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1. Overview

Let X1, . . . ,Xn be independent, self-adjoint random matrices with dimension d × d. Our goal is
to provide bounds for the probability

P{λmax (∑
n

k=1 Xk) ≥ t} . (1.1)

The symbol λmax denotes the (algebraically) maximum eigenvalue of a self-adjoint matrix. We wish
to harness properties of the individual summands to obtain information about the behavior of the
sum. The approch here leads to simple estimates that are relatively general and easy to use in
applied settings. The cost is that the results are not quite sharp for every example.

This research begins with the observation that controlling (1.1) resembles the classical problem of
developing tail bounds for a sum of independent real random variables. There are some compelling
analogies between self-adjoint matrices and real numbers that suggest it may be possible to extend
classical techniques to the matrix setting. Indeed, this dream can be realized.

In a notable paper [AW02], Ahlswede and Winter show that elements from the Laplace trans-
form technique generalize to the matrix setting. Further work in this direction includes [Rec09,
Gro09, Oli10a, Oli10b]. These techniques are closely related to noncommutative moment inequali-
ties [LP86, Buc01, JX05] and their applications in random matrix theory [Rud99, RV07].

2. The Matrix Laplace Transform Method

To begin, we show how Bernstein’s Laplace transform technique extends to the matrix setting.
The basic idea is due to Ahlswede–Winter [AW02], but we follow Oliveira [Oli10b] in this presen-
tation. Fix a positive number θ. Observe that

P{λmax (∑k
Xk) ≥ t} = P{exp{λmax (∑k

θXk)} ≥ eθt}

≤ e−θt ⋅E exp{λmax (∑k
θXk)}

= e−θt ⋅Eλmax (exp{∑k
θXk})

< e−θt ⋅E tr exp{∑k
θXk} . (2.1)

The first identity uses the positive homogeneity of the eigenvalue map; the second relation is
Markov’s inequality; the third line is the spectral mapping theorem; and the last part holds because
the exponential of a self-adjoint matrix is positive definite.

At this point, previous authors interpreted the quantity

E tr exp{∑k
θXk}

as a matrix extension of the classical moment generating function (mgf). They attempted to
generalize the fact that the mgf of an independent sum is the product of the mgfs of the summands.
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Roughly, the hope seemed to be that

⟪ E tr exp{∑k
θXk} = tr∏k

E eθXk . ⟫

This ostensible identity fails completely. In the matrix setting, it is generally not true that eX+Y ≠

eXeY . The Golden–Thompson inequality [Bha97, Ch. IX] can be used as a limited substitute:
tr eX+Y ≤ tr eXeY . But the obvious extension to three matrices is false: tr eX+Y +Z /≤ tr eXeY eZ .
On reflection, it becomes clear that results like this cannot be true because the trace of a product
of three positive matrices can be a negative number. In the past, researchers have circumvented
this problem using some clever iterative procedures.

Nevertheless, we need a new idea if we want to find the natural extension the classical approach.
The key observation is that we should try to extend the additivity rule for cumulants. To do
so, we need more tools. The following result is one of the crown jewels of matrix analysis.

Theorem 2.1 (Lieb [Lie73]). Let H be a self-adjoint matrix. Then the map

Az→ tr exp{H + log A}

is concave on the positive-definite cone.

We apply Lieb’s theorem through the following simple corollary.

Corollary 2.2 (Tropp 2010). Let H be a fixed self-adjoint matrix, and let X be a random self-
adjoint matrix. Then

E tr exp{H +X} ≤ tr exp{H + log E eX} .

When we apply the corollary iteratively, we obtain the following inequality in our setting.

tr exp{log E exp{∑k
θXk}} = E tr exp{∑k

θXk} ≤ tr exp{∑k
log E eθXk} . (2.2)

The bound (2.2) states that the cumulant generating function (cgf) of a sum of independent random
matrices is controlled by the sum of the cgfs of the individual matrices. Introducing (2.2) into (2.1),
we reach

P{λmax (∑k
Xk) ≥ t} ≤ inf

θ>0
[e−θt ⋅ tr exp{∑k

log E eθXk}] . (2.3)

The latter inequality is the natural matrix extension of the classical Laplace transform approach.

3. Example: Matrix Rademacher series

The simplest application of (2.3) concerns Rademacher series with matrix coefficients. Let {Ak}

be a finite sequence of fixed, self-adjoint matrices with dimension d. Let {εk} be a sequence of
independent Rademacher random variables. We claim that

P{λmax (∑k
εkAk) ≥ t} ≤ d ⋅ e−t

2/2σ2

where σ2
= ∥∑k

A2
k∥ . (3.1)

The symbol ∥⋅∥ denotes the spectral norm, or Hilbert space operator norm, of a matrix. A related
calculation, which we omit, yields

Eλmax (∑k
εkAk) ≤ σ ⋅

√
2 log d.

For every example, this bound on the expectation is sharp up to the square-root log factor.
The inequality (3.1) has some interesting relations to earlier results. An alternative proof uses

sharp noncommutative Khintchine inequalities [Buc01] to bound the matrix mgf. In comparison,
the approach described by Ahlswede and Winter [AW02] leads to the weaker inequality

P{λmax (∑k
εkAk) ≥ t} ≤ d ⋅ e−t

2/2ρ2 where ρ2
= ∑k

∥A2
k∥ .

The latter estimate also follows from Tomczak-Jaegermann’s moment bounds [TJ74] for Rademacher
series in the Schatten classes.
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To establish the claim (3.1), we need to study the cgf of a fixed matrix modulated by a
Rademacher variable. Note that

log E eεθA = log cosh(θA) ≼
θ2

2
A2.

The semidefinite relation follows from the scalar inequality log cosh(x) ≤ x2/2. Introduce this
estimate (with appropriate justifications!) into the tail bound (2.3) to reach

P{λmax (∑k
εkAk) ≥ t} ≤ inf

θ>0
e−θt ⋅ tr exp{

θ2

2
∑k

A2
k}

≤ inf
θ>0

e−θt ⋅ exp{
θ2

2
⋅ λmax (∑k

A2
k)}

= inf
θ>0

e−θt ⋅ eθ
2σ2/2.

Optimize with respect to θ to complete the proof of (3.1).
Finally, let us mention that these ideas can be extended to study rectangular matrices. Consider

a finite sequence {Bk} of fixed d1 × d2 matrices. Then

P{∥∑k
εkBk∥ ≥ t} ≤ (d1 + d2) ⋅ e−t

2/2σ2

where σ2
= ∥∑k

BkB
∗
k∥ ∨ ∥∑k

B∗
kBk∥ .

Remarkably, this estimate follows immediately from (3.1) by applying that result to the self-adjoint
matrices

Ak = [
0 Bk

B∗
k 0 ] .

We omit the details.
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