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Framework and motivation

A rank and row sparse model

@ Model: Y = XA+ E; E noise matrix.

@ Data: m x n matrix Y and m x p matrix X.

@ Target: p X n matrix A <— pn unknown parameters

@ Rank of Ais r < nAp. Nbr of non-zero rows of A'is |J| < p.
@ Row and Rank Sparse Target «— r(|J| + n — r) free param.

@ Full rank + all rows + large n and p = Hopeless, if m small.
Low rank + Small |J| = HOPE, if m small.

@ Estimate A under joint rank and row constraints.
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Framework and motivation

Why rank and row sparse Y = XA+ E 7

e Multivariate response regression

Measure n response variables for m subjects: Y; € R”, 1 </ < m.
Measure p predictor variables for m subjects: X; ¢ R?, 1 < i < m.
No (rank / row ) constraints on A <= n separate univ.

Zero rows in A <= Not all predictors in the model.

Low rank of A <= Only few orthogonal scores relevant.

Goal: Estimation tailored to row and rank sparsity

Use only a subset of the predictors to construct few scores,

with high predictive power, under JOINT rank and row restrictions
on A.
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Framework and motivation

Why row and rank sparse Y = XA+ E 7 Contd.

e Supervised row and rank sparse PCA.
e Provides framework for row and rank sparse PCA and CCA.

e Building block in functional data analysis (with predictors).

Y = matrix of discretized trajectories for n subjects;
X = matrix of basis functions evaluated at discrete data points

+ possibly other predictors of interest.
e Building block in multiple time series analysis.
(Macro-economics and forecasting)

Y = matrix of n time series observed over m time periods
(n types of interest rates)

X =Y in the past + other predictive time series
(other potentially connected macro-economic factors).

Joint variable and rank selection for parsimonious estimation ¢
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Framework and motivation

A historical perspective on sparse Y = XA+ E

Rank Sparse Models

« Reduced-Rank Regression: Y = XA+ E, rank (A) = k = known.
Asymptotic results m — oo: Anderson (1951, 1999, 2002);

Rao (1979); Reinsel and Velu (1998); lzenman (1975; 2008).

« Low rank approximations: Y = XA+ E, rank (A) = r = unknown.
Adaptive estimation + Finite sample theoretical analysis, valid
for any m, n, p and any r.

Rank Selection Criterion (RSC): Bunea, She and Wegkamp (2011).

Nuclear Norm Penalized (NNP) estimators:

Candés and Plan; Tao (2009+), Rhode and Tsybakov (2011),
Negahban and Wainwright (2011);

Koltchinskii, Lounici, and Tsybakov (2011).
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Framework and motivation

A historical perspective on sparse Y = XA + E contd.

Row-Sparse Models

o Predictor Xj not in the model <= The j-th row of A is zero.

« Individual variable selection in multivariate response regression

)

Group selection in univariate response regression.

Popular method: The Group Lasso. Yuan and Lin ( 2006); Lounici,
Pontil, Tsybakov and van der Geer (2011).

No rank and row sparse models; no adaptive methods tailored to
both. J
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Framework and motivation

Joint rank and row selection: JRRS

o Will develop new criteria, for joint rank and predictor selection.
er<nAlJ|, rank(X)=q<mAp; |J| <p;randJ unknown.

e Optimal risk rates achievable adaptively by
the G-Lasso, RSC/NNP and (to show) JRRS.

G-Lasso: |J|n, in row-sparse models
RSC or NNP: (p+ n)r, in rank-sparse models
JRRS: (|J| + n)r, in rank and row-sparse models

e JRRS rates never worse and typically much better.
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Joint Rank and Row Selection Methods The construction of the one-step JRRS estimator
Row and rank sparsity oracle inequalities via one-step JRRS
One-step JRRS to select the best estimator from a finite list

A penalized least squares estimator

e Yisa mx nmatrix,; X isa m X p matrix.
e ||[M||2 is the sum of the squared entries of M € M py .

e Candidate model B € M, has number of parameters

(n+|J(B)| — rank(B))rank(B) < (n+ |J(B)|)rank(B).

The one-step JRRS estimator

A = argmin {|Y — XB||% + ca®(2n + |J(B)|)rank(B)}.
B

S pXn

e Generalizes to multivariate response models
the AIC/C,-type criteria developed for univariate response.
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Joint Rank and Row Selection Methods The construction of the one-step JRRS estimator
Row and rank sparsity oracle inequalities via one-step JRRS
One-step JRRS to select the best estimator from a finite list

More on the one-step JRRS penalty

e B € Mpy, with J(B) non-zero rows.
¢ JRRS penalty pen(B) o a?(n + |J(B)|)rank(B)
e B € M,yy, (ignoring non-zero rows), rank(X) = q.

e RSC penalty pen(B) o o2(n + q)rank(B)

e Squared "error level” in full model = Ed?(PE) ~ o2(n+ q),
E with iid sub-Gaussian entries, P = X(X'X)~X".
e JRRS generalizes RSC to allow for variable selection.

e To reduce rank and select variables work with:
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Joint Rank and Row Selection Methods The construction of the one-step JRRS estimator
Row and rank sparsity oracle inequalities via one-step JRRS
One-step JRRS to select the best estimator from a finite list

Oracle-type bounds for the risk of the one-step JRRS

e rank(A)=r, non-zero rows of A with indices in J(A) = J.
Adaptation to Row and Rank Sparsity via one-step JRRS
For all A and X

E ||XA— XAIP| S inf [IXA— XB|? + a%(n + |J(B)])r(B)]

A

o{n+ |J]}r.

o RHS = the best bias-variance trade-off across B.

o Ais adaptive: it mimics the behavior of an optimal
estimator computed knowing r and J.
Minimax rate, under suitable conditions.

e Bound valid for any m, n, p.
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Joint Rank and Row Selection Methods The construction of the one-step JRRS estimator
Row and rank sparsity oracle inequalities via one-step JRRS
One-step JRRS to select the best estimator from a finite list

Select the best from a finite list

e If p > 20, JRRS estimation over all B becomes
computationally intractable

e B={Bi,...,B;} = Finite (large) collection of (random)
matrices with different sparsity patterns;
may depend on data X and Y.

Optimal selection from a finite list via JRRS

For all A and X

E[|XA—XAP| < inf [IXA~XBj|P +0%(n+ J(B)r(8)]

A = argmin{||Y — XB||% + ca?(2n + |J(B)|)rank(B)}.
BeB
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection
Row and rank sparsity oracle inequalities via two-step JRRS

Rank Constrained Group Lasso: main building block

e One-step JRRS penalty pen(B)  (n+ |J(B)|)rank(B).
J(B) forces complete enumeration; for large p that's a problem!

o Idea: use convex relation ||Bll21 = > 7_; [|bjll2.
e Set \x o 04/ kd?(X), for each k.
By — argmi z
o= argmin {[[Y — XBJE + Ael|Bll21} - J
rank(B)<k

e By is a Rank-Constrained G-Lasso. (RCGL)
Other "group” penalties possible.
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection

Row and rank sparsity oracle inequalities via two-step JRRS

> Ek = arg minrank(B)Sk {H Y — XBH%—_ + )\k||B”271}'

e For k = n A p, estimator By is G-Lasso.
e For A\ = 0, estimator By is a reduced-rank estimator.

e Otherwise, Ek is a synthesis of the two; new algorithm needed.
Efficient algorithm Bunea, She and Wegkamp (2011).

e Works in high dimensions.
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection
Row and rank sparsity oracle inequalities via two-step JRRS

Two-step JRRS: Method 1

Method 1

@ Step 1. Use the Rank Selection Criterion RSC to estimate
consistently r by 7.

@ Step 2. Compute the Rank Constrained G-Lasso estimator
By with k =7 to obtain the final estimator B = B;.

Major Practical Advantage: Easy tuning, backed up by theory.

e For Step 1: Same tuning parameter of RSC gives best MSE and
correct rank. Can use CV safely; other alternatives exist.

e For Step 2: We want best MSE, CV safe.

Joint variable and rank selection for parsimonious estimation ¢
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection
Row and rank sparsity oracle inequalities via two-step JRRS

Two-step JRRS: Method 2

Method 2

@ Step 1. Pre-specify a grid of values A for A. Use RCGL to construct
B={Bix:ke{l,....q}, A €N}
@ Step 2. Compute
B = axgmin{||Y — XBI|% + pen(B)},
BeB
with pen(B) o o2(n+ |J(B)|)rank(B).

® Requires a 2-D grid search: more computationally involved than Met. 1.
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection
Row and rank sparsity oracle inequalities via two-step JRRS

Oracle-type bounds for the risk of the two-step JRRS

e Method 1 (RSC + RCGL) — B; Method 2 (RCGL + AIC-M) — B

Adaptation to Row and Rank Sparsity via two-step JRRS

For all A and for X satisfying Assumption 1

E[||XA—X§||2} S inf [|IXA = XB| + o*(n + J(B))r(B)]
a?{n+ J(A)}r(A).

A

If, in addition, d,(XA) > 2v/20(/A + /q), same inequality holds for B.

o RHS = the best bias-variance trade-off across all matrices B.

° E B are adaptive: mimic the behavior of an optimal
estimator computed knowing r(A) and J(A).

e Bound valid for any m, n, p; computationally efficient.
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Rank Constrained Group Lasso RCGL
Two-step JRRS estimators Adaptive RCGL for joint row and rank selection
Row and rank sparsity oracle inequalities via two-step JRRS

Mild conditions on the design matrix

There exists a set J C {1,...,p} and a number §; > 0 such that

1
ZIXBIE > 6,5 I3 for all B=[by--- by]T € RPX"
JjeJ

e Only a sub-matrix of X’X has a non-zero smallest eigen-value.
Mild condition.
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Numerical performance and examples

Large p - small m numerical performance comparison

em=30,|J| =15 p=100,n =10, r =2, 0? = 1.

e Performance comparison between:
rank and row reduction via RSC—RCGL and G-LASSO—RSC,
only row via G-LASSO, and only rank via RSC.

e All optimally tuned on a very large independent set.

Method MSE
RSC—RCGL 363
G-LASSO—RSC 402
G-LASSO 511

RSC 1905
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Numerical performance and examples

Large m - small p numerical performance comparison

em=100, |J|=15 p=25 n=25r=5 02=1.

e Performance comparison between:

rank and row reduction via RSC—RCGL, G-LASSO—RSC,
only row via G-LASSO, and only rank via RSC

e All optimally tuned on a very large independent set.

Method MSE
RSC—RCGL 8.1
G-LASSO—RSC 8.1

RSC 11.5
G-LASSO 17.7
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Numerical performance and examples

A study of the effect of HIV-infection
on human cognitive abilities

e HIV-Neuroimaging laboratory at Brown University, Pl R. Cohen.

e m = 62 HIV+ patients, also infected with Hepatitis C,
and with a history of drug abuse

e n = 13 neuro-cognitive indices (NCls) from five domains:
attention/working memory, speed of information processing
psychomotor abilities, executive function, and learning and memory.

e p = 234 predictors (a) clinical and demographic predictors and (b)
brain volumetric and diffusion tensor imaging (DTI) derived measures of
several white-matter regions of interest, such as fractional anisotropy,
mean diffusivity, axial diffusivity, and radial diffusivity, along with all
volumetrics x DTI interactions.
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Numerical performance and examples

RSC and JRRS: two rank-1 models

e Both methods: One new predictive score S.

e Left = RSC; MSE =193; S = lin. comb. of p = 234 predictors.

e Right = JRRS; MSE =138; S = lin. comb. of |J| = 10 predictors.

Weights

Original pfedictors Original predictors.
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Numerical performance and examples

e JRRS selected rank 1 and only 10 predictors.
e Education is one of them, confirming past findings.

e The fractional anisotropy at corpus callosum stands out among
the very many DTl-derived measures, in terms of predictive power.

e New finding in the lab and first quantitative confirmation.
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Numerical performance and examples

Summary

Methods Adaptation Assumptions Restrictions
to RR-sparsity on X and/or A on p
One-step JRRS
(AIC-M) Yes None p <20
Two-step JRRS1 Restricted Eigenvalue;
(RSC — RCGL ) Yes d,(XA) > "noise level” None
Two-step JRRS2
(RCGL— AIC-M) Yes Restricted Eigenvalue None
GL — RSC Yes Mutual coherence et al. None

min; ||aj||> > noise level

e RSC — RCGL easy to tune in practice; backed up by theory. Best !
e RCGL— AIC-M tuning requires search over a 2-D grid. Second best !
e GL — RSC: (1) Most restrictive theoretical assumptions;

uires tuning for consistent
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Summary

Summary: Our contribution

Jointly rank and row-sparse models and their estimation

© Introduced jointly rank and row sparse models.

@ Offered new procedures tailored to the new class of models.

© Showed that the one-step JRRS is a theoretically optimal adaptive
procedure: R
Finite sample oracle inequalities for E|XA — XA||% for all A and X.

@ Introduced computationally efficient two-step JRRS.

© Two-step JRRS satisfy finite sample oracle inequalities under
minimal conditions on X.

Q Guaranteed small E||XA — Xﬁ”% if A of low rank and few non-zero
rows. Analysis valid for all m, n, p, rank r and J. In particular, r
and |J| can grow with m and n.

Joint variable and rank selection for parsimonious estimation ¢
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Summary
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