > 0.
We will eventually let Γ tend to infinity in the next section.

Note that P[λ1,ω(D0) ≤ t] is a non-decreasing, right-continuous function of t in R+,
which takes the value 0 for t = 0 (actually, for any t < λ

−
1

2
∆(D0)), which tends to

P[λ1,ω(D0) < ∞] = P[D0,ω /= ∅] as t tends to infinity (see (1.4) for notation). We know
from (1.6) and monotone convergence that this last quantity tends to 1 as ℓ (and hence
L0) goes to infinity. Thus, for ℓ ≥ c6(d, ν, a,Γ) so that P[λ1,ω(D0) < ∞] > Γ/∣Ĉ∗ℓ ∣, we
introduce the following quantile of the law of λ1,ω(D0):
(5.8) tℓ(Γ) = inf{t ≥ 0; P[λ1,ω(D0) ≤ t] ≥ Γ / ∣Ĉ∗ℓ ∣},
so that writing tℓ as a shorthand for tℓ(Γ), one has for such ℓ

(5.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i) P[λ1,ω(D0) ≤ tℓ] ≥ Γ / ∣Ĉ∗ℓ ∣,
ii) P[λ1,ω(D0) < tℓ] ≤ Γ / ∣Ĉ∗ℓ ∣.

We also record the value

(5.10) sℓ = λ− 1

2
∆(D0) = dπ2

2
L−20 , for which P[λ1,ω(D0) < sℓ] = 0.

The next lemma shows that for large ℓ the events {minD0∈Ĉℓ
λ1,ω(D0) ≥ tℓ} and {minD0∈Ĉℓ

λ1,ω(D0) ≤ tℓ} occur with a probability bounded away from 0.
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Lemma 5.1.

(5.11) lim inf
ℓ→∞

P[min
D0∈Ĉℓ

λ1,ω(D0) ≥ tℓ] ≥ e−ĉ Γ(with ĉ from (5.4)),

and for large ℓ,

(5.12) P[min
D0∈Ĉℓ

λ1,ω(D0) > tℓ] ≤ e−Γ.
Proof. We first prove (5.11). Note that λ1,ω(D0) is a non-decreasing function of ω. Thus,
by the Harris-FKG inequality, see Theorem 20.4, p. 217 of [18], translation invariance,
and (5.4), we have for large ℓ

(5.13)

P[minD0∈Ĉℓ
λ1,ω(D0) ≥ tℓ] ≥ P[minD0∈Ĉ

∗
ℓ
λ1,ω(D0) ≥ tℓ]ĉ independence=

P[λ1,ω(D0) ≥ tℓ] ĉ ∣Ĉ∗ℓ ∣ = (1 −P[λ1,ω(D0) < tℓ])ĉ ∣Ĉ∗ℓ ∣ (5.9)ii)≥
(1 − Γ / ∣Ĉ∗ℓ ∣)ĉ ∣Ĉ∗ℓ ∣ Ð→

ℓ→∞
e−ĉΓ.

This proves (5.11). As for (5.12), we note that for large ℓ,

(5.14)
P[minD0∈Ĉℓ

λ1,ω(D0) > tℓ] ≤ P[minD0∈Ĉ
∗
ℓ
λ1,ω(D0) > tℓ] indep.=

transl. inv.

(1 − P[λ1,ω(D0) ≤ tℓ])∣Ĉ∗ℓ ∣ (5.9) i)≤ (1 − Γ / ∣Ĉ∗ℓ ∣)∣Ĉ∗ℓ ∣ ≤ e−Γ
(using 1 − s ≤ e−s for all s and Γ/∣Ĉ∗ℓ ∣ ≤ 1 in the last step). This shows (5.12) and hence
Lemma 5.1 is proved.

In the next lemma we collect some coarse asymptotic information on tℓ(Γ) as ℓ goes
to infinity. We recall χ ∈ (0, d) from (0.4) and γ2 > 0 from (3.9).

Lemma 5.2. Given any Γ > 0, then for large ℓ

(5.15) c0(log ℓ)−2/d − (log ℓ)−(2+χ)/d ≤ tℓ(Γ) ≤ c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d,
and in particular

(5.16) tℓ(Γ) ∼ c0(log ℓ)−2/d, as ℓ→∞.
Proof. We only need to prove (5.15) since (5.16) is an immediate consequence of (5.15).
We begin with the right inequality in (5.15) and argue as follows. By Theorem 4.2 (see
(4.9)) and (3.25), with probability tending to 1 as ℓ goes to infinity, min

Ĉℓ
λ1,ω(D0) is

at most c0(log ℓ)−2/d + 2γ2(log ℓ)−3/d. However, by (5.11), for large ℓ, the same quan-
tity is at least tℓ(Γ) with probability bigger or equal to e−ĉ Γ/2. The right inequality
in (5.15) thus holds for large ℓ. As for the left inequality in (5.15), we note that by
(0.4), with probability tending to 1 as ℓ goes to infinity, minD0∈Ĉℓ

λ1,ω(D0) ≥ λ1,ω(Bℓ) ≥
c0(log ℓ)−2/d − (log ℓ)−(2+χ)/d, whereas by (5.12), with probability at least 1− e−Γ when ℓ is
large, minD0∈Ĉℓ

λ1,ω(D0) ≤ tℓ(Γ). The left inequality of (5.15) follows. This completes the
proof of Lemma 5.2.
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We now come to the main result of this section. It provides an asymptotic upper
bound on the probability of the resonance event R, see (4.5), in terms of the quantity Σ
in (5.19) below. It will play a central role in the “deconcentration approach” to the lower
bound on the spectral gap developed in the next section. Recall η̂ ∈ (0, 1

d
) in Theorem

4.1, ρℓ = σ(log ℓ)−(1+2/d) from (4.5), and δℓ = (log ℓ)−(2+2/d) from (3.9). We now set

(5.17) εℓ = ρℓ + δℓ + e−(log ℓ)η̂ .

We also recall the notation (5.4) for ĉ, (5.5) for Dint
0 , sℓ from (5.8) and remind that tℓ is

a shorthand for tℓ(Γ), see below (5.8).

Proposition 5.3. For any Γ > 0 one has

limsup
ℓ→∞

P[R] ≤ e−Γ + ĉΓΣ +Σ2, where(5.18)

Σ = limsup
ℓ→∞

∣Ĉℓ∣ sup
t∈[sℓ,tℓ]

P[λ1,ω(D0) ∈ [t, t + εℓ], ϕ1,D0,ω ≤ e−(log ℓ)
η̂

onD0/Dint
0 ].(5.19)

Proof. By Theorem 4.1 and the observation (5.6), we see that for large ℓ one has the
inclusion (with hopefully obvious notation):

T ∩R ⊆ {there are D0,D
′

0 in Ĉℓ such that d∞(D0,D
′

0) ≥ ℓ3/4
and for D =D0 and D =D′0 one has λ1,ω(Bℓ) ≤ λ1,ω(D) ≤ λ1,ω(Bℓ) + εℓ
and ϕ1,D,ω ≤ e−(log ℓ)η̂ on D/Dint}.

(5.20)

Comparing minD′′
0
∈Ĉℓ

λ1,ω(D′′0 ) with tℓ (= tℓ(Γ)), we see that for large ℓ one has by (5.12)

(5.21)

P[T ∩R] ≤ e−Γ + P[minD′′
0
∈Ĉℓ

λ1,ω(D′′0 ) ≤ tℓ and there are D0,D
′

0 in Ĉℓ with
d∞(D0,D

′
0) ≥ ℓ3/4, such that for D =D0 and D = D′0, λ1,ω(Bℓ) ≤ λ1,ω(D) ≤

λ1,ω(Bℓ) + εℓ and ϕ1,D,ω ≤ e−(log ℓ)η̂ onD /Dint].
Thus, splitting between the case when minD′′

0
∈Ĉℓ

λ1,ω(D′′0 ) is strictly smaller, or is equal to
tℓ, we now find that for large ℓ

(5.22)

P[T ∩R] ≤ e−Γ +P[there are D′′ and D in Ĉℓ with d∞(D′′,D) ≥ 1
4
ℓ3/4

such that λ1,ω(D′′) < tℓ and λ1,ω(D′′) ≤ λ1,ω(D) ≤ λ1,ω(D′′) + εℓ, and
ϕ1,D,ω ≤ e−(log ℓ)η̂ on D/Dint] + P[there are D and D′ in Ĉℓ, with
d∞(D,D′) ≥ ℓ3/4 such that λ1,ω(D) ∈ [tℓ, tℓ + εℓ], ϕ1,D,ω ≤ e−(log ℓ)η̂
on D/Dint, and λ1,ω(D′) ∈ [tℓ, tℓ + εℓ], ϕ1,D′,ω ≤ e−(log ℓ)η̂ on D′/D′int].

Using the independence of random variables corresponding toD0-boxes at mutual distance
bigger than 2a, one finds with a union bound, independent variables ω1 and ω2, and
hopefully obvious notation

(5.23)

P[T ∩R] ≤
e−Γ + ∣Ĉℓ∣2 P⊗P[λ1,ω1

(D′′) < tℓ, λ1,ω2
(D) ∈ [λ1,ω1

(D′′), λ1,ω1(D′′) + εℓ] and
ϕ1,D,ω2

≤ e−(log ℓ)η̂ on D/Dint] + ∣Ĉℓ∣2 P[λ1,ω(D) ∈ [tℓ, tℓ + εℓ] and
ϕ1,D,ω ≤ e−(log ℓ)η̂ on D/Dint]2.

26



We then bound the product probability in the right member of (5.23) with the help of
(5.9) ii), (5.4), as well as (5.10), and find that for large ℓ

(5.24)

P[T ∩R] ≤
e−Γ + ĉ Γ∣Ĉℓ∣ sup

sℓ≤t≤tℓ

P[λ1,ω(D) ∈ [t, t + εℓ], ϕ1,D,ω ≤ e−(log ℓ)η̂ on D/Dint] +
∣Ĉℓ∣2 P[λ1,ω(D) ∈ [tℓ, tℓ + εℓ], ϕ1,D,ω ≤ e−(log ℓ)η̂ on D/Dint]2.

Since limℓ P[T ] = 0 by (3.25), the claim (5.18) now follows from the above inequality and
the definition of Σ in (5.19). This proves Proposition 5.3.

6 Lower bound on the spectral gap via deconcentra-

tion

In this section we prove the main asymptotic lower bound on the spectral gap in Theorem
6.1. The scale (log ℓ)−(1+2/d) that appears in Theorem 6.1 is expected to capture the correct
size of the spectral gap, see Remark 6.5 1) at the end of the section. The main ingredient
in the proof of Theorem 6.1 lies in the deconcentration estimates shown in Theorem
6.2. Whereas the results of the previous sections can be adapted with the techniques of
Chapter 4 of [28] to the case of soft obstacles, see (1.18), the proof of Theorem 6.2 uses
in a substantial manner the hard sphere obstacles considered here.

The main result is

Theorem 6.1. (Lower bound on the spectral gap)

(6.1)

lim
σ→0

limsup
ℓ→∞

P[R] = 0, where
R = {ω ∈ Ω;λ1,ω(Bℓ) <∞ and λ2,ω(Bℓ) < λ1,ω(Bℓ) + σ(log ℓ)−(1+2/d)},
see (4.5).

The main tool in proving Theorem 6.1 are the following deconcentration estimates,
which take place in a large deviation regime of low values for λ1,ω(D0). We recall D0 from
(4.2), Dint

0 from (5.5), η̂ ∈ (0, 1
d
) from Theorem 4.1, εℓ = σ(log ℓ)−(1+2/d) + (log ℓ)−(2+2/d) +

e−(log ℓ)
η̂
from (5.17), as well as sℓ and tℓ (= tℓ(Γ)) from (5.10) and (5.8).

Theorem 6.2. (Deconcentration estimates)
There is a K > 0 such that for every Γ > 0 and m ≥ 1, there is a σ0 > 0 such that for all
σ ∈ (0, σ0), for large ℓ, for all t ∈ [sℓ, tℓ], setting J = [t, t + εℓ], there are pairwise disjoint
compact intervals J1, . . . , Jm in (0, tℓ) such that

(6.2)
P[λ1,ω(D0) ∈ J and ϕ1,D0,ω ≤ e−(log ℓ)η̂ on D0/Dint

0 ] ≤K P[λ1,ω(D0) ∈ Ji],
for any 1 ≤ i ≤m.

(We actually prove Theorem 6.2 with K = e2dν(1+2a)d , see (6.19)).

We first explain how Theorem 6.1 follows from Theorem 6.2.
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Proof of Theorem 6.1 based on Theorem 6.2: We consider Γ > 0, m = ⌈K Γ3⌉, and a
corresponding σ0 > 0 as in Theorem 6.2. Then, for all σ ∈ (0, σ0), for large ℓ, for all
t ∈ [sℓ, tℓ], there are pairwise disjoint compact intervals J1, . . . , Jm in (0, tℓ) such that
(6.2) holds. Adding these m inequalities, we see that the left member of (6.2) is at most

K

m
P[λ1,ω(D0) < tℓ] (5.9)ii)≤ K

m
Γ/∣Ĉ∗ℓ ∣ (5.4), choice of m≤ ĉ/(Γ2 ∣Ĉℓ∣).

Thus, coming back to (5.19), we see that for all σ < σ0,
(6.3) Σ ≤ ĉ /Γ2.

It then follows from (5.18) that for all σ < σ0 (which depends on Γ)

(6.4) limsup
ℓ→∞

P[R] ≤ e−Γ + ĉ 2 /Γ + ĉ 2 /Γ4.

Letting Γ tend to infinity, (6.1) follows. This proves Theorem 6.1. ◻

We will now turn to the proof of Theorem 6.2. To establish the deconcentration
estimate in a large deviation regime of low values of λ1,ω(D0) corresponding to (6.2), we
will bring into play transformations of the obstacle configurations which do not change
too much probabilities (see the multiplicative factor K in (6.2)), and induce a controlled
decrease of λ1,ω(D0). In this features lies a difficulty. Whereas increasing λ1,ω(D0) is
not difficult (for instance by inserting an additional obstacle in a spot where the principal
Dirichlet eigenfunction ϕ1,D0,ω is not too small, see Theorem 2.3, p. 109 of [28]), decreasing
λ1,ω(D0) in a controlled (to have many disjoint intervals Ji,1 ≤ i ≤ m, in (6.2)) and
probabilistically economical fashion is a more delicate endeavor. To this end, we will
exploit the effect of a “gentle expansion” of the Poisson cloud ω to lower eigenvalues. The
constraint on ϕ1,D0,ω in the left member of (6.2) will ensure a “proper centering of the
underlying clearing” in the box (so that it does not get damaged by the expansion). We
also refer to Lemma 3.3 of [5] for other kind of transformations, which however do not
seem adequate for the task of proving (6.2).

Proof of Theorem 6.2: Throughout the proof, using translation invariance, without loss
of generality, we let D0 stand for the L0-box centered at the origin, i.e. corresponding to
q = 0 in (4.2). We then consider Γ > 0, m ≥ 1 and σ > 0 to be later chosen small, see
(6.49). We further introduce the “expansion ratio”

(6.5) λ = eu/∣D0∣ with u ∈ (0,1) (note that λd ≤ 2 since
d

∣D0∣
(4.1)≤ d

10d
< log 2),

and the homothety centered at the origin of ratio λ:

(6.6) h(x) = λx, for x ∈ Rd.
Given an ω =∑i δxi in Ω, we write

(6.7) ω̃ = h ○ ω = ∑
i

δh(xi) ∈ Ω, for the point measure image of ω under h,

so that

(6.8)
ω̃ under P is distributed as P̃, where P̃ stands for the law on Ω of a Poisson
point process on Rd with intensity ν

λd
.
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We need some further notation. When U is a bounded open set in Rd and ω ∈ Ω, we write
(see (1.15))

(6.9) λ̃1,ω(U) = λ− 1

2
∆ (U / ⋃

x∈ω

B(x,λa))
(i.e. the principal Dirichlet eigenvalue of −1

2
∆ in U / ⋃x∈ωB(x,λa)), and

(6.10)
ϕ̃1,U,ω for the corresponding principal Dirichlet eigenfunction

(defined similarly to (1.14) and below (1.14) with a replaced by λa).

Then, by Brownian scaling, for U bounded open set and ω ∈ Ω, one has

λ̃1,ω̃(λU) = 1

λ2
λ1,ω(U), and(6.11)

ϕ̃1,λU,ω̃(⋅) = 1

λd/2
ϕ1,U,ω ( ⋅

λ
) (both sides identically vanish if Uω = ∅).(6.12)

Of central interest for us is the choice U =D0. By the observation below (1.10), ϕ̃1,λD0,ω(⋅)
is a random continuous function on Rd, which vanishes outside λD0/⋃x∈ωB(x,λa). Let-
ting Da

0 stand for the open a-neighborhood of D0, we see that

(6.13)
λ̃1,ω(λD0) and ϕ̃1,λD0,ω(⋅) are measurable with respect to the σ-algebra GλDa

0

on Ω generated by the random variables ω(C) with C Borel subset of λDa
0 .

The law P̃λDa
0
of the restriction of P̃ to the σ-algebra GλDa

0
is absolutely continuous with

respect to the corresponding restriction PλDa
0
of P to GλDa

0
. Indeed, they respectively

correspond to a Poisson point process of intensity ν
λd

and ν in the box λDa
0 and one has

P̃λDa
0
= exp{(logλ−d)ω(λDa

0) + ν ∣λDa
0 ∣ − ν λ−d ∣λDa

0 ∣}PλDa
0

= exp{ν (λd − 1) ∣Da
0 ∣} e−d u

∣D0∣
ω(λDa

0
)
PλDa

0
.

(6.14)

We write as a shorthand notation

(6.15) ηℓ = e−(log ℓ)η̂ ,
so that εℓ = σ(log ℓ)−(1+2/d) + (log ℓ)−(2+2/d) + ηℓ, see (5.17).

We assume from now on ℓ ≥ c6(d, ν, a,Γ), see above (5.8), so that tℓ(= tℓ(Γ)) is defined.
Then for t ∈ [sℓ, tℓ] (see (5.10) for notation) and J = [t, t + εℓ], we consider the event that
appears in the left member of (6.2), namely

(6.16) A = {λ1,ω(D0) ∈ J and ϕ1,D0,ω ≤ ηℓ on D0 /Dint
0 }.

Using the scaling identities (6.11), (6.12), and the density formula (6.14), we find that

P[A] (6.11),(6.12)= P[λ̃1,ω̃(λD0) ∈ J
λ2

and ϕ̃1,λD0,ω̃ ≤ ηℓ/λd/2 on λ(D0/Dint
0 )]

(6.8)= P̃[λ̃1,ω(λD0) ∈ J
λ2

and ϕ̃1,λD0,ω ≤ ηℓ/λd/2 on λ(D0/Dint
0 )]

(6.13),(6.14)= exp{ν(λd − 1) ∣Da
0 ∣} E [ exp {− du∣D0∣ ω(λDa

0)}, λ̃1,ω(λD0) ∈ J
λ2

and

ϕ̃1,λD0,ω ≤ ηℓ/λd/2 on λ (D0/Dint
0 )]

≤ K P[Ã],

(6.17)
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where we have set

Ã = {λ̃1,ω(λD0) ∈ J
λ2

and ϕ̃1,λD0,ω ≤ ηℓ/λd/2 on λ(D0/Dint
0 )} and(6.18)

K = e2dν(1+2a)d ( ≥ exp{ν (λd − 1) ∣Da
0 ∣} since λd − 1 = edu/∣D0∣ − 1 ≤ 2du/∣D0∣(6.19)

by (6.5) and the inequality es − 1 ≤ es s for s > 0).

We also note that just as in (1.11) (replacing a by λa in the proof of (1.11)), with the
same dimension dependent constant c1, one has

(6.20) ∥ϕ̃1,λD0,ω∥∞ ≤ c1 λ̃1,ω(λD0)d/4, for all ω ∈ Ω
(one could also use the scaling identities (6.11), (6.12) and (1.11) to infer (6.20)).

We now wish to make use of the inequality (6.17). For this purpose we want to compare
λ̃1,ω(λD0) that appears in the event Ã in (6.18) with λ1,ω(D0). The next lemma provides

an upper bound on λ1,ω(D0) in terms of λ̃1,ω(λD0), when we know that ϕ̃1,λD0,ω is small
on Dc

0.

Lemma 6.3. For ω ∈ Ω, if t1 < 1 / (4 ∣D0∣1/2) is such that

(6.21) ϕ̃1,λD0,ω ≤ t1 onDc
0.

then

(6.22) λ1,ω(D0) ≤ λ̃1,ω(λD0)(1 − 4t1 ∣D0∣1/2)−1.
Proof. Without loss of generality, we assume that λ̃1,ω(λD0) <∞ and write ϕ̃ as a short-
hand for ϕ̃1,λD0,ω. As noted above (6.13), ϕ̃ is a continuous function. If t > t1 is close to

t1 and 4t ∣D0∣1/2 < 1, the function ψ̃ = (ϕ̃ − t)+ is continuous, compactly supported and
vanishes on a neighborhood of Dc

0. In addition, one has

(6.23) 1 = ∫
λD0

ϕ̃ 2dx ≤ ∫
λD0

ψ̃ 2
+ 2tψ̃ + t2dx

ψ̃=0 on Dc

0≤
λd≤2

∫
D0

ψ̃ 2dx + 2t∫
D0

ψ̃ dx + 2t2 ∣D0∣.
Moreover, by the Cauchy-Schwarz inequality and ∫D0

ψ̃2dx ≤ ∫D0
ϕ̃2dx ≤ 1, one also has

∫D0
ψ̃ dx ≤ ∣D0∣1/2. So, coming back to (6.23), we find that

(6.24) 1 ≤ ∫
D0

ψ̃ 2dx + 2t ∣D0∣1/2 + 2t2 ∣D0∣ t ∣D0∣1/2<1≤ ∫
D0

ψ̃ 2dx + 4t ∣D0∣1/2.
Since 4t ∣D0∣1/2 < 1, it follows that ψ̃ is not identically 0. It vanishes on a neighborhood
of Dc

0 and on ⋃y∈ωB(y,λa) and is thus compactly supported in D0,ω, which is not empty.
By construction it also belongs to H1(Rd) and hence to H1

0(D0,ω). Its Dirichlet integral
is at most that of ϕ̃ (see for instance Corollary 6.18 on p. 153 of [20]) so that

(6.25) λ1,ω(D0) ≤ 1

2 ∫ ∣∇ψ̃∣2dx
∫ ψ̃2dx

≤
1

2 ∫ ∣∇ϕ̃∣2dx
∫ ψ̃2dx

(6.24)≤ λ̃1,ω(λD0)(1 − 4t ∣D0∣1/2)−1.
Letting t decrease to t1, we find (6.22).
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In the same fashion, one has

Lemma 6.4. For ω ∈ Ω, if t2 < 1/(4 ∣D0∣1/2) is such that

(6.26) ϕ1,D0,ω ≤ t2 on each B(y,λa), y ∈ ω that intersect D0,

then

(6.27) λ̃1,ω(λD0) ≤ λ1,ω(D0)(1 − 4t2 ∣D0∣1/2)−1.
We now want to choose t1 and t2 so that on the event Ã in (6.18) the assumptions of

Lemmas 6.3 and 6.4 are fulfilled. In the case of t1 this is straightforward. We assume ℓ
sufficient large so that (see (6.15), (4.1), (4.2)):

(6.28) ηℓ 4 ∣D0∣1/2( = e−(log ℓ)η̂ 4{10(⌈R0⌉ + 1)}d/2 (log ℓ)1/2) < 1

2
,

and choose

(6.29) t1 = ηℓ.
Then, the assumptions of Lemma 6.3 hold on the event Ã. Indeed, one has ϕ̃1,λD0,ω ≤ ηℓ
on λ(D0/Dint

0 ) ⊇ λD0/D0 since λd ≤ 2 and 2Dint
0 ⊆ D0, see (5.5), and ϕ̃1,λD0,ω vanishes

outside λD0.

Thus, for large ℓ, we see that for all u ∈ (0,1) and t ∈ [sℓ, tℓ] on the event Ã in (6.18)
(recall that J = [t, t + εℓ]) one has

λ1,ω(D0) ≤ λ̃1,ω(λD0)(1 − 4ηℓ ∣D0∣1/2)−1 ≤ (t + εℓ)λ−2(1 − 4ηℓ ∣D0∣1/2)−1
(6.28),t≤tℓ≤ 2(tℓ + εℓ) (5.15),(5.17)< 3c0(log ℓ)−2/d.

(6.30)

We then turn to the choice of t2.

We consider ω ∈ Ã (see (6.18)) and an arbitrary y ∈ ω such that B(y,λa) intersects
D0 and ϕ = ϕ1,D0,ω is not identically 0 on B(y,λa). Since ϕ = 0 on B(y, a) we consider
x ∈ B(y,λa)/B(y, a) such that ϕ(x) > 0. We write U for the connected component of

D0,ω containing x and U ′ for the intersection of U with
○

B(y,100a), the open ball with
center y and radius 100a. With ℓ large and (6.30) we can assume that (see (1.15), (1.16)
for notation)

(6.31) λ1,ω(D0) = λ− 1

2
∆(U) < 3c0 (log ℓ)−2/d ≤ λd(100a)−2 ≤ λ− 1

2
∆(U ′).

Then, by (1.12) (in a rather similar fashion to (4.39)), we have

ϕ(x) = Ex[ϕ(XTU′
) exp{λ1,ω(D0)TU ′}, T ○

B(y,100a)
< TU]

(6.30),(1.11)≤ c(d) (t + εℓ)d/4Ex[exp{3c0(log ℓ)−2/d T ○
B(y,100a)

}, T ○
B(y,100a)

< TU].(6.32)

Note that when Brownian motion enters B(y, a), it exits U , so that using scaling and
translation invariance, we find that

(6.33) ϕ(x) ≤ c(d)(t + εℓ)d/4 sup
1≤∣z∣≤λ

Ez[exp{3c0 a2(log ℓ)−2/d T ○
B(0,100)

}, T ○
B(0,100)

<HB(0,1)].
31



To bound the above expectation, we consider the functions w(z) = ∣z∣−b where b ∈ (0, d−2].
The first and second radial derivatives are ∂r w = −b ∣z∣−(b+1) and ∂2r w = b(b+1) ∣z∣−(b+2) , so
that 1

2
∆w = 1

2
∂2r w +

(d−1)
2∣z∣ ∂r w = −1

2
b(d − 2 − b) ∣z∣−(b+2). We then introduce the stopping

time S = T ○
B(0,100)

∧HB(0,1), so that for z ∈ Rd with 1 < ∣z∣ ≤ λ, under Pz
(6.34) w(Xt∧S) exp {−∫ t∧S

0

1

2
∆w

w
(Xs)ds} = w(Xt∧S) exp {∫ t∧S

0

b(d − 2 − b)
2∣Xs∣2 ds}, t ≥ 0,

is a uniformly integrable martingale when b(d − 2− b) < λd 100−2 (it is then dominated by
the Pz-integrable variable exp{1

2
b(d− 2− b)T ○

B(0,100)
}). So for such b, after Pz-integration

and letting t tend to infinity, we have

∣z∣−b = Ez[∣XS ∣−b exp{∫ S

0

b(d − 2 − b)
2∣Xs∣2 ds}]

≥ 100−bEz[∣XS ∣ = 100, exp{∫ S

0

b(d − 2 − b)
2∣Xs∣2 ds}] + Pz[∣XS ∣ = 1].

(6.35)

By a classical formula corresponding to b = d − 2 in the first line of (6.35), one also has
Pz[∣XS ∣ = 100] = (1 − ∣z∣−(d−2)) / (1 − 100−(d−2)) (or see (6) on p. 29 of [9]). We now pick
b = b(d) ∈ (0, d − 2) such that b(d − 2 − b) < λd 100−2, and infer from (6.35) that

Ez[∣XS ∣ = 100, exp {∫ S

0

b(d − 2 − b)
2∣Xs∣2 ds}] ≤ 100b(∣z∣−b − Pz[∣XS ∣ = 1])

∣z∣≥1≤ 100bPz[∣XS ∣ = 100]
∣z∣≥1≤ c′(d) (1 − λ−(d−2)) (6.5)≤ c(d)u/∣D0∣.

(6.36)

As a result, when ℓ is large enough so that 3c0 a2(log ℓ)−2/d < 1
2
b(d − 2 − b)100−2, the

expectation in (6.36) is bigger or equal to the expectation in (6.33), and hence

(6.37) ϕ(x) ≤ c′′(d)(t + εℓ)d/4u/∣D0∣ (6.30),(4.1)≤ c7(d, ν)u/∣D0∣3/2, for all x ∈ ⋃y∈ωB(y,λa).
We can thus choose

(6.38) t2 = c7 u/∣D0∣3/2.
Then, for large ℓ, for all u ∈ (0,1) and sℓ ≤ t ≤ tℓ on Ã in (6.18), one has by Lemma 6.4

(6.39) λ̃1,ω(λD0) ≤ λ1,ω(D0)(1 − 4c7 u/∣D0∣)−1.
We then introduce the notation (recall that J = [t, t + εℓ])

ζ̃1,ω = log (λ̃1,ω(λD0)), ζ1,ω = log (λ1,ω(D0)),
ζmin = log t, ζmax = log(t + εℓ).(6.40)

Collecting (6.30) and (6.39), we see that for large ℓ, for all u ∈ (0,1), t ∈ [sℓ, tℓ], one has
on Ã from (6.18), with c∗ = 5c7(d, ν):
(6.41) ζ̃1,ω − c∗ u/∣D0∣ (6.39)≤ ζ1,ω

(6.30)≤ ζ̃1,ω + 5ηℓ ∣D0∣1/2.
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However, eζ̃1,ω ∈ J/λ2 on Ã, with λ = eu/∣D0∣, see (6.5), and therefore

(6.42) ζmin − (c∗ + 2)u/∣D0∣ ≤ ζ1,ω ≤ ζmax + 5ηℓ ∣D0∣1/2 − 2u/∣D0∣.
Note also that εℓ = σ(log ℓ)−(1+2/d) + (log ℓ)−(2+2/d) + e−(log ℓ)η̂ , see (5.17), so that for large ℓ
for all t ∈ [sℓ, tℓ] one has

(6.43) ζmax − ζmin = log (1 + εℓ
t
) ≤ log (1 + εℓ

sℓ
) (5.10)≤ c (d, ν)σ/∣D0∣.

We are going to choose in (6.49) below

(6.44) σ0 > 0 and u0 = 0 < u1 < . . . um < 1,

satisfying (with c from (6.43) and c∗ from (6.41))

(6.45) 2ui+1 > cσ0 + (c∗ + 2)ui, for i = 0,1, . . . ,m − 1.
It will then follow by (6.43) that for any σ ∈ (0, σ0), for large ℓ, for all t ∈ [sℓ, tℓ]:
(6.46) ζmin − (c∗ + 2)ui/∣D0∣ > ζmax + 5ηℓ ∣D0∣1/2 − 2ui+1/∣D0∣, for 0 ≤ i <m,
so that the intervals

(6.47) Ji = [t e−(c∗+2)ui/∣D0∣, (t + εℓ) e5ηℓ∣D0∣1/2−2ui/∣D0∣], for 1 ≤ i ≤m,
are pairwise disjoint, included in (0, t). In addition by (6.42), with the choice ui for u,
one will have λ1,ω(D0) ∈ Ji on Ã, and by (6.17) it will follow that

(6.48) P[A] ≤K P[λ1,ω(D0) ∈ Ji], for 1 ≤ i ≤m (with K
(6.19)= e2dν(1+2a)

d
).

This will prove Theorem 6.2. There remains to choose σ0 > 0 and ui,0 ≤ i ≤ m, so that
(6.44), (6.45) hold. We simply set

(6.49)

⎧⎪⎪⎨⎪⎪⎩
u0 = 0 and ui+1 = cσ0 + (c∗ + 2)ui, for 0 ≤ i <m so that

ui = cσ0(1 + (c∗ + 2) + ⋅ ⋅ ⋅ + (c∗ + 2)i−1) = c σ0 (c∗ + 2)i − 1
c∗ + 1 , for 1 ≤ i ≤m,

and choose σ0 small enough so that um < 1, so that (6.44), (6.45) hold. This completes
the proof of Theorem 6.2. ◻

Remark 6.5. 1) The results in Section 3 of [27] make it plausible that the scale (log ℓ)−(1+2/d)
captures the correct size of the spectral gap, in the sense that

(6.50) lim
σ→∞

lim inf
ℓ→∞

P[R] = 1.
As we explain below (6.52), the spectral gap in B4ℓ is related to the fluctuations of
λ1,ω(Bℓ). The results of Section 3 of [27] on the fluctuations of λ1,ω(Bℓ) are written in the
context of soft obstacles, but can be adapted to the present set-up. By (3.19) of Corollary
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3.4 and (3.2) of [27], one knows that there is a ζ ∈ (0,1) such that for any ε > 0 one can
find Aε > 0 such that for large k0

(6.51)
for more than two thirds of k0 ≤ k < k0 + [kζ0], there is a compact interval
I2k ,ε ⊆ (0,∞) such that P[λ1,ω(B2k) ∉ I2k,ε] ≤ ε and ∣I2k,ε∣ ≤ Aε(log 2k)−(1+2/d).

(In essence, I2k ,ε, corresponds to m2k(u)−m2k(v) in (3.19) of [28] with the choice u = 1− ε
2
,

v = ε
2
and Aε to 3Γ of the same reference).

Now, if ℓ = 2k, for a k as above (with the corresponding Iℓ,ε), one can consider B4ℓ and
the 7d sub-boxes Bℓ,v = Bℓ + ℓv, v ∈ V = {−3, . . . ,3}d of B4ℓ, as well as the event Mℓ,ε such
that F(4ℓ) in (3.9) (with 4ℓ in place of ℓ) occurs, and λ1,ω(Bℓ,v) ∈ Iℓ,ε for each v ∈ V. By
(3.10) for large k0 and k as in (6.51), one has

(6.52) P[Mℓ=2k ,ε] ≥ 1 − (7d + 1)ε.
Then, on Mℓ=2k,ε, one of the B ∈ C(4ℓ), see (3.9), is such that λ1,ω(B ∩B4ℓ) lies between

λ1,ω(B4ℓ) and λ1,ω(B4ℓ) + (log 4ℓ)−(2+2/d), and the same holds true for λ1,ω(Bℓ,v) if Bℓ,v

contains B ∩B4ℓ. Thus, k0 (and hence k) being large; on Mℓ=2k,ε, we can consider disjoint
boxes Bℓ,v and Bℓ,v′ in B4ℓ such that both λ1,ω(Bℓ,v) and λ1,ω(Bℓ,v′) lie in [λ1,ω(B4ℓ),
λ1,ω(B4ℓ) + (log 4ℓ)−(2+2/d) + ∣Iℓ,ε∣]. Since Bℓ,v and Bℓ,v′ are disjoint, this implies by the
min-max principles, see Version 3 of Theorem 12.1, p. 301 of [20], that the spectral gap

λ2,ω(B4ℓ)−λ1,ω(B4ℓ) is at most (log 4ℓ)−(2+2/d)+ ∣Iℓ,ε∣ (6.51)≤ (log 4ℓ)(−2+2/d)+Aε(log ℓ)−(1+2/d).
This shows that for any ε > 0, for large k0 (with 2k playing the role of 4ℓ)

(6.53)
for more than half of k0 ≤ k < k0 + [kζ0], P[λ2,ω(B2k) − λ1,ω(B2k) ≤(Aε + 1)(log ℓk)−(1+2/d)] ≥ 1 − (7d + 1)ε.

Incidentally, in the above argument “half” could be replaced by any number less than 1.
In any case, from (6.53) one sees that it is plausible that (6.50) holds.

2) One can naturally wonder whether the strategy in the proof of Theorem 6.2 can be
adapted to derive deconcentration estimates in the context of Poissonian soft obstacles,
see (1.18), and whether the corresponding lower bound on the spectral gap correspond-
ing to Theorem 6.1 can be established in this context as well. Incidentally, in the scaling
identities corresponding to (6.11), (6.12), the original bump functionW (⋅) in (1.18) would
be transformed into W̃(⋅) = 1

λ2
W ( ⋅

λ
) (the case under present consideration formally cor-

responds to W (⋅) =∞1{∣ ⋅ ∣ ≤ a} and W̃(⋅) =∞1{∣ ⋅ ∣ ≤ λa}). ◻

7 Bose-Einstein condensation

In this section we combine the lower bound on the spectral gap obtained in the main
Theorem 6.1 with the results of Kerner-Pechmann-Spitzer in [16]. We prove a so-called
type-I generalized Bose-Einstein condensation in probability for a model in the spirit of
Kac-Luttinger [12], [13] consisting of a non-interacting Bose gas among a Poisson cloud
of hard obstacles made of closed balls of radius a > 0 centered at the points of the cloud,
which has intensity ν > 0. The dimension of space is d ≥ 2. The radius a although fixed can
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be arbitrarily small, and the complement in Rd of the spherical impurities may possibly
percolate, see Chapter 4 of [21]. Our main result is Theorem 7.1.

Following [16], we consider a thermodynamic limit in a grand-canonical set-up. Given
a fixed particle density (not to be confused with the parameter of Section 2).

(7.1) ρ > 0,

we consider the positive sequence ℓN ,N ≥ 1, indexed by the particle number N , which
tends to infinity and satisfies (see (1.5) for notation)

(7.2) ρ ∣BℓN ∣ = N, for N ≥ 1
(in the notation of [16], 2ℓN = LN ).

The events (see (1.9), (1.4) for notation)

(7.3) ΩN = {ω ∈ Ω;λ1,ω(BℓN ) <∞} = {ω ∈ Ω;BℓN ,ω /= ∅}, N ≥ 1
are non-decreasing, have positive probability, and

(7.4) ⋃N≥1 ΩN = Ω∞ (the event of full P-measure in (1.6)).

To stay within the framework of [16], on ΩcN we replace the variables λ1,ω(BℓN ), j ≥ 1,
which are all infinite on ΩcN , by the ordered sequence of Dirichlet eigenvalues of −1

2
∆ + 1

in BℓN (any positive constant in place of 1 would do). We thus define the modified single
particle eigenvalues (see (1.9) for notation)

(7.5) λj,ω(BℓN ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λj,ω(BℓN ), when j ≥ 1 and ω ∈ ΩN ,
the j-th Dirichlet eigenvalue of −1

2
∆ + 1 in BℓN , when j ≥ 1 and

ω ∉ ΩN .

Note that

(7.6) on Ω∞, for large N , λj,ω(BℓN ) = λj,ω(BℓN ), for all j ≥ 1,
i.e. outside a P-negligible set, the original sequence of eigenvalues agrees with the modified
sequences of eigenvalues, when N is large. We denote by β ∈ (0,∞) the inverse tempera-

ture. Given a chemical potential µ ∈ (−∞, λ1,ω(BℓN )), the quantity (eβ(λj,ω(BℓN
)−µ)
− 1)−1

is the number of particles occupying the j-the eigenstate in the grand-canonical ensemble,
see (2.7) of [16], and we choose µ = µωN ∈ (−∞, λ1,ω(BℓN )) so that

(7.7)
1

∣BℓN ∣ ∑j≥1 n
j,ω
N = ρ, with n j,ωN = 1 / (eβ(λj,ω(BℓN

)−µωN ) − 1).
In view of (7.6) and setting nj,ωN = 1 / (eβ(λj,ω(BℓN

)−µωN ) − 1) on ΩN , we also see that

(7.8) on Ω∞, for large N , n j,ωN = nj,ωN , for all j ≥ 1,

(i.e. the modification (7.5) is immaterial on Ω∞ for large N).
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We recall some known facts. As N →∞, the random measures on R+

(7.9) mN,ω =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∣BℓN ∣ ∑i≥1 δλi,ω(BℓN
), for ω ∈ ΩN ,

0, for ω ∈ ΩcN ,
are known to P-a.s. converge vaguely to a deterministic measure, the density of states

(7.10)
m on [0,∞), characterized by its Laplace transform

∫[0,∞) e
−tλdm(λ) = 1

(2πt)d/2 E
t
0,0[exp{−ν ∣W a

t ∣}], for t > 0,
where Et

0,0 denotes the expectation with respect to the Brownian bridge in time t from 0
to 0, and W a

t is the Wiener sausage of radius a in time t, i.e. the closed a-neighborhood
of the Brownian bridge trajectory. (The proof is similar to that of Theorem 5.18, p. 99
of [22]). In view of (7.6) we also see that

(7.11)
P-a.s., the measures mN,ω = 1

∣BℓN ∣ ∑i≥1 δλi,ω(BℓN
) on [0,∞) converge vaguely

as N →∞ to the measure m in (7.10).

One also knows thatm has a so-called Lifshitz tail close to 0. More precisely, see Corollary
3.5 of [26] or as in Theorem 10.2, p. 221 of [22], one has (see above (0.2) for notation):

(7.12) m([0, λ]) = exp{ − νωd(λd/λ)d/2(1 + o(1))}, as λ→ 0.

(The quantity exp{−νωd(λd/λ)d/2} is the probability that the Poisson point process places
no point in the open ball of radius (λd/λ)1/2 centered at the origin. This ball has a principal
Dirichlet eigenvalue for −1

2
∆ equal to λ.) We then introduce the critical density for our

system (see (2.6) of [16]), namely

(7.13) ρc(β) = ∫ ∞

0

1

eβλ − 1 dm(λ) (<∞ by (7.12)).

In our model a generalized Bose-Einstein condensation, with a macroscopic occupation of
an arbitrary small energy band of one-particle states, is known to occur when ρ > ρc(β),
see Theorem 2.5 of [16] or Theorem 4.1 of [19]. The main result of this section is the
following theorem, which pins down the nature of the condensation. It shows a type-I
generalized Bose-Einstein condensation in probability, when ρ > ρc(β):
Theorem 7.1. When ρ > ρc(β), then as N tends to infinity,

(7.14)

⎧⎪⎪⎨⎪⎪⎩
i) n

1,ω
N /N tends to (ρ − ρc(β))/ρ in P-probability, and

ii) nj,ω/N tends to 0 in P-probability, for any j ≥ 2.
Equivalently, for every fixed N1 ≥ 1, as N ≥ N1 tends to infinity,

(7.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i) n

1,ω
N /N tends to (ρ − ρc(β))/ρ in PN1

-probability, and

ii) n
j,ω
N /N tends to 0 in PN1

-probability,

where PN1
stands for the conditional probability P(⋅ ∣ΩN1

), see (7.3).
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(When ρ ≤ ρc(β), the above quantities in (7.14), respectively in (7.15), are known to
converge to 0 in P-probability, respectively PN1

-probability, as N → ∞, see for instance
Theorem 3.2.4, p. 30 of [23].)

Proof. The claim (7.15) is a simple restatement of (7.14) since nj,ωN , j ≥ 1,N ≥ N1 coincide
with n1,ω

N , j ≥ 1,N ≥ N1 on ΩN1
and limN1→∞P(ΩN1

) = 1, see (7.4), (7.5), (7.7). We only
need to prove (7.14).

We want to apply Theorem 2.9 of [16]. We first need to check the Assumptions 2.2
of the above reference. We have P-a.s., λ1,ω(BℓN )→ 0, as N → 0, by (0.4) and (7.6), and
P-a.s., mN,ω converges vaguely to the deterministic measure m, as N → ∞, by (7.11).
This shows that i) and ii) of Assumptions 2.2 of [16] hold. As we now show

(7.16) E[mN,ω([0, λ])] ≤m([0, λ]) for λ < 1 and N ≥ 1.

This will imply that iii) of Assumptions 2.2 of the above reference holds as well. To prove
(7.16), we first observe that by Dirichlet bracketing and translation invariance, for N,k ≥
1, λ ≥ 0, E[mN,ω([0, λ])] ≤ E[mkdN([0, λ])] (we recall that by (7.2) ℓkdN = kℓN). Then, on a
set of full P-measure mkdN,ω converges vaguely tom as k goes to infinity (see (7.9), (7.10)),
and hence on that set for every point λ of continuity of m([0, ⋅]), limkmkdN,ω([0, λ]) =
m([0, λ]). For any such fixed λ we also have mkdN,ω([0, λ]) ≤ mkdN,ω=0([0, λ]) which is
deterministic and bounded in k. Thus, by dominated convergence, we see that for any λ
point of continuity of m([0, ⋅]), one has

(7.17) E[mN,ω([0, λ])] ≤m([0, λ])
and this inequality extends to any λ ≥ 0 by right-continuity and monotonicity. Since
mN,ω([0, λ]) =mN,ω([0, λ]) for all λ < 1 and ω ∈ Ω by (7.5), the claim (7.16) follows.

As for iv) of Assumptions 2.2 in [16], by the Lifshitz tail asymptotics (7.12), one has,

picking η1 ∈ (0,1) and setting C̃1 = ν ωd λd/2d (1 + η1/2) (0.3)= d c
d/2
0 (1 + η1/2),

(7.18) lim
N

N1−η1 m([0,{C̃1/ log(∣BℓN ∣)}2/d]) = 0.
This shows that Assumptions 2.2 of [16] are satisfied.

Now by the lower bound on the spectral gap in Theorem 6.1 and (7.6),

(7.19) lim
N

P[λ2,ω(BℓN ) − λ1,ω(BℓN ) ≥ (log ℓN)−(1+2/d+ε)] = 1, for any ε > 0.
Together with (0.4) (or (3.10)) and the fact that log ∣BℓN ∣ ∼ d log ℓN , as N → ∞, this is

more than enough to show that for C̃2 = d cd/20 (1 + η1/4) (< C̃1 above), one has

(7.20) lim
N

P[λ2,ω(BℓN ) − λ1,ω(BℓN ) ≥ N−(1−η1) and λ1,ω(BℓN ) ≤ {C̃2/ log(∣BℓN ∣)}2/d] = 1.
The assumptions of Theorem 2.9 of [16] are thus fulfilled (with c2 = 1 and c3 = 1), and the
claim (7.14) follows. This concludes the proof of Theorem 7.1.
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Remark 7.2. 1) One can wonder whether the above results extend to the context of soft
Poissonian obstacles, see (1.18). In the case of dimension 1 we refer to [24] for results in
the case when the strength of the soft obstacle tends to infinity with N , see Corollary 5.8
of this reference, and a less specific companion statement in the case of a fixed strength,
see Corollary 5.6 of [24].

2) In the case of hard spherical Poissonian obstacles in Rd, d ≥ 2, in a suitable non-
percolative regime for the vacant set, and suitably strong short-range repulsive pair-
interactions, we refer to [14], which, among other results, shows the absence of Bose-
Einstein condensation into the normalized eigenstates of the Dirichlet Laplacian in BℓN ,ω

(in the notation of (1.4)). ◻

References

[1] R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] A. Astrauskas. From extreme values of i.i.d. random fields to extreme eigenvalues of
finite-volume Anderson Hamiltonian. Probab. Surv., 13:156–244, 2016.

[3] M. Biskup and W. König. Eigenvalue order statistics for random Schrödinger oper-
ators with doubly-exponential tails. Commun. Math. Phys., 341(1):179–218, 2016.

[4] L. Brasco, G. De Philippis, and D. Velichkov. Faber-Krahn inequalities in sharp
quantitative form. Duke Math. J., 9:1777–1831, 2015.

[5] J. Ding, R. Fukushima, R. Sun, and C. Xu. Distribution of the random walk condi-
tioned on survival among quenched Bernoulli obstacles. Ann. Probab., 49(1):206–243,
2021.

[6] J. Ding and C. Xu. Localization for random walks among random obstacles in a
single Euclidean ball. Commun. Math. Phys., 375(2):949–1001, 2020.

[7] M. Donsker and S.R.S. Varadhan. Asymptotics for the Wiener sausage. Comm. Pure
Appl. Math., 28(4):525–565, 1975.

[8] H. Duminil-Copin, A. Rivera, P.-F. Rodriguez, and H. Vanneuville. Existence of an
unbounded nodal hypersurface for smooth Gaussian fields in dimension d ≥ 3. Ann.
Probab., 51(1), 228–276, 2023.

[9] R. Durrett. Brownian motion and martingales in analysis. Wadsworth, Belmont CA,
1984.

[10] N. Fusco, F. Maggi, and A. Pratelli. Stability estimates for certain Faber-Krahn,
isocapacitary and Cheeger inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5),
8:51–71, 2009.

[11] F. Germinet and F. Klopp. Enhanced Wegner and Minami estimates and eigen-
value statistics of random Anderson models at spectral edges. Ann. Henri Poincaré,
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