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Penalized LS (ML) Estimators

Linear regression model
y=01x1+...0kx+e=X0+¢

@ response y € R”
@ regressors x; e R", 1 </ < k

@ errors e € R”

@ parameter vector 8 = (6y,...,0,) € RF

A penalizgd least-squares (PLSE) or maximum-likelihood estimator
(PMLE) 8 for 0 is given by

6 = arg min ly — X8> + Pa(6),
OcRK —_—— ~——
likelihood or LS -part penalty

where X = [x1,...,x ] is the n x k regressor matrix.



Penalized LS (ML) Estimators  (cont'd)

@ General class of Bridge-estimators (Frank & Friedman, 1993)
k
Pn(8) = An E 10"
i=1

v =2: Ridge-estimator (Hoerl & Kennard, 1970)
v=1: Lasso (Tibshirani, 1996).

Hard- and soft-thresholding estimators.
SCAD estimator (Fan & Li, 2001)
Elastic-net estimator (Zou & Hastie, 2005)

Adaptive Lasso estimator (Zou, 2006)

(thresholded) Lasso with refitting (Van de Geer et al, 2010;
Belloni & Chernozhukov, 2011)

MCP (Zhang, 2010)



Relationship to classical PMS-estimators

Brigde-estimators satisfy

k
i — X0|%+ A\, 0;" (0<~<
gﬁﬂy I ;;" (0 <y <o)

For v — 0, get

i — XO||?> + \ycard{i: 0; £0
Q&Hy [ card{i : 0; # 0}

which yields a minimum C,-type procedure such as AlC and BIC.
(ly-type penalty with “y = 0") — ‘classical’ post-modelselection
(PMS) estimators.



Relationship to classical PMS-estimators  (cont'd)

@ For "y = 0" procedures are computationally expensive.

@ For v > 0 (Bridge) estimators are more computationally
tractable, especially for 7 > 1 (convex objective function).

@ For v <1, estimators perform model selection
P(; =0) >0 if6; =0.

Phenomenon is more pronounced for smaller +.

@ 7 =1 (Lasso and adaptive Lasso) as compromise between the
wish to detect zeros and computational simplicity.

The PLSEs (and thresholding estimators) we treat in the following
can be viewed to simultaneously perform model selection and
parameter estimation.



Some terminology

@ Consistent model selection

lim P(§i=0)=1 whenever §; =0 (1<i<k)

n—oo

Estimator is sparse or sparsely tuned.

@ Conservative model selection

lim P(6; =0) <1 whenever §; =0 (1<i<Kk)

n—oo

Estimator is non-sparsely tuned.

Consistent vs. conservative model selection can in our context be
driven by the (asymptotic) behavior of the tuning parameter.



Literature on distributional properties of PLSEs

- fixed-parameter asymptotic framework (non-uniformity issues)

- sparsely-tuned PLSEs

Oracle property — obtain same asymptotic distribution as ‘oracle
estimator’ (infeasible unpenalized estimator using the true zero
restrictions).

o Fan & Li, 2001. (SCAD)
@ Zou, 2006. (Lasso and adaptive Lasso)

@ Cai, Fan, Li & Zhou (2002), Fan & Li (2002, 2004), Bunea (2004), Fan &
Peng (2006), Bunea & McKeague (2005), Hunter & Li (2005), Fan, Li &
Zhou (2006), Wang & Leng (2007), Wang, G. Li, & Tsai (2007), Zhang &

Lu (2007), Wang, R. Li, & Tsai (2007), Huang, Horowitz & Ma (2008), Li &
Liang (2008), Zou & Yuan (2008), Zou & Li (2008), Johnson, Lin, & Zeng
(2008), Zou & Li (2008), Zou & Yuan (2008), Lin, Xiang & Zhang (2009), Xie
& Huang (2009), Zhu & Zhu (2009), Zou & Zhang (2009) ...



Literature on distributional properties of PLSEs  (cont'd)

moving-parameter asymptotic framework (taking non-uniformity
into account)

Sparsely and non-sparsely tuned PLSEs.

Knight & Fu, 2000. (Non-sparsely tuned Lasso and Bridge
estimators for g < 1 in general.)

Potscher & Leeb (2009), Pétscher & S., (2009), Pétscher &
S. (2010), Potscher & S. (2011).



Assumptions and Notation

y=X0+¢

e X is non-stochastic (n x k), rk(X) = k (= k < n). No
further assumptions on X.

k may vary with n.
N, (0, 0%Z,)
Notation: &7, := ((X'X/n)71),, (X'X =nTx =&, =1)
fis = (X' X)Xy
6% = ly = Xbis|1?/(n — k)

Consider 3 estimators: hard-, soft- and adaptive soft-thresholding
acting componentwise.



Hard-thresholding 6,

éH,i = éLS,i 1(|é|_57]| > 6-I_S€i,hni,n)

>

Hi

hard thresh.




Hard-thresholding 6,

éH,i = éLS,i 1(|é|_57]‘ > 6-|_S€i,hni,n)

orthogonal case:

@ equivalent to a pretest estimator based on t-tests or C, crite-
rion such as AIC, BIC (classical post-model selection estima-
tor) with penalty term

Pn(0) = Zﬁ{zl n [(5'Lsfi,n77i,n)2 —(10i] - &Lsgi,nni,n)z 1(|0:] < &Lsfi,nni,n)]

@ also equivalent to MCP



Soft-thresholding 0,

és,i = sign(éLs,i) (|9ALS,1| — G15&inTn)+

>

s

soft thresh.
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Soft-thresholding 0.

éS,i = Sign(éLS,i) (|éLs,i| - 5Ls§i,n77i,n)+

orthogonal case:

@ equivalent to Lasso with penalty term
Pa(6) = 2n81s 31y &inthinl61]

@ also equivalent to Dantzig selector
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Adaptive soft-thresholding GNAS’,-
0 if ‘éLS,i‘ < G15&inin

Orsi =< & . P X
i { Os,; — (ULsfi,nni,n)2/9Ls,i if ‘HLS,i‘ > 015&i i

A N
eAS,l

adaptive soft thresh.

1
6{:%"11 in




Adaptive soft-thresholding GNAS’,-

0 ,:{ . 0 . if ‘H:Ls,i‘ < G15&inTn
e s — (3Lsfi,n771,n)2/9Ls,i if ‘HLS,i‘ > 015&inTin

orthogonal case:

@ equivalent to adaptive Lasso with penalty term
Pa(6) = 2087 321 (&) 1011/ s, |

@ also equivalent to non-negative Garotte (Breiman, 1995)
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“Infeasible” versions

Known-variance case:
° éH,i = éLS,i 1(|éLs,i| > 0& . Min)
° és,i = Sign(éLS,i) (|9ALs,i| - Uﬁa,mi,n)+

° é‘ __{ 0 if ’éLS,i’ < O—éi,n/rli,n
s QLS,i - (Ofi,nni,n)z/gLs,i if ’9LS,E| > & ain
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Variable selection

We shall assume that supﬁi,n/nl/2 < 00.
Let §; stand for any of the estimators GAHJ, és,i' HAAS,,-, §H7i, és,i. §As,,-.

Variable selection
® P,g.(0; =0)— 0 for any @ with 0; £0 <= &, — 0
® P,oo(0; =0) — 1 for any @ with 6, =0 < n/?y, — oo

® Poo,(fi =0) = ¢ <1forany 8 with §; =0 <= n'/?y, — e
with 0 < ¢ < o0

@ (&m0 — 0 and) n'/?n, — ¢ < oo leads to (sensible) conserva-
tive selection.

Q@ (&.m. — 0and) n'/2y,, — oo leads to (sensible) consistent
selection.
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Parameter estimation, minimax rate

Consistency
@ 0; is consistent for §; <= &,.m, — 0 and &,/n*/2 = 0

@ Suppose &, — 0 and &,/n'/2 — 0. Then §; is uniformly
consistent for 8; in the sense that for all € > 0 there exists a
real number M > 0 such that

sup sup sup P,,ngg(\é,- —0;| >cM) <e
neN geRk 0<o<oo

@ Suppose & . in — 0, &,/nY? =0, and b;, > 0. If for all ¢ > 0
there exists a real number M > 0 such that

sup sup sup Pn,g,a(bi,n|§,~ —0i| > M) <e.
neN gecRk 0<o<oo

Then bi,n = O(ai’n), Where din = min(n1/2/§i'n, (é.i'n'f]ivn)il)
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Parameter estimation, minimax rate  (cont'd)

Minimax rate is

@ ¢&../n*/? in the conservative case, and

@ only &7, = o(&./n"?) in the consistent case.
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Finite sample distribution: hard-thresholding QAHJ

Fi

oo (X) = Pno.o(@in/o(B; — ;) < x) (known-variance case)

dFlfi,n,G,a(X) =
{O2(=0:/(960) +ma)) = O(02(=0:/(06:) = 10)) | A0 ,/5(x)
+ nl/z/(ai,nfi,n) ¢(”1/2X/(04i,n§i,n)) 1(|Oéi,_,,1X +0i/0| > &ania) dx,

where ¢ and ® are the pdf and cdf of N(0,1), resp.
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Finite sample distribution: hard-thresholding QAHJ

=+
=3

0.3

0.2
L

0.1

n=40,m,=0.050; =0.16,&, = 1,0 = 1,04, = n/2/&
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Finite sample distribution: hard-thresholding QNHJ

g’nﬁevg(x) = Ppo.o(in/o(Bu; — 0;) < x) (unknown-variance case)

dF_Ifi,n,O,cr(X) =
/0 {@(n'2(=0;/(0&0) + 5710 )=P(n*/2(=0;/(0&n) = 5110)} i (5) 5 dE g 0,/ (%)

+ "1/204;:.15;;1¢(”1/2X/(04i,n§i,n)) /OO 1(|aﬂlx +0;/0| > &nSNin)pn—k(s) ds dx,
0

where p,_x is the density of /x2_, /(n — k).
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Finite sample distribution: hard-thresholding QNHJ

n=40,k =351, =0050 =016,&,=1,0 =1, i, = n¥/2/&

17/1



Finite sample distribution: soft-thresholding és,i

FSi,n,G,a(X) = P,,ﬁg,(,(ozi,n/a(és,i —6;) <x) (known-variance case)

dFSi,n,O,a(X) =
[O( 2 (04/(06,) + 1)) — S 2(=0,/(06.) — 1)} b0 ()
+ 02 /(n&in) {qﬁ(nl/Q/(ai,n{i,n)x + "1/2Ui,n)1(aﬂlx +0i/o > 0)

+ qﬁ(nl/z/(oq,nfi,n)x — nl/zni,n)l(ai’_nlx +6;/o < O)} dx
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Finite sample distribution: soft-thresholding és,i

0.0

n=40,m,=0.050; =0.16,&, = 1,0 = 1,04, = n/2/&
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Finite sample distribution: soft-thresholding «iﬂi

F_Si,n,G,o(X) = Ppo.o(cin(fs; — ;) < x) (unknown-variance case)

dF_Si,n,e,a(X) =
/0 {¢(”1/2 (=0:/(0&in) + s77:0)—P(n 1/2( 0:/(0&in) = M)} pn—k(s )d5d57ai,ne,-/a(x)
+ n1/2/ {/ o( 1/2/ nEin)X + nl/zsni,n)l(aifnlx +6;/0 >0)

+ (M2 (inbin)x — 02 ) (o x + 0; /o < 0)} Pn—k(S) ds dx
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Finite sample distribution: soft-thresholding 6,

=+ _
o

0.3

0.2

01

n=40,k =351, =0050 =0.16,&,=1,0 = 1,a;, = n¥/2/& ,
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Finite sample distribution: adaptive soft-thresholding éAS,,-

Fas.n.0 J(X) Pno U(ai,n/a(é\AS),’ —6;) <x) (known-variance case)

dF/iS,n,O,a(X) =
{q>(n1/2(—0,-/(a§i,n) ) — O(nY2(—6; /(o€ — ni,n))} do_u, 0,/0(X)
+ (0502 (asn&in)) { 625 5 (6 )L+ tg.0 (6 )L, x + 6,/ > 0)
+ 02005 () (L= ta g0 (), x + 63/ < 0)} dx,
where zlgléz;(x y) =
0.5n'/2¢ i x —6;/0) + n1/2\/(o 57 (aix + 0i/0))2 + y2 and
t0,0(X,¥) = 0.5 (i, x + 6;/0)/((0.56 . (i, x + 6 /0))? + y?)1/2.
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Finite sample distribution: adaptive soft-thresholding éAS,,-

=
[=]

0.1

n=40,m,=0.050; =0.16,&, = 1,0 = 1,04, = n/2/&
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Finite sample distribution: adaptive soft-thresholding §AS,,-

I:_,is7n,97g(x) = ing’g(ai,n(éﬁ‘s?; —0;) <x) (unknown-variance case)

di;_/is,n,&,a(x) =

/ L2 (0,/(0610) + 5 ) D(12(—0:/(062n) — 5T1)} k() s A5 510 (x)

T (0.5072/(4,6,0)) { / oz (emn)) Lt g G ) Lax + 01/ > 0)

+ 0(28) 06 ma)) (L = tng.0(x, m0)) (05, x + 0 /0 < 0)} pn_k(s) ds dx,
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Finite sample distribution: adaptive soft-thresholding §AS,,-

03
J

0.2
1

0.1

0.0

n=40,k =351, =0050 =0.16,&,=1,0 = 1,a;, = n¥/2/& ,
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Large sample distributions

@ Conservative tuning.
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Large sample distribution: hard-thresholding GAH,E

Theorem (known-variance, conservative case)

Suppose that for given i > 1 satisfying i < k = k(n) for large

enough n we have n'/?5,, — ¢; < co. Set the scaling factor «a;, =
n/2/¢ .. Suppose that the true parameters 0(") = (6 ,,...,0k, 1) €
R¥" and ¢, € (0,00) satisfy n'/26,,/(0,&,) — vi € RU {—00,00}.
Then Flg,n,f)(”),an converges weakly to the distribution with measure

{d(—vi+ &) — O(—vi — €)}do_,,(x) + d(x)1(|x + vi| > &) dx.

[Reduces to N(0,1) if |v;| = oo or e = 0.]

@ Analogous results for soft-thresholding and adaptive soft-
thresholding.

23



Uniform closeness of cdfs

Let F/

.,n,0,0

Let F'

.,n,0,0

be the cdf of either (centered and scaled) éHyi, ésﬂ.
be the cdf of either (centered and scaled) 6y, s ;.

Uniform closeness

Suppose that for given i > 1 satisfying i < k = k(n) for large
enough n we have n'/?n,(n — k)~'/2 — 0as n — oo. Then, as
n— oo

sup ||F.i,n,9,cr - F_.i,n,é),aHTV —0
OERK,0<o <00

Result also holds for ad. soft-thresholding with sup-norm instead
of TV-norm.

Note: If n/?y;, — € < co (conservative case) and n — k — oo, then
n*/2n,.(n — k)~%/2 — 0 automatically holds.
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Large sample distribution: hard-thresholding GNH,E

Theorem (unknown-variance, conservative case)

Suppose that for given i > 1 satisfying i < k = k(n) for large
enough n we have n'/?5,, — e; < co. Set the scaling factor «a;, =
n'/2/¢ ... Suppose that the true parameters 0(") = (6 ,,...,0k, 1) €
R¥" and ¢, € (0,00) satisfy n*/20,,/(0,&,) — vi € RU {—00,00}.
Further assume that n — k is eventually constant to m. Then
F_I—’;,n,e("),a,, converges weakly to the distribution with measure

/OOO{¢(—M- + sej) — O(—v; — sei)pm(s) ds dd_,,(x)
+0:) [ 1l > 50) pns) do o

[Reduces to N(0,1) if |v;| = oo or e = 0.]

@ Analogous results for soft-thresholding and adaptive soft-
thresholding.

25



Large sample distributions

@ Conservative tuning: Asymptotic distributions capture be-
haviour of finite-sample distribution

e in known variance case and
@ in the unknown variance case if n — k does not diverge.
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Large sample distributions

@ Consistent tuning.
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Large sample distribution: hard-thresholding GAH,E

Theorem (known-variance, consistent case)

Suppose that for given i > 1 satisfying i < k = k(n) for

large enough n we have n'/?;,, — oco. Set the scaling factor

in = (min&n)"'. Suppose that the true parameters §(") =

(1.0 -- -, 0k,.n) € RXM and o, € (0, 00) satisfy 6, /(0n&inin) — i €
R U {—o00,00}. Then Fk’;m,g(n)m converges weakly to d_, if [(;] < 1,
and to & if |¢j] > 1. If |¢;| =1, and n¥2(1;, — (iBin/(0n€in)) — riy fOr
some r; € R then the limit is ®(r;)d_¢, + (1 — ®(r;))do.

@ Analogous results for soft-thresholding and adaptive soft-
thresholding, except there the distributions collapse to a sin-
gle pointmass in all cases.
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Large sample distribution: hard-thresholding GNH,E

Theorem (unknown-variance, consistent case)

large enough n we have n'/2;,, — oo. Set the scaling factor
Qn = (m.&0)" L. Suppose that the true parameters 6(") =
(1.0 ---,0k,n) € RKM and o, € (0,00) satisfy 6,,/(Fn&intin) —
(i € RU{—00,00}. Then Fi .., converges weakly to

Suppose that for given i > 1 satisfying i < k = k(n) for

w(i)d—¢ + (1 — w(d))do

(a) w(¢) = Pr(x% > m¢?) if n— k is eventually constant to m € N.
(b) n—k —o00: w=1if|¢] <1and w=0if |¢;]| > 1.

If |G;| =1 and n*2(n,, — Cibin/(0n€in)) = ri € RU{—00,00}:

1. n*2n,/(n— k)2 = 0: w = &(r).

2. n*2y,/(n — K)Y2 — 2Y2d; with 0 < d; < oot w =

[75,0(dit + ri)g(t)dt.

3- nl/zni,n/(n - k)1/2 — o0 and n1/2(77i,n - Ciei,n/(gngi,n)) /

(n*2n,/(n — k)?)) = r € RU{—00,00}: w = d(r!).




Large-sample distributions

@ Similar results for soft- and adaptive soft-thresholding, ex-
cept that an absolutely continuous part 'survives' for the case
where n — k is eventually constant.

@ Consistent tuning: Asymptotic distributions always collapse at
pointmasse(s)
e in the known variance case and
e in the unknown variance case if n — k — oo.
o In case of hard-thresholding, some randomness 'survives' (con-
vex combination of two pointmasses, seems to be connected
to non-continuity).

o (If n¥/2/¢ ,-scaling is used, then certain sequences will diverge
to +o00.)
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Large-sample distributions  (cont'd)

@ Theorems reflect that
9v,- — 0; = “BIAS” 4+ “FLUCTUATION”
)

where

o “BIAS” is O(&,.mn) (O(n™1/2) in a pointwise sense)
o “FLUCTUATION” is O(n~1/?).
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Honest confidence sets

Revert to simpler model:

@ orthogonal design X’X = nZ, (&, =1)
@ known variance o = 1 (for presentation purposes only)

Wilog, consider a Gaussian location model: y1,...,y, i N(0,1).

(k=1,05=7)
Let § be one the estimators HAH, éL or HAAL for 6.

We call an interval of the form C, = [0 — a,0 + b] a valid or honest
confidence interval based on 8 with significance level 6, if

inf P,g(0 € C,)>6
oeR o0 € Cr) =
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Minimal coverage probabilities

Hard-thresholding

0 vs. Pro(6 € Cott), Cot = [Ou—an, O+ by
(n=1, 2, =03, by =1, , = 0.05)

M~
<~
o
£
3 9.
o o
o
: }
n
~
d O
<
t[:f
o T | T T T T
3 2 1 0 1 2 3
theta
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Minimal coverage probabilities

Theorem (Hard-thresholding)
Let C,-,’H = [éH — an, é\H + bn] with dn, bn > 0.

9'2% Pn,G(G S Cn,H)

&(n/2(b, — n,)) — ®(—n'/?a,) for n, < a, + b, und a, > b,
0 for n, > a, + bn

{ d(n'/?(a, — 1,)) — ®(—n/2b,)  forn, < a, + b, und a, < b,
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Minimal coverage probabilities

Lasso

O vs. Pro(6 € Cor), Cor = [0.—an,0,+bn])
(n=1,a2,=03, by =1, n, = 0.05)

probability
047 048 0.49
| 1 |

0.48
|

theta
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Minimal coverage probabilities

Theorem (Lasso)
Let G, = [éL —an, 0+ b,] with a,, b, > 0.
éng Pno(0 € Coy)

B ¢(n1/2(an —1nn)) — <D(n1/2(—b,, —n,)) fora,<b,
B ¢(n1/2(bn - 77n)) - ¢(n1/2(_an - nn)) for a, > by,
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Minimal coverage probabilities

Adaptive Lasso

0 vs. Pn,()(e € Cn,A)- Cn,A = [é\AL_amé\AL"i‘bn])
(n=1,a2,=03, by =1, n, = 0.05)

0.48
.

0.47
|

coverage probability
0.46

0.45
|

theta
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Minimal coverage probabilities

Adaptive Lasso
Let Cn,AL = [éAL — dp, éL + b,-,] with dan, b,-, > 0.

0'2& Pn,H(e S Cn,AL) =

& (n/2(ay—1p,)) — @ (nl/z(an—bn)/z —V((an+ bn)/2)2+n,%))
for a, < b,

@ (n'/2((an=ba)/2+/((@n + ba)/2P+7R) ) = @ (n/2(=by+n))
for a, > b,
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The concrete confidence intervals

Let 0 <6 < 1.

Hard-thresholding

Among the intervals G, with minimal coverage probability not
less than 4, there exists a unique shortest interval C;,, with C;, =
[éH = amH,éH + apu], where a, y is the unique solution of

®(n%(a —n,)) — d(—n*?a) = 6.

The interval C;\, has minimal coverage probability equal to ¢ and

ann IS positive.

Symmetric intervals are the shortest!
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The concrete confidence intervals

Let 0 <6 < 1.

Soft-thresholding (Lasso)

Among the intervals C,; with minimal coverage probability not
less than 0, there exists a unique shortest interval Cy, with C;, =
[éL = a,,,L,éL + a,.], where a, is the unique solution of

&(n'2(a =) — (03 (=a —11,)) = 6.

The interval C;| has minimal coverage probability equal to ¢ and

an, Is positive.

Symmetric intervals are the shortest!
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The concrete confidence intervals

Let 0 <6 < 1.

Adaptive Lasso

Among the intervals C, o, with minimal coverage probability
not less than 4§, there exists a unique shortest interval C; , with
CoaL = [éAL = a,,,AL,GAAL + apaL], where a, o is the unique solution of

O(n/2(a = 1)) - S(—n/2 /2 + 1) = 8

The interval C;, has minimal coverage probability equal to ¢ and

aaL is positive.

Symmetric intervals are the shortest!
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Lengths of confidence sets — in finite-samples

For a fixed § with 0 < § < 1 and every n € N we have

anH > dnAL > anL > anLs-
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Lengths of confidence sets — asymptotically

@ Conservative case.

—-1/2
anH ~ anaL ~ ant ~ ans ~ n Y

All quantities are of the same order n=1/2.

@ Consistent case. a, (i ya} = Nn + 0 /20(6) + o(n~1/2)

1/2
an,H/an,MLE s an,AL/an,MLE R an,L/amLS ~ nt/ Nn — OO

Intervals lengths for PLSEs are larger by an order of magnitude
compared to the one based the 'unpenalized’ LS estimator!
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Lengths of confidence sets — illustration

Plot: n'/2a, vs n1/2n,, for 6 = 0.95.

— MLE

—— LASSO

— ad. LASSO
- hard thres.

@
B

22
Il

20

0.0 [<F-] 0.4 0.6 o8 10
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Impossibility Results for Estimation of the cdf

Theorem
Let 5, — 0 n'/2, — m with 0 < e < co. Then every estimator
Fn(t) of F,p(t) satisfies

sup Pnp (
|0]<c/nt/?

/A:,,(t)—Fn’g(t)‘ > 5) > %

for each & < (®(t + n'/?n,) — d(t — n*/?n,))/2, for each ¢ > |t|,
and for each sample size n. Hence

IA-'n(t)—F,,ﬂ(t)‘ > 5) > 1

liminf inf  sup Pn,g( >

n—=00 F.(t)|0|<c/n/?

for each e < (®(t + e) — ®(t — €))/2, for each ¢ > |t|.

In particular, no uniformly consistent estimator for F, (t) exists.
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We studied distributional properties of thresholding (PLS)
estimators for known and unknown variance in a linear regression
setting with a (potentially) growing number of parameters.

o Fixed-parameter asymptotics paint a misleading picture of the
performance of the estimators.

@ Finite- and large-sample distributions are highly non-normal.

@ In case of consistent tuning, the uniform rate of convergence

is slower than n—1/2,

@ In the unknown variance case, large-sample behavior depends
on whether and how fast n — k diverges in relation to the
tuning parameter.

@ If n— k diverges, distributions collapse at point-mass for con-
sistent tuning.
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Summary  (cont'd)

Orthogonal design, fixed dimension:

e Confidence sets are larger by an order of magnitude compared
to the ones based on the LS-estimator in the consistent case.
Lengths are of the same order for conservative tuning.

Not a criticism on the estimators per se. Distributional properties
have to be investigated taking into account non-uniformity issues.
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