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Introduction
There is no doubt that probability theory has 
many direct applications. However, during the 
mid-twentieth century mathematicians developed 
a further potential of the theory: It can be used 
as a tool for proving theorems, which may have 
nothing to do with probabilities. This so-called 
„Probabilistic Method“ was pioneered by Paul 
Erdős, one of the most influential mathematicians 
of the era. The method has grown into one of the 
most powerful and widely used strategies in the 
field of combinatorics.

The probabilistic method is used for proving the 
existence of some mathematical object with certain 
properties. This is achieved by selecting some object 
at random and proving that the probability of it 
having the properties we want is strictly greater 
than 0. Although the method can get arbitrarily 
more complex, it always boils down to this basic 
principle.

In my paper I talk about the basic idea of the 
probabilistic method and introduce the reader to a 
range of useful concepts and strategies. I illustrate 
how they can be applied to more complex structures 
by using the established ideas to analyse three 
properties of what are called permutations, a very 
well-known mathematical object.

After having found many of their probabilistic  
properties, I then go on to describe how we can 
use the concept of higher moments. I prove a  
number of well-known inequalities and, using 
these higher moments, I deduce more concrete 
results. In the very last chapter I then give some 
famous examples of theorems from different areas 
of mathematics, which can be approached using 
the probabilistic method. In these proofs, I use the 
ideas discussed throughout the paper. 

Contents

Let X be a variable whose value is dependent on the 
outcome of some random phenomenon. We define 
the expected value of X as

where the sum goes over all possible values of X. 
Here, the function P denotes the probability that 
some event occurs.

The expected value can be thought of as a kind of  
average of all possible values of the variable, where 
each outcome is weighted by its corresponding 
probability of occuring.

In my paper I try to give the reader some intuition 
about the concept of expectancy by showing many 
examples I came up with.

Expected Value

Let X be a variable that takes real values. It is easy 
to show that the following always holds:

This theorem basically states that not all possible 
values of the variable can be above its expected 
value. Intuitively this should make sense as there 
should always be at least one sampled value above 
and below any kind of average.

This is only one of the many inequalities I prove 
in my paper. Given enough higher moments of a 
probability distribution, it is then possible to bound 
specific probabilities.

Mean-Inequality

Linearity is by far the most important property of 
the expected value. It states that for any two real 
variables X and Y we have:

   

This fact is, especially in the case where the two 
variables happen to be dependent on each other, 
not intuitive at all and turns out to be a strong tool.

The proof of this result which I give in my paper 
only involves a few clever manipulations of sums.

Linearity of Expectancy

We call a set of real numbers sum-free if it does not 
contain two not necessarily distinct elements whose 
sum is also in that set.
 
Theorem. Given any set of integers A there is a 
sum-free subset of A with at least a third of its size.

Lemma 1. Given a sum-free set S of real numbers 
and a positive real value t, the set

is also sum-free. This follows from the fact that the 
real value t can just be pulled out of the condition 
for sum-freeness due to its linearity.

Lemma 2. For any set S of real numbers, the set

is sum-free. This fact can be checked easily.

Proof. Let A be a set of integers and let us pick a 
random real number t in the interval (0, 3). Let us 
define the following sets:

We further define so-called indicator variables:

Since t is chosen at random it follows that

and from linearity of expectation we deduce

since the expected value of any indicator variable 
is just the probability that its corresponding event 
occurs.

The mean-inequality now tells us that there has to 
be some choice of t such that the intersection of 
B and C is at least one third of the size of A. By 
Lemma 2 we know that this intersection is in fact 
sum-free. 

Finally, it follows from Lemma 1 that A also has to 
have a sum-free subset of at least this size.

This concludes the proof.

Sum-Free Subsets


