The Last Arrival Problem and Stochastic Processes with Proportional Increments

F. Thomas Bruss

Département de Mathématique Université libre de Bruxelles

in honour of Freddy Delbaen

イロト 不得 トイヨト イヨト

Joint work with Marc Yor (Stoch.Proc.Th.Appl., 2012)

イロト 不得 とくほと くほとう

Objectives

F. Thomas Bruss Proportional Increment Processes

ヘロト 人間 とくほとくほとう

æ

(i) Introduce the notion of stochastic processes with proportional increments

イロト 不得 とくほと くほとう

ъ

(i) Introduce the notion of stochastic processes with proportional increments

(ii) Show connection with martingales

イロト 不得 とくほ とくほ とう

(i) Introduce the notion of stochastic processes with proportional increments

(ii) Show connection with martingales

(iii) Applications

・ロト ・ 同ト ・ ヨト ・ ヨト

 X_1, X_2, \cdots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 … 釣んで

 X_1, X_2, \dots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

 X_1, X_2, \dots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

Objective: Stop online on the last arrival!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 X_1, X_2, \dots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

 X_1, X_2, \cdots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

(a) Prior distribution or partial information about N

 X_1, X_2, \cdots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

(a) Prior distribution or partial information about N

(b) Game version (Wästlund (2011))

 X_1, X_2, \cdots, X_N i.i.d. U[0, 1]'s ; sequentially observed.

|? |

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

(a) Prior distribution or partial information about N

(b) Game version (Wästlund (2011))

(c) No information except $N < \infty a.s.$ (The l.a.p.)

F. Thomas Bruss Proportional Increment Processes

(ロ) (同) (目) (日) (日) (日) (の)

Question: Is (the I.a.p.) a well-posed problem?

Question: Is (the **I.a.p.**) a well-posed problem?

Central question: Can we prove that the **I.a.p.** is an ill-posed problem?

.....

.......

Question: Is (the **I.a.p.**) a well-posed problem?

.

.

Central question: Can we prove that the **I.a.p.** is an ill-posed problem?

Conclusion: As we understand *no-information*, it is *not possible* to prove that the **l.a.p.** is ill-posed.

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

F. Thomas Bruss Proportional Increment Processes

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

(i) i.i.d. U[0, 1] properties; conditional distr. properties

(i) i.i.d. U[0, 1] properties; conditional distr. properties

(ii) symmetry, "shift and transformation invariance",

(i) i.i.d. U[0, 1] properties; conditional distr. properties

(ii) symmetry, "shift and transformation invariance",

(iii) image property (Poisson process compatibility)

(i) i.i.d. U[0, 1] properties; conditional distr. properties

(ii) symmetry, "shift and transformation invariance",

(iii) image property (Poisson process compatibility)

(iv) If opt. stopp. time τ exists, then

$$\tau \in \{T_1 = X_{<1,N>}, T_2 = X_{<2,N>}, \cdots, T_N = X_{}, 1\}$$

(i) i.i.d. U[0,1] properties; conditional distr. properties

(ii) symmetry, "shift and transformation invariance",

(iii) image property (Poisson process compatibility)

(iv) If opt. stopp. time τ exists, then

$$\tau \in \{T_1 = X_{<1,N>}, T_2 = X_{<2,N>}, \cdots, T_N = X_{}, 1\}$$

(v) Sequential observation \implies relevant process is $(N_t)_{0 < t \le 1}$

$$N_t = \sum_{k=1}^N \mathbf{1}\{X_k \le t\}$$
$$\mathcal{F}_t = \sigma\{N_u : 0 \le u \le t\}.$$

|▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

F. Thomas Bruss Proportional Increment Processes

Question: Is there a convincing modelisation?

イロン 不得 とくほ とくほ とうほ

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

(日本) (日本) (日本)

э

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

"Positive-attitude axiom" of Mathematics:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

"**Positive-attitude axiom**" of Mathematics: It is admissible to discard all models which can be **proved** to be inaccessible under the given hypotheses.

(* E) * E)

-

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

"**Positive-attitude axiom**" of Mathematics: It is admissible to discard all models which can be **proved** to be inaccessible under the given hypotheses.

Indeed:

Using "no-formation", i.e. at time *t* no other information than that contained in \mathcal{F}_t , and

$$E(N_t) = tN$$
$$E(E(N_{t+s}|\mathcal{F}_t)) = (t+s)N = (t+s)E(\frac{N_t}{t})$$

we can show.

(個) (日) (日) (日)

The relevant process (N_t) compatible with i)-v) and the *no-information* hypothesis must be modelled by:

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

The relevant process (N_t) compatible with i)-v) and the *no-information* hypothesis must be modelled by:

$$\forall 0 < t \le t + s \le 1 \text{ with } N_t \neq 0,$$

$$E(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

$$(1)$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

More generally:

Definition

Let $(N_t)_{t>0}$ be a stochastic process on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ with natural filtration $\mathcal{F}_t = \sigma\{N_u : u \leq t\}$.

F. Thomas Bruss Proportional Increment Processes

More generally:

Definition

Let $(N_t)_{t>0}$ be a stochastic process on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ with natural filtration $\mathcal{F}_t = \sigma\{N_u : u \leq t\}$.

We call $(N_t)_{t>0}$ a process with *proportional increments* or a *p.i.- process* on $]0, \infty]$ if

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

More generally:

Definition

Let $(N_t)_{t>0}$ be a stochastic process on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ with natural filtration $\mathcal{F}_t = \sigma\{N_u : u \leq t\}$.

We call $(N_t)_{t>0}$ a process with *proportional increments* or a *p.i.- process* on $]0, \infty]$ if

$$\forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

$$\begin{aligned} \forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) &= \frac{s}{t} N_t \text{ a.s.} \end{aligned}$$

F. Thomas Bruss Proportional Increment Processes

・ロト・「日・・日・・日・・日・

$$\forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

Examples.

$$\forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

(i) $N_t = 0, \forall t > 0;$

$$\forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

- (i) $N_t = 0, \forall t > 0;$
- (ii) $N_t = ct$ for constant c

$$\forall t > 0 \text{ with } N_t \neq 0, \forall s \ge 0 : \\ \mathrm{E}(N_{t+s} - N_t | \mathcal{F}_t) = \frac{s}{t} N_t \text{ a.s.}$$

- (i) $N_t = 0, \forall t > 0;$
- (ii) $N_t = ct$ for constant c
- (iii) $N_t = t \mathcal{B}_t$ where (\mathcal{B}_t) Brown. mot. without drift.

$$\begin{aligned} \forall t > 0 \text{ with } & \mathsf{N}_t \neq 0, \forall s \ge 0 : \\ & \mathrm{E}(\mathsf{N}_{t+s} - \mathsf{N}_t | \mathcal{F}_t) = \frac{s}{t} \mathsf{N}_t \text{ a.s.} \end{aligned}$$

- (i) $N_t = 0, \forall t > 0;$
- (ii) $N_t = ct$ for constant c
- (iii) $N_t = t \mathcal{B}_t$ where (\mathcal{B}_t) Brown. mot. without drift.

$$E(N_{t+s} - N_t | \mathcal{F}_t) = E((t+s)\mathcal{B}_{t+s} - t\mathcal{B}_t | \mathcal{F}_t)$$

= E((t+s)(\mathcal{B}_t + (\mathcal{B}_{t+s} - \mathcal{B}_t)) - t\mathcal{B}_t | \mathcal{F}_t)
= sE(\mathcal{B}_t | \mathcal{F}_t) = \frac{s}{t}t\mathcal{B}_t = \frac{s}{t}N_t. (2)

$$\begin{aligned} \forall t > 0 \text{ with } & \mathsf{N}_t \neq 0, \forall s \ge 0 : \\ & \mathrm{E}(\mathsf{N}_{t+s} - \mathsf{N}_t | \mathcal{F}_t) = \frac{s}{t} \mathsf{N}_t \text{ a.s.} \end{aligned}$$

- (i) $N_t = 0, \forall t > 0;$
- (ii) $N_t = ct$ for constant c
- (iii) $N_t = t \mathcal{B}_t$ where (\mathcal{B}_t) Brown. mot. without drift.

$$E(N_{t+s} - N_t | \mathcal{F}_t) = E((t+s)\mathcal{B}_{t+s} - t\mathcal{B}_t | \mathcal{F}_t)$$

= E((t+s)(\mathcal{B}_t + (\mathcal{B}_{t+s} - \mathcal{B}_t)) - t\mathcal{B}_t | \mathcal{F}_t)
= sE(\mathcal{B}_t | \mathcal{F}_t) = \frac{s}{t}t\mathcal{B}_t = \frac{s}{t}N_t. (2)

(iv) $N_t = c t (\mathcal{L}_t - \ell_t)$ where (\mathcal{L}_t) Lévy process with ℓ_t

F. Thomas Bruss Proportional Increment Processes

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 … 釣んで

(iv) $N_t = c t (\mathcal{L}_t - \ell_t)$ where (\mathcal{L}_t) Lévy process with ℓ_t

(v) The set of p.i.processes (...) is closed with respect to "+" and scalar "*" so that

$$Z_t = \sum_j c_j t \left(\mathcal{L}_t^j - \ell_t^j \right)$$

is a p.i.-process with respect to (...)

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

(iv) $N_t = c t (\mathcal{L}_t - \ell_t)$ where (\mathcal{L}_t) Lévy process with ℓ_t

(v) The set of p.i.processes (...) is closed with respect to "+" and scalar "*" so that

$$Z_t = \sum_j c_j t \left(\mathcal{L}_t^j - \ell_t^j \right)$$

is a p.i.-process with respect to (...)

But is there anything deeper to all this?

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Theorem

Let $(N_t)_{t>0}$ be a p.i.- counting process and $R_t = N_t/t$. If $N_{t_0} > 0$ and $E(N_{t_0}) < \infty$ for some $t_0 > 0$ then (R_t) is a \mathcal{F}_t -martingale on $[t_0, \infty[$.

Theorem

Let $(N_t)_{t>0}$ be a p.i.- counting process and $R_t = N_t/t$. If $N_{t_0} > 0$ and $E(N_{t_0}) < \infty$ for some $t_0 > 0$ then (R_t) is a \mathcal{F}_t -martingale on $[t_0, \infty[$.

Proof. Use $|N_t| = N_t$, $\mathcal{F}_t \supseteq \mathcal{F}_{t_0}$, and p.i.-property:

(i)
$$E(|R_t|) = \frac{1}{t}E(N_{t_0} + (N_t - N_{t_0}))$$

 $\leq \frac{1}{t_0}E(N_{t_0}) + \frac{1}{t}E(N_t - N_{t_0})$
 $= E(R_{t_0}) + \frac{1}{t}E\left[E\left(N_t - N_{t_0}|\mathcal{F}_{t_0}\right)\right]$
 $= E(R_{t_0}) + \frac{1}{t}E\left((t - t_0)\frac{N_{t_0}}{t_0}\right) \leq 2E(R_{t_0}) < \infty.$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ つへぐ

Theorem

Let $(N_t)_{t>0}$ be a p.i.- counting process and $R_t = N_t/t$. If $N_{t_0} > 0$ and $E(N_{t_0}) < \infty$ for some $t_0 > 0$ then (R_t) is a \mathcal{F}_t -martingale on $[t_0, \infty[$.

Proof. Use $|N_t| = N_t$, $\mathcal{F}_t \supseteq \mathcal{F}_{t_0}$, and p.i.-property:

$$\begin{array}{ll} (\mathrm{i}) & \mathrm{E}(|R_t|) = \frac{1}{t} \mathrm{E}(N_{t_0} + (N_t - N_{t_0})) \\ & \leq \frac{1}{t_0} \mathrm{E}(N_{t_0}) + \frac{1}{t} \mathrm{E}(N_t - N_{t_0}) \\ & = \mathrm{E}(R_{t_0}) + \frac{1}{t} \mathrm{E}\left[\mathrm{E}\left(N_t - N_{t_0} \middle| \mathcal{F}_{t_0}\right)\right] \\ & = \mathrm{E}(R_{t_0}) + \frac{1}{t} \mathrm{E}\left((t - t_0) \frac{N_{t_0}}{t_0}\right) \leq 2\mathrm{E}(R_{t_0}) < \infty. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

(ii) Martingale property for $t_0 \le t \le T$:

イロン 不得 とくほう 不良 とう

æ

(ii) Martingale property for $t_0 \le t \le T$:

(ii)
$$E(R_{t+s}|\mathcal{F}_t) = \frac{1}{t+s}E(N_t + (N_{t+s} - N_t)|\mathcal{F}_t)$$
$$= \frac{1}{t+s}(N_t + E(N_{t+s} - N_t|\mathcal{F}_t))$$
$$= \frac{1}{t+s}\left(N_t + \frac{s}{t}N_t\right)$$
$$= \frac{N_t}{t} = R_t.$$

イロン 不得 とくほう 不良 とう

æ

Reverse martingale

Returning to the property of Poisson-proc.compatibility: ...

Is it not tempting to say?

・ロト ・ 同ト ・ ヨト ・ ヨト

Returning to the property of Poisson-proc.compatibility: ...

Is it not tempting to say?

Jacod and Protter (1988): If (N_t) Lévy process then (N_t/t) is a *reverse martingale* with respect to the filtration

$$\mathcal{F}_t^+ = \sigma\{N_u : 0, 1 \ge u \ge t\}.$$

イロト イポト イヨト イヨト 二日

Returning to the property of Poisson-proc.compatibility: ...

Is it not tempting to say?

Jacod and Protter (1988): If (N_t) Lévy process then (N_t/t) is a *reverse martingale* with respect to the filtration

$$\mathcal{F}_t^+ = \sigma\{N_u : 0, 1 \ge u \ge t\}.$$

Carr, Geman, Madan and Yor (2011):

$$\forall 0 \leq t \leq T : \mathrm{E}(N_T/T|\mathcal{F}_t^+) = N_t/t \ a.s.$$

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

How recognizable are p.i.-processes?

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

How recognizable are p.i.-processes?

A little challenge:

Distributional prescription

(i)
$$P(N_{t+s} = k | \mathcal{F}_t) = e^{-s\lambda} (s\lambda)^{k-N_t} / (k-N_t)!$$
?

・ 同 ト ・ ヨ ト ・ ヨ ト

э

How recognizable are p.i.-processes?

A little challenge:

Distributional prescription

(i)
$$P(N_{t+s} = k | \mathcal{F}_t) = e^{-s\lambda} (s\lambda)^{k-N_t} / (k-N_t)!$$
?

No!

ヘロン 人間 とくほ とくほ とう

3

F. Thomas Bruss Proportional Increment Processes

・ロト・「日・・日・・日・ 「日・・日・

(ロ) (同) (目) (日) (日) (日) (の)

Definition

 $(\Pi_t)_{t\geq 0}$ counting process such that for all T > 0 and $0 \le t \le T$

$$P(\Pi_T = n | \mathcal{F}_t) = \binom{n}{\Pi_t} p(t, T)^{\Pi_t + 1} (1 - p(t, T))^{n - \Pi_t}$$

where $\Pi_0 = 0$ and $(\mathcal{F}_t) = \sigma(\{\Pi_u : u \le t\})$. Then (Π_t) is called a Pascal process with parameter function p(t, T).

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Definition

 $(\Pi_t)_{t\geq 0}$ counting process such that for all T > 0 and $0 \le t \le T$

$$P(\Pi_T = n | \mathcal{F}_t) = \binom{n}{\Pi_t} p(t, T)^{\Pi_t + 1} (1 - p(t, T))^{n - \Pi_t}$$

where $\Pi_0 = 0$ and $(\mathcal{F}_t) = \sigma(\{\Pi_u : u \le t\})$. Then (Π_t) is called a Pascal process with parameter function p(t, T).

Q: How to see whether p.i.-property?

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Definition

 $(\Pi_t)_{t\geq 0}$ counting process such that for all T > 0 and $0 \le t \le T$

$$P(\Pi_T = n | \mathcal{F}_t) = \binom{n}{\Pi_t} p(t, T)^{\Pi_t + 1} (1 - p(t, T))^{n - \Pi_t}$$

where $\Pi_0 = 0$ and $(\mathcal{F}_t) = \sigma(\{\Pi_u : u \le t\})$. Then (Π_t) is called a Pascal process with parameter function p(t, T).

Q: How to see whether p.i.-property?

A: Think in terms of odds "future/past"!!!

・ロト ・ 同ト ・ ヨト ・ ヨト

Every Pascal process (Π_t) augmented by 1 has odds-proportional increments with odds r(t, T) := (1 - p(t, T))/p(t, T), where p(t, T) is the corresponding parameter function, that is

 $E(\Pi_T - \Pi_t | \mathcal{F}_t) = r(t, T)(\Pi_t + 1) a.s.$

F. Thomas Bruss Proportional Increment Processes

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

If $(\Pi_t)_{t\geq 0}$ is a Pascal process with parameter function p(t, T)and filtration $\mathcal{F}_t = \sigma(\{\Pi_u : 0 \leq u \leq t\})$, then the process $(R_t)_{t\geq 0}$ defined by

$$B_t = \frac{\prod_t + 1}{\rho(t, T)}$$

(3)

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

is a \mathcal{F}_t -martingale on]0, T].

If $(\Pi_t)_{t\geq 0}$ is a Pascal process with parameter function p(t, T)and filtration $\mathcal{F}_t = \sigma(\{\Pi_u : 0 \leq u \leq t\})$, then the process $(R_t)_{t\geq 0}$ defined by

$$R_t = rac{\Pi_t + 1}{
ho(t,T)}$$

(3)

イロト イポト イヨト イヨト 二日

is a \mathcal{F}_t -martingale on]0, T].

Further generalizations: "f-increment processes"

If $(\Pi_t)_{t\geq 0}$ is a Pascal process with parameter function p(t, T)and filtration $\mathcal{F}_t = \sigma(\{\Pi_u : 0 \leq u \leq t\})$, then the process $(R_t)_{t\geq 0}$ defined by

$$R_t = rac{\Pi_t + 1}{
ho(t,T)}$$

(3)

イロト イポト イヨト イヨト 一日

is a \mathcal{F}_t -martingale on]0, T].

Further generalizations: "f-increment processes"

Conclusion: Quite some room for discovering p.i.-processes!

F. Thomas Bruss Proportional Increment Processes

ヘロト 人間 とく ヨン 人 ヨトー

₹ • • • • •

• 1/e-law of best choice (B., Ann of Probab.1984)

ヘロン 人間 とくほど 人ほとう

æ

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

・ 同 ト ・ ヨ ト ・ ヨ ト …

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

(N_t) only relevant "learning" process

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

 (N_t) only relevant "learning" process

 $(N_t)/t$ has the same jump times

(日本) (日本) (日本)

э

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

 (N_t) only relevant "learning" process $(N_t)/t$ has the same jump times (N_t/t) is a \mathcal{F}_t -martingale

米間 とくほ とくほ とうほう

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

 (N_t) only relevant "learning" process $(N_t)/t$ has the same jump times (N_t/t) is a \mathcal{F}_t -martingale

Confine search optimal stopp. time $\tau < 1$!

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの
Applications

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

 (N_t) only relevant "learning" process $(N_t)/t$ has the same jump times

 (N_t/t) is a \mathcal{F}_t -martingale

Confine search optimal stopp. time $\tau < 1$!

Poisson proc. compatibility in final step

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

Applications

• 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....

• Success: Solution of the l.a.p.!

Main steps to the solution:

 (N_t) only relevant "learning" process

 $(N_t)/t$ has the same jump times

 (N_t/t) is a \mathcal{F}_t -martingale

Confine search optimal stopp. time $\tau < 1!$

Poisson proc. compatibility in final step

Odds-Theorem of optimal stopping

▲■▼▲国▼▲国▼ 国 のなべ

Let $T_k = X_{\langle k,N \rangle}$, $k = 1, 2, \dots, N$ be the (a.s) strictly increasing jump times of (N_t). Further let

$$\tau = \inf\left\{T_k \in]0,1]: k \leq \frac{T_k}{1-T_k}\right\},\,$$

with τ defined to be 1 if empty. Then τ is optimal for the l.a.p.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Let $T_k = X_{\langle k,N \rangle}$, $k = 1, 2, \dots, N$ be the (a.s) strictly increasing jump times of (N_t). Further let

$$\tau = \inf\left\{T_k \in]0,1]: k \leq \frac{T_k}{1-T_k}\right\},\,$$

with τ defined to be 1 if empty. Then τ is optimal for the l.a.p.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

(i) Odds theorem of opt. stop. (B., Ann. of Probab. (2000))

Theorem

Let I_1, I_2, \dots, I_n be independent indicators on some (Ω, \mathcal{A}, P) with known $p_k = E(I_k)$. We want to stop (online) with maximum probability on the last "success". An optimal strategy τ exists and is as follows:

$$r_k := p_k/(1 - p_k)$$

 $s := largest \ k \ with \ r_n + r_{n-1} + \dots + r_k \ge 1$
 $(s := 1 \ if \ no \ such \ 1 \le k \le n \ exists)$

$$\tau = \min\{s \le k \le n : I_k = 1\} \text{ is optimal}$$

イロト 不得 とくほ とくほ とう

э

(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1/e$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1/e$.

(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1/e$.

(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?

This is easy for any counting process with *independent* increments;

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1/e$.

(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?

This is easy for any counting process with *independent* increments; Specifically in Poisson process case:

Take Riemann sum limit for limiting odds

$$\lim_{dt\to 0} \frac{1}{dt} (\lambda_t \ dt + o(dt)) / (1 - \lambda_t dt - o(dt)) = \lambda_t$$

(\implies integral version of odds-algorithm (B. (2000)))

(個) (日) (日) (日)

(iv) Confine interest to stopping times $\tau < 1$.

F. Thomas Bruss Proportional Increment Processes

(iv) Confine interest to stopping times $\tau < 1$.

(iv) Slightly more general integral version of the odds algorithm (adapted to the l.a.p.):

Let (Y_t) be a counting process on $(\Omega, \mathcal{G}, (\mathcal{G}_t)_{t \ge 0}, P)$. Suppose there exists s > 0 such that $(Y_t)_{t \ge s}$ is a PP with rate Λ_t possibly depending on \mathcal{G}_s , then

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

F. Thomas Bruss Proportional Increment Processes

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … 釣んで

(a) Let τ be any \mathcal{F}_t -stopping time and define

$$M_t^{\tau} := \mathbf{1}_{\{t \leq \tau\}} N_t + \mathbf{1}_{\{t > \tau\}} \Big(N_{\tau} + \mu_{t-\tau}(\Lambda_{\tau}) \Big),$$

where μ denotes a homogeneous Poisson Process of rate (.).

(a) Let τ be any \mathcal{F}_t -stopping time and define

$$M_t^{\tau} := \mathbf{1}_{\{t \leq \tau\}} N_t + \mathbf{1}_{\{t > \tau\}} \Big(N_{\tau} + \mu_{t-\tau}(\Lambda_{\tau}) \Big),$$

where μ denotes a homogeneous Poisson Process of rate (.).

(b) We want $(M_t^{\tau})/t$ to satisfy the martingale property of (N_t/t) .

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

(a) Let τ be any \mathcal{F}_t -stopping time and define

$$M_t^{\tau} := \mathbf{1}_{\{t \leq \tau\}} N_t + \mathbf{1}_{\{t > \tau\}} \Big(N_{\tau} + \mu_{t-\tau}(\Lambda_{\tau}) \Big),$$

where μ denotes a homogeneous Poisson Process of rate (.).

(b) We want $(M_t^{\tau})/t$ to satisfy the martingale property of (N_t/t) .

(c) A *necessary* condition for M_t^{τ} to be a martingale is to impose $\Lambda_{\tau} = N_{\tau}/\tau$ ("Poisson shadow" of (N_t) in τ)

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

If N turns out to be n then the win probability equals

$$w_n = \frac{n!}{n+1} \int_0^{1/2} \int_{x_1}^{2/3} \int_{x_2}^{3/4} \cdots \int_{x_{n-2}}^{(n-1)/n} dx_{n-1} \cdots dx_2 dx_1.$$

If N turns out to be n then the win probability equals

$$w_n = \frac{n!}{n+1} \int_0^{1/2} \int_{x_1}^{2/3} \int_{x_2}^{3/4} \cdots \int_{x_{n-2}}^{(n-1)/n} dx_{n-1} \cdots dx_2 dx_1.$$

(i)
$$w_1 = 1/2$$
; $w_2 = 1/3$; $\forall n : \frac{5}{16} \le w_n \le \frac{1}{2}$

If N turns out to be n then the win probability equals

$$w_n = \frac{n!}{n+1} \int_0^{1/2} \int_{x_1}^{2/3} \int_{x_2}^{3/4} \cdots \int_{x_{n-2}}^{(n-1)/n} dx_{n-1} \cdots dx_2 dx_1.$$

(i)
$$w_1 = 1/2; w_2 = 1/3; \forall n : \frac{5}{16} \le w_n \le \frac{1}{2}$$

(ii)
$$w_n < 1/e, \forall n \ge 2$$
.

If N turns out to be n then the win probability equals

$$w_n = \frac{n!}{n+1} \int_0^{1/2} \int_{x_1}^{2/3} \int_{x_2}^{3/4} \cdots \int_{x_{n-2}}^{(n-1)/n} dx_{n-1} \cdots dx_2 dx_1.$$

(i)
$$w_1 = 1/2; w_2 = 1/3; \forall n : \frac{5}{16} \le w_n \le \frac{1}{2}$$

(ii)
$$w_n < 1/e, \ \forall n \ge 2.$$

(iii) $\lim_{n\to\infty} w_n = 1/e$

If N turns out to be n then the win probability equals

$$w_n = \frac{n!}{n+1} \int_0^{1/2} \int_{x_1}^{2/3} \int_{x_2}^{3/4} \cdots \int_{x_{n-2}}^{(n-1)/n} dx_{n-1} \cdots dx_2 dx_1.$$

(i)
$$w_1 = 1/2; w_2 = 1/3; \forall n : \frac{5}{16} \le w_n \le \frac{1}{2}$$

(ii)
$$w_n < 1/e, \ \forall n \ge 2.$$

(iii) $\lim_{n\to\infty} w_n = 1/e$

 $(w_n)_{n\geq 3}$ \uparrow 1/*e*. (Conjecture solved on MathOverview!)

P.i.-processes seem somewhat special

ヘロト 人間 とくきとくきとう

P.i.-processes seem somewhat special

but they are tractable and possibly broader than one might think

イロン 不得 とくほう 不良 とう

P.i.-processes seem somewhat special

but they are tractable and possibly broader than one might think and interesting as a modelling tool giving easily acces to martingales.

イロト イポト イヨト イヨト

References

B. (1984) *Unified Approach...1/e-law* Ann. of Probab., Vol. 12, No. 3, 882-889.

イロン 不得 とくほう 不良 とう

References

B. (1984) *Unified Approach...1/e-law* Ann. of Probab., Vol. 12, No. 3, 882-889.

B. and L.C.G. Rogers (1991) *Pascal Processes and their identification*

Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331 - 338.

イロト イポト イヨト イヨト 二日

B. (1984) *Unified Approach...1/e-law* Ann. of Probab., Vol. 12, No. 3, 882-889.

B. and L.C.G. Rogers (1991) *Pascal Processes and their identification* Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331 - 338.

B. (2000) *Sum the Odds to One and Stop.* Ann. of Probab., Vol. 28, No. 3, 1384-1391.

(日本) (日本) (日本)

э

B. (1984) *Unified Approach...1/e-law* Ann. of Probab., Vol. 12, No. 3, 882-889.

B. and L.C.G. Rogers (1991) *Pascal Processes and their identification* Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331 - 338.

B. (2000) *Sum the Odds to One and Stop.* Ann. of Probab., Vol. 28, No. 3, 1384-1391.

B. and Delbaen (2001) *Monotone subsequences* Stoch. Proc. and Th. Applic., 96, 313-342.

B. and Delbaen (2004) A Central Limit Theorem for the Optimal Selection Process ...

, Stoch. Proc. and Th. Applic. Vo. 144, pp 287-311.

F. Thomas Bruss Proportional Increment Processes

・ロト・「日・・日・・日・・日・

Jacod J. and P. Protter (1988), *Time reversal on Lévy processes.* Ann. of Probab., Vol. 16, 620-641.

Wästlund J. When only the Last One Will Do. arXiv:1104.3049 (2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で