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Motivation

Price processes are martingales under Q

e Harrison-Kreps (1979). Martingales and arbitrage in
multiperiod security markets.

e Harrison-Pliska. (1981). Martingales and stochastic
integrals in the theory of continuous trading.

e Dalang—Morton—Willinger (1989). Equivalent martingale
measures and no-arbitrage in stochastic securities market
models.

@ Delbaen (1992). Representing martingale measures when
asset prices are continuous and bounded.

e Schachermayer (1993). Martingale measures for discrete
time processes with infinite horizon.

e Delbaen—Schachermayer (1994). A general version of the
fundamental theorem of asset pricing.

e Delbaen—Schachermayer (1998). The fundamental theorem
of asset pricing for unbounded stochastic processes.
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Motivation

Usual approach to derivatives pricing:

@ Model the underlying securities as a J-dimensional
stochastic process (R;) on a probability space (2, F,P)

@ Price derivatives by Eq [.] for some equivalent martingale
measure Q ~ P

In complete markets: Q is unique
binomial tree models, Black—Scholes model ...

In incomplete markets: Q is not unique
trinomial tree models, GARCH-type models,
stochastic volatility models, jump-diffusion models,

Levy-process models, more general semimartingale models



Motivation

Problem:

Choose a pricing measure Q among all equivalent martingale
measures

Some commonly used methods:
© Parameterize Qp, § € © and calibrate to market data of

traded derivatives ... via d(% or without P.
E.g. build a stoch vol model or local vol model directly

under Q

© Choose Q so that it minimizes some distance to P,
e.g. LP-distance, relative entropy, f-divergence ...

© Indifference pricing
Q ..



Motivation

Our goal: derive Q from equilibrium considerations

Some motivating Examples

Horst and Miiller (2007).
On the spanning property of risk bonds priced by equilibrium

Bakshi, Kapadia and Madan (2003).

Stock return characteristics, skew laws, and the differential
pricing of individual equity options

Garleanu, Pedersen and Poteshman (2009).

Demand-based option pricing

Carmona, Fehr, Hinz and Porchet (2010).

Market design for emission trading schemes.



@ Model

@ Existence of equilibrium

© Uniqueness of equilibrium

@ Random walks and BSAEs
© Brownian motion and BSDEs

O Option pricing under demand pressure
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Model

Ingredients

filtered probability space (€2, F, (F;)L, P)
money market account with » =0
exogenous asset ()], satisfying (NA)

structured product in external supply n with final payoff
S e L™ (.FT)

a group of finitely many agents A

agent a € A is endowed with an uncertain payoff
H® — ga,RRT 4 ga,SST + Qe

at time ¢ agent a invests to optimize a preference functional

Uf : L(Fr) = L=(F)
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Model

We assume U has the following properties:
(N) Normalization  Uf(0) =0

(M) Monotonicity
UMX) > UMY) for all X,Y € L*°(Fr) such that X > Y

(C) Fi-Concavity
UFOX + (1= AY) = AUHX) + (1 — NUE(Y) for all
X,Y € L*>®(Fr) and A € L>®(F;) such that 0 < A <1

(T) Translation property
UMX+Y)=UX)+Y forall X € L>*(Fr) and
Y e L™ (ft)

(TC) Time-consistency
Ufp1(X) 2 Uy (Y) - implies  Uf(X) > Uf(Y)

& Uf(X) = U (U (X))



Model

Related to coherent and convex risk measures

o Artzner-Delbaen—Eber—Heath (1999).
Coherent measures of risk.

e Follmer—Schied (2002).
Convex measures of risk and trading constraints

e Frittelli-Rosazza Gianin (2002).
Putting order in risk measures.



Model

Examples
1) UM(X) = —%logE [e™7% | F]
2) Uf(X) =E[X | ] - AE [(X —~E[X | R))* | F]

3) UMX)=(1—-NE[X | Ft] — Ape(X)

where p; is a conditional convex risk measure



Model

An equilibrium of plans, prices and price expectations a la
Radner (1972) consists of
o an adapted process (S;)/_, with S; = S
o trading strategies (0%)7,
such that the following hold:
(i) individual optimality

T
Us (H“ + ) J¢'AR, +19§’2ASS)
s=t+1

T
> U (Hu > ﬁg’lARs+ﬁ§’2ASS>
s=t+1

for every ¢ and all possible strategies (V%)

ii) market clearin 99? =
g achA Yt



Model

Hart (1975) On the optimality of equilibrium when the market
structure is incomplete:

In general, a Radner equilibrium does not exist, and if there is
one, it is not unique.



Existence

One-step representative agents
Set Hf = H® and
He, =US, <H + Y0 AR + '19;”2ASS)
the true representative agent would be
g (x) = ess sup Z U (Hpy + 9" ARy + 9“2 AS; 1)
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Existence

One-step representative agents

Set Hf = H® and
He, =US, <H + Y0 AR + 19,‘;%58)

the true representative agent would be

g (z) = ess sup Z U (Hpy + 9" ARy + 9“2 AS; 1)
9 e L™ (ft)Q achA
s 0 =

But S; is not known. So define

() = ess sup Z Uy (H;ﬂ_l + 19“’1ARH1 + 19“’2&“)
V4 € L®(F)? a
Y oac 92 =g

U 18 Fp-concave



Existence

Convex dual characterization of equilibrium

Theorem A bounded, adapted process (S;)]_, satisfying
St = S together with trading strategies (19?)?:1 a € A, form an

equilibrium <= for all ¢:
(i) Sy € dug(n)
(i) Ypen U (Hisy + 935 ARr + 0771 Se41) = d(n)

(i) > gea 797‘-5-1 =n



Existence

Assumption (A)
Forallt=0,...,T -1, V* e LOO(Ft_A,_l), W e Loo(ft_t,_l),
there exist ﬁgﬂ € L>®(F;)?, a € A, such that

S =0

a€A

and

S U (Ve AR + 05 W)
achA

= ess sup Z Uf (V“ + 291+1AR15+1 + L9t+1W>
031 € L=(F)?
ZaEA 19?+1 0

Lemma Under assumption (A) an equilibrium exists



Existence

Definition

U§ is sensitive to large losses if

lim Uf(AX) = —o0

A—00

for all X € L°°(Fy) such that P[X < 0] > 0.

Theorem
If all U§ are sensitive to large losses,

then condition (A) is satisfied and an equilibrium exists.

Remark

The theorem also works with convex trading constraints.



Existence

Proposition

If the market is in equilibrium and at least one agent has
strictly monotone preferences and open trading constraints,
then there exists a probability measure Q ~ [P such that

Rt = E@ [RT ‘ ]:t] and St = EQ [RT ’ .7:75}



Uniqueness

Differentiable preferences

We say U} satisfies the differentiability condition (D) if for all
X,Y € L*®(Fi41), there exists Z € L'(F;y1) such that

lim (Uﬂ (X + Z) - Uﬁ(X)) —E[YZ|F]

k—o0

If such a Z exists, it has to be unique, and we denote it by
VU (X).



Uniqueness

Differentiable preferences

We say U} satisfies the differentiability condition (D) if for all
X,Y € L*®(Fi41), there exists Z € L'(F;y1) such that

lim (Uﬂ (X + Z) - Uﬁ(X)) —E[YZ|F]

k—o0

If such a Z exists, it has to be unique, and we denote it by
VU (X).

Theorem If at least one U} satisfies (D), then there can exist
at most one equilibrium price process (S;)]_, and if the market
is in equilibrium, then

dQy .
t . a a qa,1 qa,2
L= VU <H +;1193 AR + ¢ AS,,,>

defines a pricing measure.



Random walks and BSAEs

Fix h >0and N € N
Denote T = {0,h,...,T = Nh}

b ..., bd d independent random walks with
P[Ab:,, = +Vh] =1/2
bf“, ...,bP 29— (d+1) random walks orthogonal to b}, ..., b}

Every X € L°(F;p) can be represented as
X=E [X | ]:t} + Wt(X) : Abt+h

for

) - Abpp, = wa JAb,,, and m(X)=—-E[XAb, ., |F].

h



Random walks and BSAEs

U (X) = U (B [X|F] + m(X) - Abgyn) = E[X | F]—fi (me(X))h
for the F;-convex function f{ : L>(F)P — L*°(F,) given by

*Q, 1 a
fi(z) = _%Ut (2 Abein).

Assume condition (A) is satisfied and all U satisfy the
differentiability condition (D).

Then there exists V f{(z) € L>(F;)" such that

klgl;ok: (fi(z+2'/k) = [i(2)) =2 - V[i(2)



Random walks and BSAEs

For given R;yp, Stin, HY, denote

ZEn = mi(Ren)
Zin = m(Sin)
trn = m(Hiyp)
Zin = (ZEp 2o, Zipra € A).

and define the function f; : Loo(]:t)(?’HADD — L>(F;) by

fi(v, Ziyn)
. . v 1 R a,2 S
= essinf i < + Z8 g+ 2, + 0 VthJrh)
9 € L(F;)? anA A o -
ZaeA 79(1,2 =0

RYS! E[AR; 1, | Fi]
~Yt+h h :



Random walks and BSAEs

Set
9 (Zesn) = Zi VD, Zien)
Gt (Zeen) = (2 + 0528 + 950,750

Ja,l 1 qa,2 y
_19t+h7LE [ARyin | Fi] — ﬁghgf(zwh)-



Random walks and BSAEs

The processes (S;) and (H;') satisfy the following
coupled system of BSAEs

ASien = g (Zin)h+ Z0y - Db, Sr=158
ivn = Gi (Zesn) h+ 2y, - Abpyp, Hp=H.



Random walks and BSAEs

Example
Assume that the price of the exogenous asset is given by
ARy, = Ri(ph + oAby,,,), Ro>0

and agent a’s preference functional is
1
Uf(X) = o log E [exp(—v*X) | /¢] for some ~% >0.

Then
UH(X) =E[X | A] - f{(m(X))h

for .
i(z) = hya log E [exp(—7“2 - Abiip)] -



Random walks and BSAEs

Neglect the random walks b+, ... bP

cey

and use the approximation

d

d “ '
hlv“ [z; log cosh (\/Efy“zi) R~ /? z:(z’)2

i=1

Then the BSAE of the last theorem yields ...



... the recursive algorithm

Random walks and BSAEs

_ S _
St —E[St+1|]:t]fgth, ST—S
HY =E[H,|F]—-gth, Hf=H",
where
gf = =z [CRb/LSt +r (n {CRRCbb - CRbCRb} 1 (RALRR _ C‘SRCRA)]
’\/a ~a.l R a2 S 2 Ja,l qa,2 S
a a a, a, a, a,
9y = o || “t+h + 0 Zikn + 1915+th+hH2 = ip iRy — 9,94
- 1S, ¢SRSa _ .Ra.SS RS ¢RR.SA _ .RS.AR
L = + — — —— (n+ - :
t+h NacRR T (RRSS — (RScRS — (RR a CRR;SS5 _ (RS.RS
o2 5 RS ¢Ra _ (Sa RR _ 3 (CRSCRA _ CRRCSA>
9 = n—+ -
t+h ~a RR.SS _ oRS.RS
o —1y-1
for v:=(3_,(v*) 1),
RR ._ 7S S SR ._ 78 R SA ._ 7S a
=2 Ly, O =L Dy, 0 = Zt+h'2a Zin



Brownian motion and BSDEs

Example

Let B[, Bf , B, a € A, be independent Brownian motions

dR; = pRydt + o R dBE, Ry >0

and suppose agent a’s preference functional is

1
Ui (X) = e logE[exp(—*X) | /;] for some ~*>0.



Brownian motion and BSDEs

The BSDE corresponding to the above BSDE is
dSt = 0 dt—‘rZ‘S dBf ST:S
dH} = g}dt+ Z} - dBy, H} = H®,

where
g R _SS RS RS RA _RR SR _RA
gf = ﬁ[cﬁbuSt+’y(n{cRRc —cc }+c c—cc )]
& 1 2 1 2 ¢
g; _ ’} ,lga ZR + 19(1 ZSH (L ,U/Rf 19@ S‘
&a,l B S, N SReSa _ o Ra.SS B RS v CRRCSA _ BS AR
t 7 ~acRR T (RR(SS _ (RScRS — (RR ~a ¢RR:SS _ RS :RS
cRSoRa _ Sa RR _ 7 (CRS LRA RR(,SA>
éafz _ ’fll + g g - - ~a b
¢ e ¢RR-SS _ .RS.RS
for

RR ._ 7R 7R RS ._ 7R S RA ._ 7R a
cvt=20 4, =247, ¢ .—Zt-g A



Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(I) No demand pressure

frequent hedging infrequent hedging
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Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(IT) Positive demand pressure

frequent hedging infrequent hedging
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Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(ITI) Positive demand pressure and short selling
constraints

o o

> = &

] = =
|

Implied volatility

o
[

85 90 95 100 106 110 115
Discounted strike
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