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In this talk, I will present a new perspective to the Ramer-Kusuoka
formula, an anticipative version of the Cameron- Martin-
Maruyama- Girsanov formula, by giving a totally algebraic proof to
it.

We understand and generalize the formula in terms of an action of
a “generalized” Heisenberg algebra.
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Introduction
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Intuitions: 1. Heisenberg Action on Gaussian Probability Space

As is widely recognized among probabilists thanks to P. Malliavin’s
writings, the algebra generated by Hermite polynomials on a
Gaussian probability space is a representation space of a
Heisenberg algebra.
Let us briefly recall the fact. Let µ be the 1-dimensional Gaussian
measure; µ(dx) = (2π)−1/2e−x2/2dx =: p(x)dx and D be the
differential operator. For polynomials f and g , we apply
integration by parts
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Intuitions: 1. Heisenberg Action on Gaussian Probability Space

to get

〈Df , g〉L2(µ) =

∫
(Df )(x)g(x)p(x) dx = −

∫
f (x)D(g(x)p(x)) dx

=

∫
f (x)(−Dg + p′/p)(x)p(x) dx

=

∫
f (x)(−Dg(x) + x)p(x) dx = 〈f ,D∗g〉L2(µ),

(2.1)

where we set D∗, which sends a polynomial to another one, by

D∗f (x) = −Df (x) + xf (x), x ∈ R.
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Intuitions: 1. Heisenberg Action on Gaussian Probability Space

Here the operator D∗ behaves as an adjoint operator, and more
importantly, it satisfies the canonical commutation relation (CCR)
against D; (DD∗ − D∗D)f (x) = f (x) for any polynomial f , or
equivalently

[D, D∗] := DD∗ − D∗D = 1.

This can be easily generalized to multi-, or even infinite
dimensional cases.
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Intuitions: 1. Heisenberg Action on Gaussian Probability Space

Let W be a classical Wiener space, H be its Cameron-Martin
space, and {hi} be an orthonormal basis of H. Let Di be the
derivative in the direction of hi , acting on the space of (Wiener)
Hermite polynomials, and define

D∗
i f (w) = −Di f (w) +

(∫
ḣidw

)
f (w), w ∈ W (2.2)

i = 1, 2, · · · . Then, it can be easily checked that they satisfy the
CCR;

[Di , Dj ] = [D∗
i , D∗

j ] = 0, and [Di , D
∗
j ] = δij . (2.3)

Further, we still have

E [(Df )g ] = 〈Df , g〉 = 〈f , D∗g〉 = E [f (D∗g)]. (2.4)
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Intuitions: 1. Heisenberg Action on Gaussian Probability

Space and Cameron- Martin Formula

Let Th be the translation by h ∈ H; Thf (w) = f (w + h). The
action of the Heisenberg algebra in turn enables one to understand
the translation as

Thf = eDh f = e
P

〈h,hi 〉Dhi f . (2.5)

This should be understood as Taylor expansion for “analytic
function”, and can be extended to more general classes of random
variables.
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Intuitions: 1. Heisenberg Action on Gaussian Probability

Space and Cameron- Martin Formula

The trivial expression

f = e−DheDh f =
∞∑

n=0

(−Dh)
n

n!
Thf

together with the adjoint relation
E [(Df )g ] = 〈Df , g〉 = 〈f , D∗g〉 = E [f (D∗g)] leads to

E [
∞∑

n=0

(D∗
−h)

n(1)

n!
Thf ] = E [f ],

which is nothing but the Cameron-Martin formula since one has

∞∑
n=0

(D∗
−h)

n(1)

n!
= exp

(
−

∫
ḣ dw − 1

2
‖h‖2

)
. (2.6)
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Intuitions: 1. Heisenberg Action on Gaussian Probability

Space and Girsanov- Maruyama Formula

In the case with translation by an adapted map w 7→ h(w) ∈ H,
which corresponds to Girsanov-Maruyama formula, the exponential
map does not define a translation since 〈h, hi 〉’s are not constant
anymore. We need to modify it as

Th =
∞∑

n=0

∑
i1,··· ,in

〈h, hi1〉 · · · 〈h, hin〉
Dhi1

· · ·Dhin

n!
= “ : e

P

〈h,hi 〉Dhi : ”.

(2.7)
The last expression is a so-called normal order product; inside the
colons, the multiplication operators should always be left and the
differential operators be right.
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Intuitions: 1. Heisenberg Action on Gaussian Probability

Space and Girsanov- Maruyama Formula

Since T−h is not the inverse of Th anymore, we cannot use the
same argument as above. In this talk, I show how the Girsanov-
Maruyama can be retrieved in the algebraic way. In the course,
things get rather easier without the requirement of adaptedness.
This is the starting points of the present study.
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Intuitions: 2. Ramer-Kusuoka Formula

If the requirement of the adaptedness is dropped to include
non-anticipative maps, then the Girsanov-Maruyama density turns
to a Ramer-Kusuoka one;

“ det ”(I + ∇h) exp

(
−

∫
ḣ “dw” − 1

2
‖h‖2

)
, (3.1)

where “det” can be understood either as the Fredholm determinant
or the Carleman Fredholm one, and

∫
· δw as a Skorohod integral

or an Ogawa integral, respectively. If ∇h is quasi-nilpotent,
meaning that Tr(∇h)n = 0 for all n, the two densities coincides.
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Intuitions: 2. Where the Density of Ramer-Kusuoka Formula

comes from?

The look of the Ramer-Kusuoka density is more familiar since it
involves a “Jacobi-determinant”. The trick is made clear if we look
at a finite dimensional case. The standard change-of-variables
formula goes like∫

| det(1 + ∇h)|F (x + h(x)) dx =

∫
F (x) dx

for an integrable function F . Rewriting F (x) = f (x)p(x) with a
probability density function p, we have∫

| det(1 + ∆h)|f (x + h(x))
p(x + h(x))

p(x)
p(x) dx =

∫
f (x)p(x) dx .
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Intuitions: 2. Where the Density of Ramer-Kusuoka Formula

comes from?

If p is the Gaussian function; p(x) = (2π)−d/2 exp(−|x |2/2), then
we have

p(x + h(x))

p(x)
= exp

(
−〈h, x〉 − |x |2

2

)
, (3.2)

which actually is a prototype of the Ramer-Kusuoka density

“ det ”(I + ∇h) exp

(
−

∫
ḣ “dw” − 1

2
‖h‖2

)
,
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Intuitions: 2. Where the Density of Ramer-Kusuoka Formula

comes from?

Here we notice that the density formula might be obtained for
other cases than Gaussian since the expression p(x + h(x))/p(x) of
the density is fairly general, though at this stage it is valid only for
the above finite dimensional cases. To extend it in infinite
dimensional settings, we will rely on an algebraic approach, as we
have seen that the action of Heisenberg algebra extends the
absolute continuity to infinite dimensional one.
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Intuitions: 3. How Should the Heisenberg Action be

Generalized?

To generalize the CCR

[Di , Dj ] = [D∗
i , D∗

j ] = 0, and [Di , D
∗
j ] = δij .

still to get a density formula, we need to look into the following
integration by parts more deeply.

〈Df , g〉L2(µ) =

∫
(Df )(x)g(x)p(x) dx = −

∫
f (x)D(g(x)p(x)) dx

=

∫
f (x)(−Dg + p′/p)(x)p(x) dx

=

∫
f (x)(−Dg(x) + x)p(x) dx = 〈f ,D∗g〉L2(µ),

One may notice that (i) p′/p = (log p)′ is crucial to the expression
of the density and (ii) is understood to be D + D∗ as a
multiplication operator, where D is the differential operator and
D∗ is its “adjoint” with respect to p(x)dx .
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Intuitions: 3. How Should the Heisenberg Action be

Generalized?

By considering a multi-dimensional case we notice that

[Di , Dj ] = [D∗
i , D∗

j ] = 0, and [Di , D
∗
j ] = ∂ij(log p). (4.1)

Since we are thinking of more general situations with “non-linear
transformation” f (x) 7→ f (x + h(x)), we read the last relation so
as that they are multiplication operators.
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Intuitions: 3. How Should the Heisenberg Action be

Generalized?

With these observations at hand, we will work on the following
algebra(s). Let B be a commutative topological algebra over R,
Di , D

∗
i , i ∈ N are linear operators acting on B in the manner that

[Di , Dj ] = [D∗
i , D∗

j ] = 0, (4.2)

Di + D∗
i ∈ M (B), (4.3)

and
[Di ,M (B)], [D∗

i , M (B)] ⊂ M (B). (4.4)

Here M (B) denotes the algebra of multiplication operators.
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Intuitions: 3. How the Heisenberg Action Should be

Generalized

The algebra generated by {Di , D
∗
i }, M (B) will be denoted by

D(B), which is dependent on the choice of B and linear operators
Di , D

∗
i , i ∈ N on it.

The requirements are an abstraction of D and D∗ being differential
operators, and being adjoint to each other.

When B is continuously and densely embedded in a Hilbert space
and D∗ is actually an adjoint operator of D, we call the embedding
a representation of D(B).
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The Toolkits

To avoid the tedious argument on convergence, we sometimes work
in D(B)[[t]], the ring of formal series in t with coefficients in D(B).

Let h := {hi : i ∈ N} be a sequence in B. With (2.7) in mind, we
define “translation operator” in D(B)[[t]] associated with h by

Th(t) :=
∞∑

n=0

tn

n!

∑
i1,··· ,in

hi1 · · · hinDi1 · · ·Din =:
∞∑

n=0

tn

n!
Th,n

if Th,nf converges in B for every f and n.
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The Toolkits

In the sequels we use as a conventional notation analogue to the
normal order product for (possibly infinite) sum of the monomials
in Di ,D

∗
i , hi , i ∈ N, :

∑
an : ∈ D(B) for an ∈ D(B) in the following

way: (i):
∑

an :=
∑

:an : (ii) for monomials a and b,
: aDib :=: ab : Di , and : ahib := hi : ab :. Here Di , D

∗
i , hi , i ∈ N

are treated as symbols with [Di , Dj ] = [D∗
i , D∗

j ] = [hi , hj ] = 0.
Thus, for example, we have

: (
∑

i

hiDi )
2(

∑
i

D∗
i hi )

2 :=
∑
i ,j ,k,l

hihjhkhlD
∗
kD∗

l DiDj .

With this notation, we have Th(t) =: et
P

hiDi : by understanding
eX to be the infinite series

∑
X n/n!, which is again a conventional

notation.
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The Toolkits

We also introduce a right ideal in D(B) as

I := {
∑

i

ciD
∗
i ai : ai ∈ D(B), ci ∈ R, ∃i s.t.ci 6= 0. },

and one in D(B)[[t]] as

I[[t]] := {
∞∑

n=1

tnIn : In ∈ I}.
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The Scenario

What we are looking for is a formula like

1 + Φ(t) = M(t)Th(t),

where Φ is in I[[t]] and M is in M (B)[[t]], or preferably,

1 + Φ = MTh, Φ ∈ I, M ∈ M (B). (5.1)

The reason why it works is as follows. If we have a representation
of D(B) in L2 space of a probability measure, and if we have
sufficient regularity to take expectation of the operators in both
sides of (5.1) applied to a random variable f , we have

E [f ] + E [Φf ] = E [Mf (ω + h(ω))]. (5.2)

The adjoint operator of Φ is, with a proper regularity, an
annihilation one; differential operators in the right. Thus we would
have

E [Φf ] = E [Φ∗(1)f ] = 0.

Hence the M in the right-hand-side of (5.2) is the density if it
exists and is positive.
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The Results

Let h = {hi} be such that hi = 0 for all but finite i . For such h set
Φh := {D∗

i hj : i , j ∈ N} and Ψh := {[D∗
i , hj ] : i , j ∈ N}. We can

define their monomials, and hence polynomials, by for example

ΦhΨh = {
∑
k

D∗
i hk [D∗

k , hj ] : i , j ∈ N},

and so on. For such a polynomial P we can define TrP as usual.
With these notations, we have the following results.

Proposition

The operator

Eh :=
(
: exp

(
t
∑

hi (Di + D∗
i )

)
:
)

is in M (B).
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The Results

Theorem

In D(B)[[t]], we have

1 +
∞∑

n=1

tnsn(TrΦ, TrΦ(−Ψ), · · · , TrΦ(−Ψ)n−1)

= exp

( ∞∑
n=1

tn

n
(−1)n−1TrΨn

h

)
Eh T−h,

(5.3)

where sn, n ∈ N are a non-commutative version of Schur functions
(character polynomials) defined inductively by s0 ≡ 1 and

sn+1(x0, x1, · · · , xn) =
1

n + 1

n∑
k=0

xksn−k .

Here xi ’s are non-commutative indefinite variables.
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The Results

Since apparently the operator in the left-hand-side of

1 +
∞∑

n=1

tnsn(TrΦ, TrΦ(−Ψ), · · · ,TrΦ(−Ψ)n−1)

= exp

( ∞∑
n=1

tn

n
(−1)n−1TrΨn

h

)
Eh T−h,

is in I[[t]] and the first factor in the right-hand-side is in M (B),
Proposition 5.1 asserts that (5.3) is an abstract version of
Ramer-Kusuoka type density formula.
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Historical Remark

Cameron-Martin (1949)
Gross (1960)
Shepp (1966)
Kuo (1971)
Ramer (1974)
Kusuoka (1982)
Buckdhan (1991)
Enchev (1993)
Buckdhan-Föllmer (1993)
Üstünel-Zakai (1994)
Kallianpur-Karandikar (1994)
and still going on...
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Proof of the Proposition

We will show that

: et
P

hi (Di+D∗
i ) : =

∞∑
n=0

tn

n!
: {

∑
i

hi (Di + D∗
i )}n :

is a multiplication operator. Since

: {
∑

i

hi (Di + D∗
i )}n :=

∑
hi1 · · · hin : (Di1 + D∗

i1) · · · (Din + D∗
in) :

it suffices to show that

: (Di1 + D∗
i1) · · · (Din + D∗

in) :

is a multiplication operator.
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Proof of the Proposition

We show it by induction. We have

: (Di1 + D∗
i1) · · · (Din + D∗

in) :

= D∗
i1 : (Di2 + D∗

i2) · · · (Din + D∗
in) :

+ : (Di2 + D∗
i2) · · · (Din + D∗

in) : Di1 .

Since we have

D∗
i M (B) + M (B)Di

= [D∗
i , M (B)] − [Di , M (B)] + M (B)(D∗

i + Di ) ⊂ M (B),

the proof is complete.
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Outline of the Proof of Main Theorem

In the final step we solve a differential equation in D(B)[[t]]. Here
differentiation in D(B)[[t]] is the formal one; it sends

∑∞
n=0 tnan to∑∞

n=0 tn(n + 1)an+1, and the indefinite integral sends
∑∞

n=0 tnan

to
∑∞

n=1 tn(n − 1)an−1 + c , where c is the indefinite constant.
The differentiation of a(t) is denoted by a′(t) and the indefinite
integral is denoted by

∫ t
0 a(s) ds if the indefinite constant is taken

to be zero.
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Outline of the Proof of Main Theorem

Linear equations in D(B)[[t]] is solved in the following way.

Lemma

The differential equation

a′(t) = b(t)a(t),with a(0) = 1 (7.1)

in D(B)[[t]], where b(t) =
∑∞

n=0 tnbn have the unique solution

a(t) =
∞∑

n=0

tnsn(b0, · · · , bn−1),

where sn, n = 1, 2, · · · are the non-commutative Schur functions
defined in the statement of Theorem 1.
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Outline of the Proof of Main Theorem

Thus, once we have the differential equation

a′(t) = b(t)a(t),with a(0) = 1 (7.2)

for

a(t) := exp

( ∞∑
n=1

tn

n
(−1)n−1TrΨn

h

)
Eh(t) T−h(t)

and

b(t) :=
∞∑

n=0

tnTrΦ(−Ψ)n,

the proof will be complete.

32



Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

1

n!

n∑
k=0

(
n
k

) ∑
i1,··· ,in

hi1 · · · hik : (Di1 + D∗
i1) · · · (Dik + D∗

ik
) :

hik+1
· · · hin(−D)ik+1

· · · (−D)in
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Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

=
1

n!

n∑
k=0

(
n
k

) ∑
i1,··· ,in

hi1 · · · hik hik+1
· · · hin

: (Di1 + D∗
i1) · · · (Dik + D∗

ik
)(−D)ik+1

· · · (−D)in :
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Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

=
1

n!

n∑
k=0

(
n
k

)
:

∑
i1,··· ,in

hi1 · · · hik hik+1
· · · hin

(Di1 + D∗
i1) · · · (Dik + D∗

ik
)(−D)ik+1

· · · (−D)in :
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Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

=
1

n!

n∑
k=0

(
n
k

)
:

∑
i1,··· ,in

hi1 · · · hik (Di1 + D∗
i1) · · · (Dik + D∗

ik
)

hik+1
· · · hin(−D)ik+1

· · · (−D)in :
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Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

=
1

n!
:

n∑
k=0

(
n
k

)
{
∑

hi (Di + D∗
i )}k(−

∑
hiDi )

n−k :
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Outline of the Proof of Main Theorem

The first step to the project is the following

Lemma

Eh(t) T−h(t)(= : et
P

hi (D
∗
i +Di ) : : e−t

P

hiDi :) = : et
P

hiD
∗
i : .

Proof.

The coefficient of tn in the right-hand-side is

=
1

n!
: {

∑
hi (Di + D∗

i − Di )}n :=
1

n!
: {

∑
hiD

∗
i }n : .
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Outline of the Proof of Main Theorem

With an approximation where the “random” operator Ψ is
compact, we can use the expressions

exp

( ∞∑
n=1

tn

n
(−1)n−1TrΨn

h

)
(= det(1 + tΨ)) =

∞∑
n=0

tnTr ∧n Ψ

=
∞∑

n=0

tn

n!

∑
i1,··· ,in

〈Ψii ∧ · · ·Ψin , eii ∧ · · · ein〉 =:
∞∑

n=0

tn

n!

∑
i1,··· ,in

det[Ψii , ·,Ψin ].

The last two expressions would make sense with
Ψi = ([D∗

i , h1], · · · , [D∗
i , hn], · · · ).
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Outline of the Proof of Main Theorem

The key is the following

Lemma

det(1 + tΨ) : et
P

hiD
∗
i := 1 +

∫ t

0
g ′(s) : et

P

hiD
∗
i : ds,

where

g(t) =
∞∑

n=0

tn

n!

∑
i1,··· ,in

D∗
i1 det[h, Ψi1 , · · · , Ψin ].

Our proof is very involved (needs several pages...so I omit it here)
but this lemma already solves the problem.

40



Outline of the Proof of Main Theorem

The following lemma completes the proof of the main theorem.

Lemma

g ′(t) =
∞∑

n=0

tnTr{Φ(−Ψ)n−1} det(1 + tΨ).

Proof.

(Outline) We show by induction

∑
i1,··· ,in

D∗
i1 det[h, Ψi1 , · · · , Ψin ] = (n−1)!

n∑
k=1

Tr{Φ(−Ψ)k−1}Tr∧n−kΨ.
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Comments on Absolute Continuity

If we have a representation of the algebra in a space of random
variables, the multiplication operator in the formula applied to
constant function, that is,

exp

( ∞∑
n=1

tn

n
(−1)n−1TrΨn

h

)
: et

P

hiD
∗
i : (1),

describes the density if it exists (for sufficiently small t ∈ R).
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Comments on Absolute Continuity

To see “if it exists” or not, it is better to rewrite : et
P

hiD
∗
i : (1) as

an exponential function formally as

: et
P

hiD
∗
i : (1) = exp

∫ t

0
b(s) ds = exp

∞∑
n=1

tn

n
bn−1,

by the relation

(n + 1)an+1 =
n∑

k=0

bkan−k ,

where

an =
1

n!

∑
i1,··· ,in

hi1 · · · hinD
∗
i1 · · ·D

∗
in(1).
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Comments on Absolute Continuity

We have, by the definition of the algebra,

D∗
i f = [D∗

i , f ] + qi f ,

where we put qi = D∗
i (1). Using this relation, we can inductively

obtain an expression of D∗
i1
· · ·D∗

in
(1).

We have, for example,

D∗
i D∗

j (1) = [D∗
i , qj ] + qiqj ,

etc and ∑
i ,j

hihjD
∗
i D∗

j (1) = 〈h, q〉2 + 〈Ψq,2, h ⊗ h〉,

where Ψq,2 is the matrix [D∗
i , qj ].

44



Comments on Absolute Continuity

The “density” is now expressed as

exp{t(TrΨh − 〈h, q〉) +
t2

2
(TrΨ2

h − 〈h ⊗ h, Ψq,2〉)

+
t3

3
(TrΨ3

h − 〈h ⊗ h ⊗ h, Ψq,3〉 + · · · ) + · · · }.
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Thank you!
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