Probabilistic Approach to Mean Field Games and the Control of McKean-Vlasov Dynamics

René Carmona

Bendheim Center for Finance
Department of Operations Research \& Financial Engineering
Princeton University

Freddy's Festschrift, September 28, 2012

Joint work with
 François Delarue

Université de Nice

- (with F. Delarue and A. Lachapelle) Control of McKean-Vlasov Dynamics versus Mean Field Games. MAFE (2012) (to appear).
- (with F. Delarue) Probabilistic Analysis of Mean Field Games. submitted for publication
- (with F. Delarue) Control of McKean Vlasov Dynamics in preparation
- (with F. Delarue) FBSDEs of McKean-Vlasov Type I. Existence in preparation

Simple Example from Systemic Risk (J.P. Fouque)

- Log-monetary reserves of N banks

$$
X_{t}^{(i)}, i=1, \ldots, N
$$

- $W_{t}^{(i)}, i=1, \ldots, N$ independent Brownian motions, $\sigma>0$
- Model borrowing and lending through the drifts:

$$
\begin{aligned}
d X_{t}^{(i)} & =\frac{\alpha}{N} \sum_{j=1}^{N}\left(X_{t}^{(j)}-X_{t}^{(i)}\right) d t+\sigma d W_{t}^{(i)} \\
& =\alpha\left(\bar{X}_{t}-X_{t}^{(i)}\right) d t+\sigma d W_{t}^{(i)}, \quad i=1, \ldots, N
\end{aligned}
$$

- OU processes reverting to the sample mean $\bar{X}_{t}($ rate $\alpha>0)$
- $D<0$ default level

Easy Conclusions

- Sample mean \bar{X}_{t} is a BM a Brownian motion with vol. σ / \sqrt{N}
- Simulations "show" that STABILITY is created by increasing the rate α of borrowing and lending.
- Compute the loss distribution (how many firms fail)
- Large Deviations (Gaussian estimates) show that increasing α increases SYSTEMIC RiSK

Modified Model

New dynamics is

$$
d X_{t}^{i}=\left[a\left(\bar{X}_{t}-X_{t}^{i}\right)+\alpha_{t}^{i}\right] d t+\sigma d W_{t}^{i}, \quad i=1, \cdots, N
$$

α^{i} is the control of bank i, and bank i tries to minimize

$$
J^{i}\left(\alpha^{1}, \cdots, \alpha^{N}\right)=\mathbb{E}\left\{\int_{0}^{T}\left[\frac{1}{2 q}\left(\alpha_{t}^{i}\right)^{2}-\alpha_{t}^{i}\left(\bar{X}_{t}-X_{t}^{i}\right)\right] d t\right\}
$$

The regulator can choose the parameter $q>0$ controlling the cost of borrowing and lending.

- If X_{t}^{i} is small (relative to the empirical mean \bar{X}_{t}) then bank i will want to borrow $\left(\alpha_{t}^{i}>0\right)$
- If X_{t}^{i} is large then bank i will want to lend $\left(\alpha_{t}^{i}<0\right)$

Example of Mean Field Game (MFG) à la Lasry - Lions

Approximate Nash MFG-EQuilibrium

\diamond Banks act independently of each other
\diamond Bank i chooses $\alpha_{t}^{i}=q\left(\bar{X}_{t}-X_{t}^{i}\right)-\eta_{t} X_{t}^{i}$

$$
d X_{t}^{i}=\left[(a+q)\left(\bar{X}_{t}-X_{t}^{i}\right)-\eta_{t} X_{t}^{i}\right] d t+\sigma d W_{t}^{i}
$$

for a deterministic function $t \hookrightarrow \eta_{t}$ solving a Ricatti equation. Therefore

$$
d \bar{X}_{t}=-\eta_{t} \bar{X}_{t} d t+\frac{\sigma}{\sqrt{N}} d \bar{W}_{t}
$$

where $\bar{W}_{t}=\frac{1}{\sqrt{N}} \sum_{1}^{N} d W_{t}^{i}$.

- Note that $\eta_{t}<0$, and therefore $\left(\bar{X}_{t}\right)$ is a repulsive OU.
- Still Gaussian system, so similar Large Deviation estimates

GAME 2, ETA of t, $a=10 \quad q=1 \quad p=0.0263$

One sample of $\operatorname{Xbar}(\mathrm{t})-$ black dots $--\& X i(t)$ for $i=1, \ldots, 10-$ colors --, $a=100 \quad q=10$

High Dimensional Dynamical Systems

- Dynamic: equations will be ODEs, PDEs, SDEs, SPDEs, ...
- High Dimensional (large populations)
- Equilibrium Analysis: Control or Game Theory
- Each individual makes decisions based on
- his/her current state
- Risk / Reward expectation
- Interaction with the rest of the population
- Distribution of states in the entire population
- MEAN FIELD interaction

The PDE Approach to MFGs

Motivation (Lasry-Lions, Guéant, La Chapelle, ...)

$$
u(t, x)=\sup _{\left(\alpha_{s}\right)_{t \leq s \leq T}, X_{t}=x} \mathbb{E}\left[\int_{t}^{T} e^{-\rho(s-t)}\left[g\left(m\left(s, X_{s}\right)\right)+h\left(\left|\alpha\left(s, X_{s}\right)\right|\right)\right] d s\right]
$$

under constraint $d X_{t}=\alpha\left(t, X_{t}\right) d t+\sigma d W_{t}$
Formulation (given $m(0, \cdot) \& u(T, \cdot)$)

$$
\begin{aligned}
& \partial_{t} u+\frac{\sigma^{2}}{2} \Delta u+H(\nabla u)-\rho u=-g(m) \quad \text { (Hamilton-Jacobi-Bellman) } \\
& \partial_{t} m+\nabla \cdot\left(m H^{\prime}(\nabla u)\right)=\frac{\sigma^{2}}{2} \Delta m, \quad \text { (Kolmogorov) }
\end{aligned}
$$

where $m(t, \cdot)$ probability measure, $H(p)=\sup _{a}(a p-h(a))$.

Stationary Case

$$
\begin{aligned}
& \frac{\sigma^{2}}{2} \Delta u+H(\nabla u)-\rho u=-g(m) \\
& \nabla \cdot\left(m H^{\prime}(\nabla u)\right)=\frac{\sigma^{2}}{2} \Delta m,
\end{aligned}
$$

Probabilistic Approach

Disclaimer

"Mathematicians are like Frenchmen: whatever you say
to them they translate into their own language and forthwith it is something entirely different."
Johann Wolfgang von Goethe

- Formulate the problem for (N finite) players with (mean - field interactions)
- Define the Optimization Problem: Cost / Reward functions
- Define the type of desired equilibrium (Nash, Pareto. centralized, etc)

Stochastic Differential Game or Stochastic Control Problem

- Identify the limit $N \rightarrow \infty$ to Lasry-Lions MFG problem, or something else!
- Prove that solution of $N=\infty$ (e.g. MFG problem) provides approximate
(ϵ) equilibria for problems if (N) finite many players

Stochastic Differential Mean Field Games

First example of private states dynamics

$$
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} \tilde{b}\left(t, X_{t}^{i}, X_{t}^{j}, \alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}
$$

Rewrite it as

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}
$$

where

$$
b(t, x, \mu, \alpha)=\int \tilde{b}\left(t, x, x^{\prime}, \alpha\right) d \mu\left(x^{\prime}\right)
$$

and $\bar{\mu}_{t}^{N}$ is empirical distribution of the private states

$$
\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}
$$

linear interaction or of order 1

More General Mean Field Interactions

Quadratic interactions or of order 2

$$
\frac{1}{N^{2}} \sum_{j, k=1}^{N} \tilde{b}\left(t, X_{t}^{i}, X_{t}^{j}, X_{t}^{k}, \alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}
$$

rewritten as $b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right)$ with

$$
b(t, x, \mu, \alpha)=\int \tilde{b}\left(t, x, x^{\prime}, x^{\prime \prime}, \alpha\right) d \mu\left(x^{\prime}\right) d \mu\left(x^{\prime \prime}\right)
$$

Fully nonlinear Mean Field interaction

$$
b:[0, T] \times \mathbb{R} \times \mathcal{P}(\mathbb{R}) \times A \hookrightarrow \mathbb{R}
$$

Scalar Mean Field interaction

$$
b(t, x, \mu, \alpha)=\int \tilde{b}(t, x,\langle\varphi, \mu\rangle, \alpha)
$$

for some scalar function φ with $\langle\varphi, \mu\rangle=\int \varphi\left(x^{\prime}\right) d \mu\left(x^{\prime}\right)$

Optimization Problem

Simultaneous Minimization of

$$
J^{i}(a)=\mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+g\left(X_{T}, \bar{\mu}_{T}^{N}\right)\right\}, \quad i=1, \cdots, N
$$

under constraints of the form

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad i=1, \cdots, N .
$$

GOAL: search for equilibriums

Model Requirements

- Each player cannot on its own, influence significantly the global output of the game
- Large number of players $(N \rightarrow \infty)$
- Closed loop controls in feedback form

$$
\alpha_{t}^{i}=\phi^{i}\left(t,\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)\right), \quad i=1, \cdots, N
$$

- Distributed controls

$$
\alpha_{t}^{i}=\phi^{i}\left(t, X_{t}^{i}\right), \quad i=1, \cdots, N
$$

- Identical feedback functions

$$
\phi^{1}(t, \cdot)=\cdots=\phi^{N}(t, \cdot)=\phi(t, \cdot), \quad 0 \leq t \leq T
$$

Touted Solution (Wishful Thinking)

- Identify a (distributed closed loop) strategy ϕ from effective equations (from stochastic optimization for large populations)
- Each player is assigned the same function ϕ
- At each time t, player i take action $\alpha_{i}=\phi\left(t, X_{t}^{i}\right)$

What is the resulting population behavior?

- Did we reach some form of equilibrium?
- If yes, what kind of equilibrium?

Nash Equilibrium: Optimizing First

$$
\alpha_{t}^{1 *}=\phi^{1 *}\left(t, X_{t}^{1}\right), \cdots \cdots, \alpha_{t}^{N *}=\phi^{N *}\left(t, X_{t}^{N}\right)
$$

is a Nash equilibrium means that for each player i, if we assume

$$
\alpha^{-i *}=\alpha_{t}^{1 *}, \cdots, \alpha^{i-1 *}, \alpha_{t}^{i+1 *}, \cdots, \alpha_{t}^{N *}
$$

are FIXED, then:

$$
\phi^{i *}=\arg \inf _{\phi} \mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \phi\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}, \bar{\mu}_{T}^{N}\right)\right\}
$$

When N is large small perturbations of ϕ

$$
\text { should not change empirical measure } \bar{\mu}_{t}^{N}
$$

So one could solve the optimization problem (approximate its solution)

$$
\text { FREEZING }\left(\bar{\mu}_{t}^{N}\right)_{0 \leq t \leq T}
$$

Standard stochastic control problem (parameterized by $\left(\mu_{t}\right)_{0 \leq t \leq T}$): Once ϕ is found, μ_{t} should be the statistical distribution of the solution X_{t} !

Summary of the Lasry-Lions MFG Approach

1. Fix a deterministic function $[0, T] \ni t \hookrightarrow \mu_{t} \in \mathcal{P}(\mathbb{R})$;
2. Solve the standard stochastic control problem

$$
\phi^{*}=\arg \inf _{\phi} \mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}, \mu_{t}, \phi\left(t, X_{t}\right)\right) d t+g\left(X_{T}, \mu_{T}\right)\right\}
$$

subject to

$$
d X_{t}=b\left(t, X_{t}, \mu_{t}, \phi\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

3. Determine the function $[0, T] \ni t \hookrightarrow \mu_{t} \in \mathcal{P}(\mathbb{R})$ so that

$$
\forall t \in[0, T], \quad \mathbb{P}_{X_{t}}=\mu_{t}
$$

Once this is done,

$$
\alpha_{t}^{j *}=\phi^{*}\left(t, X_{t}^{j}\right), \quad j=1, \cdots, N
$$

form an approximate Nash equilibrium for the game.

MFG Adjoint EQUations

Freeze $\mu=\left(\mu_{t}\right)_{0 \leq t \leq T}$, write Hamiltonian

$$
H^{\mu_{t}}(t, x, y, \alpha)=b\left(t, x, \mu_{t}, \alpha\right) \cdot y+f\left(t, x, \mu_{t}, \alpha\right)
$$

Given an admissible control $\underline{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ and the corresponding controlled state process $X^{\alpha}=\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$, any couple $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ satisfying:

$$
\left\{\begin{array}{l}
d Y_{t}=-\partial_{x} H^{\mu_{t}}\left(t, X_{t}^{\alpha}, Y_{t}, \alpha_{t}\right) d t+Z_{t} d W_{t} \\
Y_{T}=\partial_{x} g\left(X_{T}^{\alpha}, \mu_{T}\right)
\end{array}\right.
$$

is called a set of adjoint processes

Stochastic Minimum Principle (Pontryagin)

Determine

$$
\hat{\alpha}^{\mu_{t}}(t, x, y)=\arg \inf _{\alpha \in A} H^{\mu_{t}}(t, x, y, \alpha)
$$

Inject in FORWARD and BACKWARD dynamics and SOLVE
$\left\{\begin{array}{l}d X_{t}=b\left(t, X_{t}, \mu_{t}, \hat{\alpha}^{\mu}\left(t, X_{t}, Y_{t}\right)\right) d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\ d Y_{t}=-\partial_{x} H^{\mu_{t}}\left(t, X_{t}, Y_{t}, \hat{\alpha}^{\mu_{t}}\left(t, X_{t}, Y_{t}\right)\right) d t+Z_{t} d W_{t}, \quad Y_{T}=\partial_{x} g\left(X_{T}, \mu_{t}\right)\end{array}\right.$
Standard FBSDE (for each fixed $t \hookrightarrow \mu_{t}$)

Fixed Point Step

Solve the fixed point problem

$$
\left(\mu_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad\left(X_{t}\right)_{0 \leq t \leq T} \quad \longrightarrow \quad\left(\mathbb{P}_{X_{t}}\right)_{0 \leq t \leq T}
$$

Note: if we enforce $\mu_{t}=\mathbb{P}_{X_{t}}$ for all $0 \leq t \leq T$ in FBSDE we have

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \hat{\alpha}_{\mathbb{P}_{t}}^{\mathbb{P}}\left(t, X_{t}, Y_{t}\right)\right) d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\
d Y_{t}=-\partial_{x} H_{X_{t}}^{\mathbb{P}}\left(t, X_{t}^{\alpha}, Y_{t}, \hat{\alpha}_{X_{t}}^{\mathbb{P}}\left(t, X_{t}, Y_{t}\right)\right) d t+Z_{t} d W_{t}, \quad Y_{T}=\partial_{x} g\left(X_{T}, \mathbb{P}_{X_{T}}\right)
\end{array}\right.
$$

FBSDE of McKean-VIasov type !!!

Solvability of Forward Backard Systems

Existence of a solution of

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d t+\sigma\left(t, X_{t}, Y_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d W_{t} \\
d Y_{t}=-\Psi\left(t, X_{t}, Y_{t}, \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\right) d t+Z_{t} d W_{t} \\
X_{0}=x, Y_{T}=g\left(X_{T}, \mathbb{P}_{X_{T}}\right)
\end{array}\right.
$$

if coefficients are uniformly Lipschitz and bounded boundedness assumption can be relaxed
e.g. MFG and Controlled McKean-Vlasov models (later on in the talk)

Proof works for $\mathbb{P}_{\left(X_{t}, Y_{t}, Z_{t}\right)}$ instead of $\mathbb{P}_{\left(X_{t}, Y_{t}\right)}$

Back to the Mean Field Game

Assumptions

- Convex costs (f and g)
- Uncontrolled volatility ($\sigma(t, x, \mu, \alpha) \equiv \sigma>0)$
- $b(t, x, \mu, \alpha)=b_{0}(t, \mu)+b_{1}(t) x+b_{2}(t) \alpha$ with bounded b_{i} 's

Then

$$
\hat{\alpha}(t, x, y, \mu) \in \arg \inf _{\alpha} H^{\mu}(t, x, y, \alpha)
$$

is Lip-1 in (x, y, μ) uniformly in $t \in[0, T]$ and one can solve:

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}, Y_{t}, \mathbb{P}_{X_{t}}, \hat{\alpha}\left(t, X_{t}, Y_{t}, \mathbb{P}_{X_{t}}\right)\right) d t+\sigma d W_{t} \\
d Y_{t}=-\partial_{x} f\left(t, X_{t}, Y_{t}, \mathbb{P}_{X_{t}}, \hat{\alpha}\left(t, X_{t}, Y_{t}, \mathbb{P}_{X_{t}}\right)\right) d t-b_{1}(t) Y_{t}+Z_{t} d W_{t} \\
X_{0}=x, Y_{T}=\partial_{x} g\left(X_{T}, \mathbb{P}_{X_{T}}\right)
\end{array}\right.
$$

and the solution is of the form

$$
Y_{t}=u\left(t, X_{t}\right)
$$

Back to the N-Player (Mean Field) Game

Assume:

$$
d X_{t}^{i}=b\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad 0 \leq t \leq T, \quad 1 \leq i \leq N
$$

where

$$
\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}
$$

Then the controls

$$
\hat{\alpha}_{t}^{i}=\hat{\alpha}\left(t, X_{t}^{i}, \mathbb{P}_{X_{t}}, u\left(t, X_{t}^{i}\right)\right)
$$

form an ϵ-Nash equilibrium in the sense that for some $\epsilon_{N} \searrow 0$, for each $1 \leq i \leq N$

$$
J\left(\hat{\alpha}_{t}^{1}, \cdots, \alpha_{t}^{i}, \cdots, \hat{\alpha}_{t}^{N}\right) \geq J\left(\hat{\alpha}_{t}^{1}, \cdots, \hat{\alpha}_{t}^{i}, \cdots, \hat{\alpha}_{t}^{N}\right)-\epsilon_{N}
$$

Franchise Equilibrium

We say that $(t, x) \hookrightarrow \phi^{*}(t, x)$ gives a franchise equilibrium if

$$
\phi^{*}=\arg \inf _{\phi} \mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}, \phi\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}, \bar{\mu}_{T}^{N}\right)\right\} .
$$

where for each player $i \in\{1, \cdots, N\}$ we have $\alpha_{t}^{i}=\phi\left(t, X_{t}^{i}\right)$.
So when one player perturbs his/her ϕ

ALL players perturb their ϕ 's in the same way!

So the streamlining procedure is

1. Take the limit $N \rightarrow \infty$ (i.e. solve the fixed point problem) FIRST
2. Solve the optimization problem NEXT

TAking the Limit $N \rightarrow \infty$ First

Propagation of Chaos
 (Mc Kean / Sznitmann / Jourdain-Méleard-Woyczinski)

- Focus on N_{0} (fixed) player in a large set $(N \rightarrow \infty)$ of players
- Their private state processes X_{t}^{j} for $j=1, \cdots, N_{0}$ become
- (Asymptotically) independent identically distributed
- (Asymptotically) distributed like the solution of (McKV)

$$
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \phi\left(t, X_{t}\right)\right) d t+\sigma d \tilde{W}_{t}
$$

The individual objective costs become

$$
J(\phi)=\mathbb{E}\left\{\int_{0}^{T} f\left(t, X_{t}, \mathbb{P}_{X_{t}}, \phi\left(t, X_{t}\right)\right) d t+g\left(X_{T}, \mathbb{P}_{X_{T}}\right)\right\}
$$

Control of McKean-Vlasov Dynamics

Stochastic optimization problem: minimize

$$
J(\underline{\alpha})=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+g\left(X_{T}, \mathbb{P}_{X_{T}}\right)\right],
$$

over admissible control processes $\underline{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ subject to

$$
d X_{t}=b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d t+\sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) d W_{t} \quad 0 \leq t \leq T
$$

Probabilistic approach based on Pontryagin maximum principle
Hamiltonian

$$
H(t, x, \mu, y, z, \alpha)=b(t, x, \mu, \alpha) \cdot y+\sigma(t, x, \mu, \alpha) \cdot z+f(t, x, \mu, \alpha)
$$

(InFormal) Natural Question

Is the diagram

SDE State Dynamics for N players
$\downarrow N \rightarrow \infty$

McKean Vlasov Dynamics

Optimization
$\xrightarrow{\text { Optimization }}$ \longrightarrow

Nash Equilibrium for N players
$\downarrow N \rightarrow \infty$
Mean Field Game?
Controlled McK-V Dynamics?
commutative?

DIFFERENTIABILITY AND CONVEXITY OF $\mu \hookrightarrow h(\mu)$

- Notions of differentiability for functions defined on spaces of measures from theory of optimal transportation, gradient flows, etc) studied by Ambrosio, De Giorgi, Otto, Villani, etc
- Tailored made notion (Lions' Collège de France Lectures, Cardaliaguet)
Lift a function $\mu \hookrightarrow h(\mu)$ to $L^{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ into

$$
X \hookrightarrow \tilde{h}(X)=h\left(\tilde{\mathbb{P}}_{X}\right)
$$

and say
h is differentiable at μ if \tilde{h} is Fréchet differentiable at X whenever $\tilde{\mathbb{P}}_{X}=\mu$.
A function g on $\mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ is said to be convex if for every (x, μ) and $\left(x^{\prime}, \mu^{\prime}\right)$ in $\mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ we have

$$
g\left(x^{\prime}, \mu^{\prime}\right)-g(x, \mu)-\partial_{x} g(x, \mu) \cdot\left(x^{\prime}-x\right)-\tilde{\mathbb{E}}\left[\partial_{\mu} g(x, \tilde{X}) \cdot\left(\tilde{X}^{\prime}-\tilde{X}\right)\right] \geq 0
$$

whenever $\tilde{\mathbb{P}}_{\tilde{x}}=\mu$ and $\tilde{\mathbb{P}}_{\tilde{x}^{\prime}}=\mu^{\prime}$

The Adjoint Equations

Lifted Hamiltonian

$$
\tilde{H}(t, x, \tilde{x}, y, \alpha)=H(t, x, \mu, y, \alpha)
$$

for any random variable \tilde{X} with distribution μ.
Given an admissible control $\underline{\alpha}=\left(\alpha_{t}\right)_{0 \leq t \leq T}$ and the corresponding controlled state process $\underline{X}^{\alpha}=\left(X_{t}^{\alpha}\right)_{0 \leq t \leq T}$, any couple $\left(Y_{t}, Z_{t}\right)_{0 \leq t \leq T}$ satisfying:

$$
\left\{\begin{array}{c}
d Y_{t}=-\partial_{x} H\left(t, X_{t}^{\alpha}, \mathbb{P}_{X_{t}^{\alpha}}, Y_{t}, \alpha_{t}\right) d t+Z_{t} d W_{t} \\
-\left.\tilde{\mathbb{E}}\left[\partial_{\mu} H\left(t, \tilde{X}_{t}, X, \tilde{Y}_{t}, \tilde{\alpha}_{t}\right)\right]\right|_{x=X_{t}^{\alpha}} d t \\
Y_{T}=\partial_{x} g\left(X_{T}^{\alpha}, \mathbb{P}_{x_{T}^{\alpha}}\right)+\left.\tilde{\mathbb{E}}\left[\partial_{\mu} g\left(x, \tilde{X}_{t}\right)\right]\right|_{x=X_{T}^{\alpha}}
\end{array}\right.
$$

where ($\tilde{\alpha}, \tilde{X}, \tilde{Y}, \tilde{Z}$) is an independent copy of (α, X^{α}, Y, Z), is called a set of adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!
Extra terms in red are the ONLY difference between MFG and Control of McKean-Vlasov dynamics !!!

A Necessary Condition for Optimality

If $\underline{X}=\underline{X} \underline{\underline{\alpha}}$ controlled McKean-Vlasov dynamics ($X_{0}=x$), compute the Gâteaux derivative of the cost functional J at $\underline{\alpha}$ in the direction of $\underline{\beta}$ using dual processes and the variation process $\underline{V}=\left(V_{t}\right)_{0 \leq t \leq T}$ solution of the equation

$$
d V_{t}=\left[\gamma_{t} V_{t}+\delta_{t}\left(\mathbb{P}_{\left(x_{t}, V_{t}\right)}\right)+\eta_{t}\right] d t+\left[\tilde{\gamma}_{t} V_{t}+\tilde{\delta}_{t}\left(\mathbb{P}_{\left(x_{t}, V_{t}\right)}\right)+\tilde{\eta}_{t}\right] d W_{t}
$$

where the coefficients $\gamma_{t}, \delta_{t}, \eta_{t}, \tilde{\gamma}_{t}, \tilde{\delta}_{t}$ and $\tilde{\eta}_{t}$ are defined as

$$
\begin{aligned}
\gamma_{t} & =\partial_{x} b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right), & \text { and } & \tilde{\gamma}_{t}=\partial_{x} \sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) \\
\eta_{t} & =\partial \alpha b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) \beta_{t}, & \quad \text { and } & \tilde{\eta}_{t}=\partial_{\alpha} \sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right) \beta_{t} \\
\gamma_{t} & =\partial_{x} b\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right), & \text { and } & \tilde{\gamma}_{t}=\partial_{x} \sigma\left(t, X_{t}, \mathbb{P}_{X_{t}}, \alpha_{t}\right)
\end{aligned}
$$

and

$$
\delta_{t}=\left.\tilde{\mathbb{E}} \partial_{\mu} b\left(t, x, \mathbb{P}_{X_{t}}, \alpha\right)\left(\tilde{X}_{t}\right) \cdot \tilde{V}_{t}\right|_{\substack{x=x_{t} \\ \alpha=\alpha_{t}}}, \quad \text { and } \quad \tilde{\delta}_{t}=\left.\tilde{\mathbb{E}} \partial_{\mu} \sigma\left(t, x, \mathbb{P}_{X_{t}}, \alpha\right)\left(\tilde{X}_{t}\right) \cdot \tilde{V}_{t}\right|_{\substack{x=x_{t} \\ \alpha=\alpha_{t}}}
$$

where $\left(\tilde{X}_{t}, \tilde{V}_{t}\right)$ is an independent copy of $\left(X_{t}, V_{t}\right)$.

Pontryagin Minimum Principle (Sufficiency)

Assume

1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;
3. α admissible control, X corresponding dynamics, (Y, Z) adjoint processes and

$$
(x, \mu, \alpha) \hookrightarrow H\left(t, x, \mu, Y_{t}, Z_{t}, \alpha\right)
$$

is $d t \otimes d \mathbb{P}$ a.e. convex,
then, if moreover

$$
H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, Z_{t}, \alpha_{t}\right)=\inf _{\alpha \in A} H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, \alpha\right), \quad \text { a.s. }
$$

Then α is an optimal control, i.e.

$$
J(\alpha)=\inf _{\bar{\alpha} \in \mathcal{A}} J(\bar{\alpha})
$$

Solution of the McKV Control Problem

Assume

- $b(t, x, \mu, \alpha)=b_{0}(t) \int_{\mathbb{R}^{d}} x d \mu(x)+b_{1}(t) x+b_{2}(t) \alpha$ with b_{0}, b_{1} and b_{2} is $\mathbb{R}^{d \times d}$-valued and are bounded.
- f and g as in MFG problem.

There exists a solution $\left(X_{t}, Y_{t}, Z_{t}\right)_{0}$ of the McKean-Vlasov FBSDE

$$
\left\{\begin{array}{l}
d X_{t}=b_{0}(t) \mathbb{E}\left(X_{t}\right) d t+b_{1}(t) X_{t} d t+b_{2}(t) \hat{\alpha}\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}\right) d t+\sigma d W_{t} \\
d Y_{t}=-\partial_{x} H\left(t, X_{t}, \mathbb{P}_{X_{t}}, Y_{t}, \hat{\alpha}_{t}\right) d t \\
\quad-\mathbb{E}\left[\partial_{\mu} \underline{H}\left(t, X_{t}^{\prime}, X_{t}, Y_{t}^{\prime}, \hat{\alpha}_{t}^{\prime}\right)\right] d t+Z_{t} d W_{t}
\end{array}\right.
$$

with $Y_{t}=u\left(t, X_{t}, \mathbb{P}_{X_{t}}\right)$ for a function

$$
u:[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni(t, x, \mu) \mapsto u(t, x, \mu)
$$

uniformly of Lip-1 and with linear growth in x.

A Finite Player Approximate Equilibrium

For N independent Brownian motions (W^{1}, \ldots, W^{N}) and for a square integrable exchangeable process ($\beta^{1}, \ldots, \beta^{N}$), consider the system of particles

$$
d X_{t}^{i}=\frac{1}{N} b_{0}(t) \sum_{j=1}^{N} X_{t}^{j}+b_{1}(t) X_{t}^{i}+b_{2}(t) \beta_{t}^{i}+\sigma d W_{t}^{i}, \quad X_{0}^{i}=\xi_{0}^{i},
$$

and define the common cost

$$
J^{N}(\beta)=\mathbb{E}\left[+\int_{0}^{T} f\left(s, X_{s}^{i}, \bar{\mu}_{s}^{N}, \beta_{s}^{i}\right) d s+g\left(X_{T}^{1}, \bar{\mu}_{T}^{N}\right)\right], \quad \text { with } \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}
$$

Then, there exists a sequence of positive reals $\left(\epsilon_{N}\right)_{N \geq 1}$, independent of β and converging toward 0 , such that

$$
J^{N}(\beta) \geq J^{N}(\alpha)-\epsilon_{N},
$$

where, if X is the solution to the controlled McKean Vlasov problem, $\left(\tilde{X}^{1}, \ldots, \tilde{X}^{N}\right)$ solves
$d \tilde{X}_{t}^{j}=\frac{1}{N} \sum_{j=1}^{N} b_{0}(t) \tilde{X}_{t}^{j}+b_{1}(t) \tilde{X}_{t}^{i}+b_{2}(t) \hat{\alpha}\left(s, \tilde{X}_{s}^{j}, u\left(s, \tilde{X}_{s}^{i}\right), \mathbb{P}_{X_{s}}\right)+\sigma d W_{t}^{i}, \quad \tilde{X}_{0}^{j}=\xi_{0}^{i}$.

Merci, et Bon Anniversaire Freddy!

