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It is not true that quantitative/mathematical methods
are recent developments in trading applications

Some quotes from a nice book ”Reminiscences of a Stock Operator”
(1923) about the biography of a legendary trader Jesse Livermore:

• ”Wall Street makes its money on a mathematical basis, I mean, it
makes its money by dealing with facts and figures”

• ”He (the trader) must bet always on probabilities - that is, try to
anticipate them”

• ”The game of speculation isn’t all mathematics or set rules, however
rigid the main laws may be”

Livermore was trading spot/futures markets making big bets on trends

As for option trading:

• Options are non-linear securities on underlying prices

• Trading and valuation of derivatives can only be possible using quan-
titative models and tools
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Probability and Volatility

Options valuation includes estimation of probabilities of asset price changes

Volatility is a measure of a likelihood of given price changes

Figure: empirical tail probabilitites of weekly returns on the S&P 500
index (high volatility) and 2year US bond ETFs (low volatility)

20%

30%

40%

50% Empirical Tail Probabilities of Weekly Returns

S&P 500 Index

2y US bond ETF

0%

10%

-1
0
.0
%

-9
.0
%

-8
.0
%

-7
.0
%

-6
.0
%

-5
.0
%

-4
.0
%

-3
.0
%

-2
.0
%

-1
.0
%

-0
.5
%

0
.5
%

1
.0
%

2
.0
%

3
.0
%

4
.0
%

5
.0
%

6
.0
%

7
.0
%

8
.0
%

9
.0
%

1
0
.0
%

4



Volatility is not the ultimate measure of the risk

Figure: empirical tail probabilities of weekly normalized returns on the
S&P 500 index and 2year US bond ETFs

Risk-parity funds: leverage up low volatility assets to a traget volatility
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Volatility is clustered
Figure: time series of hitting indicator when absolute returns exceed one
standard deviation
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Co-dependence is between asset classes ic clustered
Figure: time series of the joint hitting indicator the S&P 500 index and
2year US bond ETFs
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Vanilla Put and Call options are primary derivative in-
struments traded on exchanges

Values and prices of option contracts are derived from the probability of
return distributions

Options enable to create strategies related to statistical and market im-
plied probabilities / volatilities

European call option gives the holder the right to buy the asset at
maturity time T at strike price K:

u(S(T )) = (S(T )−K)+

Put option gives the right to sell:

u(S(T )) = (K − S(T ))+

Put and call options on major asset classes and stocks represent the bulk
of exchanged traded derivative contracts

Any payoff function u(s) on S(T ) can be linearly approximated with put
and calls
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Option pricing in industry (using Oscar Wilde)

A mathematically-oriented quant = ”a man who knows the price of
everything and the value of nothing” (?)

An empirical quant = ”a man who sees an absurd value in everything
and doesn’t know the market price of any single thing” (?)

For understanding the practicalities of option trading, we need to under-
stand:

1) The theory of option replication

2) Practicalities of options valuation and trading

3) Empirical features of option trading strategies

4) In particular, the interception of risk-neutral valuation measure and
the statistical measure
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Fundamental option trading formula is originated by
Black-Scholes-Merton (1973) and extended by Harrison-
Pliska (1981)

We can assume a general dynamics for the underlying asset under the
statistical measure:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t)

where µ(t) is the drift
σ(t) is the volatility of asset returns
W (t) a is standard Brownian motion

The key result of Black-Scholes-Merton replication framework and risk-
neutral valuation is:
There exists a trading strategy in the underlying asset with the
dynamic weight ∆(s) such that the terminal payoff u(S(T )) of the
option can be replicated by trading in the underlying for any realization
of price path (!):

u(S(T )) = g(S(t)) +
∫ T
t

∆(S(t′))dS(t′)
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Black-Scholes-Merton framework is an idealization of
real market conditions

BSM assumptions vs real trading conditions:

• Continuous trading in diffusion-uncertainty market vs discrete trading
with gaps (jumps)

• No transaction costs vs transaction costs and market impact costs

• Unlimited borrowing&lending ability at the same risk-free rate vs lim-
ited capacity to borrow funds and finance short&long position at dif-
ferent rates

• No exogenous risk factors vs the risk of changes in the volatility,
interest rates, dividends, etc

• Instantaneous price discovery vs wide bid-ask spreads and illiquidity

• Flat/zero ”end-of-day” risk vs the illusion of daily mark-to-market
replication
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Black-Scholes-Merton implied volatility

How trading imperfection do affect realized profit&loss?

Black-Scholes-Merton model is based on the log-normal price dynamics
under the valuation (risk-neutral, martingale) measure:

dS(t) = σBSMS(t)dW (t)

where σBSM is the constant volatility under the valuation measure

Option value U(t, S) solves the BSM PDE (assuming zero borrowing/lending
costs):

∂tU +
1

2
σ2
BSMS

2∂SSU = 0 , U(T, S) = u(S)

Given market price of an option we can solve the inverse problem to find
the BSM implied volatility σBSM (equate BSM model value to the market
price)
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Continuous-time Delta-Hedging P&L is the spread be-
tween implied and realized volatilities

Delta-hedging portfolio Π(t) for hedging a short position in option U(t, S):

Π(t) = ∆(t, S)S(t)− U(t, S)

Over the infinitesimal time dt, using the BSM PDE, the delta-hedging
P&L is

dΠ(t) =
1

2

{
σ2
BSMdt−R(t)

}
S2(t)Γ(t, S)

where Γ(t, S) is option gamma Γ(t, S) = ∂SSU(t, S)
R(t) is the return squared under the statistical measure (!):

R(t) =

(
dS(t)

S(t)

)2

In the limit, R(t) → σ2
STATdt where σSTAT is returns volatility under the

statistical measure

The delta-hedging P&L is zero only if the implied BSM volatility equals
to the statistical volatility:

σBSM = σSTAT
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The Fundamental Equation relating Implied volatility vs
Realized volatility

Real-world imperfections result in the spread between the statistical volatil-
ity of returns, σSTAT , and the BSM volatility implied by market prices of
options, σBSM

Fundamental equation for the final P&L of delta-hedging strategy (El
Karoui-Jeanblanc-Shreve (1998)):

Π(T ) =
1

2

∫ T
0

{
σ2
BSM − σ

2
STAT

}
S2(t′)Γ(t, S′)dt′

Even in the ideal conditions with continuous trading in diffusive uncer-
tainty and no trading costs, this result is fundamental because:

1. If implied BSM and statistical volatilities are different, option trading
strategies can be designed to take advantage of this spread

2. These strategies still have little dependence on the real-world drift of
the underlying asset

This result holds for price dynamics with stochastic volatility and jumps
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The spread between the statistical realized volatility and
the implied volatility is significant and persistent

Volatility Risk-premium = Implied volatility−Realized volatility

Figure:

Proxy Volatility Risk-premium = VIX at month start

−Realized volatility of S&P500 in this month

t-statistic is 8.20
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Theory vs The Real World

In theory: BSM framework assumes that a derivative security is redun-
dunt because it can be replicated and, as a result, it adds no utility to
investors’ portfolios

In practice:

1. Retail/institutional investors are not able to delta-hedge and repli-
cate derivatives (no infastracture, little capital for margin, expensive
trading costs)

2. A derivative security adds utility to investors’ portfolios:

• Upside speculation (out-of-the money calls)

• Downside protection (out-of-the money puts)

• Carry strategies (selling options without hedging to generate in-
come)

3. Hedge funds typically use derivatives for tactical discretionary views

4. Dealers (investment banks) and options market makers stand on the
other side of transactions with the goal to generate profits on their
capital at risk
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Derivatives Industry

The impossibility of replication and the spread between implied and re-
alized volatilities (return distributions) give rise to trading and business
opportunities which utilize quantitative models and methods with various
levels of complexity

1. Structured derivatives business at invetsment banks

2. Prime brockerage and exchanges (for clearing and margining)

3. Options market makers

4. proprietary trading at hedge funds
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Structured Derivatives Business employs the classic ap-
plications of derivatives pricing models and tools

1. Broker-dealer sells to a client a stuctured product

2. Risk of this products are computed using a market consistent model

3. The first oder risk, delta and vega, are hedged by trading in exchange
traded derivatives

4. Flow driven business

The dealer has the advantage:

1. The client sells volatility to the dealer cheaply so the dealer buys cheap
volatility and hedged himself by selling volatility more expensively in
the market

2. The client buys volatility from the dealer (by buying principal pro-
tected note) at expensive levels, the dealer hedges by byuing cheaper
protection in the market
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Structured Derivatives Business - modeling tools

1. A model to compute and iterpolate implied BSM volatility from traded
option market prices

2. A model for implied volatility surfaces

3. Local and stochastic volatility models, calibrated to implied volatili-
ties, to value and risk-manage structured products

4. Consistency with the statistical dynamics are note relevant as dealers
seek to eliminate the first order risks (delta and vega) being compen-
sated by higher spreads from structured products
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Prime Brokers, Exchanges and Risk management

Provide clearing, funding and risk-management for exchange traded and
OTC derivatives for institutional investors, hedge funds, propriotory traders

Risk management sets trading budgets for trading desks

Objective is to aggregate risk of different instruments by strikes, maturi-
ties, underlyings and to provide a ”fair” margin for clients

Require the consistency with historical data (both recent data and stress
sase data)

Employ time series analysis (PCA) and simple pricing models

Value-at-risk is computed using EWMA and Garch time models to predict
the short-term volatility
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Option Market Makers

Provide bid-ask quotes for exchange traded options

Primarily apply the BSM model with a function for the implied volatility

Intraday pattern of volatility

Co-dependence with spot price and volatility
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Proprietary/systematic trading

Estimate and predict realized volatility

Generate signals by screening cheap/expensive volatility in the market
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Volatility models in details

1. Models for Implied Volatility

2. Local Volatility Models

3. Stochastic Volatility Models
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Implied Volatility models are applied to interpolate and
extrapolate discrete options data
Figure: Snapshot of data for options quotes on Apple stock
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BSM implied volatility

Figure: Implied BSM volatility as function of strike

Implied volatilities for out-of-the-money puts and calls are expensive
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Arbitrage-free implied volatility function is a key input
for computing risks and calibration of more advanced
models
Key challenges:

• Data is discrete across strikes and maturities

• Bid-Ask spreads are wide for out-of-the-money options

Typical Approaches:

• Parametric form (SVI, SABR)

• Non-parametric (splines)
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Non-parametric local volatility model linkes implied volatil-
ity into implied distributions

Breeden-Litzenberger (1978) formula relates market prices C(market) (im-
plied volatilities) into implied terminal distribution under the valuation
measure:

P [S(T ) = K] = ∂KKC
(market)(T,K)

where T is the maturity time and K is the strike

Local volatility model specifies a function σ(loc,dif)(t, S) so that price dy-
namics are consistent with the implied terminal distribution above:

dS(t) = σ(loc,dif)(t, S(t))S(t)dW (t)

Local volatility is computed using Dupire formula (1994):

σ2
(loc,dif)(T,K) =

CT (T,K)
1
2K

2CKK(T,K)

A continuum of options market prices is calibrated perfectly

Problem: options market data are discrete
27



Parametric local volatility models specify parametric func-
tions
This models can be applied to calibrate a small number of market quotes
at one maturity (they have a too small number of parameters to fit the
whole implied volatility surface)

The classic example is the CEV process (Cox (1975)):

dS(t) = σ

(
S(t)

S(0)

)β
dW (t)

Parameter β is the leverage coefficient that allows to calibrate the implied
volatility skew
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Lipton-Sepp (2011) local volatility model has as many
parameters as market quotes

Given a discrete set of market prices Cmrkt
(
Ti,Kj

)
, 0 ≤ i ≤ I, 0 ≤ j ≤ Ji

Introduce a tiled local volatility σloc (T,K):
σloc (T, S) = σij, Ti−1 < T ≤ Ti, Kj−1 < S ≤ Kj, 1 ≤ i ≤ I, 0 ≤ j ≤ Ji

By construction, for every Ti, σloc (Ti,K) depends on as many parameters
as there are market quotes

Semi-analytic model using Laplace transform and recursive solution to
Sturm-Liouville problem with least-square calibration

Illustration (vs CEV model) using the two-tiled case:

σ (S) =

{
σ0, S ≤ S0,
σ1 S > S0.
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Local Volatility Models

Local volatility models are the most widely used by dealers as interpolation
tools from market prices of vanilla products into implied distributions for
pricing structured products

Local volatility model serves only as risk-management tool

These models lack dynamical properties, in particular, the mean-reverting
features of implied volatilities
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Stochastic Volatility Models

Intoruce diffusive uncertainty for the log-price S(t) and variance V (t)
dynamics with correlated Brownian motions W (0)(t) and W (1)(t):

dS(t)

S(t)
= µ(t)dt+

√
V (t)dW (0)(t)

V (t) = a(V )dt+ b(V )dW (1)(t)

In practice and literature, the following concepts are studied:

• The instantaneous variance of price returns
Var[rt] = V (t)dt , rt = log(S(t)/S(0))

• Quadratic Variance: the integrated instantaneous variance

QV (t) =
∫ t

0
V (t′)dt′

• Realized Variance: the discrete approximation of the quadratic vari-
ance computed over discrete time grid {tk}

DV (t) =
∑

tk∈[0,t]

r2
tk
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Stochastic Variance Models

The SDE for the price process S(t) with the stochastic variance V (t):
dS(t)

S(t)
= µ(t)dt+

√
V (t)dW (0)(t), S(0) = S

Classical analytically tractable models:

• Heston model (1993):

dV (t) = κ(θ2 − V (t))dt+ ε
√
V (t)dW (1)(t)

• 3/2 SV model (Lewis 2002):

dV (t) = κV (t)(θ2 − V (t))dt+ ε(V (t))3/2dW (1)(t)
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Stochastic Volatility Models

Price dynamics S(t) with the stochastic volatility process σ(t):

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (0)(t)

The classic models:

• Stein-Stein model:

dσ(t) = κ(θ − σ(t))dt+ εdW (1)(t)

Volatility is normally distributed: not a good feature

• SABR Model (Hagan (2003)):

dσ(t) = εσ(t)dW (1)(t)

The volatility is not mean reverting and explosive: practitioners only
use the function for approximation of the model implied volatility

• Log-normal model:

dσ(t) = κ(θ − σ(t))dt+ εσ(t)dW (1)(t)

The model has a very strong empirical evidence (Christoffersen-Jacobs-
Mimouni (2010)) but it is not analytic
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The distribution of realized volatility is close to log-
normal

Left figure: empirical frequency of the VIX for last 20 years: it is defi-
nitely not normal

Right figure: frequency of the logarithm of the VIX: it is close to the
normal density (especially the right tail)
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The distribution of implied volatility is also close to log-
normal

Left figure: frequency of realized vol - it is definitely not normal

Right figure: frequency of the logarithm of realized vol - again it does
look like the normal density (especially for the right tail)
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Factor model for changes in volatility (realized or im-
plied) σ(tn) predicted by returns in price S(tn) is simplier
to interprete and estimate:

σ(tn)− σ(tn−1) = β

[
S(tn)− S(tn−1)

S(tn−1)

]
+ σ(tn−1)εn

iid normal residuals εn are scaled by σ(tn−1) due to log-normality

Left figure: scatter plot of daily changes in the VIX vs returns on S&P
500 for past 14 years: Volatility beta β ≈ −1.0 with R2 = 80%

Right: time series of residuals εn does not exhibit any systemic patterns
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More evidence on log-normal dynamics of volatility using
high frequency data: independence of regression param-
eters on level of ATM volatility

Left figure: test β̂(V ) = βV α by regression model: ln
∣∣∣β̂(V )

∣∣∣ = α lnV + c

Right: test ε̂(V ) = εV 1+α by regression model: ln |ε̂(V )| = (1+α) lnV +c

The estimated value of elasticity α is small and statistically insignificant
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Beta stochastic volatility model (Karasinski-Sepp 2012):

dS(t) = σ(t)S(t)dW (0)(t)

dσ(t) = κ(θ − σ(t))dt+ β
dS(t)

S(t)
+ εσ(t)dW (1)(t)

= κ(θ − σ(t))dt+ βσ(t)dW (0)(t) + εσ(t)dW (1)(t)

σ(t) is either returns volatility or short-term ATM implied volatility

W (0)(t) and W (1)(t) are independent Brownian motions

β is volatility beta - sensitivity of volatility to changes in price

ε is residual volatility-of-volatility - standard deviation of residual changes
in vol

Mean-reversion rate κ and volatility mean rate θ are incorporated for the
mean-reverting feature and the stationarity of volatility
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Semi-analytic solution of log-normal SV model (Sepp 2015)

Introduce the mean-adjusted volatility:

Y (t) = σ(t)− θ , Y (0) = Y = σ(0)− θ

The dynamics for log-price X(t) = ln(S(t)) and quadratic variance I(t):

dX(t) = −
1

2
(Y (t) + θ)2 dt+ (Y (t) + θ) dW (0)(t)

dY (t) = −κY (t)dt+ β (Y (t) + θ) dW (0)(t) + ε (Y (t) + θ) dW (1)(t)

dI(t) = (Y (t) + θ)2 dt

The valuation PDE is given on the domain [0, T ]× R× R+ × (−θ,∞):

−Uτ +
(
L(Y ) + L(XI)

)
U = 0

U(0, X, I, Y ) = u(X, I)

where the diffusive operators L(Y ) and L(XI) are defined on the domain
[0, T ]× R× R+ × (−θ,∞):

L(Y )U =
1

2
ϑ2(Y + θ)2UY Y − κY UY + β(Y + θ)2UXY

L(XI)U = (Y + θ)2
[
1

2
(UXX − UX) + βUXY + UI

]
39



Affine decomposition for log-normal SV model
The moment generation function (MGF) of the log-price X(τ) and the
QV I(τ) with transform variables Φ,Ψ ∈ C:

G(τ,X, I, Y ; Φ,Ψ) = E[e−ΦX(τ)−ΨI(τ)]

MGF G solves the PDE:

−Gτ +
(
L(Y ) + L(XI)

)
G = 0, G(0, X, I, Y ; Φ,Ψ) = e−ΦX−ΨI .

Theorem. The MGF function can be decomposed into the leading term
E[2] and the remainder term R[2]:

G(τ,X, I, Y ; Φ,Ψ) = E[2](τ,X, I, Y ; Φ,Ψ) +R[2](τ,X, I, Y ; Φ,Ψ),

The leading term E[2] is given by the exponential-affine form:

E[2](τ,X, I, Y ; Φ,Ψ) = exp

−ΦX −ΨI +
4∑

k=0

A(k)(τ ; Φ,Ψ)Y k

 ,
where the functions A(k) solve the system of ODEs as functions of τ

The remainder term R[2](τ,X, I, Y ; Φ,Ψ) solves the following problem:

−R[2]
τ +

(
L(Y ) + L(XI)

)
R[2] = −F [2](Y,A(1), A(2), A(3), A(4))E[2](τ,X, I, Y ; Φ,Ψ)

R[2](0, X, I, Y ; Φ,Ψ) = 0,

where the source term F [2] is a polynomial function in Y 40



Second-order Affine Decomposition

Corollary. The second-order approximation for the MGF G is obtained
by the leading affine term E[2]:

G(τ,X, I, Y ; Φ,Ψ) = E[2](τ,X, I, Y ; Φ,Ψ),

with accuracy given by the estimate for the remainder term R[2]:∣∣∣R[2](τ,X, I, Y ; Φ,Ψ)
∣∣∣ ≤ 8∑

n=5

Cn(τ ; Φ,Ψ)×M(n)
σ ,

where M
(n)
σ is the n-th central moment of the steady-state volatility, and

Cn(τ ; Φ,Ψ), n = 5,6,7,8, are real-valued constants depending on τ and
the transform variables Φ and Ψ

Proposition. There exists a unique and continuous solution for coeffi-
cients A(k)(·,Φ,Ψ), k = 0, ...,4 in the second-order affine decomposition

Proposition. The second-order leading affine term satisfies the martin-
gale condition:

E[2](τ,X, I, Y ; Φ = 0,Ψ = 0) = 1,

Proposition. The second-order leading affine term is consistent with the
expected value, variance, and covariance of the log-price and of the QV
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Applications for pricing options under the log-normal
stochastic volatility model: consistency across different
maturities and strikes (using S&P 500 index options)
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Equilibrium / Steady-State Analysis of SV models

Different SV models have apparently different dynamics and distributions
of returns: how is about their limiting behaviour?

• The steady-state distribution of the volatility σ

• The theoretical distribution of volatility-conditional returns:

X |σ d
= n

(
0,
√
cσ
)

where c is the scaling factor, c = 1/252 for daily returns.

• The empirical distribution of volatility-normalized returns:

X̂n =
1

σ̂n−1
ln
(
Sn/Sn−1

)
where σ̂n−1 is the empirical stimate of volatility at time tn−1
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Empirical distribution of volatility-normalized returns is
close to normal distribution
Right: QQ-plot of monthly returns on the S&P 500 index

Left: QQ-plot of monthly returns normalized by the realized historic
volatility of daily returns within given month

Anderson-Darling test for normality of returns (H0 hypothesis)
Returns Normalized Returns

Reject H0 Yes No
p-value 0.0005 0.9515

We have strong presumption against normality of returns

However we cannot reject the hypothesis that volatility-normalized returns

Non-normality of returns can be explained by regimes in the volatility
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Hitting times of volatility normalized returns are not
clustered unlike those for absolute returns
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Steady-state distribution of volatility

The steady-state distribution of the volatility is obtained by letting the
time variable to the infinity

For the log-normal model the steady-state distribution solves the ODE:

1

2
ϑ2
[
σ2G

]
σσ
− [κ(θ − σ)G]σ = 0
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Steady-state distribution of the volatility

For log-normal model:

G(LG)(σ) =
υν

Γ(ν)

exp
{
−υσ

}
σ1+ν

, ν = 1 +
2κ

ε2
, υ =

2κθ2

ε2

Inverse Gamma distribution with shape α = ν and scale β = υ

For 3/2 model:

G(3/2)(σ) =
υν

Γ(ν)

exp
{
−υσ

}
σ1+ν

, ν = 2 +
2κ

ε2
, υ =

2κθ2

ε2

Inverse Gamma distribution with shape α = ν and scale β = υ

Structurally the 3/2 model and the log-normal model are similar

For Heston model:

G(H)(σ) =
υ−ν

Γ(ν)

exp
{
−συ

}
σ1−ν , ν =

(
2κθ2

ε2

)−1

, υ =
2κ

ε2

Gamma distribution with shape α = ν and scale 1/υ
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Illustration of the steady state density of volatility

Steady-State Distribution of Volatility

Lognormal

3-2

Heston

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
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Illustration of the steady state density of volatility: log-
normal model implies heavy

For the logarithm of the volatility L = log(σ) under the lognormal model,
the distribution is given the extreme-value type PDF:

G(L)(L) =
υν

Γ(ν)
exp {− exp {−L} /υ + νL}

Steady-State Distribution of The Tail of 

Volatility

Lognormal

3-2

Heston

45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Heston
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The Distribution of Conditional Returns

Consider the distribution of returns conditional on the steady-state volatil-
ity: X |σ∞ d

= n
(
0,
√
cσ∞

)
where c is the scaling factor

The unconditional PDF is obtained by the integral:

G(X)(X) =
∫ ∞

0

1√
2πcσ∞

exp

{
−

1

2

X2

c(σ∞)2

}
G(σ∞)(σ∞)dσ∞

For the lognormal SV model:

G(X)(X) =
Γ
(
ν + 1

2

)
√

2πcυΓ (ν)

(
1 +

X2

2cυ

)−1
2(2ν+1)

This is the Student t-distribution with 2ν degrees of freedom

For 3/2 SV model, the Student t-distribution with 2(ν + 1) degrees

For Heston model:

G(X)(X) =
2 (2cυ)

−1
2

(
1
2+ν

)
|X|−

1
2+ν

√
πΓ(ν)

K
ν−1

2

(
2
|X|√
2cυ

)
Kν(x) is modified Bessel function of the second kind with index ν 50



Illustration: the tail of unconditional distribution of re-
turns is heavier under the lognormal SV model

Unconditional Distribution of Returns

Lognormal

3-2

Heston

Log of Unconditional Distribution of The 

Tail of Returns 

LognormalLognormal

3-2

Heston
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Summary of stochastic volatility models: applications
for trading volatility risk-premium
The strength of SV models:

1. Calibration to market options prices for estimation of the implied
distributions

2. Forecasting of the expected volatility and its probabilistic range con-
ditional on the current observables

3. Steady-state analysis of systematic volatility trading strategies

Figure: expected vs realized volatility risk-premium computed using the
log-normal SV model
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Volatility trading in practice: Usage of Options and
Structured Products

• Hedging (controversial)

• Investment products with limited downside:

1. To get a convex pay-off (limited downside with large upside)

2. The key is the volatility premium
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The convexity profile without costs is appealing

Figure: the realized convexity of the straddle (long at-the-money call and
put options) rolled monthly on S&P 500 index from 2005 up to 2016

The convexity of returns is a very attractive profile for any investment
strategy

Taleb: you should own the convexity
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The convexity profile accounting to costs is not appeal-
ing
Figure: the convexity of straddle rolled monthly on S&P 500 index from
2005 up to 2016 adjusted to market price of straddle

Why Taleb’s advice does not work in practice: the convexity is overpriced

Link to the behavior science (GMO LLC: ”What the Beta Puzzle Tells
Us about Investing”) and preference for ”lottery” payoffs

Empirical evidence: the concavity profile (short options) provides higher
returns than the convexity profile (long options) in the long term
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Empirical evidence: systematic short convexity strate-
gies out-perform the benchmark with smaller risk
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The cyclicality of the volatility risk-premium makes trend-
following with options prohibitive
Two major investment approaches:

1. Follow the trend: buy high and sell higher

2. Contrarian: bet on reversions or range bounds

Trend following using options is prohibitive as the volatility risk-premium
is cyclical and the option value decays the fastest at a high volatility

Figure: prior month return on the S&P 500 index and option premium
for monthly straddles at the third Fridays
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Convexity is equivalent to volatility

Given monthly returns, consider two estimators of the volatility:
• The convexity estimator using the monthly return (equivalent to P&L

on the straddle):

σ̂
(conv)
n =

√
12×

√
π

2

∣∣∣∣∣ S(tn)

S(tn−1)
− 1

∣∣∣∣∣
• The volatility estimator using daily returns within the month (equiv-

alent to P&L on the straddle delta-hedged daily):

σ̂
(vol)
n =

√
12×

√√√√√ 1

N

∑
tk∈(tn−1,tn]

(
S(tk)

S(tk−1)
− 1

)2

Figure: Convexity and volatility have equivalent right tails

0% 10% 20% 30% 40% 50% 60% 70% 80%

Empirical frequency of monthly realized 

convexity and volatility for S&P 500 index

Volatility

Convexity

58



CTAs (commodity trading advisors) are able to create
convex return profiles by applying quant strategies for
trend-following

Figure: Monthly returns on SC CTA index (tracking 20 largest CTAs)
from 2001 to 2016 vs monthly returns on the S&P 500 index

CTAs attemp to replicate option pay-off without actually buying options
(long convexity but short volatility similar to trading with a stop-loss)

CTAs seek to rank trends by volatility (stong trends with small volatility)

CTAs attract much more investments than volatility funds
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CTAs vs volatility strategies

CTAs derive its convex pay-off from a positive auto-correlation (Bouchaud
et al (2016))

Replication costs of CTAs are linked to the short-term realized volatility

Long options strategy can create a similar convexity profile but its repli-
cation costs are derived from implied volatilitites, which are expensive

Short options strategy works well when auto-correlations are negative (no
trend) and the implied volatility is expensive

Combination of CTAs with short volatility strategies can create a more
desirable risk profile than each of the alone
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Why it is so difficult to make profits being long volatility

Being long volatility requires for a trader to make an intelligent assessment
about the trend of the underlying:

• In a strong trending market, the trader should hedge infrequently (let
the delta-risk to accumulate)

• In a choppy range-bound market, the trader should hedge very fre-
quently (reduce the delta-risk fast)

It is not only enough to estimate the expected realized volatility

If options are purchased on the buy-to-hold basis without delta-hedging,
the trade can make money only for a strong trend in the underlying:

• Recall the cyclicality of the volatility risk-premium: the timing ability
is crucial

• Longer-dated options to reduce the timing risk along with pre-defined
profit taking
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The convexity profile of returns can also be created by
using the statistical volatility as a risk control

Figure: the convexity profile of a proprietary risk-parity strategy

1. Statistical volatility is typically negatively correlated to expected re-
turn: apply the estimated volatility for asset allocation

2. Key idea behind the risk-parity and minimum volatility funds

3. These strategies tend to outperform over long-term

4. Very strong interest and inflows by the investment community
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Conclusions: the cyclicality of markets dynamics

The classic derivative theory deals with option replication assuming ideal
conditions and using models that are static in nature

Well-known empirical facts: persistent trends, risk-aversion, over-pricing
of tail probabilities

Classic quantitative investment strategies (trend-following and volatility
trading) seek for a statictical arbitrage of these anomalies

The volaility risk-premium is part of a factor-based investment approach

Quantitative strategies using statistical volatility as a risk-control can also
generate the convexity profile of long option strategies:
Stong investor demand for minimum volatility and risk-parity products
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