The Last Arrival Problem and Stochastic Processes with Proportional Increments

F. Thomas Bruss

Département de Mathématique Université libre de Bruxelles

in honour of Freddy Delbaen

Joint work with Marc Yor (Stoch.Proc.Th.Appl., 2012)

Objectives

Objectives

(i) Introduce the notion of stochastic processes with proportional increments

Objectives

(i) Introduce the notion of stochastic processes with proportional increments
(ii) Show connection with martingales

Objectives

(i) Introduce the notion of stochastic processes with proportional increments
(ii) Show connection with martingales
(iii) Applications

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.
|? |

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.
|? |
Objective: Stop online on the last arrival!

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:
(a) Prior distribution or partial information about N

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.

Objective: Stop online on the last arrival!

Interesting versions of the l.a.p:
(a) Prior distribution or partial information about N
(b) Game version (Wästlund (2011))

Original motivation: The Last Arrival Problem

$X_{1}, X_{2}, \cdots, X_{N}$ i.i.d. $U[0,1]$'s ; sequentially observed.

Objective: Stop online on the last arrival!
Interesting versions of the l.a.p:
(a) Prior distribution or partial information about N
(b) Game version (Wästlund (2011))
(c) No information except $N<\infty$ a.s. (The l.a.p.)

Origin of No-information version (Wästlund, Aldous, ...?)

Origin of No-information version (Wästlund, Aldous, ...?)
Question: Is (the l.a.p.) a well-posed problem?

Origin of No-information version (Wästlund, Aldous, ...?)
Question: Is (the I.a.p.) a well-posed problem?

Central question: Can we prove that the l.a.p. is an ill-posed problem?

Origin of No-information version (Wästlund, Aldous, ...?)
Question: Is (the I.a.p.) a well-posed problem?

Central question: Can we prove that the I.a.p. is an ill-posed problem?
$\ldots . .$.
$\ldots . .$.

Conclusion: As we understand no-information, it is not possible to prove that the l.a.p. is ill-posed.

What can we use in the l.a.p.?

What can we use in the l.a.p.?

(i) i.i.d. $U[0,1]$ properties; conditional distr. properties

What can we use in the I.a.p.?

(i) i.i.d. $U[0,1]$ properties; conditional distr. properties
(ii) symmetry, "shift and transformation invariance",

What can we use in the I.a.p.?

(i) i.i.d. $U[0,1]$ properties; conditional distr. properties
(ii) symmetry, "shift and transformation invariance",
(iii) image property (Poisson process compatibility)

What can we use in the I.a.p.?

(i) i.i.d. $U[0,1]$ properties; conditional distr. properties
(ii) symmetry, "shift and transformation invariance",
(iii) image property (Poisson process compatibility)
(iv) If opt. stopp. time τ exists, then

$$
\tau \in\left\{T_{1}=X_{<1, N>}, T_{2}=X_{<2, N>}, \cdots, T_{N}=X_{<N, N>}, 1\right\}
$$

What can we use in the I.a.p.?

(i) i.i.d. $U[0,1]$ properties; conditional distr. properties
(ii) symmetry, "shift and transformation invariance",
(iii) image property (Poisson process compatibility)
(iv) If opt. stopp. time τ exists, then

$$
\tau \in\left\{T_{1}=X_{<1, N>}, T_{2}=X_{<2, N>}, \cdots, T_{N}=X_{<N, N>}, 1\right\}
$$

(v) Sequential observation \Longrightarrow relevant process is $\left(N_{t}\right)_{0<t \leq 1}$

$$
\begin{array}{r}
N_{t}=\sum_{k=1}^{N} \mathbf{1}\left\{X_{k} \leq t\right\} \\
\mathcal{F}_{t}=\sigma\left\{N_{u}: 0 \leq u \leq t\right\}
\end{array}
$$

Modelisation:

Modelisation:

Question: Is there a convincing modelisation?

Modelisation:

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:

Modelisation:

Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:
"Positive-attitude axiom" of Mathematics:

Modelisation:
Question: Is there a convincing modelisation?

Answer: Yes, and even a unique one if we accept:
"Positive-attitude axiom" of Mathematics: It is admissible to discard all models which can be proved to be inaccessible under the given hypotheses.

Modelisation:
Question: Is there a convincing modelisation?
Answer: Yes, and even a unique one if we accept:
"Positive-attitude axiom" of Mathematics: It is admissible to discard all models which can be proved to be inaccessible under the given hypotheses.

Indeed:
Using "no-formation" , i.e. at time t no other information than that contained in \mathcal{F}_{t}, and

$$
\begin{gathered}
\mathrm{E}\left(N_{t}\right)=t N \\
\mathrm{E}\left(\mathrm{E}\left(N_{t+s} \mid \mathcal{F}_{t}\right)\right)=(t+s) N=(t+s) \mathrm{E}\left(\frac{N_{t}}{t}\right)
\end{gathered}
$$

we can show:

The relevant process $\left(N_{t}\right)$ compatible with i$)$-v) and the no-information hypothesis must be modelled by:

The relevant process $\left(N_{t}\right)$ compatible with i)-v) and the no-information hypothesis must be modelled by:

$$
\begin{align*}
& \forall 0<t \leq t+s \leq 1 \text { with } N_{t} \neq 0, \tag{1}\\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{align*}
$$

More generally:

Definition

Let $\left(N_{t}\right)_{t>0}$ be a stochastic process on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ with natural filtration $\mathcal{F}_{t}=\sigma\left\{N_{u}: u \leq t\right\}$.

More generally:

Definition

Let $\left(N_{t}\right)_{t>0}$ be a stochastic process on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ with natural filtration $\mathcal{F}_{t}=\sigma\left\{N_{u}: u \leq t\right\}$.
We call $\left(N_{t}\right)_{t>0}$ a process with proportional increments or a p.i.- process on $] 0, \infty$] if

More generally:

Definition

Let $\left(N_{t}\right)_{t>0}$ be a stochastic process on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ with natural filtration $\mathcal{F}_{t}=\sigma\left\{N_{u}: u \leq t\right\}$.
We call $\left(N_{t}\right)_{t>0}$ a process with proportional increments or a p.i.- process on $] 0, \infty$] if

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.
(i) $N_{t}=0, \forall t>0$;

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.
(i) $N_{t}=0, \forall t>0$;
(ii) $N_{t}=c t$ for constant c

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.
(i) $N_{t}=0, \forall t>0$;
(ii) $N_{t}=c t$ for constant c
(iii) $N_{t}=t \mathcal{B}_{t}$ where $\left(\mathcal{B}_{t}\right)$ Brown. mot. without drift.

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.
(i) $N_{t}=0, \forall t>0$;
(ii) $N_{t}=c t$ for constant c
(iii) $N_{t}=t \mathcal{B}_{t}$ where $\left(\mathcal{B}_{t}\right)$ Brown. mot. without drift.

$$
\begin{align*}
\mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right) & =\mathrm{E}\left((t+s) \mathcal{B}_{t+s}-t \mathcal{B}_{t} \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left((t+s)\left(\mathcal{B}_{t}+\left(\mathcal{B}_{t+s}-\mathcal{B}_{t}\right)\right)-t \mathcal{B}_{t} \mid \mathcal{F}_{t}\right) \\
& =s \mathrm{E}\left(\mathcal{B}_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} t \mathcal{B}_{t}=\frac{s}{t} N_{t} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \forall t>0 \text { with } N_{t} \neq 0, \forall s \geq 0: \\
& \mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} N_{t} \text { a.s. }
\end{aligned}
$$

Examples.
(i) $N_{t}=0, \forall t>0$;
(ii) $N_{t}=c t$ for constant c
(iii) $N_{t}=t \mathcal{B}_{t}$ where $\left(\mathcal{B}_{t}\right)$ Brown. mot. without drift.

$$
\begin{align*}
\mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right) & =\mathrm{E}\left((t+s) \mathcal{B}_{t+s}-t \mathcal{B}_{t} \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left((t+s)\left(\mathcal{B}_{t}+\left(\mathcal{B}_{t+s}-\mathcal{B}_{t}\right)\right)-t \mathcal{B}_{t} \mid \mathcal{F}_{t}\right) \\
& =s \mathrm{E}\left(\mathcal{B}_{t} \mid \mathcal{F}_{t}\right)=\frac{s}{t} t \mathcal{B}_{t}=\frac{s}{t} N_{t} \tag{2}
\end{align*}
$$

(iv) $N_{t}=\operatorname{ct}\left(\mathcal{L}_{t}-\ell_{t}\right)$ where $\left(\mathcal{L}_{t}\right)$ Lévy process with $\ell_{t} \ldots$
(iv) $N_{t}=\operatorname{ct}\left(\mathcal{L}_{t}-\ell_{t}\right)$ where $\left(\mathcal{L}_{t}\right)$ Lévy process with $\ell_{t} \ldots$
(v) The set of p.i.processes (...) is closed with respect to "+" and scalar "*" so that

$$
z_{t}=\sum_{j} c_{j} t\left(\mathcal{L}_{t}^{j}-\ell_{t}^{j}\right)
$$

is a p.i.-process with respect to (...)
(iv) $N_{t}=\operatorname{ct}\left(\mathcal{L}_{t}-\ell_{t}\right)$ where $\left(\mathcal{L}_{t}\right)$ Lévy process with $\ell_{t} \ldots$
(v) The set of p.i.processes (...) is closed with respect to "+" and scalar "*" so that

$$
z_{t}=\sum_{j} c_{j} t\left(\mathcal{L}_{t}^{j}-\ell_{t}^{j}\right)
$$

is a p.i.-process with respect to (...)
But is there anything deeper to all this?

A related martingale

Theorem
Let $\left(N_{t}\right)_{t>0}$ be a p.i.- counting process and $R_{t}=N_{t} / t$. If $N_{t_{0}}>0$ and $\mathrm{E}\left(N_{t_{0}}\right)<\infty$ for some $t_{0}>0$ then $\left(R_{t}\right)$ is a \mathcal{F}_{t}-martingale on $\left[t_{0}, \infty[\right.$.

A related martingale

Theorem

Let $\left(N_{t}\right)_{t>0}$ be a p.i.- counting process and $R_{t}=N_{t} / t$. If $N_{t_{0}}>0$ and $\mathrm{E}\left(N_{t_{0}}\right)<\infty$ for some $t_{0}>0$ then $\left(R_{t}\right)$ is a \mathcal{F}_{t}-martingale on $\left[t_{0}, \infty[\right.$.

Proof. Use $\left|N_{t}\right|=N_{t}, \mathcal{F}_{t} \supseteq \mathcal{F}_{t_{0}}$, and p.i.-property:

$$
\text { (i) } \begin{aligned}
\mathrm{E}\left(\left|R_{t}\right|\right) & =\frac{1}{t} \mathrm{E}\left(N_{t_{0}}+\left(N_{t}-N_{t_{0}}\right)\right) \\
& \leq \frac{1}{t_{0}} \mathrm{E}\left(N_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left(N_{t}-N_{t_{0}}\right) \\
& =\mathrm{E}\left(R_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left[\mathrm{E}\left(N_{t}-N_{t_{0}} \mid \mathcal{F}_{t_{0}}\right)\right] \\
& =\mathrm{E}\left(R_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left(\left(t-t_{0}\right) \frac{N_{t_{0}}}{t_{0}}\right) \leq 2 \mathrm{E}\left(R_{t_{0}}\right)<\infty .
\end{aligned}
$$

A related martingale

Theorem

Let $\left(N_{t}\right)_{t>0}$ be a p.i.- counting process and $R_{t}=N_{t} / t$. If $N_{t_{0}}>0$ and $\mathrm{E}\left(N_{t_{0}}\right)<\infty$ for some $t_{0}>0$ then $\left(R_{t}\right)$ is a \mathcal{F}_{t}-martingale on $\left[t_{0}, \infty[\right.$.

Proof. Use $\left|N_{t}\right|=N_{t}, \mathcal{F}_{t} \supseteq \mathcal{F}_{t_{0}}$, and p.i.-property:

$$
\text { (i) } \begin{aligned}
\mathrm{E}\left(\left|R_{t}\right|\right) & =\frac{1}{t} \mathrm{E}\left(N_{t_{0}}+\left(N_{t}-N_{t_{0}}\right)\right) \\
& \leq \frac{1}{t_{0}} \mathrm{E}\left(N_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left(N_{t}-N_{t_{0}}\right) \\
& =\mathrm{E}\left(R_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left[\mathrm{E}\left(N_{t}-N_{t_{0}} \mid \mathcal{F}_{t_{0}}\right)\right] \\
& =\mathrm{E}\left(R_{t_{0}}\right)+\frac{1}{t} \mathrm{E}\left(\left(t-t_{0}\right) \frac{N_{t_{0}}}{t_{0}}\right) \leq 2 \mathrm{E}\left(R_{t_{0}}\right)<\infty .
\end{aligned}
$$

A related martingale

(ii) Martingale property for $t_{0} \leq t \leq T$:

A related martingale

(ii) Martingale property for $t_{0} \leq t \leq T$:

$$
\text { (ii) } \begin{aligned}
\mathrm{E}\left(R_{t+s} \mid \mathcal{F}_{t}\right) & =\frac{1}{t+s} \mathrm{E}\left(N_{t}+\left(N_{t+s}-N_{t}\right) \mid \mathcal{F}_{t}\right) \\
& =\frac{1}{t+s}\left(N_{t}+\mathrm{E}\left(N_{t+s}-N_{t} \mid \mathcal{F}_{t}\right)\right) \\
& =\frac{1}{t+s}\left(N_{t}+\frac{s}{t} N_{t}\right) \\
& =\frac{N_{t}}{t}=R_{t}
\end{aligned}
$$

Reverse martingale

Returning to the property of Poisson-proc.compatibilty: ...
Is it not tempting to say?

Reverse martingale

Returning to the property of Poisson-proc.compatibilty: ...
Is it not tempting to say?
Jacod and Protter (1988): If (N_{t}) Lévy process then $\left(N_{t} / t\right)$ is a reverse martingale with respect to the filtration

$$
\mathcal{F}_{t}^{+}=\sigma\left\{N_{u}: 0,1 \geq u \geq t\right\}
$$

Reverse martingale

Returning to the property of Poisson-proc.compatibilty: ...
Is it not tempting to say?
Jacod and Protter (1988): If $\left(N_{t}\right)$ Lévy process then $\left(N_{t} / t\right)$ is a reverse martingale with respect to the filtration

$$
\mathcal{F}_{t}^{+}=\sigma\left\{N_{u}: 0,1 \geq u \geq t\right\} .
$$

Carr, Geman, Madan and Yor (2011):

$$
\forall 0 \leq t \leq T: \mathrm{E}\left(N_{T} / T \mid \mathcal{F}_{t}^{+}\right)=N_{t} / t \text { a.s. }
$$

How recognizable are p.i.-processes?

How recognizable are p.i.-processes?

A little challenge:
Distributional prescription
(i) $P\left(N_{t+s}=k \mid \mathcal{F}_{t}\right)=e^{-s \lambda}(s \lambda)^{k-N_{t}} /\left(k-N_{t}\right)$!?

How recognizable are p.i.-processes?

A little challenge:
Distributional prescription
(i) $P\left(N_{t+s}=k \mid \mathcal{F}_{t}\right)=e^{-s \lambda}(s \lambda)^{k-N_{t}} /\left(k-N_{t}\right)$!?

No!
(ii) (Pascal process: B. \& Rogers, Stoch. Proc. Th. Appl. (1991))
(ii) (Pascal process: B. \& Rogers, Stoch. Proc. Th. Appl. (1991))

Definition

$\left(\Pi_{t}\right)_{t \geq 0}$ counting process such that for all $T>0$ and $0 \leq t \leq T$

$$
P\left(\Pi_{T}=n \mid \mathcal{F}_{t}\right)=\binom{n}{\Pi_{t}} p(t, T)^{\Pi_{t}+1}(1-p(t, T))^{n-\Pi_{t}}
$$

where $\Pi_{0}=0$ and $\left(\mathcal{F}_{t}\right)=\sigma\left(\left\{\Pi_{u}: u \leq t\right\}\right)$. Then $\left(\Pi_{t}\right)$ is called a Pascal process with parameter function $p(t, T)$.
(ii) (Pascal process: B. \& Rogers, Stoch. Proc. Th. Appl. (1991))

Definition

$\left(\Pi_{t}\right)_{t \geq 0}$ counting process such that for all $T>0$ and $0 \leq t \leq T$

$$
P\left(\Pi_{T}=n \mid \mathcal{F}_{t}\right)=\binom{n}{\Pi_{t}} p(t, T)^{\Pi_{t}+1}(1-p(t, T))^{n-\Pi_{t}}
$$

where $\Pi_{0}=0$ and $\left(\mathcal{F}_{t}\right)=\sigma\left(\left\{\Pi_{u}: u \leq t\right\}\right)$. Then $\left(\Pi_{t}\right)$ is called a Pascal process with parameter function $p(t, T)$.

Q: How to see whether p.i.-property?
(ii) (Pascal process: B. \& Rogers, Stoch. Proc. Th. Appl. (1991))

Definition

$\left(\Pi_{t}\right)_{t \geq 0}$ counting process such that for all $T>0$ and $0 \leq t \leq T$

$$
P\left(\Pi_{T}=n \mid \mathcal{F}_{t}\right)=\binom{n}{\Pi_{t}} p(t, T)^{\Pi_{t}+1}(1-p(t, T))^{n-\Pi_{t}}
$$

where $\Pi_{0}=0$ and $\left(\mathcal{F}_{t}\right)=\sigma\left(\left\{\Pi_{u}: u \leq t\right\}\right)$. Then $\left(\Pi_{t}\right)$ is called a Pascal process with parameter function $p(t, T)$.

Q: How to see whether p.i.-property?
A: Think in terms of odds "future/past"!!!

Theorem

Every Pascal process $\left(\Pi_{t}\right)$ augmented by 1 has odds-proportional increments with odds $r(t, T):=(1-p(t, T)) / p(t, T)$, where $p(t, T)$ is the corresponding parameter function, that is

$$
E\left(\Pi_{T}-\Pi_{t} \mid \mathcal{F}_{t}\right)=r(t, T)\left(\Pi_{t}+1\right) \text { a.s. }
$$

Theorem

If $\left(\Pi_{t}\right)_{t \geq 0}$ is a Pascal process with parameter function $p(t, T)$ and filtration $\mathcal{F}_{t}=\sigma\left(\left\{\Pi_{u}: 0 \leq u \leq t\right\}\right)$, then the process $\left(R_{t}\right)_{t \geq 0}$ defined by

$$
\begin{equation*}
R_{t}=\frac{\Pi_{t}+1}{p(t, T)} \tag{3}
\end{equation*}
$$

is a \mathcal{F}_{t}-martingale on $\left.] 0, T\right]$.

Theorem

If $\left(\Pi_{t}\right)_{t \geq 0}$ is a Pascal process with parameter function $p(t, T)$ and filtration $\mathcal{F}_{t}=\sigma\left(\left\{\Pi_{u}: 0 \leq u \leq t\right\}\right)$, then the process $\left(R_{t}\right)_{t \geq 0}$ defined by

$$
\begin{equation*}
R_{t}=\frac{\Pi_{t}+1}{p(t, T)} \tag{3}
\end{equation*}
$$

is a \mathcal{F}_{t}-martingale on $\left.] 0, T\right]$.

Further generalizations: "f-increment processes"

Theorem

If $\left(\Pi_{t}\right)_{t \geq 0}$ is a Pascal process with parameter function $p(t, T)$ and filtration $\mathcal{F}_{t}=\sigma\left(\left\{\Pi_{u}: 0 \leq u \leq t\right\}\right)$, then the process $\left(R_{t}\right)_{t \geq 0}$ defined by

$$
\begin{equation*}
R_{t}=\frac{\Pi_{t}+1}{p(t, T)} \tag{3}
\end{equation*}
$$

is a \mathcal{F}_{t}-martingale on $\left.] 0, T\right]$.

Further generalizations: "f-increment processes"
Conclusion: Quite some room for discovering p.i.-processes!

Applications

F. Thomas Bruss

Proportional Increment Processes

Applications

- 1/e-law of best choice (B., Ann of Probab.1984)

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the I.a.p.!

Main steps to the solution:

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process
$\left(N_{t}\right) / t$ has the same jump times

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process
$\left(N_{t}\right) / t$ has the same jump times
$\left(N_{t} / t\right)$ is a \mathcal{F}_{t}-martingale

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process
$\left(N_{t}\right) / t$ has the same jump times
$\left(N_{t} / t\right)$ is a \mathcal{F}_{t}-martingale
Confine search optimal stopp. time $\tau<1$!

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the l.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process
$\left(N_{t}\right) / t$ has the same jump times
$\left(N_{t} / t\right)$ is a \mathcal{F}_{t}-martingale
Confine search optimal stopp. time $\tau<1$!
Poisson proc. compatibility in final step

Applications

- 1/e-law of best choice (B., Ann of Probab.1984) P.i.-property based proof more elegant, but the open question remains....
- Success: Solution of the I.a.p.!

Main steps to the solution:
$\left(N_{t}\right)$ only relevant "learning" process
$\left(N_{t}\right) / t$ has the same jump times
$\left(N_{t} / t\right)$ is a \mathcal{F}_{t}-martingale
Confine search optimal stopp. time $\tau<1$!
Poisson proc. compatibility in final step
Odds-Theorem of optimal stopping

Solution of the I.a.p.

Theorem

Let $T_{k}=X_{<k, N>}, k=1,2, \cdots, N$ be the (a.s) strictly increasing jump times of $\left(N_{t}\right)$. Further let

$$
\left.\left.\tau=\inf \left\{T_{k} \in\right] 0,1\right]: k \leq \frac{T_{k}}{1-T_{k}}\right\}
$$

with τ defined to be 1 if empty. Then τ is optimal for the I.a.p.

Solution of the I.a.p.

Theorem

Let $T_{k}=X_{<k, N>}, k=1,2, \cdots, N$ be the (a.s) strictly increasing jump times of $\left(N_{t}\right)$. Further let

$$
\left.\left.\tau=\inf \left\{T_{k} \in\right] 0,1\right]: k \leq \frac{T_{k}}{1-T_{k}}\right\}
$$

with τ defined to be 1 if empty. Then τ is optimal for the I.a.p.
(i) Odds theorem of opt. stop. (B., Ann. of Probab. (2000))

Theorem

Let $I_{1}, I_{2}, \cdots, I_{n}$ be independent indicators on some (Ω, \mathcal{A}, P) with known $p_{k}=\mathrm{E}\left(I_{k}\right)$. We want to stop (online) with maximum probability on the last "success". An optimal strategy τ exists and is as follows:
$r_{k}:=p_{k} /\left(1-p_{k}\right)$
$s:=$ largest k with $r_{n}+r_{n-1}+\cdots+r_{k} \geq 1$
($s:=1$ if no such $1 \leq k \leq n$ exists)

$$
\tau=\min \left\{s \leq k \leq n: I_{k}=1\right\} \text { is optimal }
$$

(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1 / e$.
(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1 / e$.
(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?
(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1 / e$.
(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?

This is easy for any counting process with independent increments;
(ii) Addendum to the Odds theorem (B., Ann. of Probab. (2003))

If all odds sum up to at least one, then τ always succeeds with probability $\geq 1 / e$.
(iii) How to pass from discrete time and fixed n to continuous time and unknown N ?

This is easy for any counting process with independent increments; Specifically in Poisson process case:

Take Riemann sum limit for limiting odds

$$
\lim _{d t \rightarrow 0} \frac{1}{d t}\left(\lambda_{t} d t+o(d t)\right) /\left(1-\lambda_{t} d t-o(d t)\right)=\lambda_{t}
$$

(\Longrightarrow integral version of odds-algorithm (B. (2000)))
(iv) Confine interest to stopping times $\tau<1$.
(iv) Confine interest to stopping times $\tau<1$.
(iv) Slightly more general integral version of the odds algorithm (adapted to the I.a.p.):

Let $\left(Y_{t}\right)$ be a counting process on $\left(\Omega, \mathcal{G},\left(\mathcal{G}_{t}\right)_{t \geq 0}, P\right)$. Suppose there exists $s>0$ such that $\left(Y_{t}\right)_{t \geq s}$ is a PP with rate Λ_{t} possibly depending on \mathcal{G}_{s}, then
(v) Recall martingale property of $\left(N_{t} / t\right)$.
(v) Recall martingale property of $\left(N_{t} / t\right)$.
(a) Let τ be any \mathcal{F}_{t}-stopping time and define

$$
M_{t}^{\tau}:=\mathbf{1}_{\{t \leq \tau\}} N_{t}+\mathbf{1}_{\{t>\tau\}}\left(N_{\tau}+\mu_{t-\tau}\left(\Lambda_{\tau}\right)\right),
$$

where μ denotes a homogeneous Poisson Process of rate (.).
(v) Recall martingale property of $\left(N_{t} / t\right)$.
(a) Let τ be any \mathcal{F}_{t}-stopping time and define

$$
M_{t}^{\tau}:=\mathbf{1}_{\{t \leq \tau\}} N_{t}+\mathbf{1}_{\{t>\tau\}}\left(N_{\tau}+\mu_{t-\tau}\left(\Lambda_{\tau}\right)\right),
$$

where μ denotes a homogeneous Poisson Process of rate (.).
(b) We want $\left(M_{t}^{\tau}\right) / t$ to satisfy the martingale property of $\left(N_{t} / t\right)$.
(v) Recall martingale property of $\left(N_{t} / t\right)$.
(a) Let τ be any \mathcal{F}_{t}-stopping time and define

$$
M_{t}^{\tau}:=\mathbf{1}_{\{t \leq \tau\}} N_{t}+\mathbf{1}_{\{t>\tau\}}\left(N_{\tau}+\mu_{t-\tau}\left(\Lambda_{\tau}\right)\right),
$$

where μ denotes a homogeneous Poisson Process of rate (.).
(b) We want $\left(M_{t}^{\tau}\right) / t$ to satisfy the martingale property of $\left(N_{t} / t\right)$.
(c) A necessary condition for M_{t}^{τ} to be a martingale is to impose $\Lambda_{\tau}=N_{\tau} / \tau$ ("Poisson shadow" of $\left(N_{t}\right)$ in τ)

Theorem

If N turns out to be n then the win probability equals

$$
w_{n}=\frac{n!}{n+1} \int_{0}^{1 / 2} \int_{x_{1}}^{2 / 3} \int_{x_{2}}^{3 / 4} \cdots \int_{x_{n-2}}^{(n-1) / n} d x_{n-1} \cdots d x_{2} d x_{1}
$$

Theorem

If N turns out to be n then the win probability equals

$$
w_{n}=\frac{n!}{n+1} \int_{0}^{1 / 2} \int_{x_{1}}^{2 / 3} \int_{x_{2}}^{3 / 4} \cdots \int_{x_{n-2}}^{(n-1) / n} d x_{n-1} \cdots d x_{2} d x_{1}
$$

(i) $w_{1}=1 / 2 ; w_{2}=1 / 3 ; \forall n: \frac{5}{16} \leq w_{n} \leq \frac{1}{2}$

Theorem

If N turns out to be n then the win probability equals

$$
w_{n}=\frac{n!}{n+1} \int_{0}^{1 / 2} \int_{x_{1}}^{2 / 3} \int_{x_{2}}^{3 / 4} \cdots \int_{x_{n-2}}^{(n-1) / n} d x_{n-1} \cdots d x_{2} d x_{1}
$$

(i) $w_{1}=1 / 2 ; w_{2}=1 / 3 ; \forall n: \frac{5}{16} \leq w_{n} \leq \frac{1}{2}$
(ii) $w_{n}<1 / e, \forall n \geq 2$.

Theorem

If N turns out to be n then the win probability equals

$$
w_{n}=\frac{n!}{n+1} \int_{0}^{1 / 2} \int_{x_{1}}^{2 / 3} \int_{x_{2}}^{3 / 4} \cdots \int_{x_{n-2}}^{(n-1) / n} d x_{n-1} \cdots d x_{2} d x_{1}
$$

(i) $w_{1}=1 / 2 ; w_{2}=1 / 3 ; \forall n: \frac{5}{16} \leq w_{n} \leq \frac{1}{2}$
(ii) $w_{n}<1 / e, \forall n \geq 2$.
(iii) $\lim _{n \rightarrow \infty} w_{n}=1 / e$

Theorem

If N turns out to be n then the win probability equals

$$
w_{n}=\frac{n!}{n+1} \int_{0}^{1 / 2} \int_{x_{1}}^{2 / 3} \int_{x_{2}}^{3 / 4} \cdots \int_{x_{n-2}}^{(n-1) / n} d x_{n-1} \cdots d x_{2} d x_{1} .
$$

(i) $w_{1}=1 / 2 ; w_{2}=1 / 3 ; \forall n: \frac{5}{16} \leq w_{n} \leq \frac{1}{2}$
(ii) $w_{n}<1 / e, \forall n \geq 2$.
(iii) $\lim _{n \rightarrow \infty} w_{n}=1 / e$
$\left(w_{n}\right)_{n \geq 3} \uparrow 1 / e$. (Conjecture solved on MathOverview!)

Conclusion

P.i.-processes seem somewhat special

Conclusion

P.i.-processes seem somewhat special
but they are tractable and possibly broader than one might think

Conclusion

P.i.-processes seem somewhat special
but they are tractable and possibly broader than one might think and interesting as a modelling tool giving easily acces to martingales.

References

B. (1984) Unified Approach...1/e-law Ann. of Probab., Vol. 12, No. 3, 882-889.

References

B. (1984) Unified Approach...1/e-law

Ann. of Probab., Vol. 12, No. 3, 882-889.
B. and L.C.G. Rogers (1991) Pascal Processes and their identification
Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331-338.

References

B. (1984) Unified Approach...1/e-law

Ann. of Probab., Vol. 12, No. 3, 882-889.
B. and L.C.G. Rogers (1991) Pascal Processes and their identification
Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331-338.
B. (2000) Sum the Odds to One and Stop.

Ann. of Probab., Vol. 28, No. 3, 1384-1391.

References

B. (1984) Unified Approach...1/e-law

Ann. of Probab., Vol. 12, No. 3, 882-889.
B. and L.C.G. Rogers (1991) Pascal Processes and their identification
Stoch. Proc. and Th. Applic., Vol. 37, No. 2, 331-338.
B. (2000) Sum the Odds to One and Stop.

Ann. of Probab., Vol. 28, No. 3, 1384-1391.
B. and Delbaen (2001) Monotone subsequences

Stoch. Proc. and Th. Applic., 96, 313-342.
B. and Delbaen (2004) A Central Limit Theorem for the Optimal Selection Process ...
, Stoch. Proc. and Th. Applic. Vo. 144, pp 287-311.

Jacod J. and P. Protter (1988), Time reversal on Lévy processes. Ann. of Probab., Vol. 16, 620-641.

Wästlund J. When only the Last One Will Do. arXiv:1104.3049 (2011)

