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Objectives

(i) Introduce the notion of stochastic processes with
proportional increments

(ii) Show connection with martingales

(iii) Applications
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Original motivation: The Last Arrival Problem

X1,X2, · · · ,XN i.i.d. U[0,1] ’s ; sequentially observed.

| . .. . . . .. . .? |

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

(a) Prior distribution or partial information about N

(b) Game version (Wästlund (2011))

(c) No information except N <∞ a.s. (The l.a.p.)
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Origin of No-information version (Wästlund, Aldous, ...?)

Question: Is (the l.a.p.) a well-posed problem?

Central question: Can we prove that the l.a.p. is an ill-posed
problem?

........

........

Conclusion: As we understand no-information, it is not
possible to prove that the l.a.p. is ill-posed.
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What can we use in the l.a.p.?

(i) i.i.d. U[0,1] properties; conditional distr. properties

(ii) symmetry, "shift and transformation invariance",

(iii) image property (Poisson process compatibility)

(iv) If opt. stopp. time τ exists, then

τ ∈ {T1 = X<1,N>,T2 = X<2,N>, · · · ,TN = X<N,N>, 1}

(v) Sequential observation =⇒ relevant process is (Nt )0<t≤1

Nt =
N∑

k=1

1{Xk ≤ t}

Ft = σ{Nu : 0 ≤ u ≤ t}.
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Modelisation:

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

"Positive-attitude axiom" of Mathematics: It is admissible to
discard all models which can be proved to be inaccessible
under the given hypotheses.

Indeed:

Using "no-formation" , i.e. at time t no other information than
that contained in Ft , and

E(Nt ) = tN

E
(

E(Nt+s|Ft )
)

= (t + s)N = (t + s)E
(Nt

t

)
we can show:
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The relevant process (Nt ) compatible with i)-v) and the
no-information hypothesis must be modelled by:

∀0 < t ≤ t + s ≤ 1 with Nt 6= 0, (1)

E(Nt+s − Nt |Ft ) =
s
t

Nt a.s.
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More generally:

Definition

Let (Nt )t>0 be a stochastic process on (Ω,F , (Ft ),P) with
natural filtration Ft = σ{Nu : u ≤ t}.

We call (Nt )t>0 a process with proportional increments or a
p.i.- process on ]0,∞] if

∀t > 0 with Nt 6= 0, ∀s ≥ 0 :

E(Nt+s − Nt |Ft ) =
s
t

Nt a.s.
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∀t > 0 with Nt 6= 0, ∀s ≥ 0 :

E(Nt+s − Nt |Ft ) =
s
t

Nt a.s.

Examples.

(i) Nt = 0,∀t > 0;

(ii) Nt = ct for constant c

(iii) Nt = t Bt where (Bt ) Brown. mot. without drift.

E(Nt+s − Nt |Ft ) = E
(

(t + s)Bt+s − tBt |Ft

)
= E ((t + s)(Bt + (Bt+s − Bt ))− tBt |Ft )

= sE(Bt |Ft ) =
s
t

tBt =
s
t

Nt . (2)
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(iv) Nt = c t (Lt − `t ) where (Lt ) Lévy process with `t ....

(v) The set of p.i.processes (...) is closed with respect to "+"
and scalar "*" so that

Zt =
∑

j

cj t (Lj
t − `

j
t )

is a p.i.-process with respect to (...)

But .... is there anything deeper to all this?
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A related martingale
Theorem
Let (Nt )t>0 be a p.i.- counting process and Rt = Nt/t .
If Nt0 > 0 and E(Nt0) <∞ for some t0 > 0 then (Rt ) is a
Ft -martingale on [t0,∞[.

Proof. Use |Nt | = Nt , Ft ⊇ Ft0 , and p.i.-property:

(i) E(|Rt |) =
1
t

E(Nt0 + (Nt − Nt0))

≤ 1
t0

E(Nt0) +
1
t

E(Nt − Nt0)

= E(Rt0) +
1
t

E
[
E
(

Nt − Nt0

∣∣∣Ft0

)]
= E(Rt0) +

1
t

E
(

(t − t0)
Nt0
t0

)
≤ 2E(Rt0) <∞.
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A related martingale

(ii) Martingale property for t0 ≤ t ≤ T :

(ii) E(Rt+s|Ft ) =
1

t + s
E (Nt + (Nt+s − Nt )|Ft )

=
1

t + s
(Nt + E(Nt+s − Nt |Ft ))

=
1

t + s

(
Nt +

s
t

Nt

)
=

Nt

t
= Rt .
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Reverse martingale

Returning to the property of Poisson-proc.compatibilty: ...

Is it not tempting to say ....?

Jacod and Protter (1988): If (Nt ) Lévy process then (Nt/t) is
a reverse martingale with respect to the filtration

F+
t = σ{Nu : 0,1 ≥ u ≥ t}.

Carr, Geman, Madan and Yor (2011):

∀0 ≤ t ≤ T : E(NT/T |F+
t ) = Nt/t a.s.
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∀0 ≤ t ≤ T : E(NT/T |F+
t ) = Nt/t a.s.
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How recognizable are p.i.-processes?

A little challenge:

Distributional prescription

(i) P(Nt+s = k |Ft ) = e−sλ(sλ)k−Nt/(k − Nt )! ?

No!
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(ii) (Pascal process: B. & Rogers, Stoch. Proc. Th. Appl.
(1991))

Definition
(Πt )t≥0 counting process such that for all T > 0 and 0 ≤ t ≤ T

P(ΠT = n|Ft ) =

(
n
Πt

)
p(t ,T )Πt +1(1− p(t ,T ))n−Πt

where Π0 = 0 and (Ft ) = σ({Πu : u ≤ t}). Then (Πt ) is called
a Pascal process with parameter function p(t ,T ).

Q: How to see whether p.i.-property?

A: Think in terms of odds "future/past"!!!
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Theorem
Every Pascal process (Πt ) augmented by 1 has
odds-proportional increments with odds
r(t ,T ) := (1− p(t ,T ))/p(t ,T ) , where p(t ,T ) is the
corresponding parameter function, that is

E(ΠT − Πt |Ft ) = r(t ,T )(Πt + 1) a.s.
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Theorem
If (Πt )t≥0 is a Pascal process with parameter function p(t ,T )
and filtration Ft = σ({Πu : 0 ≤ u ≤ t}) , then the process
(Rt )t≥0 defined by

Rt =
Πt + 1
p(t ,T )

(3)

is a Ft -martingale on ]0,T ].

Further generalizations: "f-increment processes"

Conclusion: Quite some room for discovering p.i.-processes!
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Applications

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property
based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

(Nt ) only relevant "learning" process

(Nt )/t has the same jump times

(Nt/t) is a Ft -martingale

Confine search optimal stopp. time τ < 1!

Poisson proc. compatibility in final step

Odds-Theorem of optimal stopping
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Solution of the l.a.p.

Theorem
Let Tk = X<k ,N>, k = 1,2, · · · ,N be the (a.s) strictly increasing
jump times of (Nt ). Further let

τ = inf
{

Tk ∈]0,1] : k ≤ Tk

1− Tk

}
,

with τ defined to be 1 if empty. Then τ is optimal for the l.a.p.
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Proof (sketch)

(i) Odds theorem of opt. stop. ( B., Ann. of Probab. (2000))

Theorem
Let I1, I2, · · · , In be independent indicators on some (Ω,A,P)
with known pk = E(Ik ). We want to stop (online) with maximum
probability on the last "success". An optimal strategy τ exists
and is as follows:
rk := pk/(1− pk )
s := largest k with rn + rn−1 + · · ·+ rk ≥ 1
(s := 1 if no such 1 ≤ k ≤ n exists)

τ = min{s ≤ k ≤ n : Ik = 1} is optimal
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(ii) Addendum to the Odds theorem ( B., Ann. of Probab.
(2003))

If all odds sum up to at least one, then τ always succeeds with
probability ≥ 1/e.

(iii) How to pass from discrete time and fixed n to continuous
time and unknown N ?

This is easy for any counting process with independent
increments; Specifically in Poisson process case:

Take Riemann sum limit for limiting odds

lim
dt→0

1
dt

(λt dt + o(dt))/(1− λtdt − o(dt)) = λt

( =⇒ integral version of odds-algorithm (B. (2000)))
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(iv) Confine interest to stopping times τ < 1.

(iv) Slightly more general integral version of the odds algorithm
(adapted to the l.a.p.):

Let (Yt ) be a counting process on (Ω,G, (Gt )t≥0,P). Suppose
there exists s > 0 such that (Yt )t≥s is a PP with rate Λt
possibly depending on Gs , then ......
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(v) Recall martingale property of (Nt/t).

(a) Let τ be any Ft−stopping time and define

Mτ
t := 1{t≤τ}Nt + 1{t>τ}

(
Nτ + µt−τ (Λτ )

)
,

where µ denotes a homogeneous Poisson Process of rate (.).

(b) We want (Mτ
t )/t to satisfy the martingale property of (Nt/t).

(c) A necessary condition for Mτ
t to be a martingale is to

impose Λτ = Nτ/τ ("Poisson shadow" of (Nt ) in τ )
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Theorem
If N turns out to be n then the win probability equals

wn =
n!

n + 1

∫ 1/2

0

∫ 2/3

x1

∫ 3/4

x2

· · ·
∫ (n−1)/n

xn−2

dxn−1 · · · dx2dx1.

(i) w1 = 1/2; w2 = 1/3;∀n : 5
16 ≤ wn ≤ 1

2

(ii) wn < 1/e, ∀n ≥ 2.

(iii) limn→∞wn = 1/e

(wn)n≥3 ↑ 1/e. (Conjecture solved on MathOverview!)
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Conclusion

P.i.-processes seem somewhat special ....

but they are tractable and possibly broader than one might think
and interesting as a modelling tool giving easily acces to
martingales.
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