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SIMPLE EXAMPLE FROM SYSTEMIC RISK (J.P. FOUQUE)

I Log-monetary reserves of N banks

X (i)
t , i = 1, . . . ,N

I W (i)
t , i = 1, . . . ,N independent Brownian motions, σ > 0

I Model borrowing and lending through the drifts:

dX (i)
t =

α

N

N∑
j=1

(X (j)
t − X (i)

t ) dt + σdW (i)
t

= α(X t − X (i)
t ) dt + σdW (i)

t , i = 1, . . . ,N.

I OU processes reverting to the sample mean X t (rate α > 0)
I D < 0 default level



EASY CONCLUSIONS

I Sample mean X t is a BM a Brownian motion with vol. σ/
√

N
I Simulations “show" that STABILITY is created by increasing the

rate α of borrowing and lending.
I Compute the loss distribution (how many firms fail)
I Large Deviations (Gaussian estimates) show that increasing α

increases SYSTEMIC RiSK



MODIFIED MODEL

New dynamics is

dX i
t =

[
a(X t − X i

t ) + αi
t
]

dt + σdW i
t , i = 1, · · · ,N

αi is the control of bank i , and bank i tries to minimize

J i (α1, · · · , αN) = E

{∫ T

0

[
1

2q
(αi

t )
2 − αi

t (X t − X i
t )

]
dt

}

The regulator can choose the parameter q > 0 controlling the cost of
borrowing and lending.

I If X i
t is small (relative to the empirical mean X t ) then bank i will want to

borrow(αi
t > 0)

I If X i
t is large then bank i will want to lend (αi

t < 0)

Example of Mean Field Game (MFG) à la Lasry - Lions



APPROXIMATE NASH MFG-EQUILIBRIUM

� Banks act independently of each other

� Bank i chooses αi
t = q(X t − X i

t )− ηtX i
t

dX i
t =

[
(a + q)(X t − X i

t )− ηtX i
t
]

dt + σdW i
t

for a deterministic function t ↪→ ηt solving a Ricatti equation.Therefore

dX t = −ηtX tdt +
σ√
N

dW t

where W t = 1√
N

∑N
1 dW i

t .

I Note that ηt < 0, and therefore (X t ) is a repulsive OU.
I Still Gaussian system, so similar Large Deviation estimates



0.0 0.2 0.4 0.6 0.8 1.0

−0
.0
4

−0
.0
3

−0
.0
2

−0
.0
1

0.
00

GAME 2, ETA of t,  a= 10   q= 1  p= 0.0263

t

et
a



0.0 0.2 0.4 0.6 0.8 1.0

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

One sample of Xbar(t) −− black dots −− & Xi(t) for i=1,...,10 −− colors −−, a=10  q=1

t

Xi
(t)



0.0 0.2 0.4 0.6 0.8 1.0

−0
.4

−0
.2

0.
0

0.
2

One sample of Xbar(t) −− black dots −− & Xi(t) for i=1,...,10 −− colors −−, a=100  q=1

t

Xi
(t)



0.0 0.2 0.4 0.6 0.8 1.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

One sample of Xbar(t) −− black dots −− & Xi(t) for i=1,...,10 −− colors −−, a=100  q=10

t

Xi
(t)



HIGH DIMENSIONAL DYNAMICAL SYSTEMS

I Dynamic: equations will be ODEs, PDEs, SDEs, SPDEs, . . .
I High Dimensional (large populations)
I Equilibrium Analysis: Control or Game Theory

I Each individual makes decisions based on
I his/her current state
I Risk / Reward expectation

I Interaction with the rest of the population
I Distribution of states in the entire population

I MEAN FIELD interaction



THE PDE APPROACH TO MFGS
Motivation (Lasry-Lions, Guéant, La Chapelle, . . . )

u(t , x) = sup
(αs)t≤s≤T ,Xt =x

E

[∫ T

t
e−ρ(s−t)[g(m(s,Xs)) + h(|α(s,Xs)|)]ds

]

under constraint dXt = α(t ,Xt )dt + σdWt

Formulation (given m(0, · ) & u(T , · ) )

∂tu +
σ2

2
∆u + H(∇u)− ρu = −g(m) (Hamilton-Jacobi-Bellman)

∂tm +∇ · (mH ′(∇u)) =
σ2

2
∆m, (Kolmogorov)

where m(t , · ) probability measure, H(p) = supa(ap − h(a)).

Stationary Case

σ2

2
∆u + H(∇u)− ρu = −g(m)

∇ · (mH′(∇u)) =
σ2

2
∆m,



PROBABILISTIC APPROACH

Disclaimer
"Mathematicians are like Frenchmen: whatever you say
to them they translate into their own language and
forthwith it is something entirely different."

Johann Wolfgang von Goethe

I Formulate the problem for (N finite) players with (mean - field
interactions)

I Define the Optimization Problem: Cost / Reward functions
I Define the type of desired equilibrium (Nash, Pareto. centralized, etc)

Stochastic Differential Game or Stochastic Control Problem

I Identify the limit N →∞ to Lasry-Lions MFG problem, or something
else !

I Prove that solution of N =∞ (e.g. MFG problem) provides approximate
(ε) equilibria for problems if (N) finite many players



STOCHASTIC DIFFERENTIAL MEAN FIELD GAMES

First example of private states dynamics

dX i
t =

1
N

N∑
j=1

b̃(t ,X i
t ,X

j
t , α

i
t )dt + σdW i

t

Rewrite it as
dX i

t = b(t ,X i
t , µ

N
t , α

i
t )dt + σdW i

t

where
b(t , x , µ, α) =

∫
b̃(t , x , x ′, α) dµ(x ′)

and µN
t is empirical distribution of the private states

µN
t =

1
N

N∑
j=1

δX j
t
.

linear interaction or of order 1



MORE GENERAL MEAN FIELD INTERACTIONS

Quadratic interactions or of order 2

1
N2

N∑
j,k=1

b̃(t ,X i
t ,X

j
t ,X

k
t , α

i
t )dt + σdW i

t

rewritten as b(t ,X i
t , µ

N
t , α

i
t ) with

b(t , x , µ, α) =

∫
b̃(t , x , x ′, x ′′, α) dµ(x ′)dµ(x ′′).

Fully nonlinear Mean Field interaction

b : [0,T ]× R× P(R)× A ↪→ R

Scalar Mean Field interaction

b(t , x , µ, α) =

∫
b̃(t , x , 〈ϕ, µ〉, α)

for some scalar function ϕ with 〈ϕ, µ〉 =
∫
ϕ(x ′)dµ(x ′)



OPTIMIZATION PROBLEM

Simultaneous Minimization of

J i (a) = E

{∫ T

0
f (t ,X i

t , µ
N
t , α

i
t )dt + g(XT , µ

N
T )

}
, i = 1, · · · ,N

under constraints of the form

dX i
t = b(t ,X i

t , µ
N
t , α

i
t )dt + σdW i

t , i = 1, · · · ,N.

GOAL: search for equilibriums



MODEL REQUIREMENTS

I Each player cannot on its own, influence significantly the global
output of the game

I Large number of players (N →∞)
I Closed loop controls in feedback form

αi
t = φi (t , (X 1

t , · · · ,X N
t )), i = 1, · · · ,N.

I Distributed controls

αi
t = φi (t ,X i

t ), i = 1, · · · ,N.

I Identical feedback functions

φ1(t , · ) = · · · = φN(t , · ) = φ(t , · ), 0 ≤ t ≤ T .



TOUTED SOLUTION (WISHFUL THINKING)

I Identify a (distributed closed loop) strategy φ from effective
equations (from stochastic optimization for large populations)

I Each player is assigned the same function φ
I At each time t , player i take action αi = φ(t ,X i

t )

What is the resulting population behavior?

I Did we reach some form of equilibrium?
I If yes, what kind of equilibrium?



NASH EQUILIBRIUM: OPTIMIZING FIRST

α1∗
t = φ1∗(t ,X 1

t ), · · · · · · , αN∗
t = φN∗(t ,X N

t )

is a Nash equilibrium means that for each player i , if we assume

α−i∗ = α1∗
t , · · · , αi−1∗, αi+1∗

t , · · · , αN∗
t

are FIXED, then:

φi∗ = arg inf
φ
E
{∫ T

0
f (t ,X i

t , µ
N
t , φ(t ,X i

t ))dt + g(XT , µ
N
T )

}
.

When N is large small perturbations of φ

should not change empirical measure µN
t

So one could solve the optimization problem (approximate its solution)

FREEZING (µN
t )0≤t≤T

Standard stochastic control problem (parameterized by (µt )0≤t≤T ):
Once φ is found, µt should be the statistical distribution of the solution Xt !



SUMMARY OF THE LASRY-LIONS MFG APPROACH

1. Fix a deterministic function [0,T ] 3 t ↪→ µt ∈ P(R);
2. Solve the standard stochastic control problem

φ∗ = arg inf
φ
E

{∫ T

0
f (t ,Xt , µt , φ(t ,Xt ))dt + g(XT , µT )

}

subject to
dXt = b(t ,Xt , µt , φ(t ,Xt ))dt + σdWt ;

3. Determine the function [0,T ] 3 t ↪→ µt ∈ P(R) so that

∀t ∈ [0,T ], PXt = µt .

Once this is done,

αj∗
t = φ∗(t ,X j

t ), j = 1, · · · ,N

form an approximate Nash equilibrium for the game.



MFG ADJOINT EQUATIONS

Freeze µ = (µt )0≤t≤T , write Hamiltonian

Hµt (t , x , y , α) = b(t , x , µt , α) · y + f (t , x , µt , α)

Given an admissible control α = (αt )0≤t≤T and the corresponding
controlled state process Xα = (Xα

t )0≤t≤T , any couple (Yt ,Zt )0≤t≤T
satisfying: {

dYt = −∂xHµt (t ,Xα
t ,Yt , αt )dt + ZtdWt

YT = ∂xg(Xα
T , µT )

is called a set of adjoint processes



STOCHASTIC MINIMUM PRINCIPLE (PONTRYAGIN)

Determine
α̂µt (t , x , y) = arg inf

α∈A
Hµt (t , x , y , α)

Inject in FORWARD and BACKWARD dynamics and SOLVE{
dXt = b(t ,Xt , µt , α̂

µ(t ,Xt ,Yt ))dt + σdWt , X0 = x0

dYt = −∂xHµt (t ,Xt ,Yt , α̂
µt (t ,Xt ,Yt ))dt + ZtdWt , YT = ∂xg(XT , µt )

Standard FBSDE (for each fixed t ↪→ µt )



FIXED POINT STEP

Solve the fixed point problem

(µt )0≤t≤T −→ (Xt )0≤t≤T −→ (PXt )0≤t≤T

Note: if we enforce µt = PXt for all 0 ≤ t ≤ T in FBSDE we have{
dXt = b(t ,Xt ,PXt , α̂

P
Xt

(t ,Xt ,Yt ))dt + σdWt , X0 = x0

dYt = −∂xHP
Xt

(t ,Xα
t ,Yt , α̂

P
Xt

(t ,Xt ,Yt ))dt + ZtdWt , YT = ∂xg(XT ,PXT )

FBSDE of McKean-Vlasov type !!!



SOLVABILITY OF FORWARD BACKARD SYSTEMS

Existence of a solution of
dXt = b(t ,Xt ,Yt ,P(Xt ,Yt ))dt + σ(t ,Xt ,Yt ,P(Xt ,Yt ))dWt

dYt = −Ψ(t ,Xt ,Yt ,P(Xt ,Yt ))dt + ZtdWt

X0 = x ,YT = g(XT ,PXT )

if coefficients are uniformly Lipschitz and bounded

boundedness assumption can be relaxed

e.g. MFG and Controlled McKean-Vlasov models (later on in the talk)

Proof works for P(Xt ,Yt ,Zt ) instead of P(Xt ,Yt )



BACK TO THE MEAN FIELD GAME

Assumptions
I Convex costs (f and g)
I Uncontrolled volatility (σ(t , x , µ, α) ≡ σ > 0)
I b(t , x , µ, α) = b0(t , µ) + b1(t)x + b2(t)α with bounded bi ’s

Then
α̂(t , x , y , µ) ∈ arg inf

α
Hµ(t , x , y , α)

is Lip-1 in (x , y , µ) uniformly in t ∈ [0,T ] and one can solve:
dXt = b(t ,Xt ,Yt ,PXt , α̂(t ,Xt ,Yt ,PXt ))dt + σdWt

dYt = −∂x f (t ,Xt ,Yt ,PXt , α̂(t ,Xt ,Yt ,PXt ))dt − b1(t)Yt + ZtdWt

X0 = x ,YT = ∂xg(XT ,PXT )

and the solution is of the form

Yt = u(t ,Xt )



BACK TO THE N -PLAYER (MEAN FIELD) GAME

Assume:

dX i
t = b(t ,X i

t , µ
N
t , α

i
t )dt + σdW i

t , 0 ≤ t ≤ T , 1 ≤ i ≤ N

where

µN
t =

1
N

N∑
i=1

δX i
t
.

Then the controls
α̂i

t = α̂(t ,X i
t ,PXt ,u(t ,X i

t ))

form an ε-Nash equilibrium in the sense that for some εN ↘ 0, for
each 1 ≤ i ≤ N

J(α̂1
t , · · · , αi

t , · · · , α̂N
t ) ≥ J(α̂1

t , · · · , α̂i
t , · · · , α̂N

t )− εN



FRANCHISE EQUILIBRIUM

We say that (t , x) ↪→ φ∗(t , x) gives a franchise equilibrium if

φ∗ = arg inf
φ
E

{∫ T

0
f (t ,X i

t , µ
N
t , φ(t ,X i

t ))dt + g(XT , µ
N
T )

}
.

where for each player i ∈ {1, · · · ,N} we have αi
t = φ(t ,X i

t ).

So when one player perturbs his/her φ

ALL players perturb their φ’s in the same way!

So the streamlining procedure is
1. Take the limit N →∞ (i.e. solve the fixed point problem) FIRST
2. Solve the optimization problem NEXT



TAKING THE LIMIT N →∞ FIRST

Propagation of Chaos
(Mc Kean / Sznitmann / Jourdain-Méleard-Woyczinski)

I Focus on N0 (fixed) player in a large set (N →∞) of players
I Their private state processes X j

t for j = 1, · · · ,N0 become
I (Asymptotically) independent identically distributed
I (Asymptotically) distributed like the solution of (McKV)

dXt = b(t ,Xt ,PXt , φ(t ,Xt ))dt + σdW̃t

The individual objective costs become

J(φ) = E

{∫ T

0
f (t ,Xt ,PXt , φ(t ,Xt ))dt + g(XT ,PXT )

}



CONTROL OF MCKEAN-VLASOV DYNAMICS

Stochastic optimization problem: minimize

J(α) = E

[∫ T

0
f (t ,Xt ,PXt , αt )dt + g(XT ,PXT )

]
,

over admissible control processes α = (αt )0≤t≤T subject to

dXt = b(t ,Xt ,PXt , αt )dt + σ(t ,Xt ,PXt , αt )dWt 0 ≤ t ≤ T ,

Probabilistic approach based on Pontryagin maximum principle

Hamiltonian

H(t , x , µ, y , z, α) = b(t , x , µ, α) · y + σ(t , x , µ, α) · z + f (t , x , µ, α)



(INFORMAL) NATURAL QUESTION

Is the diagram

SDE State Dynamics
for N players

−→
Optimization

Nash Equilibrium
for N players

↓ N →∞ ↓ N →∞

McKean Vlasov Dynamics
Optimization
−→

Mean Field Game?
Controlled McK-V Dynamics?

commutative?



DIFFERENTIABILITY AND CONVEXITY OF µ ↪→ h(µ)

I Notions of differentiability for functions defined on spaces of measures
from theory of optimal transportation, gradient flows, etc) studied by
Ambrosio, De Giorgi, Otto, Villani, etc

I Tailored made notion (Lions’ Collège de France Lectures,
Cardaliaguet)

Lift a function µ ↪→ h(µ) to L2(Ω̃, F̃ , P̃) into

X ↪→ h̃(X ) = h(P̃X )

and say

h is differentiable at µ if h̃ is Fréchet differentiable at X whenever P̃X = µ.

A function g on Rd × P1(Rd ) is said to be convex if for every (x , µ) and
(x ′, µ′) in Rd × P1(Rd ) we have

g(x ′, µ′)− g(x , µ)− ∂x g(x , µ) · (x ′ − x)− Ẽ[∂µg(x , X̃ ) · (X̃ ′ − X̃ )] ≥ 0

whenever P̃X̃ = µ and P̃X̃ ′ = µ′



THE ADJOINT EQUATIONS

Lifted Hamiltonian
H̃(t , x , X̃ , y , α) = H(t , x , µ, y , α)

for any random variable X̃ with distribution µ.

Given an admissible control α = (αt )0≤t≤T and the corresponding controlled
state process Xα = (Xα

t )0≤t≤T , any couple (Yt ,Zt )0≤t≤T satisfying:
dYt = −∂x H(t ,Xα

t ,PXα
t
,Yt , αt )dt + ZtdWt

−Ẽ[∂µH(t , X̃t ,X , Ỹt , α̃t )]|X=Xα
t

dt
YT = ∂x g(Xα

T ,PXα
T

) + Ẽ[∂µg(x , X̃t )]|x=Xα
T

where (α̃, X̃ , Ỹ , Z̃ ) is an independent copy of (α,Xα,Y ,Z ), is called a set of
adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!

Extra terms in red are the ONLY difference between MFG and Control of
McKean-Vlasov dynamics !!!



A NECESSARY CONDITION FOR OPTIMALITY

If X = Xα controlled McKean-Vlasov dynamics (X0 = x), compute the
Gâteaux derivative of the cost functional J at α in the direction of β using
dual processes and the variation process V = (Vt )0≤t≤T solution of the
equation

dVt = [γtVt + δt (P(Xt ,Vt )) + ηt ]dt + [γ̃tVt + δ̃t (P(Xt ,Vt )) + η̃t ]dWt

where the coefficients γt , δt , ηt , γ̃t , δ̃t and η̃t are defined as

γt = ∂x b(t ,Xt ,PXt , αt ), and γ̃t = ∂xσ(t ,Xt ,PXt , αt )

ηt = ∂αb(t ,Xt ,PXt , αt )βt , and η̃t = ∂ασ(t ,Xt ,PXt , αt )βt

γt = ∂x b(t ,Xt ,PXt , αt ), and γ̃t = ∂xσ(t ,Xt ,PXt , αt )

and

δt = Ẽ∂µb(t , x ,PXt , α)(X̃t ) · Ṽt
∣∣ x=Xt
α=αt

, and δ̃t = Ẽ∂µσ(t , x ,PXt , α)(X̃t ) · Ṽt
∣∣ x=Xt
α=αt

where (X̃t , Ṽt ) is an independent copy of (Xt ,Vt ).



PONTRYAGIN MINIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;
3. α admissible control, X corresponding dynamics, (Y ,Z ) adjoint

processes and

(x , µ, α) ↪→ H(t , x , µ,Yt ,Zt , α)

is dt ⊗ dP a.e. convex,
then, if moreover

H(t ,Xt ,PXt ,Yt ,Zt , αt ) = inf
α∈A

H(t ,Xt ,PXt ,Yt , α), a.s.

Then α is an optimal control, i.e.

J(α) = inf
α∈A

J(α)



SOLUTION OF THE MCKV CONTROL PROBLEM

Assume
I b(t , x , µ, α) = b0(t)

∫
Rd xdµ(x) + b1(t)x + b2(t)α

with b0, b1 and b2 is Rd×d -valued and are bounded.
I f and g as in MFG problem.

There exists a solution (Xt ,Yt ,Zt )0 of the McKean-Vlasov FBSDE
dXt = b0(t)E(Xt )dt + b1(t)Xtdt + b2(t)α̂(t ,Xt ,PXt ,Yt )dt + σdWt ,

dYt = −∂x H
(
t ,Xt ,PXt ,Yt , α̂t

)
dt

− E
[
∂µH

(
t ,X ′t ,Xt ,Y ′t , α̂

′
t
)]

dt + ZtdWt .

with Yt = u(t ,Xt ,PXt ) for a function

u : [0,T ]× Rd × P1(Rd ) 3 (t , x , µ) 7→ u(t , x , µ)

uniformly of Lip-1 and with linear growth in x .



A FINITE PLAYER APPROXIMATE EQUILIBRIUM
For N independent Brownian motions (W 1, . . . ,W N) and for a square
integrable exchangeable process (β1, . . . , βN), consider the system of
particles

dX i
t =

1
N

b0(t)
N∑

j=1

X j
t + b1(t)X i

t + b2(t)β i
t + σdW i

t , X i
0 = ξi

0,

and define the common cost

JN(β) = E
[

+

∫ T

0
f
(
s,X i

s, µ̄
N
s , β

i
s
)
ds + g

(
X 1

T , µ̄
N
T
)]
, with µ̄N

t =
1
N

N∑
i=1

δX i
t
.

Then, there exists a sequence of positive reals (εN)N≥1, independent of β
and converging toward 0, such that

JN(β) ≥ JN(α)− εN ,

where, if X is the solution to the controlled McKean Vlasov problem,
(X̃ 1, . . . , X̃ N) solves

dX̃ i
t =

1
N

N∑
j=1

b0(t)X̃ j
t +b1(t)X̃ i

t +b2(t)α̂(s, X̃ i
s, u(s, X̃ i

s),PXs )+σdW i
t , X̃ i

0 = ξi
0.



Merci, et Bon Anniversaire Freddy!




