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Abstract

In the present article we consider a general enough set-up and obtain a refinement
of the coupling between the Gaussian free field and random interlacements recently
constructed by Titus Lupu in [9]. We apply our results to level-set percolation of
the Gaussian free field on a (d+ 1)-regular tree, when d ≥ 2, and derive bounds on
the critical value h∗. In particular, we show that 0 < h∗ <

√
2u∗, where u∗ denotes

the critical level for the percolation of the vacant set of random interlacements on
a (d+ 1)-regular tree.
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ETH Zürich
CH-8092 Zürich
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0 Introduction

Cable processes constitute a potent tool in conjunction with Dynkin-type isomorphism
theorems as shown in the recent articles [9], [10], [12], [21]. In the present work, in a
general enough set-up, we obtain a refinement of the coupling between the Gaussian free
field and random interlacements recently constructed in [9]. We apply our results to level-
set percolation of the Gaussian free field on the (d+1)-regular tree (d ≥ 2) endowed with
unit weights. We characterize the critical value h∗ for level-set percolation in terms of a
certain variational problem and establish upper and lower bounds on h∗. In particular,
we show that for all d ≥ 2, 0 < h∗ <

√
2u∗, where u∗ stands for the critical value for

the percolation of the vacant set of random interlacements on the (d+1)-regular tree, an
explicit quantity by the results of [19].

We now describe our results in more detail. We consider a locally finite, connected,
transient weighted graph, with vertex set E, and symmetric weights cx,y = cy,x ≥ 0, which
are positive exactly when x ∼ y, that is, when x and y are neighbors. We consider the
discrete time simple random walk on this weighted graph. When in x ∈ E, the walk
jumps to a neighbor y of x with probability cx,y/λx, where

(0.1) λx =
∑
x′∼x

cx,x′, for x ∈ E.

We write Px for the law of the walk starting at x, Ex for the corresponding expectation,
and (Zk)k≥0, for the walk. The Green function is symmetric and equals

(0.2) g(x, y) =
1

λy

Ex

[ ∞∑
k=0

1{Zk = y}
]
, for x, y ∈ E.

We denote by PG the canonical law on RE of the Gaussian free field on E, and by (ϕx)x∈E
the canonical field, so that under PG

(0.3) (ϕx)x∈E is a centered Gaussian field with covariance g(·, ·).

We also consider u > 0, and on some auxiliary probability spaces governed by the proba-
bility PI (see for instance [18]), the non-negative field

(0.4) (ℓx,u)x∈E of occupation-times of random interlacements at level u on E,

as well as

(0.5) Iu = {x ∈ E; ℓx,u > 0} and Vu = {x ∈ E; ℓx,u = 0},

the respective interlacement set and vacant set at level u. A Dynkin-type isomorphism
theorem is known to hold in this context (see Theorem 0.1 of [18], see also [5], [11], [17])

(0.6)

(1
2
ϕ2
x + ℓx,u

)
x∈E under the product measure PG ⊗ PI has same law as

(1
2
(ϕx −

√
2u)2

)
x∈E under PG.

One can attach a cable system to the above weighted graph, see Section 1. It has vertex set
Ẽ ⊇ E such that all edges {x, y} in E are linked by a compact segment of length (2cx,y)

−1.
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One defines on the cable system a continuous diffusion behaving as standard Brownian
motion in the interior of each such segment. It has a continuous symmetric Green function
g̃(z, z′), z, z′ ∈ Ẽ, with respect to the Lebesgue measure on Ẽ, which extends the Green
function g(·, ·) in (0.2) of the discrete time walk. One can then consider the Gaussian

free field on Ẽ, which is a continuous centered Gaussian field (ϕ̃z)z∈Ẽ with covariance

g̃(·, ·). Under the assumption that the sign clusters of the Gaussian free field on Ẽ are a.s.
bounded, it was shown in Theorem 3 of [9] that one can construct a coupling of (ηx)x∈E ,
a Gaussian free field on E, and Vu in (0.5) such that

(0.7) Vu ⊇ {η >
√
2u}

( def
= {x ∈ E; ηx >

√
2u}

)
, a.s. .

The assumption on the sign clusters of the Gaussian free field on Ẽ holds for instance in
the case of Zd, d ≥ 3, endowed with unit weights, as shown in [9] (we will see in Section
4 that it holds as well for the (d+ 1)-regular tree, d ≥ 2, endowed with unit weights).

In the present work we refine the construction of [9], and under the (mild) additional
assumption that supx∈E g(x, x) < ∞ (see also (1.42) or (1.43) for a weakening of this
assumption), we construct a coupling of (ηx)x∈E, (ϕx)x∈E Gaussian free fields on E, and
Vu as in (0.5), such that

(0.8)
i) ϕ and Vu are independent,

ii) a.s., for any A ⊆ (0,∞),Vu ∩ {ϕ ∈ A} ⊇ {η ∈
√
2u+ A}

(thus, choosing A = (0,∞), ii) above clearly refines (0.7)).

We prove (0.8) in Corollary 2.5 (see also Remark 2.6). It is a direct consequence of
a coupling between the Gaussian free field on the cable system and the random inter-
lacements at level u on the cable system that we construct in Section 2. It refines the
coupling in [9], in essence, through the use of the strong Markov property of the Gaussian
free field on the cable system. Our main statement appears in Theorem 2.4.

We then consider in Sections 3 and 4 an application to level-set percolation of the
Gaussian free field on the (d+ 1)-regular tree T endowed with unit weights (with d ≥ 2).
We are interested by the percolative property of {ϕ ≥ h}, for h in R, with (ϕx)x∈T the
Gaussian free field on T . We introduce the quantity (see (3.17) for its spectral interpre-
tation)

(0.9) λh = sup
{

d2√
d2 − 1

∫ ∞

h

∫ ∞

h

e−
a2

2d
+ab− b2

2d f(a) f(b) ν(da) ν(db);

∫

R

f 2(a) ν(da) = 1
}
,

where ν is the centered Gaussian law

(0.10) ν(da) =
1√
2πσ

e−
a2

2σ2 da, with σ2 def
=

d

d2 − 1
.

We show in Proposition 3.1 that

(0.11) h→ λh is a continuous decreasing bijection between R and (0, d),

and identify in Proposition 3.3 the critical value h∗ for level-set percolation of ϕ:

(0.12) h∗ is the unique value such that λh∗
= 1
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(so {ϕ ≥ h} only has finite components when h > h∗, and has an infinite component
when h < h∗).

Level-set percolation of (ϕx)x∈T can be recast in terms of the study of a branching
Markov chain with a barrier, where the Markov chain under consideration corresponds
to a suitable Ornstein-Uhlenbeck transition operator, see Section 3. This is very much in
the spirit of some of the models discussed in [2], and indeed, we employ methods of the
theory of branching processes in Section 3, which in turn require gaining information on
various spectral objects underlying λh from (0.9).

Unlike percolation for the vacant set Vu of random interlacements, where the critical

value u∗ is explicit in the sense that d exp{−u∗ (d−1)
d

2} = 1, see [19], there does not seem
to be a closed formula for h∗, or for λh. Our main results in Section 4 provide bounds on
λh and h∗. We show in Theorem 4.3 that

(0.13) λh > dΦ
(
h
(d− 1)√

d

)
, for h ∈ R, with Φ(a) =

1√
2π

∫ ∞

a

e−
t2

2 dt

(so λ0 >
d
2
), and that

(0.14) λh ≤ λ0 e
−h2

2
(d−1)2

d , for h ≥ 0.

The upper bound (0.14) comes as an application of the coupling (0.8) (and we do not
know of a direct proof). As a result of (0.12) - (0.14) we bound h∗ in Corollary 4.5:

(0.15)

0 ≤ h∆ < h∗ ≤ h� <
√
2u∗, with

dΦ
(
h∆

(d− 1)√
d

)
= 1, λ0 e

−h2
�
(d−1)2

2d = 1, and d e−u∗
(d−1)2

d = 1.

In particular, we prove that 0 < h∗ <
√
2u∗. One can naturally wonder how general this

inequality is, see also Remark 4.6.

We now explain how this article is organized. In Section 1, we collect useful information
on the cable system, on the strong Markov property of the Gaussian free field on the cable
system, and on the coupling from [9]. In Section 2, we construct our main coupling in
Theorem 2.4. The application (0.8) is shown in Corollary 2.5, see also Remark 2.6. Section
3 brings into place the set-up for the case of regular trees. The claims (0.11) and (0.12)
respectively appear in Proposition 3.1 and 3.3. In Section 4, we derive the main bounds
(0.13), (0.14) on λh in Theorem 4.3, and the resulting bounds on h∗ in Corollary 4.5.

Acknowledgments: We wish to thank Titus Lupu for useful discussions.

1 Cable systems: some preliminaries

In this section we collect some facts concerning various objects attached to the cable
system. In particular, we discuss the strong Markov property of the Gaussian free field on
the cable system, as well as some features of random interlacements and the isomorphism
theorem on the cable system.
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We keep the notation from the introduction. Given our basic locally finite, connected,
transient weighted graph with vertex set E, the cable system (or metric graph) is obtained
by attaching to each edge e = {x, y} of the above graph a compact interval with length

(2cx,y)
−1 with endpoints respectively identified to x and y. We denote by Ẽ ⊇ E the

resulting set obtained by glueing the above intervals so that Ẽ\E is the disjoint union
of the sets Ie, so that for each edge e, Ie is homeomorphic to the interior of the interval
attached to e. We denote by m the Lebesgue measure on Ẽ. For further details, we also
refer to Section 2 of [9], Section 2 of [6], and Section 1 of [20], as well as to Section 3 of
[21], which discusses a discrete space approximation to the cable system.

We also denote by d(·, ·) the (geodesic) distance on Ẽ for which we attach length 1 to
each Ie (instead of (2cx,y)

−1, with e = {x, y}), so that the restriction of d(·, ·) to E × E
coincides with the graph distance on E. For x ∈ E, N ≥ 1, we set

BN(x) = {z ∈ Ẽ; d(x, z) ≤ N}, B◦
N (x) = {x ∈ Ẽ; d(x, z) < N}, and

SN(x) = {z ∈ Ẽ; d(x, z) = N} = {y ∈ E; d(x, y) = N}.
(1.1)

On Ẽ one can define a continuous diffusion, via probabilities P̃z, z ∈ Ẽ, governing X
the canonical process with possibly finite life on Ẽ, so that on each Ie, X behaves as
a standard Brownian motion. This diffusion has continuous space-time local times with
respect to the Lebesgue measure m on Ẽ, and when in x ∈ E, reaches a neighboring site
in E after a local time at x, which is exponential with parameter λx, see (0.1), and equal
to y ∼ x (among all neighbors of x) with probability cx,y/λx, see Section 2 of [9].

Given U open subset of Ẽ and B closed subset of Ẽ, we denote by TU = inf{s ≥
0;Xs /∈ U} and HB = inf{s ≥ 0;Xs ∈ B} the respective exit time from U and entrance
time in B of X . We will also occasionally consider the case when B is open (for instance

in Lemma 1.4). Given U ⊆ Ẽ open, we denote by g̃U(·, ·) the Green function with respect
to the measure m of the diffusion on the cable killed when exiting U , so that

(1.2) g̃U(z, z
′) is continuous, symmetric, and vanishes if z or z′ is not in U ,

and for all z ∈ Ẽ, g̃U(z, ·) (= g̃U(·, z)) is harmonic on U\{z}. When U = Ẽ, one recovers
the Green function g̃(·, ·) mentioned in the introduction. It has the property (see (0.2)
for notation)

(1.3) g̃(x, y) = g(x, y), for x, y ∈ E.

The killed Green function also has the monotone convergence property: when Un ↑ U ,

(1.4) g̃U(z, z
′) = lim

n
↑ g̃Un(z, z

′), for z, z′ ∈ Ẽ

(for instance this follows from monotone convergence for resolvents combined with the
continuity and harmonicity of g̃Un(z, ·) and g̃U(z, ·)).

We now turn to the Gaussian free field on the cable system Ẽ. On the canonical
space Ω̃ of continuous real-valued functions on Ẽ endowed with the canonical σ-algebra
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A generated by the canonical coordinates ϕ̃z (we also sometimes write ϕ̃(z)), z ∈ Ẽ, we

consider the probability P̃G such that

(1.5)
under P̃G, (ϕ̃z)z∈Ẽ is a centered Gaussian process with covariance

ẼG[ϕ̃zϕ̃z′] = g̃(z, z′) (where ẼG denotes P̃G-expectation).

By (0.3) and (1.5), we see that

(1.6) the law of (ϕ̃x)x∈E under P̃G is equal to PG.

We first state the Markov property of ϕ̃. We consider K ⊆ Ẽ a compact subset with
finitely many connected components (note that ∂K is finite). For U = Ẽ\K and z ∈ Ẽ,
we set (with TU the exit time of X from U)

(1.7) hU(z) = Ẽz[ϕ̃(XTU
), TU <∞], z ∈ Ẽ.

This function is continuous, coincides with ϕ on K, and tends to 0 at infinity. It is also
harmonic on U . Then ϕ̃z − hU(z), z ∈ Ẽ, is a continuous function, which vanishes on K
and the Markov property states that

(1.8)

(
ϕ̃z − hU (z)

)
z∈Ẽ is a centered Gaussian field with covariance g̃U(·, ·)

independent of A+
K , where A+

K is the σ-algebra

(1.9) A+
K =

⋂

ε>0

σ(ϕ̃z, z ∈ Kε)

with Kε the open ε-neighborhood ofK in the d(·, ·)-distance, see above (1.1). Incidentally,
for F ⊆ Ẽ, we will write AF = σ(ϕ̃z, z ∈ F ) (⊆ A = AẼ).

We now turn to the strong Markov property. We say that K is a compatible random
compact subset of Ẽ (or as a shorthand that K is compatible, see chapter 2 §3 of [16] for

the terminology), if for each ω ∈ Ω̃, K(ω) ⊆ Ẽ is a compact subset with finitely many

components, which is the closure of its interior, and such that for any open subset O ⊆ Ẽ

(1.10) {K ⊆ O}(def= {ω ∈ Ω̃; K(ω) ⊆ O}) ∈ AO (see below (1.9) for the notation).

We attach to K the σ-algebra, see Theorem 2, p. 89 of [16]

A+
K = {A ∈ A; A ∩ {K ⊆ K} ∈ A+

K , for all K ⊆ E, which is(1.11)

compact and the closure of its interior}.
The lemma below and the subsequent remark collect some useful properties of A+

K.

Lemma 1.1. Let K be compatible and define the σ-algebra GK = σ({K ⊆ O}; O open

subset of Ẽ). Then, one has

(1.12)





i) GK ⊆ A+
K,

ii) for each z ∈ Ẽ, {z ∈ K} ∈ GK (⊆ A+
K),

iii) for each z ∈ Ẽ, ϕ̃z 1{z ∈ K} is A+
K-measurable .

Proof. To prove i), we note that for any K as in (1.11) and O open in Ẽ,

(1.13) {K ⊆ O} ∩ {K ⊆ K} =
⋂

ε>0

{K ⊆ O ∩Kε}
(1.10)
∈ A+

K ,

whence {K ⊆ O} ∈ A+
K and i) follows. To prove ii) we choose O = {z}c and apply i).
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As for iii), consider z ∈ Ẽ, and K as in (1.11). Then, ϕ̃z 1{z ∈ K,K ⊆ K} vanishes

identically on Ω̃ if z /∈ K, and if z ∈ K, both ϕ̃z and 1{z ∈ K,K ⊆ K} are A+
K-measurable

by ii) and (1.13). The claim iii) follows.

Remark 1.2.

1) If K and L are compatible random compact subsets such that K ⊆ L, then

(1.14) A+
K ⊆ A+

L

(indeed, for A ∈ A+
K and K as in (1.11), A∩{L ⊆ K} = A∩{K ⊆ K}∩{L ⊆ K} ∈ A+

K}).

2) As described in Chapter 2 §4 of [16], one can approximate a compatible compact
subset K from above as follows. One chops (in a dyadic procedure) each compact segment
attached to an edge of E into 2n closed segments of equal length, and defines Kn as the
union of the finitely many such segments intersecting the interior of K. In this fashion
Kn takes values in a countable set (of possible “shapes”), and

(1.15)





i) Kn ↓ K,
ii) Kn is compatible for each n,

iii) A+
Kn ↓ A+

K

(in the case of iii) simply note that for A ∈ ⋂
n A+

Kn and K as in (1.11), one has for
ε > 0, A ∩ {K ⊆ Kε} =

⋃
nA ∩ {Kn ⊆ Kε} which belongs to AKε as a straightforward

consequence of ii), so that A∩{K ⊆ K} =
⋂

m≥1A∩{K ⊆ K1/m} ∈ A+
K , and iii) follows).

Actually, one also has GKn ↑ GK, see [16], p. 87, but we will not need this fact.

3) If K is a compatible random compact subset of Ẽ, and Kn defined as above, we set

U = Ẽ\K and Un = Ẽ\Kn, so that Un ↑ U .

Then, for each n ≥ 0, z, z′ ∈ Ẽ, by (1.15) ii) (and using also (1.12) iii) for hUn(z))

(1.16) hUn(z) and g̃Un(z, z′) are A+
Kn-measurable,

(actually, g̃Un(z, z′) is even GKn-measurable).

Moreover, by dominated convergence, cf. (1.7), and the monotone convergence prop-
erty (1.4)

(1.17) hU(z) = lim
n
hUn(z) and g̃U(z, z

′) = lim
n

↑ g̃Un(z, z′),

and by (1.15) iii) we see that

(1.18) hU(z) and g̃U(z, z
′) are A+

K-measurable

(and respectively continuous in z, and z, z′). �

6



We can now state the strong Markov property of ϕ̃, see in particular Theorem 4, p. 92
of [16]. When K is a compatible random compact subset of Ẽ,

under P̃G, conditionally on A+
K, (ϕ̃z)z∈Ẽ is a Gaussian field(1.19)

with mean
(
hU(z)

)
z∈Ẽ and covariance g̃U(·, ·).

We now turn to the discussion of random interlacements on Ẽ. For C finite subset of E,
we denote by cap(C) the capacity of C and by eC the equilibrium measure of C so that

(1.20)
cap(C) = sup{E(µ, µ)−1; µ probability supported by C}, where
E(µ, µ) =

1

2

∑
x,y∈E

µ(x) g(x, y)µ(y),

and one knows that when C is not empty, the normalized equilibrium measure eC/cap(C)
is the unique maximizer in (1.20).

We consider a given level

(1.21) u > 0

and on some suitable probability space (W̃ ,B, P̃I) a continuous non-negative random field

(ℓ̃z,ω)z∈Ẽ describing the field of local times with respect to the Lebesgue measure m on

Ẽ of random interlacements at level u on Ẽ, see Section 6 of [9]. If x ∈ E, and BN (x) is

defined as in (1.1), then (ℓ̃z,u)z∈BN (x) is distributed as the restriction to BN (x) of the local

time of a Poisson cloud of trajectories on Ẽ with intensity u P̃eC , where C = BN (x) ∩ E,
and P̃eC =

∑
y∈E eC(y)P̃y. Moreover (after discarding a negligible set), we can assume

that

Ĩu = {z ∈ Ẽ; ℓ̃z,u > 0} is an open set which has only unbounded(1.22)

connected components,

∂Ĩu ∩ E = φ,(1.23)

where for A ⊆ Ẽ, ∂A denotes the boundary of A.

It also readily follows that the restriction of ℓ̃.,u to E is distributed as the field of
occupation times of random interlacements at level u on E, cf. (0.4):

(1.24) (ℓ̃x,u)x∈E under P̃I has same law as (ℓx,u)x∈E under PI .

In particular, cf. (0.5),

(1.25) Ĩu ∩ E under P̃I has the same law as Iu under PI ,

so that for any finite subset C of E

(1.26) P̃I [Ĩu ∩ C = φ] = PI [Iu ∩ C = φ] = e−u cap(C).
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As in Proposition 6.3 and Theorem 3 of [9], one can construct some extension (Σ,F , Q̃) of

the product space (Ω̃×W̃ ,A⊗B, P̃G⊗P̃I) endowed with the continuous fields γ̃ = (γ̃z)z∈Ẽ ,

ϕ̃ = (ϕ̃z)z∈Ẽ and the non-negative continuous field ℓ̃ = (ℓ̃z,u)z∈Ẽ such that

(ϕ̃, ℓ̃) under Q̃ has the same law as under P̃G ⊗ P̃I(1.27)

both (1.22) and (1.23) hold(1.28)

γ̃ has the same law as ϕ̃(1.29)

Q̃-a.s., for all z ∈ Ẽ,
1

2
(γ̃z −

√
2u)2 =

1

2
ϕ̃2
z + ℓ̃z,u .(1.30)

This coupling due to [9] sharpens (0.6) and by (1.30)

(1.31) Q̃-a.s., γ̃ −
√
2u does not vanish on Ĩu (= {z ∈ Ẽ; ℓ̃z,u > 0}).

From now on, we will make the following assumption on the Gaussian free field on Ẽ:

(1.32) P̃G-a.s., {z ∈ Ẽ; ϕ̃z > 0} only has bounded connected components.

Remark 1.3. As shown in Section 5 of [9], (1.32) holds in particular in the case of Zd,
d ≥ 3, endowed with unit weights. We will also see in Proposition 4.1 below that (1.32)
holds as well when E is the (d+1)-regular tree endowed with unit weights, and d ≥ 2. �

Observe that Ĩu only has unbounded connected components and that γ̃ −
√
2u does

not vanish on Ĩu. On the other hand, due to (1.32), (1.29), a.s. {γ̃ >
√
2u} only has

bounded components. As a result, we see that

(1.33) Q̃-a.s., Ĩu ⊆ {γ̃ <
√
2u} (= {z ∈ Ẽ; γ̃z <

√
2u}).

It will also be technically convenient to make the (mild) assumption that

(1.34) sup
x∈E

g(x, x) = g0 <∞ .

This assumption will be used in the proof of the next lemma, as well as in the proofs of
Proposition 2.1 and Theorem 2.4 in the next section. A useful but slightly more technical
generalization of (1.34) appears in (1.42) (or equivalently (1.43)) of Remark 1.5 below.
We recall that HB stands for the entrance time of X in B, see above (1.2).

Lemma 1.4.

(1.35) P̃I-a.s., for all z ∈ Ẽ, P̃z[HĨu <∞] = 1.

Proof. It clearly suffices to treat the case of z ∈ E. Since for x ∈ E, the successive visits
of X to distinct sites of E under P̃x are distributed as the discrete time walk (Zk)k≥0

under Px (see below (0.1) for notation), and Ĩu ∩ E is distributed as Iu, our claim will
follow once we show that

(1.36) PI-a.s., for all x ∈ E, Px[HIu <∞] = 1,
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where for B ⊆ E, HB = inf{k ≥ 0;Zk ∈ B} is the entrance time of Z in B. To this end,
we will show that for all x ∈ E,

(1.37) Px-a.s., cap({Z0, Z1, . . . , Zk}) −→
k

∞.

The claim (1.36) will readily follow since for all k ≥ 0,

PI ⊗ Px[HIu = ∞] = Ex

[
PI [Iu ∩ {Z0, . . . , Zk, . . . } = φ]

]

(1.26)

≤ Ex[exp{−u cap({Z0, . . . , Zk})}]
(1.37)−→

k
0 .

We thus prove (1.37), and for this purpose first observe that for y, y′ ∈ E

(1.38) Py′-a.s., g(Zk, y) −→
k

0.

Indeed, for any k0 ≥ 1 and k ≥ k0, Py′-a.s.,

g(Zk, y)

g(y, y)
= PZk

[H{y} <∞] = Py′ [after time k, Z visits y|σ(Z0, . . . , Zk)]

≤ Py′ [ after time k0, Z visits y|σ(Z0, . . . , Zk)]

−→
k→∞

1{after time k0, Z visits y} (by martingale convergence).

(1.39)

By transience, Py′-a.s. for large k0, the indicator function on the last line of (1.39)
vanishes, and (1.38) follows.

We will now deduce (1.37). We construct by induction an increasing sequence of a.s.
finite stopping times, via S0 = 0 and

(1.40) Sℓ+1 = inf
{
k > Sℓ;

∑
1≤j≤ℓ

g(Zk, ZSj
) ≤ g0

2

}
for ℓ ≥ 0, with g0 as in (1.34).

We now set µ = 1
ℓ

∑ℓ
i=1 δZSi

. We know by (1.20) that

(1.41)

cap({Z0, . . . , ZSℓ
}) ≥ E(µ, µ)−1, where

E(µ, µ) =
1

ℓ2

ℓ∑
i,j=1

g(ZSi
, ZSℓ

)
(1.34)

≤ g0

ℓ
+

2

ℓ2

∑
j<i

g(ZSi
, ZSj

)

(1.40)

≤ 2g0
ℓ
.

This bound once inserted in (1.41) shows that the capacity in the left member of (1.41)
is at least ℓ/(2g0) and (1.37) follows. This completes the proof of Lemma 1.4.

Remark 1.5. Let us point out a slightly more technical but useful generalization of
(1.34). Namely, this condition is the existence of an increasing sequence of bounded

open connected subsets D◦
N of Ẽ, increasing to Ẽ, containing a base point x0 of E, with

boundaries ∆N = ∂D◦
N contained in E, so that D◦

N is the connected component of x0 in

Ẽ\∆N , D
◦
N+1 ⊇ DN

def
= D◦

N ∪∆N for each N , and

(1.42) sup
N≥1

sup
x∈∆N

g(x, x) ≤ g0 <∞.
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The proof of Lemma 1.4 can be easily adapted to show that (1.35) remains true if one
replaces (1.34) by (1.42). Indeed, one simply modifies the above definition of the stopping
times Sℓ, ℓ ≥ 0, in (1.40) so that setting ∆ =

⋃
N≥1∆N , S0 = inf{k ≥ 0; Zk ∈ ∆} and

for ℓ ≥ 0, Sℓ+1 = inf{k > Sℓ; Zk ∈ ∆ and
∑

1≤j≤ℓ g(Zk, ZSj
) ≤ g0

2
}. Noting that the walk

Z visits ∆ infinitely often Px-a.s., for any x ∈ E, the proof proceeds as below (1.40).

Let us mention that the condition (1.42) is also equivalent to

(1.43) {x ∈ E; g(x, x) > g0} has no unbounded component

(clearly (1.42) implies (1.43) and conversely, one defines by induction finite connected sets
CN in E containing x0, with outer boundary ∆N , via C1 consists of x0 and the points
linked to x0 by a path where g(·, ·) > g0 prior to reaching x0, and CN+1 is the union of
CN , ∆N , and the points linked to ∆N by a path where g(·, ·) > g0 prior to reaching ∆N .

Then D◦
N is defined as the connected component of x0 in Ẽ\∆N , and (1.42) holds).

�

The above Lemma 1.4 will be very helpful in the next section, see for instance Lemma
2.2, and also below (2.41) in Theorem 2.4.

2 The coupling

In this section we construct a coupling between the Gaussian free field on Ẽ and random
interlacements at level u on Ẽ, which refines (1.27) - (1.30). The main result appears in
Theorem 2.4 and in essence follows from the application of the strong Markov property of
the Gaussian free field. As a direct consequence of this main result we obtain a coupling
of the Gaussian free field and random interlacements at level u on E, which fulfills (0.8),
see Corollary 2.5, and thus refines (0.7) which was proven in [9]. This corollary will play
an important role for the derivation of the upper bound (4.16) in Theorem 4.3, when E
is a (d+ 1)-regular tree with unit weights.

We keep the notation from the previous section and tacitly assume that (1.32) holds

(i.e. P̃G-a.s., {ϕ̃ > 0} only has bounded components), and (1.34) holds (i.e. g(x, x) is
uniformly bounded for x ∈ E, see however Remark 2.3 2) and Remark 2.6 for a weakening

of this assumption). We consider a given u > 0, cf. (1.21), and define for ω ∈ Ω̃

C∞(ω) = the closure of the union of unbounded components of {ϕ̃ <
√
2u}

(a closed subset of Ẽ),

U∞(ω) = Ẽ\C∞(ω) (an open subset of Ẽ).

(2.1)

Since ϕ̃ is continuous, for all ω ∈ Ω̃,

(2.2) ϕ̃z =
√
2u for z ∈ ∂C∞(ω) (the boundary of C∞(ω)).

The next proposition contains the first step in the proof of Theorem 2.4, and mainly relies
on a suitable application of the strong Markov property to certain compatible compact
subsets of Ẽ approximating C∞. We refer to Remark 2.3 for further comments about the
interpretation of Proposition 2.1.
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Proposition 2.1. For z, z′ ∈ Ẽ and ω ∈ Ω̃, define

h∞(z, ω) =
√
2u 1{z ∈ U∞(ω)}+ ϕ̃z 1{z ∈ C∞(ω)},(2.3)

g∞(z, z′, ω) = g̃U∞(ω)(z, z
′) (with the notation above (1.2)).(2.4)

Then, h∞(z, ·) and g∞(z, z′, ·) are measurable functions on Ω̃ and for all z1, . . . , zM ∈ Ẽ
and a1, . . . , aM ∈ R, one has

(2.5) ẼG[e
i

M∑
j=1

aj ϕ̃zj

] = ẼG[e
i

M∑
j=1

ajh∞(zj)− 1
2

M∑
j,ℓ=1

ajaℓg∞(zj ,zℓ)

]

(of course the left-hand side of (2.5) coincides with e−
1
2

∑M
j,ℓ=1 ajaℓ g̃(zj ,zℓ)).

Proof. We consider some base point x0 ∈ E, and in the notation of (1.1) introduce

(2.6) BN = BN(x0), B
◦
N = B◦

N(x0), SN = SN(x0).

For 1 ≤ N < L integers, we define for ω ∈ Ω̃,

CN,L = (BL\B◦
N) ∪

⋃
x∈SN

(the closure of the connected component(2.7)

of ϕ̃ <
√
2u in BN that contains x),

where the last set in parenthesis is understood as empty, when ϕ̃x ≥
√
2u,

CN =
⋃

L>N

CN,L = (Ẽ\B◦
N ) ∪

⋃
x∈SN

(the closure of the connected component(2.8)

of ϕ̃ <
√
2u in BN that contains x).

We also define

(2.9) UN,L = Ẽ\CN,L and UN = Ẽ\CN .

Note that CN,L is a compact subset of Ẽ, with a finite number of connected components,
that it is the closure of its interior, and that (see above (1.10))

(2.10) CN,L is compatible.

Indeed, as we briefly explain {CN,L ⊆ O} ∈ AO, when O ⊆ Ẽ is open. We can assume
that O ⊇ BL\B◦

N (otherwise {CN,L ⊆ O} is empty), and consider (with hopefully obvious
notation) the finitely many “polygonal paths” that start in SN and then remain in B◦

N ∩O
except for their final point that belongs to ∂O∩B◦

N . Then, {CN,L ⊆ O} is realized exactly
when for all such paths ϕ̃z ≥

√
2u for some z on the path strictly before the final point

of the path. Hence, {CN,L ⊆ O} is σ(ϕ̃z, z ∈ O) = AO-measurable, and (2.10) follows.

We further note that while CN,L increases to CN , when L > N goes to ∞,

(2.11) CN is a decreasing sequence and
⋂

N≥1

CN = C∞.

Indeed, by direct inspection, CN is a decreasing sequence that contains C∞. Conversely,
when z belongs to

⋂
N CN , then for any N one can find a “polygonal path” from z to SN
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on which ϕ̃ <
√
2u, except maybe at its starting point where ϕ̃z ≤

√
2u. By the drawer

(or pigeonhole) principle one thus finds that z ∈ C∞, and (2.11) follows.

We now turn to the measurability statement below (2.4). By (1.12) ii) applied to CN,L,
together with (2.11) and the fact that CN,L increases to CN as L → ∞, we see that for

any z ∈ Ẽ, h∞(z, ·) is A-measurable. Moreover, since CN,L is compatible, by (1.18), for

any z, z′ ∈ Ẽ, g̃UN,L
(z, z′) is A-measurable. Further, when z, z′ ∈ B◦

N , then the connected
components of z (resp. of z′) in UN,L and UN coincide so that

(2.12) g̃UN,L
(z, z′) = g̃UN

(z, z′), when z, z′ ∈ B◦
N , 1 ≤ N < L.

By (2.11) and the monotone convergence (1.4), we see that for z, z′ ∈ B◦
N

(2.13) g∞(z, z′) = g̃U∞
(z, z′) = lim

N
↑ g̃UN

(z, z′),

and in particular g∞(z, z′, ·) is A-measurable.

We will now prove (2.5). We assume N so large that z1, . . . , zM ∈ B◦
N . The observation

above (2.12) now yields that for any z ∈ B◦
N ,

(2.14) hUN,L
(z) = Ẽz[ϕ̃(XTUN,L

)] = Ẽz[ϕ̃(XTUN
)] = hUN

(z).

The strong Markov property (1.19) applied to CN,L then implies that

ẼG[e
i

M∑
j=1

aj ϕ̃zj

] = ẼG[e
i

M∑
j=1

ajhUN,L(zj)
− 1

2

M∑
j,ℓ=1

ajaℓ g̃UN,L
(zj ,zℓ)

]

= ẼG[e
i

M∑
j=1

ajhUN (zj )
− 1

2

M∑
j,ℓ

ajaℓ g̃UN
(zj ,zℓ)

],

(2.15)

using (2.12), (2.14) in the last step.

We already know that g̃UN
(zj , zℓ) increases to g∞(zj, zℓ), for N → ∞. We also show

(2.16) lim
N
hUN

(zj) = h∞(zj) in P̃G-probability, for 1 ≤ j ≤M.

Letting N tend to infinity in the last line of (2.15) will yield (2.5), and conclude the proof
of Proposition 2.1. We now prove (2.16).

We first observe that TUN
is a jointly measurable function of ω and X . Indeed, it

vanishes if X0 /∈ B◦
N , and if X0 ∈ B◦

N , then TUN
= TUN,L

is the non-decreasing limit

of the TUn
N,L

, where Un
N,L = Ẽ\Cn

N,L in the notation of (1.15), and the TUn
N,L

are jointly
measurable. With this observation, we will then be able to apply Fubini’s theorem in the
calculations below. The same observation applies to TU∞

= limn ↑ TUN
, cf. (2.11).

For z ∈ B◦
N , we write

hUN
(z) = A1 + A2, where A1 = Ẽz[ϕ̃(XTUN

), TUN
< TB◦

N
] and

A2 = Ẽz[ϕ̃(XTB◦
N
), TUN

= TB◦
N
].

(2.17)

We first consider A1. Note that when z ∈ B◦
N\CN , then P̃z-a.s. on {TUN

< TB◦
N
}, XTUN

∈
∂CN ∩ B◦

N and hence ϕ(XTUN
) =

√
2u, see (2.8). As a result, for z ∈ B◦

N

(2.18) A1 = ϕ̃z 1{z ∈ CN}+
√
2u 1{z /∈ CN} P̃z[HCN < TB◦

N
].

We also have
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Lemma 2.2.

(2.19) P̃G-a.s., for all z ∈ Ẽ, P̃z[HC∞ <∞] = 1.

Proof. Note that HC∞ = TU∞
is jointly measurable in ω and X , see above (2.17), and the

probability in (2.19) is a measurable function of ω, which is continuous in z (all points of

C∞ are regular for X). By (1.33) we have Ĩu ⊆ {γ̃ <
√
2u} where γ̃ is distributed as ϕ̃

under P̃G, and Ĩu = {x ∈ Ẽ; ℓ̃z,u > 0} only has unbounded components and ℓ̃ has same

law as under P̃I . The claim (2.19) now follows from (1.35).

By (2.19) we know that on a set of full P̃G-measure

(2.20) P̃z[TUN
< TB◦

N
]
(2.11)

≥ P̃z[TU∞
< TB◦

N
] = P̃z[HC∞ < TB◦

N
]
(2.19)−→
N

1.

Thus, by (2.11) and (2.18), we find that

(2.21) P̃G-a.s., A1 −→
N

ϕ̃z 1{z ∈ C∞}+
√
2u 1{z /∈ C∞} = h∞(z).

We now turn to A2. By Cauchy-Schwarz’s inequality we have

ẼG[|A2|] ≤ ẼGẼz[ϕ̃
2(XTB◦

N
)]

1
2 P̃G⊗ P̃z[TUN

= TB◦
N
]
1
2

(1.34)

≤ √
g0 P̃

G⊗ P̃z[TUN
= TB◦

N
]
1
2

(2.20)−→
N

0.
(2.22)

Combining (2.21), (2.22), we have proved (2.16) and Proposition 2.1 follows.

Remark 2.3.

1) As we now explain, a certain strong Markov property, see (2.23) below, underlies
Proposition 2.1. Observe that CN,L is non-decreasing in L, see (2.8), and hence, by (1.14),
the A+

CN,L
are non-decreasing in L > N . We set HN = σ(

⋃
L>N A+

CN,L
). Then, for z ∈ B◦

N ,

it follows from (2.14) and the martingale convergence theorem that

hUN
(z) = hUN,L

(z)
(1.19)
= ẼG[ϕ̃z|A+

CN,L
] −→

L
ẼG[ϕ̃z|HN ],

and the equality hUN
(z) = ẼG[ϕ̃z|HN ] extends to all z ∈ Ẽ, since both members coincide

with ϕ̃z, when z /∈ B◦
N (see (1.12) iii).

On the other hand, for fixed L, CN,L is non-increasing in N(< L), see (2.7), and
therefore, by (1.14), the σ-algebras A+

CN,L
decrease in N(< L). It then follows that HN

decreases with N so that by the martingale convergence theorem for reverse martingales,

for any z ∈ Ẽ, hUN
(z)

L2(P̃G)−→
a.s.

ẼG[ϕ̃z|H∞], where H∞ =
⋂

N HN . We have used the

assumptions (1.32) and (1.34) in the proof of (2.16) to identify ẼG[ϕ̃z|H∞] with h∞(z)
from (2.3). Moreover, by (2.13) and the argument above (2.13), one sees that g∞(z, z′) is
H∞-measurable. In this light the proof of Proposition 2.1 can be modified to show that
(compare with (1.19))

under P̃G, conditionally on H∞, (ϕ̃z)z∈Ẽ is a Gaussian field with(2.23)

mean (h∞(z))z∈Ẽ and covariance g∞(·, ·).
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We will actually not need (2.23) in what follows, but this statement provides an additional
interpretation to what Proposition 2.1 does.

2) Note that Proposition 2.1 holds as well if one replaces (1.34) with the weaker condition
(1.42) (or equivalently (1.43)). In essence, one simply replaces in the proof B◦

N by D◦
N ,

BN by DN and SN by ∆N . One knows that Lemma 1.4 holds (see Remark 1.5), and
(2.22) works as well in this new set-up. �

We will now construct the coupling announced at the beginning of this section. We
consider the product space Ω̃ × W̃ endowed with the product σ-algebra A⊗ B, and the
product-measure P̃G ⊗ P̃I . On this space we have the independent Gaussian free field
(ϕ̃z)z∈Ẽ and the field of local times (ℓ̃z,u)z∈Ẽ of random interlacements at level u, such
that (1.22), (1.23) hold. By (1.22) and the local finiteness of E,

(2.24) ∂Ĩu is a locally finite subset of Ẽ (see (1.22) for notation).

We introduce the open subset of Ẽ

J= the union of Ĩu and all connected components of {|ϕ̃| > 0} intersecting ∂Ĩu

= the union of the connected components of {2ℓ̃.,u + ϕ̃2
. > 0} intersecting Ĩu.

(2.25)

By a similar argument as in (2.24)

(2.26) ∂J is a locally finite subset of Ẽ,

and we define the closed set

(2.27) C′
∞ = J ∪ ∂J .

Note that by the second line of (2.25),

(2.28) ℓ̃z,u = 0 and ϕ̃z = 0, for all z ∈ ∂J .

We then define the random field

(2.29) η̃z =
(√

2u−
√
2ℓ̃z,u + ϕ̃2

z

)
1{z ∈ C′

∞}+ (ϕ̃z +
√
2u) 1{z /∈ C′

∞}

and note that by (2.28) the expression above remains unchanged if C′
∞ is replaced by J .

The main result of this section, i.e. Theorem 2.4 below, states that η̃ is a Gaussian
free field on Ẽ. Unlike γ̃ in (1.27) - (1.30), η̃ is solely defined in terms of ℓ̃.,u and ϕ̃.
Actually, by (1.30) and (1.33), η̃ amounts to a suitable resampling of the signs of γ̃−

√
2u

outside C′
∞ = J ∪∂J , which a.s. coincides with the closure of the union of the unbounded

components of {γ̃ <
√
2u}, see (2.47), (2.48) below. The proof of Theorem 2.4 will mainly

rely on the application of the strong Markov property of ϕ̃ and Proposition 2.1. We recall
(1.3) for notation.

Theorem 2.4.

z → η̃z is a continuous function on Ẽ (which equals
√
2u on ∂J ).(2.30)

The law of η̃ on the canonical space Ω̃ is P̃G.(2.31)
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Proof. Let us prove (2.30). We only need to check the continuity of η̃ at all z ∈ ∂J , which
is locally finite (see (2.26)), and that η̃ =

√
2u. But the expressions between parenthesis

in the right-hand side of (2.29) are continuous and take value
√
2u on ∂J . The claim

(2.30) follows. We then turn to (2.31). It suffices to show that for z1, . . . , zM ∈ Ẽ

(2.32)
(η̃z1, . . . , η̃zM ) is a centered Gaussian vector with covariance

matrix g̃(zi, zj), 1 ≤ i, j ≤M.

For this purpose we will derive a formula for η̃ similar to (2.5) with C′
∞ and U ′

∞ = Ẽ\C′
∞

in place of C∞ and U∞, cf. (2.45). We first approximate C′
∞. For 1 ≤ N < L integers, we

define (see (2.6) for notation)

C′
N,L = (BL\B◦

N) ∪
(
BL ∩ (Ĩu ∪ ∂Ĩu)

)
∪⋃

z∈∂Ĩu∩B◦
L

(2.33)

(the closure of the connected component of {|ϕ̃| > 0} ∩B◦
L containing z)

and the last set in parenthesis is understood as empty if ϕ̃z = 0, as well as

C′
N = (Ẽ\B◦

N) ∪ (Ĩu ∩ ∂Ĩu) ∪⋃
z∈∂Ĩu(2.34)

(the closure of the connected component of {|ϕ̃| > 0} containing z).

Observe that the C′
N,L are compact and non-decreasing in L. In fact, in (2.33) one can

replace in the last union (over z ∈ ∂Ĩu∩B◦
L) all the terms where the set in parenthesis is not

contained in BN by a union of the closures of the connected components of {|ϕ̃| > 0}∩B◦
L

containing x, for all x ∈ SN such that the connected component of {|ϕ̃| > 0} ∩ B◦
L

containing x meets ∂Ĩu ∩ B◦
L. One can also make a similar replacement for (2.34) and

replace in the last union all the terms where the set in parenthesis is not contained in BN

by a union of the closures of the connected components of {|ϕ̃| > 0} containing x ∈ SN

such that the connected component of {|ϕ̃| > 0} containing x meets ∂Ĩu. From this
observation one sees that

C′
N,L ∩BN = C′

N ∩ BN , for large L, and(2.35)

C′
N,L increases with L > N and

⋃
L>N C′

N,L = C′
N .(2.36)

Moreover, the C′
N are closed (for instance by (2.35)), decrease with N and

(2.37)
⋂

N≥1
C′
N = C′

∞

(simply note that J ⊆
⋂

N C′
N ⊆ J ∪ ∂J = C′

∞).

An important additional observation is that for w ∈ W̃ (i.e. “freezing” the interlace-

ment and in particular Ĩu), as a function of ω ∈ Ω̃,

(2.38) C′
N,L is a compatible compact subset of Ẽ

(note that when w is fixed, ∂Ĩu ∩B◦
L is a finite deterministic set, and we can use a similar

argument as below (2.10)). One also has the fact that for z, z′ ∈ Ẽ, 1{z ∈ C′
∞} and

g̃U ′
∞
(z, z′) (with U ′

∞ as in (2.39)) are jointly measurable in ω and w.
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We will apply the strong Markov property under P̃G and define the open sets

(2.39) U ′
N,L = Ẽ\C′

N,L, U ′
N = Ẽ\C′

N , and U ′
∞ = Ẽ\C′

∞,

and for any J ⊆ {1, . . . ,M} the events

(2.40) AJ
N,L = {zℓ ∈ U ′

N,L, when ℓ ∈ J , and zℓ /∈ U ′
N,L, when ℓ /∈ J}

as well as AJ
N and AJ

∞, with U ′
N and U ′

∞ respectively in place of U ′
N,L in (2.40).

Note that AJ
N,L ∈ A+

C′
N,L

by (1.12), and by the strong Markov property (1.19), for all

J ⊆ {1, . . . ,M} and a1, . . . , aM ∈ R one has

(2.41)
ẼG[e

i(
∑
j∈J

aj(
√
2u+ϕ̃zj )+

∑
j /∈J

aj(
√
2u−

√
2ℓ̃zj,u+ϕ̃2

zj
))

, AJ
N,L] =

ẼG[e
i(

∑
j∈J

aj(
√
2u+h

U′
N,L

(zj))+
∑
j /∈J

aj(
√
2u−

√
2ℓ̃zj,u+ϕ̃2

zj
))− 1

2

∑
j,ℓ∈J

ajaℓ g̃U′
N,L

(zj ,zℓ)

, AJ
N,L].

If N is so large that z1, . . . , zM ∈ B◦
N , then by (2.35), letting L tend to ∞, we can

replace in (2.41) AJ
N,L with AJ

N , hU ′
N,L

(zj) with hU ′
N
(zj), and g̃U ′

N,L
(zj , zℓ) with g̃U ′

N
(zj , zℓ).

Moreover, with similar arguments as for the proof of (2.16), with now (1.35) in place of

(2.19), we find that for P̃I-a.e. w ∈ W̃ , and 1 ≤ j, ℓ ≤M

hU ′
N
(zj)

P̃G −prob.−→ 0 · 1{zj ∈ U ′
∞}+ ϕ̃zj 1{zj ∈ C′

∞}(2.42)

g̃U ′
N
(zj, zℓ) −→

N
g̃U ′

∞
(zj , zℓ) (by (1.4) and (2.37)).(2.43)

Letting N tend to infinity, we find with (2.37) that for J ⊆ {1, . . . ,M} and P̃I-a.e. w,

(2.44)
ẼG[e

i(
∑
j∈J

aj(
√
2u+ϕ̃zj )+

∑
j /∈J

aj(
√
2u−

√
2ℓ̃zj,u+ϕ̃2

zj
))

, AJ
∞] =

ẼG[e
i(

∑
j∈J

aj
√
2u+

∑
j /∈J

(
√
2u−

√
2ℓ̃zj,u+ϕ̃2

zj
))− 1

2

M∑
j,ℓ∈J

ajaℓg̃U′
∞

(zj ,zℓ)

, AJ
∞].

Summing over J , with the definition of η̃ in (2.29), we find that for P̃I-a.s. w ∈ W̃ ,

(2.45) ẼG[e
i

M∑
j=1

aj η̃zj
] = ẼG[e

i
M∑
j=1

ajh
′
∞(zj)− 1

2

M∑
j,ℓ=1

ajaℓ g̃U′
∞

(zj ,zℓ)

],

where for z ∈ Ẽ we have set

h′∞(z) =
√
2u 1{z ∈ U ′

∞}+ η̃z 1{z ∈ C′
∞}

=
√
2u 1{z ∈ U ′

∞}+ (
√
2u−

√
2ℓ̃z,u + ϕ̃2

z ) 1{z ∈ C′
∞}.

(2.46)

On the probability space (Σ,F , Q̃), see above (1.27), extension of the product space Ω̃×W̃ ,
and endowed with the Gaussian free field γ̃, cf. (1.27) - (1.30), we set

C γ̃
∞ = the closure of the union of unbounded connected components

of {γ̃ <
√
2u}.

(2.47)
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As we now explain

(2.48) Q̃-a.s., C′
∞ = C γ̃

∞.

First note that a.s. C′
∞ ⊆ C γ̃

∞. Indeed, a.s. J ⊆ C γ̃
∞ because each component of J

contains a component of Ĩu, by (2.25), which is unbounded by (1.22), and hence by
(1.30), (1.33), a.s., C′

∞ = J ∪ ∂J ⊆ C γ̃
∞. For the converse inclusion, note that any

component of {γ̃ <
√
2u} not intersecting C′

∞ = J ∪ ∂J lies in Ẽ\Ĩu and hence by
(1.30) is a.s. contained in a connected component of {|ϕ̃| > 0}. By (1.32) (applied to ϕ̃
and −ϕ̃), a.s. all such components are bounded. Thus, a.s. all unbounded components of
{γ̃ <

√
2u} intersect C′

∞ and hence J , so that by (1.30), (2.25), a.s. C γ̃
∞ ⊆ C′

∞. The claim
(2.48) follows.

By (1.30), (1.33), we see that Q̃-a.s, for z ∈ C′
∞, γ̃z =

√
2u−

√
2ℓ̃z,u + ϕ̃2

z, so with (2.46)

and (2.48) we find that for z, z′ ∈ Ẽ, Q̃-a.s. (setting U γ̃
∞ = Ẽ\C γ̃

∞)

h′∞(z) =
√
2u 1{z ∈ U γ̃

∞}+ γ̃z 1{z ∈ C γ̃
∞} and g̃U ′

∞
(z, z′) = g̃U γ̃

∞
(z, z′).

We can thus apply (2.5) of Proposition 2.1 to γ̃, and after integration of (2.45) with

respect to P̃I conclude that the Fourier transforms of (η̃z1 , . . . , η̃zM ) and (γ̃z1, . . . , γ̃zM )
coincide. This shows (2.32) and concludes the proof of Theorem 2.4.

By considering restrictions of ϕ̃, Ĩu (or ℓ̃.,u), η̃ to E, we can for instance obtain the
reinforcement (0.8) of (0.7). Namely, one has

Corollary 2.5. One can couple independent copies (ϕx)x∈E and Iu of the Gaussian free
field on E and random interlacements at level u on E, with (ηx)x∈E a Gaussian free field
on E, so that with Vu = E\Iu the vacant set at level u

(2.49) for all A ⊆ (0,∞), {x ∈ E; ηx ∈
√
2u+ A} ⊆ {x ∈ E;ϕx ∈ A} ∩ Vu.

Proof. We denote by ϕ, ℓ, η the restrictions to E of ϕ̃, ℓ̃.,u, η̃ (defined on the product space

Ω̃×W̃ as in Theorem 2.4), and set Iu = Ĩu∩E. By (2.29), η̃z ≤
√
2u for all z ∈ C′

∞ ⊇ Ĩu,
so that

(2.50) ηx 1{ηx >
√
2u} = (ϕx +

√
2u) 1{ϕx > 0, x ∈ Vu\C′

∞}, for all x ∈ E.

This readily implies (2.49).

Remark 2.6. Here again, with the observation made in Remark 2.3 2) both Theorem
2.4 and Corollary 2.5 remain true when one replaces assumption (1.34) by the weaker but
more technical assumption (1.42) (or equivalently by (1.43)). �
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3 The regular tree case: some preparation

We will apply the result of the previous section to the study of level-set percolation of
the Gaussian free field on a regular tree. This section contains some preparation. In
particular, we introduce an important spectral quantity λh, study some of its properties
in Proposition 3.1, and characterize the critical value h∗ for the level-set percolation of the
Gaussian free field as the unique h∗ such that λh∗

= 1 in Proposition 3.3. In essence, we
investigate here a specific branching Markov chain on R (involving an Ornstein-Uhlenbeck
kernel) with a barrier.

We keep similar notation as in the previous sections. We consider d ≥ 2 and denote by
T the (d+ 1)-regular tree endowed with unit weights, so that T plays the role of E. The
canonical Gaussian free field (ϕx)x∈T is a centered Gaussian field on T with covariance

(3.1) g(x, y)
(0.2)
=

1

(d+ 1)
Ex

[ ∞∑
k=0

1{Zk = y}
]
, for x, y ∈ T ,

with (Zk)k≥0 the canonical walk on T , which starts at x ∈ T under Px.

For x ∼ y in T , letting Hy stand for the entrance time of Z in y, one has

(3.2) Px[Hy <∞] =
1

d+ 1

(
d

d+ 1

)−1

=
1

d
,

and hence for all x ∈ T

(3.3) g(x, x)
(3.1)
=

1

(d+ 1)
Px[Zk 6= x for all k ≥ 1]−1 =

1

d+ 1

(
1− 1

d

)−1

=
d

d2 − 1

def
= σ2 .

Given x ∼ x′ in T , we write

T+
x,x′ = the set consisting of x and its “forward descendants”

= {y ∈ T ; x′ /∈ [x, y]},
(3.4)

where [x, y] stands for the unique finite geodesic path on T between x and y. We also set

(3.5) T−
x,x′ = T\T+

x,x′ .

By the Markov property of the field (ϕx)x∈T , one knows that

(3.6)
(ϕy − Py[Hx′ <∞]ϕx′)y∈T+

x,x′
is a centered Gaussian field independent

of σ(ϕy′ , y
′ ∈ T−

x,x′), with covariance gT+
x,x′

(·, ·),

where for U ⊆ T , gU(·, ·) stands for the killed Green function outside U (defined as in
(3.1), but now with a summation over k ≥ 0 smaller than the exit time of Z from U). In
particular, choosing y = x, we have

ϕx =
1

d
ϕx′ + ξx,x′, where ξx,x′ is independent of σ(ϕy′ , y

′ ∈ T−
x,x′)(3.7)

and has variance
(
1− 1

d2

)
σ2 (3.3)

=
1

d
.
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We then fix a base point x0 ∈ T and x−1 ∼ x0, and simply write

(3.8) T+ = T+
x0,x−1

, T− = T−
x0,x−1

, ξ = ξx0,x−1.

For n ≥ 0, we also have the set of n-th generation descendants of x0 in T+

(3.9) T+
n = {y ∈ T+; d(x0, y) = n}.

We denote by ν the centered Gaussian law on R with variance σ2, and by Qt, t ≥ 0, the
Ornstein-Uhlenbeck semigroup with variance σ2, so that for g bounded measurable on R

(3.10) Qt g(a) = EY [g(ae−t +
√
1− e−2t Y )], for a ∈ R, t ≥ 0,

where Y is ν-distributed and EY stands for the expectation with respect to Y , see also
[7], p. 356. Actually, Qt extends as a self-adjoint contraction on L2(ν) and admits the
following expansion in an orthonormal basis of eigenfunctions (see [7], p. 354-356):

(3.11) Qt g(a) =
∑
n≥0

e−nthn,σ(a)
〈
hn,σ, g

〉
ν
, for a ∈ R, g ∈ L2(ν),

where 〈·, ·〉ν stands for the L2(ν)-scalar product and

(3.12) hn,σ(a) =
√
n! Hn

( a
σ

)
,

with Hn(·) the n-th Hermite polynomial (so that
∫
RHn(b)Hm(b) e

− b2

2
db√
2π

= 1
n!
δn,m, for

n,m ≥ 0, and H1(x) = x, H2(x) =
1
2
(x2 − 1), H3(x) =

x3

6
− x

2
).

In particular, (3.7), (3.10) yield that for all x ∼ x′

for all g ∈ L2(ν), EG[g(ϕx) | σ(ϕy′, y
′ ∈ T−

x,x′)] = (Qt1g)(ϕx′),(3.13)

with t1 = log d
(
so e−t1 =

1

d

)
.

One also has hypercontradictivity estimates for the semigroup (Qt)t≥0, see [7], p. 367:

(3.14) ‖Qt g‖Lq(ν) ≤ ‖g‖Lp(ν), when q − 1 = (p− 1) e2t and 1 < p <∞.

We can then introduce the operators with e−t1 = 1/d as in (3.13) and h ∈ R:

(3.15) L = dQt1, πh = multiplication by 1[h,∞), Lh = πh Lπh

(where dQt1 denotes the multiplication of Qt1 by the scalar d).

By (3.11) we know that L is a self-adjoint, non-negative Hilbert-Schmidt operator on
L2(ν), and by Theorem 6.22 or 6.23, p. 210 of [15] that:

(3.16) Lh is a self-adjoint, non-negative, Hilbert-Schmidt operator on L2(ν).

We can then define the crucial quantity

(3.17) λh = ‖Lh‖L2(ν)→L2(ν) = sup
{〈
g, Lhg

〉
ν
; ‖g‖L2(ν) = 1

}
, h ∈ R,

where ‖ · ‖L2(ν)→L2(ν) denotes the operator norm and (3.17) coincides with (0.9) via the
explicit calculation of

〈
g, Lhg

〉
ν
with (3.10).

The next proposition will be very helpful.
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Proposition 3.1. For all h ∈ R, λh is a simple eigenvalue of Lh and there exists a unique
χh ≥ 0, with unit L2(ν)-norm, continuous, positive on [h,+∞), vanishing on (−∞, h),
such that

(3.18) Lh χh = λh χh .

In addition, for all k ≥ 0, one has

‖χh‖Lqk (ν) ≤ (d/λh)
k, where qk = 1 + d2k.(3.19)

The map h→ λh is a decreasing homeomorphism of R onto (0, d).(3.20)

Proof. We start with the first part of the proposition. We consider h ∈ R. By (3.16)
we can find g with ‖g‖L2(ν) = 1, such that Lhg = λhg. If g changes sign (i.e. both g+

and g− are not a.e. 0), then by (3.10) (see also the expression in (0.9)),
〈
|g|, Lh|g|

〉
ν
>〈

g, Lhg
〉
ν
= λh, with |g| unit in L2(ν), a contradiction. Hence, g does not change sign

and without loss of generality we can assume that it is non-negative.

As we now explain, λh is a simple eigenvalue. Indeed, if f ∈ L2(ν) is an eigenfunction
of Lh attached to λh, we can choose α ∈ R, so that

〈
f − αg, 1

〉
ν
= 0. Then f − αg is

an eigenfunction attached to Lh and by the above paragraph, it does not change sign.
It follows that f − αg = 0 in L2(ν) and λh is a simple eigenvalue. Thus, g is uniquely
determined in L2(ν) and we call it χh. Note that

λh χh(a)
(3.10),(3.15)

= d

√
d

2π

∫ ∞

h

e−
d
2
(b− a

d
)2χh(b) db,

=
d2√
d2 − 1

∫ ∞

h

e−
a2

2d
+ab− b2

2dχh(b) dν(b), when a ≥ h, and

= 0, when a < h.

(3.21)

By the second and third line (and dominated convergence) we see that we can choose χh

to be continuous and positive on [h,+∞) and equal to zero on (−∞, h). We now prove
(3.19). Note that qk = 1 + e2t1k. We then use hypercontractivity, cf. (3.14), and the fact
that πh contracts Lq(ν)-norms to find that for k ≥ 1,

(3.22) (λh/d)
k‖χh‖Lqk (ν) = (λh/d)

k−1
∥∥1

d
Lhχh

∥∥
Lqk (ν)

(3.14)

≤ (λh/d)
k−1‖χh‖Lqk−1(ν),

and we obtain (3.19) by induction (since it holds when k = 0).

We now turn to the proof of (3.20). By (3.17) it is immediate that h → λh is a
non-increasing [0, d]-valued function. As we now explain

(3.23) h→ λh is decreasing.

Indeed, for h > h′, one has λh =
〈
χh, Lh χh

〉
ν
=

〈
χh, Lh′χh

〉
ν
, but χh is not a multi-

ple of χh′ (since χh′ does not vanish on [h′, h)), and the last expression is smaller than
〈χh′, Lh′ χh′

〉
ν
= λh′, whence (3.23). Next, we show that

(3.24) h→ λh is continuous.
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By (3.17) this function is a supremum of continuous functions on R, hence it is lower
semi-continuous, and by (3.23) it is right-continuous. Let us now prove that it is left-
continuous. Given h ∈ R, since L is a compact operator, we can find hn ↑ h such that
ρ̃n = Lπhnχhn = Lχhn → ρ̃ in L2(ν). We set ρ = πh ρ̃. Then,

πhn ρ̃n − ρ = πhn(ρ̃n − ρ̃) + (πhn − πh) ρ̃ −→
n

0 in L2(ν), so that(3.25)

λhnχhn = πhnLπhnχhn = πhn ρ̃n
L2(ν)−→

n
ρ, where ρ = 0 on (−∞, h).(3.26)

In particular, looking at norms, one finds ‖ρ‖L2(ν) = lim
n
λhn = λ−h ≥ λh (with λ−h the

left-limit at h of λ.). Moreover, one has

Lhρ = πhLπh ρ = πhLρ
(3.26)
= lim

n
πhLλhnχhn

(3.18),hn<h
= lim

n
λhnπhλhnχhn

(3.26)
= λ−h πhρ = λ−h ρ.

Since ρ vanishes on (−∞, h), this shows that λ−h ≤ λh. The left-continuity of λ. and
(3.24) follow. It is now a simple fact that

(3.27) lim
h→−∞

λh = d.

Indeed, λh ≤ d and
〈
1, Lh1

〉
ν
→

〈
1, L1

〉
ν
= d, as h→ −∞ and ‖1‖L2(ν) = 1. Finally,

(3.28) lim
h→+∞

λh = 0.

Indeed, by compactness of L, for some hn ↑ ∞, ψn = Lπhnχhn −→
n

ψ in L2(ν). Then,

λhnχhn

(3.18)
= πhnψn = πhnψ + πhn(ψn − ψ) −→

n
0 in L2(ν). Looking at L2(ν)-norms, the

claim (3.28) follow. This completes the proof of Proposition 3.1.

Remark 3.2. It is not hard to infer from (3.21) that χh is C
∞ when restricted to [h,+∞).

However, the above proposition leaves open questions concerning the monotonicity or the
boundedness of χh, see also Remarks 3.4 and 4.4. �

We now want to characterize the critical level for level-set percolation of ϕ on T .
Level-set percolation of ϕ on T+, see (3.8) for notation, amounts to the study of a specific
branching Markov chain on R with a barrier, where each individual has a level a ≥ h, and
independently gives rise in the next generation to d individuals with levels distributed as
independent N(a

d
, 1
d
)-variables, and these individuals are killed if the level falls below h.

We refer to [2] and the references therein for related models. With this in mind, for h ∈ R
and n ≥ 0 (see (3.9) and below (3.4) for notation), we define

(3.29) Zh
n = {x ∈ T+

n ; ϕy ≥ h for all y ∈ [x0, x]},
so that Zh

n denotes the intersection of T+
n with the cluster of x0 in the level-set {ϕ ≥ h}.

We also introduce the filtration

(3.30) Fn = σ(ϕx; x ∈ T+, d(x0, x) ≤ n), n ≥ 0,

as well as the (Fn)-adapted process

(3.31) Mn = λ−n
h

∑
x∈Zh

n

χh(ϕx), n ≥ 0.
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Proposition 3.3. Define h∗ ∈ R as the unique value (cf. (3.20)) such that

(3.32) λh∗
= 1.

For h < h∗, PG-a.s., {ϕ ≥ h} has an infinite component.(3.33)

For h > h∗, PG-a.s., {ϕ ≥ h} only has finite components.(3.34)

Proof. We first prove (3.33). Note that classically, see Theorem 1, p. 247 in Chapter 6 §4
[1], one knows (with the help of (3.13)) that

(3.35) (Mn)n≥0 is a non-negative (Fn)-martingale under PG.

We will show that when h < h∗, Mn converges a.s. to a non-identically vanishing limit.
We could base the proof on (2.1) of Theorem 2.1 in [2], but it is actually slightly more
precise and essentially as quick to observe that under Q = χh(ϕx0)/

〈
χh

〉
ν
PG (where

〈
f
〉
ν

stands for
∫
R f(dν)), (Mn)n≥0 is an (Fn)-martingale (note that dQ

dPG is F0-measurable) and

(3.36) sup
n≥0

EQ[M2
n ] <∞.

Indeed, for n ≥ 1, by the orthogonality of the increments

(3.37)

EQ[M2
n] = EQ[M2

0 ] +
n∑

k=1

EQ[(Mk −Mk−1)
2], and

Mk −Mk−1 = λ
−(k−1)
h

∑
x∈Zh

k−1

d∑
j=1

(
λ−1
h χh(ϕ(x,j))− 1

d
χh(ϕx)

)
,

where (x, 1), . . . , (x, d) denote the descendants of x ∈ T+.

Note that (3.19) ensures the finiteness of the above expectations. By (3.7), (3.13)
(applied at neighboring sites in T+

k and T+
k−1) the summands under parenthesis in the

second line of (3.37), conditionally on Fk−1, are centered and independent under PG or
Q. We thus find that for k ≥ 1,

EQ[(Mk −Mk−1)
2] = λ−2k

h EQ
[ ∑
x∈Zh

k−1

d∑
j=1

EQ[
(
χh(ϕ(x,j))− λh

d
χh(ϕx)

)2|Fk−1]
]

= λ−2k
h EQ

[ ∑
x∈Zh

k−1

d
(
Qt1χ

2
h −

λ2

h

d2
χ2
h

)
(ϕx)

]
,

(3.38)

using the conditional centering, (3.13) and (3.18) in the last step. Note that for x ∈ T+
k−1

(3.39)
EQ[x ∈ Zh

k−1, f(ϕx)] = EG[χh(ϕx0), ϕy ≥ h for all y ∈ [x0, x], f(ϕx)]/
〈
χh

〉
ν

=
(λh

d

)k−1
EG[χh(ϕx) f(ϕx)]/

〈
χh

〉
ν
, for f ≥ 0 measurable on R,

where we have made iterated use of the Markov property and (3.18). Since χh ∈ L3(ν)

by (3.19), we can replace f by Qt1χ
2
h−

λ2
h

d2
χ2
h in the above, and sum over x ∈ T+

k−1 to find

EQ[(Mk −Mk−1)
2] = dk−1d λ−2k

h

(λh

d

)k−1〈
χh, Qt1(χ

2
h)−

λ2

h

d2
χ2
h

〉
ν
/
〈
χh

〉
ν

= dλ
−(k+1)
h

〈λh

d
χ3
h −

λ2

h

d2
χ3
h

〉
ν
/
〈
χh

〉
ν
= λ−k

h

〈
χ3

ν

〉
ν〈

χh

〉
ν

(
1− λh

d

)
.

(3.40)
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Coming back to (3.37) we find that

(3.41) EQ[M2
n ] =

(
1 +

n∑
k=1

λ−k
h

(
1− λh

d

))〈
χ3
h

〉
ν
/
〈
χh

〉
ν
,

and (3.36) follows. In particular, Mn → M∞ Q-a.s. and hence PG-a.s., where M∞ ≥ 0

and EQ[M∞] = EQ[M0] =
〈
χ2
h

〉
ν
/
〈
χh

〉
ν
=

〈
χh

〉−1

ν
> 0. This implies that with PG-

positive measure Zh
n is non-empty for all n ≥ 0, and the connected component of x0 in

{ϕ ≥ h}∩T+ is infinite. The claim (3.33) can for instance be deduced from the weak law
of large numbers in Corollary 10 of [13].

We will now prove (3.34). We consider the function in L∞(ν)

(3.42) qh(a) = PG[|Zh
n | = 0, for large n|ϕx0 = a], a ∈ R,

where we make use of the Markov property (3.6) (with x′ chosen as x0) to define the
conditional expectation in (3.42), and |A| stands for the cardinality of A when A ⊆ T .
We will show that

(3.43) when h > h∗, ν-a.s., qh = 1,

and quickly deduce (3.34). We first introduce for general h ∈ R, n ≥ 0, 1 ≤ i ≤ d,

Zh
n(i) = {x ∈ T+

n+1; x is a descendant of (x0, i) and ϕy ≥ h, for all y ∈ [(x0, i), x]}.
The Markov property (3.6) implies that PG-a.s.

(3.44) PG
[ d⋂
i=1

{|Zh
n(i)| = 0, for large n}|ϕx0, ϕ(x0,1), . . . , ϕ(x0,d)

]
=

d∏
i=1

qh(ϕ(x0,i)),

and hence PG-a.s.

qh(ϕx0) = 1(−∞,h)(ϕx0) + EG
[
ϕx0 ≥ h,

⋂d
i=1 {|Zh

n(i)| = 0, for large n}|ϕx0

]

(3.44)
= 1(−∞,h)(ϕx0) + EG

[
ϕx0 ≥ h,

d∏
i=1

qh(ϕ(x0,i))|ϕx0

]

(3.13)
= 1(−∞,h)(ϕx0) +Qt1(qh)

d(ϕx0) 1[h,∞)(ϕx0), so that

(3.45) qh = 1(−∞,h) + 1[h,∞)

(
Qt1(qh)

)d
, ν-a.s. .

Thus, setting rh = 1− qh, we find that ν-a.s.,

rh = 0 on (−∞, h)

= 1−Qt1(qh)
d = Qt1(rh)

d−1∑
k=0

Qt1(qh)
k ≤ dQt1(rh) = Lh(rh) on [h,∞).

(3.46)

This shows that ν-a.s.,

(3.47) 0 ≤ rh ≤ Lh rh,

and if rh is not a.s. 0, then by (3.17), λh ≥ 1. But h > h∗ implies λh < 1, whence
(3.43). As a result, PG-a.s., the cluster of x0 in T+ ∩ {ϕ ≥ h} is finite, and (3.34) easily
follows.

Remark 3.4. In proving (3.34) one might try to use iii) of Theorem 2.1. of [2] to argue
that PG-a.s., M∞ = 0, when h > h∗, but our lack of understanding of the asymptotic
behavior of χh (see Remark 3.2) does not seem to then lead to a quick conclusion that
a.s. |Zh

n | = 0 for large n. For this reason we used the above argument. �

23



4 Bounds on λh and h∗

In this section we derive upper and lower bounds on the critical value h∗ for the level-
set percolation of the Gaussian free field ϕ on the (d + 1)-regular tree T , with d ≥ 2.
These results appear in Corollary 4.5 and are direct consequences of the lower and upper
bounds on λh from Theorem 4.3. The upper bound comes as an application of the
coupling between the Gaussian free field and random interlacements from Corollary 2.5
in Section 2.

We keep the notation of the previous sections. We let T̃ stand for the metric graph
attached to the (d + 1)-regular tree endowed with unit weights. As in Sections 1 and 2,

(ϕ̃z)z∈T̃ stands for the canonical Gaussian free field on T̃ and is governed by the probability

P̃G. In the present context assumption (1.34) is automatic, see (3.3), and we will now
prove that (1.32) holds as well.

Proposition 4.1.

(4.1) P̃G-a.s., {ϕ̃ > 0} only has bounded components on T̃ .

Proof. Given x, y ∈ T , we write [x̃, y] ⊆ T̃ for the geodesic segment in T̃ between x and y.

For convenience we write ϕx in place of ϕ̃x when x ∈ T (⊆ T̃ ) in the proof of Proposition
4.1. With T+ and T+

n as in (3.8), (3.9), we introduce for n ≥ 0,

(4.2) Z̃n = {x ∈ T+
n ; ϕ̃ > 0 on [x̃0, x]}.

We will show that (with similar notation as below (3.42))

(4.3) P̃G-a.s., |Z̃n| = 0 for large n,

and (4.1) will quickly follow. By Lemma 3.1 of [9] and Lemma 10.12, p. 145 of [8] or
Proposition 5.2 of [9], one knows that for any x ∈ T+

n ,

(4.4)
P̃G

[
ϕ̃ does not vanish on [x̃0, x]

]
= ẼG[sign(ϕx0) sign(ϕx)] =

2

π
arcsin

(
g(x0, x)

σ2

)
(3.1)−(3.3)

=
2

π
arcsin

(
1

dn

)
.

In particular, we see that

(4.5) ẼG[|Z̃n|] ≤ 2

π
dn arcsin

(
1

dn

)
, for n ≥ 0.

We will use the following

Lemma 4.2.

M̃n =
∑

x∈Z̃n

ϕx, n ≥ 0, is a non-negative (F̃n)-martingale, where

F̃n = σ
(
ϕ̃z, z ∈

⋃
x∈T+

n

([̃x0, x])
)
.

(4.6)
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Proof. Note that M̃n is clearly non-negative, F̃n-adapted, integrable. Moreover, for n ≥ 0,

(4.7) ẼG[M̃n+1 | F̃n] =
∑

x∈Z̃n

d∑
j=1

ẼG
[
ϕ(x,j), ϕ̃ > 0 on [x̃, (x, j)] | F̃n

]
.

We will now compute the conditional expectation in the right-hand side. Consider fixed
x ∈ T+

n , a fixed j ∈ {1, . . . , d}, and define with hopefuly obvious notation

H =
( ⋃
y∈T+

n

[x̃0, y]
)
∪
(
the closure of the connected component of(4.8)

{ϕ̃ > 0} ∩
[
x, (x, j)

))
.

Then, H is a compatible random compact subset of T̃ , see above (1.10) (actually, as a
minor point, when n = 0, we replace x0 by x−1 in (4.8) to ensure that H is the closure of

its interior). Since H contains
⋃

y∈T+
n
[x̃0, y], it follows from (1.12) iii) that F̃n ⊆ A+

H. By
the strong Markov property (1.19), we have

(4.9) ẼG[ϕ(x,j) | A+
H] = Ẽ(x,j)[ϕ̃(XHH

), HH <∞] = 0 on {(x, j) /∈ H, x ∈ Z̃n},

since when x ∈ Z̃n and (x, j) /∈ H, P̃(x,j)-.a.s., ϕ̃(XHH
) = 0 on {HH <∞}. So P̃G-a.s.,

(4.10)

ẼG[ϕ(x,j) | F̃n]1{x ∈ Z̃n} = ẼG[ẼG[ϕ(x,j) | A+
H] | F̃n] 1{x ∈ Z̃n}

(4.9),(1.12) ii)
=

ẼG[ϕ(x,j) 1{(x, j) ∈ H} | F̃n] 1{x ∈ Z̃n} =

ẼG[ϕ(x,j), ϕ̃ > 0 on [x̃, (x, j)] | F̃n] 1{x ∈ Z̃n}.

The last expression is precisely the summand in the right-hand side of (4.7). On the other
hand, by the Markov property for ϕ̃, see (1.8), we have

(4.11) ẼG[ϕ(x,j) | F̃n] =
1

d
ϕx.

Inserting this equality in the left-hand side of (4.10) and coming back to (4.7), yields that

ẼG[M̃n+1 | F̃n] =
∑

x∈Z̃n
d× 1

d
ϕx = M̃n. This proves (4.6).

By the martingale convergence theorem, we find that

(4.12) P̃G-a.s., M̃n −→ M̃∞ ≥ 0, where ẼG[M̃∞] <∞.

As we now explain

(4.13) P̃G-a.s., |Z̃n| = 0 for large n.

Indeed, set for M ≥ 1 and n ≥ 1, AM,n = {
∑

x∈Z̃n
(ϕx + 1) ≤ M} as well as AM =

lim supnAM,n. By the Markov property of ϕ̃, see (1.8), on AM,n, we have

P̃G[| Z̃n+1| = 0 | F̃n] ≥ P̃G[ϕ(x,j) < 0, for all x ∈ Z̃n, j = 1, . . . , d | F̃n]

=
∏

x∈Z̃n

Qt1(1(−∞,0))
d(ϕx)

≥ Qt1(1(−∞,0))
dM(M)

def
= c(d,M), by definition of AM,n.
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It now follows from Borell-Cantelli’s lemma that

(4.14) P̃G-a.s., on AM , | Z̃n| = 0 for large n.

By (4.5) and Fatou’s lemma ẼG[lim inf
n

|Z̃n|] ≤ 2
π
. Combined with (4.12), we see that

P̃G[
⋃

M≥1AM ] = 1 and (4.13) follows. Hence, P̃G-a.s., the connected component of x0 in
{ϕ̃ > 0} ∩ (

⋃
x∈T+ [x̃0, x]) is bounded and (4.1) readily follows.

We now come to the main estimates on the quantity λh from (3.17). We recall the

notation Φ (a) = 1√
2π

∫ +∞
a

e−
s2

2 ds from (0.13). The upper bound will crucially rely on
Corollary 2.5.

Theorem 4.3. (d ≥ 2)

For all h ∈ R, λh > dΦ
(
h
(d− 1)√

d

) (
in particular λ0 >

d
2

)
.(4.15)

For all h ≥ 0, λh ≤ λ0 e
−h2(d−1)2

2d

(
< d e−

h2(d−1)2

2d

)
.(4.16)

(We recall that 1√
2π

(a + 1
a
)−1 e−

a2

2 ≤ Φ(a) ≤ 1√
2πa

e−
a2

2 , for a > 0).

Proof. We begin by the proof of (4.15). For h ∈ R and a > h, one has, cf. (3.15),

Lh 1[h,+∞)(a) = d P ξ
[a
d
+ ξ ≥ h

]
with ξ a N

(
0,

1

d

)
-distributed variable

a>h
> dP ξ

[
ξ > h

(d− 1)

d

]
= dΦ

(
h
(d− 1)√

d

)
.

(4.17)

As a result, we find that ν-a.s. on [h,∞),

(4.18) Lh 1[h,∞) > dΦ
(
h
(d− 1)√

d

)
,

and (4.15) readily follows from the variational formula (3.17).

We now turn to the proof of (4.16). For h < h′ we define πh,h′ as the multiplication
operator by 1[h,h′] in L

2(ν), and set

(4.19) Lh,h′ = πh,h′ Lπh,h′ , with L as in (3.15).

Then, Lh,h′ is a self-adjoint, non-negative, Hilbert-Schmidt operator on L2(ν), and we
introduce the maximum eigenvalue

(4.20) λh,h′ = ‖Lh,h′‖L2(ν)→L2(ν) ≤ λh (see (3.17)).

The same proof as in Proposition 3.1 shows that λh,h′ is a simple eigenvalue of Lh,h′ and
we have a uniquely defined function

(4.21)
χh,h′ non-negative, vanishing outside [h, h′], continuous and strictly positive
on [h, h′], with unit L2(ν)-norm, eigenfunction of Lh,h′ for the eigenvalue λh,h′.
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It is also immediate that λh,h′ is non-decreasing in h′(> h) and since λh ≥ λh,h′ ≥〈
Lh,h′ χh, χh

〉
−→ λh, as h

′ → ∞, one has

(4.22) lim
h′→∞

λh,h′ = λh.

In analogy with (3.29) we introduce

(4.23) Zh,h′

n = {x ∈ T+
n ; ϕy ∈ [h, h′] for all y ∈ [x0, x]},

and note that for all x ∈ T+
n , by iterated application of (3.13)

EG[χh,h′(ϕx0), x ∈ Zh,h′

n ] =
〈
χh,h′,

(1
d
Lh,h′

)n
1
〉
ν

(4.21)
= (λh,h′/d)n

〈
χh,h′

〉
ν
,

(4.24)

where 〈·〉ν stands for ν-expectation (as below (3.35)). In particular, summing over x in
T+
n , one obtains

(4.25) λnh,h′

〈
χh,h′

〉
ν
= EG[χh,h′(ϕx0) |Zh,h′

n |], for n ≥ 0, h < h′.

We now assume 0 ≤ h ≤ h′, and note that by (2.49) of Corollary 2.5, one has for x ∈ T+
n

(4.26) PG[x ∈ Zh,h′

n ] ≤ PG[x ∈ Z0,h′−h
n ]PI

[
[x0, x] ⊆ Vu

]
, with h =

√
2u.

By (5.9) - (5.9) of [19] (note that d in [19] corresponds to d+ 1 here), one knows that

PI
[
[x0, x] ⊆ Vu

]
= exp

{
− u (cap{x0})− nu

(d− 1)2

d

}

(3.3)
= exp

{
− u

σ2
− nu

(d− 1)2

d

)
= exp

{
− u

(
d− 1

d

)
− nu

(d− 1)2

d

}
.

(4.27)

Summing over x ∈ T+
n in (4.26) we thus find that for n ≥ 0, 0 ≤ h < h′,

(4.28) EG[|Zh,h′

n |] ≤ EG[|Z0,h′−h
n |] exp

{
− u

(
d− 1

d

)
− nu

(d− 1)2

d

}
.

By (4.25), the left-hand side of (4.28) is at least

λnh,h′

〈
χh,h′

〉
ν
/‖χh,h′‖∞,

and the expection in the right-hand side of (4.28) is at most

λn0,h′−h

〈
χ0,h′−h

〉
ν
/ inf
[0,h′−h]

χ0,h′−h.

Taking n-th roots and letting n go to infinity, we find that

(4.29) λh,h′ ≤ λ0,h′−h e
−u(d−1)2

d , for 0 ≤ h < h′.

Letting h′ ↑ ∞ yields (4.16) (recall that h =
√
2u).
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Remark 4.4. We do not know of a derivation of the upper bound (4.16) directly from
the variational formula (3.17) (or (0.9)). Incidentally, the above proof makes use below
(4.28) of quantities such as ‖χh,h′‖∞ and (inf [0,h′−h] χh,h′)−1. We have no bounds on such
quantities when χh replaces χh,h′, see Remark 3.2. The approximations λh,h′ of λh in the
above proof enable us to bypass this lack of controls. �

With the help of Proposition 3.3, the above Theorem 4.3 yields bounds on h∗.

Corollary 4.5. (d ≥ 2)

(4.30) 0 ≤ h∆ < h∗ ≤ h� <
√
2u∗,

where h∆, h� are defined by

(4.31) dΦ
(
h∆

(d− 1)√
d

)
= 1, λ0 e

−h2
�
(d−1)2

2d = 1,

and u∗ is the critical level for the percolation of Vu on T (by (5.5) of [19], d e−u∗
(d−1)2

d = 1).

Proof. This is a direct consequence of (4.15), (4.16) and λh∗
= 1 from Proposition 3.3, as

well as of (5.5) of [19].

Remark 4.6. We thus have 0 < h∗ <
√
2u∗ for all d ≥ 2. In the case of level-set

percolation of the Gaussian free field on Zd, d ≥ 3, h∗ ≥ 0, is known since [3], but h∗ > 0
is presently only known for large d, see [4], [14], however expected for all d ≥ 3. The
inequality h∗ ≤

√
2u∗ was proved in [9]. The coupling of Section 2 that we used here, may

perhaps be helpful in the case of Zd, d ≥ 3, to show that in fact h∗ <
√
2u∗ holds as well.

�
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