Equilibrium Pricing in Incomplete Markets under Translation Invariant Preferences

PATRICK CHERIDITO

PRINCETON UNIVERSITY

JOINT WORK WITH

ULRICH HORST, MICHAEL KUPPER, TRAIAN PIRVU

September 2012

Price processes are martingales under $\mathbb Q$

Price processes are martingales under $\mathbb Q$

- Harrison–Kreps (1979). Martingales and arbitrage in multiperiod security markets.
- Harrison–Pliska. (1981). Martingales and stochastic integrals in the theory of continuous trading.
- Dalang–Morton–Willinger (1989). Equivalent martingale measures and no-arbitrage in stochastic securities market models.
- Delbaen (1992). Representing martingale measures when asset prices are continuous and bounded.
- Schachermayer (1993). Martingale measures for discrete time processes with infinite horizon.
- Delbaen–Schachermayer (1994). A general version of the fundamental theorem of asset pricing.
- Delbaen–Schachermayer (1998). The fundamental theorem of asset pricing for unbounded stochastic processes.

Usual approach to derivatives pricing:

- Model the underlying securities as a *J*-dimensional stochastic process (R_t) on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- ② Price derivatives by $\mathbb{E}_{\mathbb{Q}}[.]$ for some equivalent martingale measure $\mathbb{Q} \sim \mathbb{P}$

. . .

Usual approach to derivatives pricing:

- Model the underlying securities as a J-dimensional stochastic process (R_t) on a probability space (Ω, F, P)
- ② Price derivatives by $\mathbb{E}_{\mathbb{Q}}[.]$ for some equivalent martingale measure $\mathbb{Q} \sim \mathbb{P}$

In complete markets: \mathbb{Q} is unique

binomial tree models, Black–Scholes model ...

In incomplete markets: \mathbb{Q} is not unique

trinomial tree models, GARCH-type models,

stochastic volatility models, jump-diffusion models,

Levy-process models, more general semimartingale models

Problem:

Choose a pricing measure $\hat{\mathbb{Q}}$ among all equivalent martingale measures

Some commonly used methods:

- Parameterize Q_θ, θ ∈ Θ and calibrate to market data of traded derivatives ... via dQ_θ/dP or without P.
 E.g. build a stoch vol model or local vol model directly under Q
- ② Choose Q̂ so that it minimizes some distance to P, e.g. L^p-distance, relative entropy, f-divergence ...
- Indifference pricing
- **4** ...

Our goal: derive $\hat{\mathbb{Q}}$ from equilibrium considerations

Some motivating Examples

Horst and Müller (2007).

On the spanning property of risk bonds priced by equilibrium

Bakshi, Kapadia and Madan (2003).

Stock return characteristics, skew laws, and the differential pricing of individual equity options

Garleanu, Pedersen and Poteshman (2009). Demand-based option pricing

Carmona, Fehr, Hinz and Porchet (2010). Market design for emission trading schemes.

Outline

Model

- **2** Existence of equilibrium
- **3** Uniqueness of equilibrium
- **4** Random walks and $BS\Delta Es$
- **9** Brownian motion and BSDEs
- Option pricing under demand pressure

Ingredients

• filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$

Ingredients

• filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$

• money market account with $r \equiv 0$

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- money market account with $r \equiv 0$
- exogenous asset $(R_t)_{t=0}^T$ satisfying (NA)

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- money market account with $r \equiv 0$
- exogenous asset $(R_t)_{t=0}^T$ satisfying (NA)
- structured product in external supply n with final payoff $S \in L^{\infty}(\mathcal{F}_T)$

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- money market account with $r \equiv 0$
- exogenous asset $(R_t)_{t=0}^T$ satisfying (NA)
- structured product in external supply n with final payoff $S \in L^{\infty}(\mathcal{F}_T)$
- $\bullet\,$ a group of finitely many agents \mathbbm{A}

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- money market account with $r \equiv 0$
- exogenous asset $(R_t)_{t=0}^T$ satisfying (NA)
- structured product in external supply n with final payoff $S \in L^{\infty}(\mathcal{F}_T)$
- $\bullet\,$ a group of finitely many agents \mathbbm{A}
- agent $a \in \mathbb{A}$ is endowed with an uncertain payoff $H^a = g^{a,R}R_T + g^{a,S}S_T + G^a$

Ingredients

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- money market account with $r \equiv 0$
- exogenous asset $(R_t)_{t=0}^T$ satisfying (NA)
- structured product in external supply n with final payoff $S \in L^{\infty}(\mathcal{F}_T)$
- $\bullet\,$ a group of finitely many agents \mathbbm{A}
- agent $a \in \mathbb{A}$ is endowed with an uncertain payoff $H^a = g^{a,R}R_T + g^{a,S}S_T + G^a$
- at time t agent a invests to optimize a preference functional

 $U_t^a: L^\infty(\mathcal{F}_T) \to L^\infty(\mathcal{F}_t)$

We assume U_t^a has the following properties:

(N) Normalization $U_t^a(0) = 0$

We assume U_t^a has the following properties:

(N) Normalization $U_t^a(0) = 0$

(M) Monotonicity $U_t^a(X) \ge U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ such that $X \ge Y$

We assume U_t^a has the following properties:

(N) Normalization $U_t^a(0) = 0$

(M) Monotonicity $U_t^a(X) \ge U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ such that $X \ge Y$

(C) \mathcal{F}_t -Concavity $U_t^a(\lambda X + (1-\lambda)Y) \ge \lambda U_t^a(X) + (1-\lambda)U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ and $\lambda \in L^{\infty}(\mathcal{F}_t)$ such that $0 \le \lambda \le 1$

We assume U_t^a has the following properties:

(N) Normalization $U_t^a(0) = 0$

(M) Monotonicity $U_t^a(X) \ge U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ such that $X \ge Y$

(C) \mathcal{F}_t -Concavity $U_t^a(\lambda X + (1-\lambda)Y) \ge \lambda U_t^a(X) + (1-\lambda)U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ and $\lambda \in L^{\infty}(\mathcal{F}_t)$ such that $0 \le \lambda \le 1$

(T) Translation property $U_t^a(X+Y) = U_t^a(X) + Y$ for all $X \in L^{\infty}(\mathcal{F}_T)$ and $Y \in L^{\infty}(\mathcal{F}_t)$

We assume U_t^a has the following properties:

(N) Normalization $U_t^a(0) = 0$

(M) Monotonicity $U_t^a(X) \ge U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ such that $X \ge Y$

(C) \mathcal{F}_t -Concavity $U_t^a(\lambda X + (1-\lambda)Y) \ge \lambda U_t^a(X) + (1-\lambda)U_t^a(Y)$ for all $X, Y \in L^{\infty}(\mathcal{F}_T)$ and $\lambda \in L^{\infty}(\mathcal{F}_t)$ such that $0 \le \lambda \le 1$

(T) Translation property $U_t^a(X+Y) = U_t^a(X) + Y$ for all $X \in L^{\infty}(\mathcal{F}_T)$ and $Y \in L^{\infty}(\mathcal{F}_t)$

(TC) Time-consistency $U_{t+1}^{a}(X) \ge U_{t+1}^{a}(Y)$ implies $U_{t}^{a}(X) \ge U_{t}^{a}(Y)$ $\Leftrightarrow \qquad U_{t}^{a}(X) = U_{t}^{a}(U_{t+1}^{a}(X))$

Related to coherent and convex risk measures

- Artzner–Delbaen–Eber–Heath (1999). Coherent measures of risk.
- Föllmer–Schied (2002).

Convex measures of risk and trading constraints

• Frittelli–Rosazza Gianin (2002). Putting order in risk measures.

Examples

1)
$$U_t^a(X) = -\frac{1}{\gamma} \log \mathbb{E} \left[e^{-\gamma X} \mid \mathcal{F}_t \right]$$

2) $U_t^a(X) = \mathbb{E} \left[X \mid \mathcal{F}_t \right] - \lambda \mathbb{E} \left[(X - \mathbb{E} \left[X \mid \mathcal{F}_t \right])^2 \mid \mathcal{F}_t \right]$
3) $U_t^a(X) = (1 - \lambda) \mathbb{E} \left[X \mid \mathcal{F}_t \right] - \lambda \rho_t(X)$

where ρ_t is a conditional convex risk measure

An equilibrium of plans, prices and price expectations à la Radner (1972) consists of

- an adapted process $(S_t)_{t=0}^T$ with $S_T = S$
- trading strategies $(\hat{\vartheta}_t^a)_{t=1}^T$

such that the following hold:

(i) individual optimality

$$U_t^a \left(H^a + \sum_{s=t+1}^T \hat{\vartheta}_s^{a,1} \Delta R_s + \hat{\vartheta}_s^{a,2} \Delta S_s \right)$$

$$\geq U_t^a \left(H^a + \sum_{s=t+1}^T \vartheta_s^{a,1} \Delta R_s + \vartheta_s^{a,2} \Delta S_s \right)$$

for every t and all possible strategies (ϑ_s^a) (ii) market clearing $\sum_{a \in \mathbb{A}} \hat{\vartheta}_t^{a,2} = n$

Hart (1975) On the optimality of equilibrium when the market structure is incomplete:

In general, a Radner equilibrium does not exist, and if there is one, it is not unique.

One-step representative agents

Set $H_T^a = H^a$ and $H_{t+1}^a = U_{t+1}^a \left(H^a + \sum_{s=t+2}^T \hat{\vartheta}_s^{a,1} \Delta R_s + \hat{\vartheta}_s^{a,2} \Delta S_s \right)$

the true representative agent would be

$$\hat{u}_{t}(x) = \underset{\substack{\vartheta^{a} \in L^{\infty}(\mathcal{F}_{t})^{2} \\ \sum_{a \in \mathbb{A}} \vartheta^{a,2} = x}}{\operatorname{ess \, sup}} \sum_{a \in \mathbb{A}} U_{t}^{a} \left(H_{t+1}^{a} + \vartheta^{a,1} \Delta R_{t+1} + \vartheta^{a,2} \Delta S_{t+1} \right)$$

One-step representative agents

Set $H_T^a = H^a$ and $H_{t+1}^a = U_{t+1}^a \left(H^a + \sum_{s=t+2}^T \hat{\vartheta}_s^{a,1} \Delta R_s + \hat{\vartheta}_s^{a,2} \Delta S_s \right)$

the true representative agent would be

$$\hat{u}_{t}(x) = \underset{\substack{\vartheta^{a} \in L^{\infty}(\mathcal{F}_{t})^{2} \\ \sum_{a \in \mathbb{A}} \vartheta^{a,2} = x}}{\operatorname{ess \, sup}} \sum_{a \in \mathbb{A}} U_{t}^{a} \left(H_{t+1}^{a} + \vartheta^{a,1} \Delta R_{t+1} + \vartheta^{a,2} \Delta S_{t+1} \right)$$

But S_t is not known. So define

$$\hat{u}_{t}(x) = \underset{\substack{\vartheta^{a} \in L^{\infty}(\mathcal{F}_{t})^{2} \\ \sum_{a \in \vartheta^{a,2}} = x}}{\operatorname{ess \, sup}} \sum_{a} U_{t}^{a} \left(H_{t+1}^{a} + \vartheta^{a,1} \Delta R_{t+1} + \vartheta^{a,2} S_{t+1} \right)$$

 \hat{u}_t is \mathcal{F}_t -concave

Convex dual characterization of equilibrium

Theorem A bounded, adapted process $(S_t)_{t=0}^T$ satisfying $S_T = S$ together with trading strategies $(\hat{\vartheta}_t^a)_{t=1}^T, a \in \mathbb{A}$, form an equilibrium \iff for all t:

(i) $S_t \in \partial \hat{u}_t(n)$ (ii) $\sum_{a \in \mathbb{A}} U_t^a (H_{t+1}^a + \hat{\vartheta}_{t+1}^{a,1} \Delta R_{t+1} + \hat{\vartheta}_{t+1}^{a,2} S_{t+1}) = \hat{u}_t(n)$ (iii) $\sum_{a \in \mathbb{A}} \hat{\vartheta}_{t+1}^{a,2} = n$

Assumption (A)

For all $t = 0, \ldots, T - 1$, $V^a \in L^{\infty}(\mathcal{F}_{t+1})$, $W \in L^{\infty}(\mathcal{F}_{t+1})$, there exist $\hat{\vartheta}^a_{t+1} \in L^{\infty}(\mathcal{F}_t)^2$, $a \in \mathbb{A}$, such that

$$\sum_{a \in \mathbb{A}} \hat{\vartheta}_{t+1}^{a,2} = 0$$

and

$$= \sum_{a \in \mathbb{A}} U_t^a \left(V^a + \hat{\vartheta}_{t+1}^{a,1} \Delta R_{t+1} + \hat{\vartheta}_{t+1}^{a,2} W \right)$$

$$= \operatorname{ess\,sup}_{\substack{\vartheta_{t+1}^a \in L^{\infty}(\mathcal{F}_t)^2 \\ \sum_{a \in \mathbb{A}} \vartheta_{t+1}^{a,2} = 0}} \sum_{a \in \mathbb{A}} U_t^a \left(V^a + \vartheta_{t+1}^{a,1} \Delta R_{t+1} + \vartheta_{t+1}^{a,2} W \right).$$

Lemma Under assumption (A) an equilibrium exists

Definition

 U_0^a is sensitive to large losses if

 $\lim_{\lambda \to \infty} U_0^a(\lambda X) = -\infty$

for all $X \in L^{\infty}(\mathcal{F}_T)$ such that $\mathbb{P}[X < 0] > 0$.

Theorem

If all U_0^a are sensitive to large losses, then condition (A) is satisfied and an equilibrium exists.

Remark

The theorem also works with convex trading constraints.

Proposition

If the market is in equilibrium and at least one agent has strictly monotone preferences and open trading constraints, then there exists a probability measure $\mathbb{Q} \sim \mathbb{P}$ such that $R_t = \mathbb{E}_{\mathbb{Q}} [R_T | \mathcal{F}_t]$ and $S_t = \mathbb{E}_{\mathbb{Q}} [R_T | \mathcal{F}_t]$.

Differentiable preferences

We say U_t^a satisfies the differentiability condition (**D**) if for all $X, Y \in L^{\infty}(\mathcal{F}_{t+1})$, there exists $Z \in L^1(\mathcal{F}_{t+1})$ such that

$$\lim_{k \to \infty} k \left(U_t^a \left(X + \frac{Y}{k} \right) - U_t^a(X) \right) = \mathbb{E} \left[YZ \mid \mathcal{F}_t \right].$$

If such a Z exists, it has to be unique, and we denote it by $\nabla U_t^a(X)$.

Differentiable preferences

We say U_t^a satisfies the differentiability condition (**D**) if for all $X, Y \in L^{\infty}(\mathcal{F}_{t+1})$, there exists $Z \in L^1(\mathcal{F}_{t+1})$ such that

$$\lim_{k \to \infty} k\left(U_t^a\left(X + \frac{Y}{k}\right) - U_t^a(X) \right) = \mathbb{E}\left[YZ \mid \mathcal{F}_t\right].$$

If such a Z exists, it has to be unique, and we denote it by $\nabla U_t^a(X)$.

Theorem If at least one U_t^a satisfies (D), then there can exist at most one equilibrium price process $(S_t)_{t=0}^T$, and if the market is in equilibrium, then

$$\frac{d\mathbb{Q}_t^a}{d\mathbb{P}} := \nabla U_t^a \left(H^a + \sum_{s=1}^T \hat{\vartheta}_s^{a,1} \Delta R_s + \hat{\vartheta}_s^{a,2} \Delta S_s \right)$$

defines a pricing measure.

Random walks and $BS\Delta Es$

Fix h > 0 and $N \in \mathbb{N}$ Denote $\mathbb{T} = \{0, h, \dots, T = Nh\}$ $b_t^1, \dots, b_t^d \quad d$ independent random walks with $P[\Delta b_{t+h}^i = \pm \sqrt{h}] = 1/2$ $b_t^{d+1}, \dots, b_t^D \quad 2^d - (d+1)$ random walks orthogonal to b_t^1, \dots, b_t^d Every $X \in L^{\infty}(\mathcal{F}_{t+h})$ can be represented as

 $X = \mathbb{E}\left[X \mid \mathcal{F}_t\right] + \pi_t(X) \cdot \Delta b_{t+h}$

for

$$\pi_t(X) \cdot \Delta b_{t+h} = \sum_{i=1}^D \pi_t^i(X) \Delta b_{t+h}^i \quad \text{and} \quad \pi_t^i(X) = \frac{1}{h} \mathbb{E} \left[X \Delta b_{t+h}^i \mid \mathcal{F}_t \right].$$

 $U_t^a(X) = U_t^a\left(\mathbb{E}\left[X|\mathcal{F}_t\right] + \pi_t(X) \cdot \Delta b_{t+h}\right) = \mathbb{E}\left[X \mid \mathcal{F}_t\right] - f_t^a(\pi_t(X))h$

for the \mathcal{F}_t -convex function $f_t^a: L^\infty(\mathcal{F}_t)^D \to L^\infty(\mathcal{F}_t)$ given by

$$f_t^a(z) := -\frac{1}{h} U_t^a(z \cdot \Delta b_{t+h}) \,.$$

Assume condition (A) is satisfied and all U_t^a satisfy the differentiability condition (D).

Then there exists $\nabla f_t^a(z) \in L^\infty(\mathcal{F}_t)^D$ such that

$$\lim_{k \to \infty} k \left(f_t^a(z + z'/k) - f_t^a(z) \right) = z' \cdot \nabla f_t^a(z)$$

Random walks and $BS\Delta Es$

For given R_{t+h} , S_{t+h} , H^a_{t+h} denote

$$\begin{aligned} Z_{t+h}^{R} &:= \pi_{t}(R_{t+h}) \\ Z_{t+h}^{S} &:= \pi_{t}(S_{t+h}) \\ Z_{t+h}^{a} &:= \pi_{t}(H_{t+h}^{a}) \\ Z_{t+h} &= (Z_{t+h}^{R}, Z_{t+h}^{S}, Z_{t+h}^{a}, a \in \mathbb{A}) \,. \end{aligned}$$

and define the function $f_t: L^{\infty}(\mathcal{F}_t)^{(3+|\mathbb{A}|)D} \to L^{\infty}(\mathcal{F}_t)$ by

$$= \begin{array}{c} f_t(v, Z_{t+h}) \\ = & \underset{\vartheta^a \in L(\mathcal{F}_t)^2}{\operatorname{ess inf}} & \sum_{a \in \mathbb{A}} f_t^a \left(\frac{v}{|\mathbb{A}|} + Z_{t+h}^a + \vartheta_{t+h}^{a,1} Z_{t+h}^R + \vartheta_{t+h}^{a,2} Z_{t+h}^S \right) \\ & \sum_{a \in \mathbb{A}} \vartheta^{a,2} = 0 \\ & - \vartheta_{t+h}^{a,1} \frac{\mathbb{E} \left[\Delta R_{t+h} \mid \mathcal{F}_t \right]}{h}. \end{array}$$

Set

$$\begin{split} g_{t}^{S}(Z_{t+h}) &:= Z_{t+h}^{S} \cdot \nabla^{v} f_{t}(n Z_{t+h}^{S}, Z_{t+h}) \\ g_{t}^{a}\left(Z_{t+h}\right) &:= f_{t}^{a}\left(Z_{t+h}^{a} + \hat{\vartheta}_{t+h}^{a,1} Z_{t+h}^{R} + \hat{\vartheta}_{t+h}^{a,2} Z_{t+h}^{S}\right) \\ &- \hat{\vartheta}_{t+h}^{a,1} \frac{1}{h} \mathbb{E}\left[\Delta R_{t+h} \mid \mathcal{F}_{t}\right] - \hat{\vartheta}_{t+h}^{a,2} g_{t}^{S}(Z_{t+h}). \end{split}$$

The processes (S_t) and (H_t^a) satisfy the following coupled system of BS Δ Es

$$\Delta S_{t+h} = g_t^S(Z_{t+h})h + Z_{t+h}^S \cdot \Delta b_{t+h}, \quad S_T = S$$

$$\Delta H_{t+h}^a = g_t^a(Z_{t+h})h + Z_{t+h}^a \cdot \Delta b_{t+h}, \quad H_T^a = H.$$

Example

Assume that the price of the exogenous asset is given by

$$\Delta R_{t+h} = R_t(\mu h + \sigma \Delta b_{t+h}^1), \quad R_0 > 0$$

and agent a's preference functional is

$$U_t^a(X) = -\frac{1}{\gamma^a} \log \mathbb{E} \left[\exp(-\gamma^a X) \mid \mathcal{F}_t \right] \text{ for some } \gamma^a > 0.$$

Then

$$U_t^a(X) = \mathbb{E}\left[X \mid \mathcal{F}_t\right] - f_t^a(\pi_t(X))h$$

for

$$f_t^a(z) = \frac{1}{h\gamma^a} \log \mathbb{E} \left[\exp(-\gamma^a z \cdot \Delta b_{t+h}) \right] .$$

Neglect the random walks b^{d+1}, \ldots, b^D

and use the approximation

$$\frac{1}{h\gamma^a} \sum_{i=1}^d \log \cosh\left(\sqrt{h}\gamma^a z^i\right) \approx \frac{\gamma^a}{2} \sum_{i=1}^d (z^i)^2$$

Then the BS ΔE of the last theorem yields ...

Random walks and $BS\Delta Es$

... the recursive algorithm

$$\begin{aligned} S_t &= \mathbb{E}\left[S_{t+1} \mid \mathcal{F}_t\right] - g_t^S h \,, \qquad S_T = S \\ H_t^a &= \mathbb{E}\left[H_{t+1}^a \mid \mathcal{F}_t\right] - g_t^a h \,, \qquad H_T^a = H^a \,, \end{aligned}$$

where

$$g_{t}^{S} = \frac{1}{c^{RR}} \left[c^{RS} \mu S_{t} + \gamma \left(n \left\{ c^{RR} c^{SS} - c^{RS} c^{RS} \right\} + c^{RA} c^{RR} - c^{SR} c^{RA} \right) \right] g_{t}^{a} = \frac{\gamma^{a}}{2} \left\| Z_{t+h}^{a} + \hat{\vartheta}_{t+h}^{a,1} Z_{t+h}^{R} + \hat{\vartheta}_{t+h}^{a,2} Z_{t+h}^{S} \right\|_{2}^{2} - \hat{\vartheta}_{t+h}^{a,1} \mu R_{t} - \hat{\vartheta}_{t+h}^{a,2} g_{t}^{S} \hat{\vartheta}_{t+h}^{a,1} = \frac{\mu S_{t}}{\gamma^{a} c^{RR}} + \frac{c^{SR} c^{Sa} - c^{Ra} c^{SS}}{c^{RR} c^{SS} - c^{RS} c^{RS}} - \frac{c^{RS}}{c^{RR}} \frac{\gamma}{\gamma^{a}} \left(n + \frac{c^{RR} c^{SA} - c^{RS} c^{AR}}{c^{RR} c^{SS} - c^{RS} c^{RS}} \right)$$

$$\hat{\vartheta}_{t+h}^{a,2} = n\frac{\gamma}{\gamma^a} + \frac{c^{RS}c^{Ra} - c^{Sa}c^{RR} - \frac{\gamma}{\gamma^a}\left(c^{RS}c^{RA} - c^{RR}c^{SA}\right)}{c^{RR}c^{SS} - c^{RS}c^{RS}}$$

$$\begin{array}{l} \text{for } \gamma := (\sum_{a} (\gamma^{a})^{-1})^{-1}, \\ c^{RR} := Z^{S}_{t+h} \cdot Z^{S}_{t+h}, \quad c^{SR} := Z^{S}_{t+h} \cdot Z^{R}_{t+h}, \quad c^{SA} := Z^{S}_{t+h} \cdot \sum_{a} Z^{a}_{t+h}, \quad \dots \end{array}$$

Example

Let B_t^R , B_t^S , B_t^a , $a \in \mathbb{A}$, be independent Brownian motions

$$dR_t = \mu R_t dt + \sigma R_t dB_t^R, \quad R_0 > 0$$

and suppose agent a's preference functional is

$$U_t^a(X) = -\frac{1}{\gamma^a} \log \mathbb{E} \left[\exp(-\gamma^a X) \mid \mathcal{F}_t \right] \quad \text{for some} \quad \gamma^a > 0 \,.$$

Brownian motion and BSDEs

The BSDE corresponding to the above BSDE is

$$dS_t = g_t^S dt + Z_t^S \cdot dB_t, \qquad S_T = S$$

$$dH_t^a = g_t^a dt + Z_t^a \cdot dB_t, \qquad H_T^a = H^a,$$

where

$$\begin{split} g_{t}^{S} &= \frac{1}{c^{RR}} \left[c^{RS} \mu S_{t} + \gamma \left(n \left\{ c^{RR} c^{SS} - c^{RS} c^{RS} \right\} + c^{RA} c^{RR} - c^{SR} c^{RA} \right) \right] \\ g_{t}^{a} &= \frac{\gamma^{a}}{2} \left\| Z_{t}^{a} + \hat{\vartheta}_{t}^{a,1} Z_{t}^{R} + \hat{\vartheta}_{t}^{a,2} Z_{t}^{S} \right\|_{2}^{2} - \hat{\vartheta}_{t}^{a,1} \mu R_{t} - \hat{\vartheta}_{t}^{a,2} g_{t}^{S} \\ \hat{\vartheta}_{t}^{a,1} &= \frac{\mu S_{t}}{\gamma^{a} c^{RR}} + \frac{c^{SR} c^{Sa} - c^{Ra} c^{SS}}{c^{RR} c^{SS} - c^{RS} c^{RS}} - \frac{c^{RS}}{c^{RR}} \frac{\gamma}{\gamma^{a}} \left(n + \frac{c^{RR} c^{SA} - c^{RS} c^{AR}}{c^{RR} c^{SS} - c^{RS} c^{RS}} \right) \end{split}$$

$$\hat{\vartheta}_t^{a,2} = n\frac{\gamma}{\gamma^a} + \frac{c^{RS}c^{Ra} - c^{Sa}c^{RR} - \frac{\gamma}{\gamma^a}\left(c^{RS}c^{RA} - c^{RR}c^{SA}\right)}{c^{RR}c^{SS} - c^{RS}c^{RS}}$$

for

$$c^{RR} := Z^R_t \cdot Z^R_t, \quad c^{RS} := Z^R_t \cdot Z^S_t, \quad c^{RA} := Z^R_t \cdot \sum_a Z^a_t, \quad \dots$$

Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility (I) No demand pressure

frequent hedging

infrequent hedging

Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility (II) Positive demand pressure

frequent hedging

infrequent hedging

Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility (III) Positive demand pressure and short selling constraints

