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Introduction

I Modern statistical analysis is rife with non-regularity

1. Test error of a learned classifier
2. Parameters in a treatment policy
3. Inference based on thresholded estimators
4. . . .

I Ignoring or assuming away this non-regularity can lead to poor
small sample performance under many realistic generative
models

I An asymptotic framework that faithfully represents small
sample behavior is needed for the development and evaluation
of inferential procedures



Two Examples

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Example I: Classification

1. Observe iid training data D = {(xi , yi )}ni=1
I inputs X ∈ Rp

I outputs Y ∈ {−1, 1}
2. Construct classifier ĉD(X ) : Rp 7→ {−1, 1}
3. Use classifier for prediction at new inputs

Goal:

I Interval estimator: for test error τ(ĉD) , P1Y 6=ĉD(X )
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The problem

I Focus on linear approximations to the Bayes decision
boundary

I We do not assume the approximation space is correct

I Construct a classifier using surrogate loss L(X ,Y , β)

1. β̂ , arg minβ∈Rp PnL (X ,Y , β)

2. ĉD(X ) = sign
(
Xᵀβ̂

)
I Review: surrogate loss function L(X ,Y , β)

I like to minimize error rate Pn1Y 6=sign(Xᵀβ)
I non-smoothness ⇒ computational difficulty
I replace 1Y 6=sign(Xᵀβ) = 1YXᵀβ<0 with smooth surrogate

I Support Vector Machines :
L(X ,Y , β) = (1− YX ᵀβ)+ + γ||β||2

I Binomial Deviance :
L(X ,Y , β) = log(1 + e−YXᵀβ)

I Squared Error:
L(X ,Y , β) = (1− YX ᵀβ)2
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The problem cont’d

I Test error

τ(β̂) , P1YXᵀβ̂<0 =

∫
1yxᵀβ̂<0dP(x , y)

I Averages over new input-output pair (X ,Y ) but not training
data—evaluates the performance of the learned classifier

I The test error τ(β̂) is random quantity
I Data-dependent parameter (Dawid 1994)

I Contrast with expected test error which averages over training
data—evaluates performance of the algorithm used to
construct the classifier
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The problem cont’d

I Goal: given α ∈ (0, 1) construct û and l̂ so that

PD

{
l̂ ≤ τ(β̂) ≤ û

}
≥ 1− α

Context

I Model space may not be correct

I Low dimensional setting (p fixed)

I Cannot afford a test set
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Non-regularity

I Simple estimate of τ(β̂) is τ̂(β̂) , Pn1YXᵀβ̂<0

I Natural starting point for inference:

√
n(τ̂(β̂)− τ(β̂)) ,

√
n(Pn − P)1YXᵀβ̂<0

=
√
n(Pn − P)1Xᵀβ∗=01YXᵀ

√
n(β̂−β∗)<0

+
√
n(Pn − P)1Xᵀβ∗ 6=01YXᵀβ̂<0

I P1Xᵀβ∗=0 > 0 implies
√
n(τ̂(β̂)− τ(β̂)) has non-regular limit

I points near the boundary cause jittering
I P1YXᵀβ̂<0 need not concentrate about its mean
I bootstrap and normal approximations are invalid



Illustration

Suppose

I (X1,X2) ∼ Unif [0, 5]2

I ε ∼ N(0, 1/4)

I Y = sign
(
X2 − (4/25)X 2

1 − 1 + ε
)
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Quadratic Training Example
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Properties of this example

I P1Xᵀβ∗=0 = 0 (seemingly
regular)

I Linear classifier is a good fit
I E.g. if n = 30

I E(τ(β̂)) ≈ .11
I Bayes error ≈ .09



Illustration cont’d

Under “regular” framework

I Centered bootstrap
√
n(P̂(b)

n − Pn)1YXᵀβ̂(b)<0

I Normal approximation τ̂(β̂)± z1−γ/2

√
τ̂(β̂)(1−τ̂(β̂))

n

are both asymptotically valid
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I Coverage estimated using
1000 Monte Carlo data sets

I Below nominal coverage
even for n = 250

I Coverage especially poor for
small samples
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Illustration cont’d

Why do these methods fail?

I Non-smoothness ⇒ non-regularity

I Performance inversely proportional to smoothness

Continuing our example

I Instead of test error τ(β̂) consider

τsmooth(β̂) , P
(

1 + exp(aYX ᵀβ̂)
)−1

I τsmooth(β̂) is smooth for fixed a > 0

I If a→∞ then τsmooth(β̂)→ τ(β̂)

I Conjecture: Bootstrap coverage should deteriorate as a grows
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Illustration cont’d

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Smoothed Loss Functions

Margin

S
m

oo
th

ed
 L

os
s

a = 0.1
a = 1.0
a = 10
a = Inf

100 200 300 400 500 600

0.
85

0.
90

0.
95

1.
00

Estimated Coverage Quadratic Example: Smoothed

Sample Size

E
st

im
at

ed
 C

ov
er

ag
e

●

●

●

●
●

●
●

● ●

● ●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

a = 0.1
a = 1.0
a = 10
a = Inf



Illustration cont’d

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Smoothed Loss Functions

Margin

S
m

oo
th

ed
 L

os
s

a = 0.1
a = 1.0
a = 10
a = Inf

100 200 300 400 500 600

0.
85

0.
90

0.
95

1.
00

Estimated Coverage Quadratic Example: Smoothed

Sample Size

E
st

im
at

ed
 C

ov
er

ag
e

●

●

●

●
●

●
●

● ●

● ●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

a = 0.1
a = 1.0
a = 10
a = Inf



Two Examples

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Example II: Treatment Policies

I Motivation : treatment of chronic illness
I Some examples: HIV/AIDS, cancer, depression, schizophrenia,

drug and alcohol addiction, ADHD, etc.
I Multistage decision making problem
I Longer-term treatment requires cumulative as opposed to

myopic evaluation.

I Treatment Policies
I Operationalize multistage decision making via as sequence of

decision rules
I One decision rule for each time (decision) point
I A decision rule is a function inputs patient history and outputs

a recommended treatment

I Aim to optimize some cumulative clinical outcome



I Construction and inference for policies have applications
beyond medicine

1. Artificial Intelligence and Reinforcement Learning (autonomous
helicopter, drones, etc., Ng 2003)

2. Marketing (Simester, Sun and Tsitsiklis, 2003)
3. Active labor market policies (Lechner and Miquel, 2010)
4. . . .



An Example Policy for ADHD

Prior medication?
Low
dose
MEDS

Yes
Adequate response? Continue

MEDS

Yes

High adherence?

No

Add
BMOD

NoIntensify
MEDS

YesLow
dose
BMOD

No

Adequate response?

Continue
BMOD

Yes

High adherence?
No

Intensify
BMOD

Yes

Add
MEDS

No



ADHD Trial (Pelham, PI)

R

Low Intensity BMOD

Treatment A

Low Intensity MEDS

Treatment B

Response?

Response?

R

No

R

No

Low Intensity BMOD

Yes

Continue

Augment with MEDS

Treatment AA

Intensify BMOD

Treatment AB

Low Intensity MEDS

Yes

Continue

Augment with BMOD

Treatment BA

Intensify MEDS

Treatment BB



Data

I (X1,A1,X2,A2,Y ) for each individual
Xj : Observations available at stage j
Aj : Treatment at stage j
Y : Primary outcome (larger is better)
Hj : History at stage j , H1 = X1, H2 = (X1,A1,X2)

–Known randomization probability at stage j (usually
uniform)–

I The policy, π = {π1, π2}, πj : Hj → Aj , should have high
Value: V π = Eπ (Y )



Constructing a policy from data: Q-Learning

I Generalization of regression to multiple treatment stages

I Backwards induction like dynamic programming

I Approximate conditional expectation with regression

I In computer science there are many variations; almost always
presented as part of a stochastic approximation algorithm for
solving an infinite number of stages (infinite horizon) Watkins
(1989), Sutton & Barto (1998)

I In statistics there are a few variations, with a finite number of
stages, appearing in Murphy (2003), Robins (2004),
Henderson et al. (2009) + more
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Simple Version of Q-Learning

Two stages; linear regressions; Aj ∈ {0, 1}, Hj1,Hj2 features of
patient history, Hj :

I Stage 2 regression: Regress Y on H21,H22 to obtain
Q̂2(H2,A2) = β̂T21H21 + β̂T22H22A2

I π̂2(H2) = arg maxa2 Q̂2(H2, a2) = arg maxa2 β̂
T
22H22a2

I Ỹ = β̂T21H21 + maxa2 β̂
T
22H22a2 (Ỹ is a predictor of

maxa2 Q2(H2, a2))

I Stage 1 regression: Regress Ỹ on H11, H12 to obtain
Q̂1(H1,A1) = β̂T11H11 + β̂T12H12A1

I π̂1(H12) = arg maxa1 Q̂1(H1, a1) = arg maxa1 β̂
T
12H12a1
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GOAL: confidence interval for a contrast of stage
1 parameters: cᵀβ∗1

I Non-regular due to non-differentiable max operator used in
Q-learning; recall

I Ỹ = β̂T
21H21 + maxa2 β̂

T
22H22a2

I In this setting the centered percentile bootstrap confidence
interval for cᵀβ∗1 can be anticonservative, (95% confidence
interval covers 90%-93% in two stages, each with two
treatments; 84%-93% for two stages, each with three
treatments)



Limiting Distribution of centered cᵀ
√
nβ̂1

I Local Alternative:
I β∗22,n = β∗22 + u/

√
n

I The limiting distribution of cᵀ
√
n(β̂1 − β∗1,n) is the distribution of

cᵀΣ−1
1 (W + f (V, u))

where

f (v , u) = E
[
B1 ([Hᵀ

22v + Hᵀ
22u]+ − [Hᵀ

22u]+) 1Hᵀ
22β

∗
22=0

]
and B1 = (Hᵀ

11,H
ᵀ
12A1)ᵀ (e.g. the design matrix) and W, V are jointly normal

vectors

I The fact that the limiting distribution depends on the direction, u,
means that β̂1 is a nonregular estimator (unless P [Hᵀ22β

∗
22 = 0] = 0)



Ideas



Ideas

This work builds on ideas from
I Generalization error bounds

I Construct smooth data-based upper and lower bounds on a
centered estimator:

I
√
n(τ̂(β̂)− τ(β̂)) (centered estimator of test error)

I
√
n(cᵀ ˆ̂β1 − cᵀβ1) (centered stage 1 regression coefficient)

I If generative model induces regularity, then bounds collapse to
centered parameter

I Pretests (e.g. hypothesis tests) for use in inference concerning
weakly identified parameters in econometrics (Andrews 2001,
Andrews and Soares 2007; Cheng 2008). We use the pretest
idea to test if the parameter is near a “bad” parameter value.



Ideas

I Confidence interval is the primary focus

I Construct smooth data-based upper and lower bounds on a
centered estimator:

I
√
n(τ̂(β̂)− τ(β̂)) (centered estimator of test error)

I
√
n(cᵀ ˆ̂β1 − cᵀβ1) (centered stage 1 regression coefficient)

I Confidence intervals are formed by bootstrapping these bounds

I Evaluate using an asymptotic framework that permits
non-regularity



The Adaptive Confidence Intervals

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Adaptive CI for the test error

Idea: construct smooth upper and lower bounds on√
n(τ̂(β̂)− τ(β̂))

I Recall
√
n(τ̂(β̂)− τ(β̂)) is equal to

√
n(Pn − P)1YXᵀβ̂<0

I Take supremum/infimum only when X is in a region near the
decision boundary X ᵀβ∗ = 0

UBn ,
√
n(τ̂(β̂)− τ(β̂))

−
√
n(Pn − P)1 n(Xᵀβ̂)2

XᵀΣ̂X
≤λn

1YXᵀβ̂<0

+ sup
u∈Rp

√
n(Pn − P)1 n(Xᵀβ̂)2

XᵀΣ̂X
≤λn

1YXᵀu<0

where Σ̂ = nCov(β̂)

(Replace supremum with infimum to obtain lower bound.)
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Assumptions

Some technical assumptions:

(A1) L(X ,Y , β) is convex with respect to β for each
(x , y) ∈ Rp × {−1, 1}

(A2) Q(β) , PL(X ,Y , β) exists and is finite for all β ∈ Rp

(A3) β∗ , arg min
β∈Rp

Q(β) exists and is unique

(A4) Let g(X ,Y , β) be a sub-gradient of L(X ,Y , β). Then
P||g(X ,Y , β)||2 <∞ for all β in a neighborhood of β∗.

(A5) Q(β) is twice continuously differentiable at β∗ and
H , ∇2Q(β∗) is positive definite.

(A6) The sequence λn tends to infinity and satisfies λn = o(n).



Properties

Theorem (Convergence)

1.
√
n(τ̂(β̂)− τ(β̂)) W + V(z∞)

2.
√
n(τ̂(β̂)− τ(β̂)) ≤ UBn for all n

3. UBn  sup
u∈Rp

W + V(u)

4. UB(b)
n  sup

u∈Rp
W + V(u) in probability.

where (V,W, z∞) is zero mean Gaussian; V is a Gaussian process,
W is a normal random variable and z∞ is p-dim normal.

Theorem (Adaptation)

If either the Bayes decision boundary is linear or P(X ᵀβ∗ = 0) = 0
then UBn and

√
n(τ̂(β̂)− τ(β̂)) have the same limiting

distribution.
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Properties

The supremum in the upper bound UBn can be viewed as a
supremum over local alternatives:

Theorem (Convergence under local alternatives)

Under Pn

1.
√
n(τ̂(β̂)− τ(β̂)) W + V(z∞ + u)

2. UBn  sup
u∈Rp

W + V(u).

where Pn is a sequence of local alternatives contiguous to P for
which β∗n , arg min

β∈Rp
PnL(X ,Y , β) satisfies β∗n = β∗ + u/

√
n.



The Adaptive Confidence Intervals

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Adaptive CI for the treatment effect

Idea: construct smooth upper and lower bounds on cᵀ
√
n(β̂1−β∗1).

UBn , cᵀ
√
n(β̂1 − β∗1)

−cᵀΣ̂−1
11 PnB1

([
Hᵀ22Vn + Hᵀ22u

]
+
−
[
Hᵀ22u

]
+

)
1 n(H

ᵀ
22

β̂22)2

H
ᵀ
22

Σ̂H22
≤λn

∣∣∣
u=
√
nβ∗1

+ sup
u

cᵀΣ̂−1
11 PnB1

([
Hᵀ22Vn + Hᵀ22u

]
+
−
[
Hᵀ22u

]
+

)
1 n(H

ᵀ
22

β̂22)2

H
ᵀ
22

Σ̂H22
≤λn

where the supremum is taken only when H22 is in a region near the
decision boundary Hᵀ22β

∗
22 = 0

I B1 = (Hᵀ11,H
ᵀ
12A1)ᵀ

I Vn =
√
n(β̂22 − β∗22)

I Σ̂ = nCov(β̂22)

(Replace supremum with infimum to obtain lower bound.)
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Assumptions

(A1) The histories Hj with Bj = (Hᵀj1,H
ᵀ
j2Aj), j = 1, 2 and primary

outcome Y , satisfy the moment inequalities
P||H2||2 ||B1||2 <∞ and PY 2||Bj ||2 <∞.

(A2) Define:

1. Σj , PBᵀ
j Bj for j = 1, 2;

2. g2(B2,Y2;β∗2 ) , Bᵀ
2 (Y2 − B2β

∗
2 );

3. g1 (B1,Y1,H2;β∗1 , β
∗
2 ) , Bᵀ

1 (Hᵀ
21β
∗
21 + |Hᵀ

22β
∗
22| − B1β

∗
1 );

assume the matrices Σj and Ω , Var-cov (g1, g2) are strictly
positive definite.

(A3) The sequence λn tends to infinity and satisfies λn = o(n).



Properties

Theorem (Convergence)

1. cᵀ
√
n(β̂1 − β∗1) cᵀΣ−1

1 (W + f (V, 0))

2. cᵀ
√
n(β̂1 − β∗1) ≤ UBn for all n

3. UBn  sup
u∈Rp

cᵀΣ−1
1 (W + f (V, u))

4. UB(b)
n  sup

u∈Rp
cᵀΣ−1

1 (W + f (V, u)) in probability.

where

f (v , u) = E
[
BT

1 ([Hᵀ22v + Hᵀ22u]+ − [Hᵀ22u]+) 1Hᵀ
22β
∗
22=0

]
and B1 = (Hᵀ11,H

ᵀ
12A1) (e.g. row of the design matrix) and W, V

are jointly normal vectors.



Properties

Theorem (Adaptation)

If P(Hᵀ22β
∗
22 = 0) = 0 then UBn and cᵀ

√
n(β̂1 − β∗1) have the same

limiting distribution.

The supremum in the upper bound UBn can be viewed as a
supremum over local alternatives:

Theorem (Convergence under local alternatives)

Under Pn for which β∗22,n = β∗22 + u/
√
n,

1. cᵀ
√
n(β̂1 − β∗1n) cᵀΣ−1

1 (W + f (V, u))

2. UBn  sup
u∈Rp

cᵀΣ−1
1 (W + f (V, u)).
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Simulation Experiments

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Experiments

Compare performance of

I Adaptive confidence interval (ACI)

I CV-Normal approximation [Yang 2006]

I BCCVP-BR approximation [Jiang 2008]

I ACI uses λn , max(
√
n, χ2

.995)

Details

I 1000 Monte Carlo replications

I 10 data sets
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I BCCVP-BR approximation [Jiang 2008]
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Results

Target coverage .950, loss function L(X ,Y , β) = (1− YX ᵀβ)2,
n = 30

Data Set/Method ACI CV-Normal BCCVP-BR

ThreePt .948 .930 .863

Magic .944 .996 .979

Mam. .957 .989 .966

Ion. .941 .989 .972

Donut .965 .967 .908

Bal. .976 .989 .966

Liver .956 .997 .970
Spam .984 .998 .975

Quad .959 .983 .945

Heart .960 .995 .976

Table: Estimated coverage of competing confidence procedures.
Coverage is highlighted if not different from .950 at the .01 level.



Results

Target coverage .950, loss function L(X ,Y , β) = (1− YX ᵀβ)2,
n = 30

Data Set/Method ACI CV-Normal BCCVP-BR

ThreePt .385 .548 .720

Magic .498 .548 .500

Mam. .374 .456 .384

Ion. .313 .466 .388

Donut .424 .483 .485

Bal. .217 .350 .232

Liver .534 .527 .500

Spam .428 .496 .418

Quad .246 .360 .267

Heart .367 .476 .404

Table: Estimated width of competing confidence procedures. Width is
highlighted if coverage is at least .950 and the interval is smallest.



Results

Target coverage .950, loss function L(X ,Y , β) = log(1 + e−YX
ᵀβ),

n = 30

Data Set/Method ACI CV-Normal BCCVP-BR
ThreePt .976 .893 .914

Magic .955 .999 .983

Mam. .951 .993 .974

Ion. .947 .995 .985

Donut .968 .966 .908
Bal. .979 .996 .972

Liver .946 .997 .972
Spam .985 .999 .981

Quad .978 .997 .945

Heart .960 .995 .976

Table: Estimated coverage of competing confidence procedures.
Coverage is highlighted if not different from .950 at the .01 level.



Results

Target coverage .950, loss function L(X ,Y , β) = log(1 + e−YX
ᵀβ),

n = 30

Data Set/Method ACI CV-Normal BCCVP-BR

ThreePt .374 .551 .742

Magic .466 .526 .504

Mam. .373 .448 .387

Ion. .305 .459 .401

Donut .434 .485 .494

Bal. .262 .349 .257

Liver .533 .526 .518

Spam .454 .494 .423

Quad .310 .372 .267

Heart .367 .476 .404

Table: Estimated width of competing confidence procedures. Width is
highlighted if coverage is at least .950 and the interval is smallest.



Conclusions

I ACI achieves nominal coverage

I Non-trivial width

I Computationally efficient

I Robust to choice of λn



Simulation Experiments

1. Confidence intervals for the test error in classification

2. Confidence intervals for parameters in optimal treatment
policies



Empirical study

I Compare performance of
I Soft-thresholding (ST) (Chakraborty et al., 2009)
I Centered percentile bootstrap (CPB)
I Plug-in pretesting estimator (PPE) (uses idea of Chatterjee

and Lahiri, 2011)
I ACI uses λn = log log n

I Generative models

1. Non-regular (NR): P(Hᵀ
22β
∗
22 = 0) > 0

2. Nearly non-regular (NNR) : P(Hᵀ
22β
∗
22 ≈ 0) > 0

3. Regular (R) : P(Hᵀ
22β
∗
22 ≈ 0) = 0

I 1000 Monte Carlo replicatons
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Results

Target coverage .950 for coefficient of stage 1 treatment, n = 150

2 stages
2 txts

Ex1
NR

Ex2
NNR

Ex3
NR

Ex4
R

Ex5
NR

Ex6
NNR

CPB 0.934 0.935 0.930 0.939 0.925 0.928

ST 0.948 0.945 0.938 0.919 0.759 0.762

PPE 0.931 0.940 0.938 0.931 0.904 0.903

ACI 0.992 0.992 0.968 0.950 0.964 0.965

2 stages
3 txts

Ex1
NR

Ex2
NNR

Ex3
NR

Ex4
R

Ex5
NR

Ex6
NNR

CPB 0.933 0.938 0.915 0.940 0.885 0.895
PPE 0.931 0.932 0.927 0.918 0.858 0.856

ACI 0.999 0.999 0.968 0.964 0.970 0.971

Table: Coverage is NOT highlighted if significantly below .95 at the .05
level.



Conclusion

I ACI achieved nominal or improved coverage on all examples

I ACI is conservative when there is no stage 2 treatment effect.

I Relative performance of ACE improves on examples with
increasing numbers of stages and/or treatments

I Robust to choice of λn



Discussion

I Many modern statistical problems involve nonregular
estimators. Most frequently these occur in p large(p < n) or
p >> n problems. Examples:

I Inference based on estimators that involve the estimation of a
matrix with eigenvalues that may be near zero,

I Prediction intervals after using lasso or other variable selection
methods,

I Evaluation of the misclassification rate of a learned classifier
I Constrained estimation

I Principled approaches to forming confidence intervals and
hypothesis tests are currently lacking.



Questions: laber@umich.edu, samurphy@umich.edu

A copy of this talk can found at:
www.stat.lsa.umich.edu/∼samurphy
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ADHD Trial (Pelham, PI)
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ADHD Dynamic Treatment Regime

Prior medication?
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MEDS
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Adequate response? Continue

MEDS

Yes

High adherence?
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High adherence?
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Add
MEDS

No



Inference for ADHD Treatment Effects

Stage History Lower (5%) Upper (95%)

1 Had prior med. -0.51 0.14
1 No prior med. -0.05 0.39

2 High adherence and BMOD -0.08 0.69
2 Low adherence and BMOD -1.10 -0.28
2 High adherence and MEDS -0.18 0.62
2 Low adherence and MEDS -1.25 -0.29

I Positive stage 1 effect favors BMOD (A1 = 1 if BMOD;
A1 = −1 if MED)

I Positive stage 2 effect favors Intensify (A2 = 1 if Intensify;
A2 = −1 if Augment)



ADHD Dynamic Treatment Regime
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