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Motivation

Price processes are martingales under Q
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measures and no-arbitrage in stochastic securities market
models.
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asset prices are continuous and bounded.
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Motivation

Usual approach to derivatives pricing:

1 Model the underlying securities as a J-dimensional
stochastic process (Rt) on a probability space (Ω,F ,P)

2 Price derivatives by EQ [ . ] for some equivalent martingale
measure Q ∼ P

In complete markets: Q is unique

binomial tree models, Black–Scholes model ...

In incomplete markets: Q is not unique

trinomial tree models, GARCH-type models,

stochastic volatility models, jump-diffusion models,

Levy-process models, more general semimartingale models
...
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Motivation

Problem:

Choose a pricing measure Q̂ among all equivalent martingale
measures

Some commonly used methods:

1 Parameterize Q̂θ, θ ∈ Θ and calibrate to market data of

traded derivatives ... via dQ̂θ
dP or without P.

E.g. build a stoch vol model or local vol model directly
under Q̂

2 Choose Q̂ so that it minimizes some distance to P,
e.g. Lp-distance, relative entropy, f -divergence ...

3 Indifference pricing

4 ...



Motivation

Our goal: derive Q̂ from equilibrium considerations

Some motivating Examples

Horst and Müller (2007).

On the spanning property of risk bonds priced by equilibrium

Bakshi, Kapadia and Madan (2003).

Stock return characteristics, skew laws, and the differential
pricing of individual equity options

Garleanu, Pedersen and Poteshman (2009).

Demand-based option pricing

Carmona, Fehr, Hinz and Porchet (2010).

Market design for emission trading schemes.
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Model

Ingredients

filtered probability space (Ω,F , (Ft)Tt=0,P)

money market account with r ≡ 0

exogenous asset (Rt)
T
t=0 satisfying (NA)

structured product in external supply n with final payoff
S ∈ L∞(FT )

a group of finitely many agents A
agent a ∈ A is endowed with an uncertain payoff
Ha = ga,RRT + ga,SST +Ga

at time t agent a invests to optimize a preference functional

Uat : L∞(FT )→ L∞(Ft)
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Model

We assume Uat has the following properties:

(N) Normalization Uat (0) = 0

(M) Monotonicity
Uat (X) ≥ Uat (Y ) for all X,Y ∈ L∞(FT ) such that X ≥ Y

(C) Ft-Concavity
Uat (λX + (1− λ)Y ) ≥ λUat (X) + (1− λ)Uat (Y ) for all
X,Y ∈ L∞(FT ) and λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1

(T) Translation property
Uat (X + Y ) = Uat (X) + Y for all X ∈ L∞(FT ) and
Y ∈ L∞(Ft)

(TC) Time-consistency
Uat+1(X) ≥ Uat+1(Y ) implies Uat (X) ≥ Uat (Y )

⇔ Uat (X) = Uat (Uat+1(X))
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Model

Related to coherent and convex risk measures

Artzner–Delbaen–Eber–Heath (1999).
Coherent measures of risk.

Föllmer–Schied (2002).
Convex measures of risk and trading constraints

Frittelli–Rosazza Gianin (2002).
Putting order in risk measures.



Model

Examples

1) Uat (X) = − 1
γ logE

[
e−γX | Ft

]
2) Uat (X) = E [X | Ft]− λE

[
(X − E [X | Ft])2 | Ft

]
3) Uat (X) = (1− λ)E [X | Ft]− λρt(X)

where ρt is a conditional convex risk measure



Model

An equilibrium of plans, prices and price expectations à la
Radner (1972) consists of

an adapted process (St)
T
t=0 with ST = S

trading strategies (ϑ̂at )
T
t=1

such that the following hold:

(i) individual optimality

Uat

(
Ha +

T∑
s=t+1

ϑ̂a,1s ∆Rs + ϑ̂a,2s ∆Ss

)

≥ Uat

(
Ha +

T∑
s=t+1

ϑa,1s ∆Rs + ϑa,2s ∆Ss

)

for every t and all possible strategies (ϑas)

(ii) market clearing
∑

a∈A ϑ̂
a,2
t = n



Model

Hart (1975) On the optimality of equilibrium when the market
structure is incomplete:

In general, a Radner equilibrium does not exist, and if there is
one, it is not unique.



Existence

One-step representative agents

Set Ha
T = Ha and

Ha
t+1 = Uat+1

(
Ha +

∑T
s=t+2 ϑ̂

a,1
s ∆Rs + ϑ̂a,2s ∆Ss

)
the true representative agent would be

ût(x) = ess sup
ϑa ∈ L∞(Ft)2∑
a∈A ϑ

a,2 = x

∑
a∈A

Uat
(
Ha
t+1 + ϑa,1∆Rt+1 + ϑa,2∆St+1

)

But St is not known. So define

ût(x) = ess sup
ϑa ∈ L∞(Ft)2∑

a∈ ϑ
a,2 = x

∑
a

Uat
(
Ha
t+1 + ϑa,1∆Rt+1 + ϑa,2St+1

)

ût is Ft-concave
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ût is Ft-concave



Existence

Convex dual characterization of equilibrium

Theorem A bounded, adapted process (St)
T
t=0 satisfying

ST = S together with trading strategies (ϑ̂at )
T
t=1, a ∈ A, form an

equilibrium ⇐⇒ for all t:

(i) St ∈ ∂ût(n)

(ii)
∑

a∈A U
a
t (Ha

t+1 + ϑ̂a,1t+1∆Rt+1 + ϑ̂a,2t+1St+1) = ût(n)

(iii)
∑

a∈A ϑ̂
a,2
t+1 = n



Existence

Assumption (A)

For all t = 0, . . . , T − 1, V a ∈ L∞(Ft+1), W ∈ L∞(Ft+1),

there exist ϑ̂at+1 ∈ L∞(Ft)2, a ∈ A, such that∑
a∈A

ϑ̂a,2t+1 = 0

and ∑
a∈A

Uat

(
V a + ϑ̂a,1t+1∆Rt+1 + ϑ̂a,2t+1W

)
= ess sup

ϑat+1 ∈ L∞(Ft)2∑
a∈A ϑ

a,2
t+1 = 0

∑
a∈A

Uat

(
V a + ϑa,1t+1∆Rt+1 + ϑa,2t+1W

)
.

Lemma Under assumption (A) an equilibrium exists



Existence

Definition

Ua0 is sensitive to large losses if

lim
λ→∞

Ua0 (λX) = −∞

for all X ∈ L∞(FT ) such that P[X < 0] > 0.

Theorem

If all Ua0 are sensitive to large losses,

then condition (A) is satisfied and an equilibrium exists.

Remark

The theorem also works with convex trading constraints.



Existence

Proposition

If the market is in equilibrium and at least one agent has
strictly monotone preferences and open trading constraints,
then there exists a probability measure Q ∼ P such that
Rt = EQ [RT | Ft] and St = EQ [RT | Ft].



Uniqueness

Differentiable preferences

We say Uat satisfies the differentiability condition (D) if for all
X,Y ∈ L∞(Ft+1), there exists Z ∈ L1(Ft+1) such that

lim
k→∞

k

(
Uat

(
X +

Y

k

)
− Uat (X)

)
= E [Y Z | Ft].

If such a Z exists, it has to be unique, and we denote it by
∇Uat (X).

Theorem If at least one Uat satisfies (D), then there can exist
at most one equilibrium price process (St)

T
t=0, and if the market

is in equilibrium, then

dQa
t

dP
:= ∇Uat

(
Ha +

T∑
s=1

ϑ̂a,1s ∆Rs + ϑ̂a,2s ∆Ss

)
defines a pricing measure.
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Random walks and BS∆Es

Fix h > 0 and N ∈ N

Denote T = {0, h, . . . , T = Nh}

b1t , . . . , b
d
t d independent random walks with

P [∆bit+h = ±
√
h] = 1/2

bd+1
t , . . . , bDt 2d − (d+ 1) random walks orthogonal to b1t , . . . , b

d
t

Every X ∈ L∞(Ft+h) can be represented as

X = E [X | Ft] + πt(X) ·∆bt+h

for

πt(X) ·∆bt+h =

D∑
i=1

πit(X)∆bit+h and πit(X) =
1

h
E
[
X∆bit+h | Ft

]
.



Random walks and BS∆Es

Uat (X) = Uat (E [X|Ft] + πt(X) ·∆bt+h) = E [X | Ft]−fat (πt(X))h

for the Ft-convex function fat : L∞(Ft)D → L∞(Ft) given by

fat (z) := −1

h
Uat (z ·∆bt+h) .

Assume condition (A) is satisfied and all Uat satisfy the
differentiability condition (D).

Then there exists ∇fat (z) ∈ L∞(Ft)D such that

lim
k→∞

k
(
fat (z + z′/k)− fat (z)

)
= z′ · ∇fat (z)



Random walks and BS∆Es

For given Rt+h, St+h, Ha
t+h denote

ZRt+h := πt(Rt+h)

ZSt+h := πt(St+h)

Zat+h := πt(H
a
t+h)

Zt+h = (ZRt+h, Z
S
t+h, Z

a
t+h, a ∈ A) .

and define the function ft : L∞(Ft)(3+|A|)D → L∞(Ft) by

ft(v, Zt+h)

= ess inf
ϑa ∈ L(Ft)2∑
a∈A ϑ

a,2 = 0

∑
a∈A

fat

(
v

|A|
+ Zat+h + ϑa,1t+hZ

R
t+h + ϑa,2t+hZ

S
t+h

)

−ϑa,1t+h
E [∆Rt+h | Ft]

h
.



Random walks and BS∆Es

Set

gSt (Zt+h) := ZSt+h · ∇vft(nZSt+h, Zt+h)

gat (Zt+h) := fat

(
Zat+h + ϑ̂a,1t+hZ

R
t+h + ϑ̂a,2t+hZ

S
t+h

)
−ϑ̂a,1t+h

1

h
E [∆Rt+h | Ft]− ϑ̂a,2t+hg

S
t (Zt+h).



Random walks and BS∆Es

The processes (St) and (Ha
t ) satisfy the following

coupled system of BS∆Es

∆St+h = gSt (Zt+h)h+ ZSt+h ·∆bt+h , ST = S

∆Ha
t+h = gat (Zt+h)h+ Zat+h ·∆bt+h , Ha

T = H.



Random walks and BS∆Es

Example

Assume that the price of the exogenous asset is given by

∆Rt+h = Rt(µh+ σ∆b1t+h) , R0 > 0

and agent a’s preference functional is

Uat (X) = − 1

γa
logE [exp(−γaX) | Ft] for some γa > 0 .

Then
Uat (X) = E [X | Ft]− fat (πt(X))h

for

fat (z) =
1

hγa
logE [exp(−γaz ·∆bt+h)] .



Random walks and BS∆Es

Neglect the random walks bd+1, . . . , bD

and use the approximation

1

hγa

d∑
i=1

log cosh
(√

hγazi
)
≈ γa

2

d∑
i=1

(zi)2

Then the BS∆E of the last theorem yields ...



Random walks and BS∆Es

... the recursive algorithm

St = E [St+1 | Ft]− gSt h , ST = S

Ha
t = E

[
Ha
t+1 | Ft

]
− gat h , Ha

T = Ha ,

where

gSt =
1

cRR
[
cRSµSt + γ

(
n
{
cRRcSS − cRScRS

}
+ cRAcRR − cSRcRA

)]
gat =

γa

2

∥∥∥Zat+h + ϑ̂a,1t+hZ
R
t+h + ϑ̂a,2t+hZ

S
t+h

∥∥∥2
2
− ϑ̂a,1t+hµRt − ϑ̂

a,2
t+hg

S
t

ϑ̂a,1t+h =
µSt
γacRR

+
cSRcSa − cRacSS

cRRcSS − cRScRS
− cRS

cRR
γ

γa

(
n+

cRRcSA − cRScAR

cRRcSS − cRScRS

)

ϑ̂a,2t+h = n
γ

γa
+
cRScRa − cSacRR − γ

γa

(
cRScRA − cRRcSA

)
cRRcSS − cRScRS

for γ := (
∑
a(γa)−1)−1,

cRR := ZSt+h ·ZSt+h, cSR := ZSt+h ·ZRt+h, cSA := ZSt+h ·
∑
a Z

a
t+h, ...



Brownian motion and BSDEs

Example

Let BR
t , BS

t , Ba
t , a ∈ A, be independent Brownian motions

dRt = µRtdt+ σRtdB
R
t , R0 > 0

and suppose agent a’s preference functional is

Uat (X) = − 1

γa
logE [exp(−γaX) | Ft] for some γa > 0 .



Brownian motion and BSDEs

The BSDE corresponding to the above BSDE is

dSt = gSt dt+ ZSt · dBt , ST = S

dHa
t = gat dt+ Zat · dBt , Ha

T = Ha ,

where

gSt =
1

cRR
[
cRSµSt + γ

(
n
{
cRRcSS − cRScRS

}
+ cRAcRR − cSRcRA

)]
gat =

γa

2

∥∥∥Zat + ϑ̂a,1t ZRt + ϑ̂a,2t ZSt

∥∥∥2
2
− ϑ̂a,1t µRt − ϑ̂a,2t gSt

ϑ̂a,1t =
µSt
γacRR

+
cSRcSa − cRacSS

cRRcSS − cRScRS
− cRS

cRR
γ

γa

(
n+

cRRcSA − cRScAR

cRRcSS − cRScRS

)

ϑ̂a,2t = n
γ

γa
+
cRScRa − cSacRR − γ

γa

(
cRScRA − cRRcSA

)
cRRcSS − cRScRS

for

cRR := ZRt · ZRt , cRS := ZRt · ZSt , cRA := ZRt ·
∑
a

Zat , ...



Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(I) No demand pressure

frequent hedging infrequent hedging



Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(II) Positive demand pressure

frequent hedging infrequent hedging



Equilibrium prices of out-of-the-money put options

Zero endowments and stochastic volatility

(III) Positive demand pressure and short selling
constraints
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