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Coherent Risk Measures
Artzner, Delbaen, Eber and Heath (1999)

This theory was developed to assess the riskiness of �nancial positions and
specify a method to compute the capital requirement to be reported to the
regulatory agency.
The key idea was to provide a set of axioms that any reasonable
risk measure should have.

De�nition
A map � : L1 ! R is a coherent risk measure if the following properties
hold: for any X ;Y 2 L1

decreasing monotonicity: X � Y a.s. ) �(X ) � �(Y )
cash additivity: �(X +m) = �(X )�m; 8 m 2 R
positive homogeneity : �(�X ) = ��(X ); 8 � � 0, � 2 R
subadditivity: �(X + Y ) � �(X ) + �(Y ).
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Convex Risk Measures
Föllmer and Schied (2002) and F. and Rosazza (2002)

Later, the concept of coherent risk measure was extended by relaxing the
subadditivity and positive homogeneity conditions in favour of the weaker
convexity requirement, which allows to control the risk of a convex
combination by the combination of each single risk:

�(�X + (1� �)Y ) � ��(X ) + (1� �)�(Y ); 8 � 2 [0; 1]; � 2 R:

De�nition

A map � : L1 ! R is a convex risk measure if satis�es the following
conditions:

decreasing monotonicity

cash additivity

convexity

normalization: �(0) = 0
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Relation with Acceptance Sets

Given a set A �L1 of �acceptable positions�, it is possible to
associate a cash additive map �A

�A(X ) := inf fm 2 R jm + X 2 Ag :

Viceversa, any cash additive map � : L1 ! R can be written as the
minimal capital requirement:

�(X ) := inf fm 2 R jm + X 2 A�g

where the set
A� = fX 2 L1 : �(X ) � 0 g :

is called the acceptance set of �.

The properties of a risk measure can be deduced by those of the
acceptance set and viceversa.
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Cash-subadditive Risk Measures
El Karoui and Ravanelli (2009)

In a dynamic framework (with stochastic interest rate), El Karoui and
Ravanelli suggested that cash additivity should be replaced by:

De�nition
Cash-subadditive property:

�(X �m) � �(X ) +m; 8 m 2 R+:

If m $ are subtracted form a future position X then the present capital
requirement �(X �m) should not increase more than m $.
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Time consistency and convexity ... imply entropic risk
measure

Recall the following result by Kupper and Schachermayer (2009):

The only law invariant relevant convex and time consistent dynamic
risk measure is the entropic risk measure.

This also suggest - specially in the dynamic case - the enlargement of the
class of convex risk measures, provided we maintain the principle that
diversi�cation should not increase the risk .
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Quasiconvex Risk Measures
Cerreia-Vioglio, Maccheroni, Marinacci, Montrucchio (2011)

These authors underlined that the concept:

"diversi�cation should not increase the risk"

is exactly expressed by the quasi-convexity requirement:

�(�X + (1� �)Y ) � max f�(X ); �(Y )g ; 8 � 2 [0; 1] and � 2 R;

or equivalently:

the lower level sets fX 2 L1 : �(X ) � cg ; 8c 2 R; are convex.

Fact
Quasiconvexity and cash additivity ) convexity.
This is not true for quasiconvexity and cash-subadditivity
This is not true for � de�ned on distributions
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Convexity, lsc and "cash additivity" are incompatible
properties for maps on P(R)

Many risk measures adopted in practice are law invariant, i.e.:

X �D Y ) �(X ) = �(Y ):

In this case one may reformulate the theory considering maps
� : P(R)! R de�ned on the convex set of distributions P(R). However,
we shall see that

there are no convex lsc �cash-additive�maps � : P(R)! R (except
� =1).
There are plenty of quasi-convex lsc �cash-additive�maps
� : P(R)! R.
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Acceptability Indices (Cherny - Madan (2009) )

De�nition
A map � : L1 ! [0;1] satisfying Quasiconcavity, MON ("), Scale
Invariance and the Fatou property is called Acceptability Index.

Quoting (Cherny-Madan (2009)):

For a risk measure, all the positions are split in two classes:
acceptable and not acceptable.

In contrast, for an acceptability index we have a whole continuum of
degrees of acceptability de�ned by the system (Am), m 2 R; and the
index � measures the degree of acceptability of a trade.

Marco Frittelli (Milano Univ.) Complete Quasi-convex Duality ETH Zurich 10 / 64



Representation in terms of acceptance sets

If A is an acceptance set of random variables, then the map �A

�A(X ) , inf fm 2 R j X +m 2 Ag
= inf fm 2 R j X 2 fA �mgg
= � sup fm 2 R j X 2 Am := A+mg

is cash additive.

But if we abandon cash additivity there is no reason why we should
insist on having:

Am := A+m
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Acceptability Indices and associated acceptability family
Drapeau Kupper (2011)

Let (Am), m 2 R; be a collection of subsets Am � L1 such that

1 Am is convex, for any m
2 Am # with respect to m
3 Am is monotone (Y � X 2 Am ) Y 2 Am), for any m

Then
�(X ) := sup fm 2 R jX 2 Amg

is MON (") and Quasi-Concave.
Viceversa, to any MON (") and Quasi-Concave map � : L1 ! R we may
associate the acceptance set at level m:

Am� := fX 2 L1j�(X ) � mg

and (Am�) is an acceptability family.
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Example of quasi-convex risk measures based on
acceptance sets

We will show that the above simple construction is very useful, as it
can be used in practice to build several risk measures (as well as
performance indices) based on given reference families of acceptance
sets.

We will generalize the notion of the V@R by considering a risk
prudent agent who is willing to accept greater losses only with smaller
probabilities. To this end we introduce in the de�nition of V@R a
function � that describes - via the corresponding acceptance sets -
the balance between the amount of the loss and its probability.
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Dual representation of (static) quasi-convex
cash-subadditive risk measures

Theorem (Cerreia-Maccheroni-Marinacci-Montrucchio, 2011)

A function � : L1 ! R is QCO cash-subadditive MON (#) if and only if

�(X ) = max
Q2ba+(1)

R(EQ [�X ];Q);

R(m;Q) = inf f�(�) j � 2 L1 and EQ [��] = mg

where R : R� ba+(1)! R and R(m;Q) is the reserve amount required
today, under the scenario Q, to cover an expected loss m in the future.

This result follows from well known quasi-convex duality: Penot-Volle 90,
Volle 98.

It is well known that the representation results for risk measures may
be used in decision theory for the robust approach to model
uncertainty
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Dual representation

Under continuity assumptions, in the convex case:

�(X ) = sup
Q2P
fEQ [�X ]� �(Q)g

in the quasi-convex case

�(X ) = sup
Q2P
fR(EQ [�X ];Q)g

where P := fQ probability s.t. Q � Pg :

Cautious approach:

R (EQ [�X ] ;Q) � EQ [�X ]� ��(�Q):

Notice that a lsc convex � may be represented by many penalty
functions �, but only the "minimal" penalty � = �� is lsc and convex.
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Complete duality

In other terms, the Fenchel Coniugacy is complete:

there is one to one correspondence in the class of proper convex lsc
functions

� ! ��

Which is the corresponding complete duality in the quasi-convex case?

The answer for real valued maps � : E ! R is known: it is essentially
the class of evenly quasi convex functions.

We will address this problem in the conditional setting.
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Evenly convex sets

Let E be a topological vector space

De�nition
(Fenchel, 1952) A set C � E is Evenly Convex if it is the intersection of
open half spaces or equivalently if for every y =2 C there exists a
continuous linear functional � such that

�(y) < �(�) 8 � 2 C :

Both open convex sets and closed convex sets are evenly convex.

Let 0 2 C . C is evenly convex i¤ C = C 00:

[Martinex-Legaz (83-...), Rodriguez (01), Borwein Lewis (92)].
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Evenly convex functions

De�nition

A function � : E ! R is
1 Quasiconvex if all the lower level sets

fX 2 E j �(X ) � cg , c 2 R; are convex;

2 Evenly Quasiconvex if all the lower level sets fX 2 E j �(X ) � cg,
c 2 R; are evenly convex.

Indirect utility functions are evenly quasi convex.

[Crouzeix (77), Martinez-Legaz (91), Singer (97)]
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Simple properties about evenly convex maps

If � : E ! R is l.s.c. and quasi-convex then it is evenly quasi-convex.
If � : E ! R is u.s.c. and quasi-convex then it is evenly quasi-convex.
If � : E ! R then

�eqc (X ) = inf fm 2 R j X 2 eqc fY j �(Y ) � mgg :
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Why evenly quasiconvexity?

De�nition
There is a complete duality between a class R of maps

R : R� P ! R

and a class L of functions
� : E ! R

if for every � 2 L there exists a unique R 2 R such that

�(X ) = sup
Q2P

R(EQ [�X ];Q)

and viceversa.
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Literature in the STATIC case ( � : E ! R )

Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2009)
provide a complete duality, under fairly general conditions, for
monotone (") Evenly Quasiconcave real valued maps, hence covering
both cases of maps � : E ! R that are:

monotone (#), q.co. and l.s.c.
monotone (#), q.co. and u.s.c.

Drapeau and Kupper (2010) provide a similar solution, under weaker
assumptions on the vector space E , for maps � : E ! R that are:

monotone (#), q.co. and l.s.c.
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On the conditional setting: vector space approach

In the conditional (or dynamic Fs � Ft , s < t ) setting we consider:

G � F

� : LF ! LG

LF is a Topological Vector Space of F-measurable r.v. on (
;F ;P)
LG is a Topological Vector Space of G-measurable r.v. on (
;G;P)
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Example: the capital requirement

Let CT � E be a convex set and for m 2 R denote by vt(m; !) the price
at time t of m euros at time T . The function vt(m; �) will be in general G
measurable (e.g. vt(m; !) = Dt(!)m).

�CT ;vt (X )(!) = ess infY 2L0G
fvt(Y ; !) j X + Y 2 CT g:

Under suitable conditions on vt , the map �CT ;vt is a cash subadditive
quasi-convex (in general not convex) risk measure.
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Example: the Conditional Certainty Equivalent

Consider a Stochastic Dynamic Utility (SDU) u(x ; t; !)

u : R�[0;1)� 
! R[f�1g

De�nition
Let u be a SDU and X be a Ft measurable random variable. For each
s 2 [0; t], the backward Conditional Certainty Equivalent �s ;t(X ) of X is
the Fs measurable random variable solution of the equation:

u(�s ;t(X ); s; !) = E [u(X ; t; !)jFs ] :

This valuation operator �s ;t(X ) = u
�1 (E [u(X ; t; !)jFs ] ; s; !) is the

natural generalization to the dynamic and stochastic environment of the
classical de�nition of the certainty equivalent, as given in Pratt 1964.
Even if u(:; t; !) is concave �s ;t is not a concave functional, but it is
conditionally quasiconcave.
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Assumptions in the vector space case

The following representation theorem holds under the assumptions that:

L1 � LF � L0:

The dual space L�F � L1

The map � is regular:

(REG) 8A 2 G, �(X11A + X21CA ) = �(X1)1A + �(X2)1CA
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The dual representation of conditional quasiconvex maps
Vector space approach

Theorem
If � : LF ! LG is MON (#), QCO, REG and either �(LF ; L�F )-LSC or
�(LF ; L�F )-USC then

�(X ) = ess sup
Q2L�F\P

R(EQ [�X jG];Q)

where

R(Y ;Q) := ess inf
�2LF

f�(�) j EQ [��jG] �Q Y g; Y 2 LG

P =:
�
dQ
dP
j Q << P and Q probability

�
Exactly the same representation of the real valued case, but with
conditional expectations.
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Two more steps for the complete duality

In order to obtain the Complete Duality in the conditional setting we need:

to embed the theory in L0-Modules

to extend the notion of an evenly convex set to the conditional setting
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On L0 Modules

L0(
;G;P;R) = L0 L0(
;G;P;R) = L0

LpG(F) = L
0(G)Lp(F) = fYX j Y 2 L0(G); X 2 Lp(F)g

At time t every Ft -measurable (G = F t) random variable will be
known. Every Y 2 L0 = L0(
;G;P) will act as a �constant �when
computing the risk of a position.

[Guo (1992-2012) "Random Locally Convex Modules"]
[Filipovic, Kupper and Vogelpoth (2009), (2010) "Locally L0-convex
Modules"]
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On Topological L0 Modules

De�nition (Topological L0-module)

We say that (E ; �) is a topological L0-module if E is a L0-module and � is
a topology on E such that the module operation
(i) (E ; �)� (E ; �)! (E ; �), (x1; x2) 7! x1 + x2,
(ii) (L0; � 0)� (E ; �)! (E ; �), (; x2) 7! x2
are continuous w.r.t. the corresponding product topology.

Two selections for the topology on L0:

Guo: � 0 is the topology on L0 of the convergence in probability

FKV: � 0 is a uniform topology on L0 (here (L0; � 0) is only a
topological ring)
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Seminorms valued in L0

De�nition
A map k � k : E ! L0+ is a L

0-seminorm on E if

(i) kxk = jjkxk for all  2 L0 and x 2 E ,
(ii) kx1 + x2k � kx1k+ kx2k for all x1; x2 2 E .

The L0-seminorm k � k becomes a L0-norm if in addition

(iii) kxk = 0 implies x = 0.

Z will be a family of L0-seminorms satisfying in addition the property:

supfkxk j kxk 2 Zg = 0 i¤ x = 0;
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Separation theorems holds

De�nition (L0-module associated to Z)

We say that (E ;Z; �) is a L0-module associated to Z if:
1 Z is a family of L0-seminorms,
2 (E ; �) is a topological L0-module,
3 A net fx�g converge to x in (E ; �) i¤ kx� � xk converge to 0 in
(L0; � 0) for each k � k 2 Z:

In both setting (Guo and FKV) it was shown that appropriate versions
of (H-B) separation theorems holds

In both setting, the dual of the L0-module LpG(F) can be identi�ed
with the L0-module LqG(F):
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On the L0-Module LpG(F) (FKV 2009)

For every p � 1 let:

LpG(F) =: fX 2 L
0(
;F ;P) j kX jGkp 2 L0(
;G;P)g

where k � jGkp : L
0
G(F)! L

0
+(G)

kX jGkp =:
(

limn!1 E [jX jp ^ njG]
1
p if p < +1

ess: inffY 2 �L0(G) j Y � jX jg if p = +1

Then (LpG(F); k � jGkp) is an L0(G)-normed module having the product
structure:

LpG(F) = L
0(G)Lp(F) = fYX j Y 2 L0(G); X 2 Lp(F)g
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On the dual elements of LpG(F)
The dual elements can be identi�ed with conditional expectations

For p 2 [1;+1), any L0(G)-linear continuous functional

� : LpG(F)! L0(G)

can be identi�ed with a random variable Z 2 LqG(F),
1
p +

1
q = 1, s.t.

�(�) = E [Z � jG]:

Of course the � are regular:

8A 2 G; �(X11A + X21CA ) = �(X1)1A + �(X2)1CA

De�ne the set of normalized dual elements by:

Pq =
�
dQ
dP
2 LqG(F) j Q probability; E

�
dQ
dP
jG
�
= 1

�
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Countable Concatenation Property

From now on E = LpG(F) even though most of the results hold in general
framework.

(CSet) A subset C � E has the countable concatenation property if
for every countable partition fAngn � G and for every
countable collection of elements fXngn � C we haveP
n 1AnXn 2 C.

Given C �E , we denote by Ccc the countable concatenation hull of C,
namely the smallest set Ccc � C which satis�es (CSet)

Remark:
For p � 1, (Lp(F))cc = LpG(F).

Marco Frittelli (Milano Univ.) Complete Quasi-convex Duality ETH Zurich 34 / 64



Conditionally Evenly Convex Sets

Some components of C may degenerate to the entire space E : in this case
there is no hope to pointwise separate X from C .

Notation:
Fix a set C � E and the class A(C) := fA 2 G j C1A = E1Ag. We denote
by AC the G-measurable maximal element of the class A(C) and with DC
the (P-a.s. unique) complement of AC . Hence

C1AC = E1AC :

(i.e. 8X 2 E 9� 2 C : �1AC = X1AC).

De�nition
A set C is conditionally evenly convex if there exist L � LqG(F) such that

C =
\
�2L
fX 2 LpG(F) j �(X ) < Y� on DCg for some Y� 2 L0(G): (1)
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Conditionally Evenly Convex Sets

De�nition
For X 2 LpG(F) and C � L

p
G(F), we say that X is outside C if

1AfXg \ 1AC = ; for every A 2 G with A � DC and P(A) > 0.

Theorem
Let C � LpG(F). The following statements are equivalent:

1 C is conditionally evenly convex.
2 C satis�es (CSet) and for every X outside C there exists a � 2 LqG(F)
such that

�(X ) > �(�) on DC ; 8 � 2 C:
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Bipolar Theorem

De�nition
For C � LpG(F) we de�ne the polar and bipolar sets as follows

C� : =
�
� 2 LqG(F) j �(X ) < 1 on DC for all X 2 C

	
;

C�� : =
�
X 2 LpG(F) j �(X ) < 1 on DC for all � 2 C

�	 :
Theorem

For any C � LpG(F) such that 0 2 C we have:
1 C� =

�
� 2 LqG(F) j �(X ) < 1 on DC for all X 2 Ccc

	
2 The bipolar C�� is a conditional evenly convex set containing C.
3 The set C is conditional evenly convex if and only if C = C��.
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Bipolar Theorem for cones

C � LpG(F) is convex and closed then is conditional evenly convex.
Suppose that the set C � LpG(F) is a L0-cone, i.e. �X 2 C for every
X 2 C and � 2 L0++. In this case:

C� : =
�
� 2 LqG(F) j �(X ) � 0 on DC for all X 2 C

	
;

C�� : =
�
X 2 LpG(F) j �(X ) � 0 on DC for all � 2 C

�	 :
Under the same assumption of the Bipolar Theorem, any conditional
evenly convex L0-cone containing the origin is closed.
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Conditional Risk Measures

Consider a map
� : LpG(F)! L

0
(G)

Note: If �(�)1A = +11A , A 2 G ; P(A) > 0
then: f� 2 LpG(F) j �(�) � Y g = ?; Y 2 L0(G):

Hence we introduce the maximal G measurable set T� such that

�(�) = +1 on �� for every � 2 LpG(F);
�(�) < +1 on T� for some � 2 LpG(F)

and for any Y 2 L0(G) de�ne

UY� := f� 2 L
p
G(F) j �(�)1T� � Y g:
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Conditional risk maps

De�nition

Let X1;X2 2 LpG(F). The map � : L
p
G(F)! L

0
(G) is:

(MON#) monotone if X1 � X2 =) �(X1) � �(X2)
(REG) regular if 8A 2 G, �(X11A + X21CA ) = �(X1)1A + �(X2)1CA
(QCO) quasi-convex if the sets UY� are L0(G)-convex 8Y 2 L0(G).

Equivalently for all G-measurable r.v. �, 0 � � � 1;

�(�X + (1� �)Y ) � �(X ) _ �(Y ).

(EVQ) evenly quasi-convex if the sets UY� are evenly L0(G)-convex
8Y 2 L0(G).

(LSC) lower semicontinuous if the sets UY� are closed 8Y 2 L0(G):

Remark:
(QCO)+(LSC) imply (EVQ)
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Our main result: complete duality for modules of Lp type

By applying the separation theorem in L0(G)-normed module (FKV) or
(GUO) - which directly provides the existence of a dual element in terms
of a conditional expectation - and the idea of the proof in the static case
(as in CMMM09) and the results on conditional evenly convex sets we get:

Theorem

The map � : LpG(F)! L
0
(G) is an evenly quasi-convex regular risk

measure - i.e. it satis�es MON(#), REG and EVQ - if and only if

�(X ) = ess sup
Q2Pq

R
�
E
�
�dQ
dP
X jG

�
;Q
�

with

R(Y ;Q) = ess inf
�2LpG(F)

�
�(�) j E

�
�dQ
dP
�jG
�
= Y

�
unique in the class R.
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The class R for the complete duality
De�ne the class R of maps K : L0(G)� Pq ! �L0(G) with:

K is increasing in the �rst component.

K (Y 1A;Q)1A = K (Y ;Q)1A for every A 2 G.
infY 2L0(G) K (Y ;Q) = infY 2L0(G) K (Y ;Q

0) for every Q;Q 0 2 Pq .
K is �-evenly L0(G)-quasiconcave: for every ( �Y ; �Q) 2 L0(G)� Pq ,
A 2 G and � 2 L0(G) such that K ( �Y ; �Q) < � on A, there exists
( �V ; �X ) 2 L0++(G)� L

p
G(F) with

�Y �V + E
�
�X
d �Q
dP
jG
�
< Y �V + E

�
�X
dQ
dP
jG
�
on A

for every (Y ;Q) such that K (Y ;Q) � � on A.
the set K =

�
K (E [X dQ

dP jG];Q) j Q 2 P
q
	
is upward directed for

every X 2 LpG(F).
K (Y ;Q1)1A = K (Y ;Q2)1A, if dQ1dP 1A =

dQ2
dP 1A; Qi 2 P

q , and A 2 G:
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Byproducts...

Adding cash additivity

(CA) 8 X 2 LpG(F) and 8 � 2 L0(G), �(X + �) = �(X )� �.
we recover the following

Corollary
1 If Q 2 Pq and if � is (MON#), (REG) and (CA) then

R(EQ (�X jG);Q) = EQ (�X jG)� ��(�Q)

where
��(�Q) = sup

�2LpG(F)
fEQ [��jG]� �(�)g :

2 Under the same assumptions of the Theorem and if � satis�es in
addition (CA) then

�(X ) = sup
Q2Pq

fEQ (�X jG)� ��(�Q)g :
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On a class of quasi-convex risk measures

� : P(R)! R

de�ned on the convex set P(R) of distributions on R

built from a family of acceptance sets

(Joint with Marco Maggis and Ilaria Peri)

Idea: .A risk prudent agent is willing to accept greater losses only with
smaller probabilities. We introduce in the de�nition of V@R a function �
that describes the balance between the amount of the loss and its
probability.
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Law Invariant Risk Measures

Suppose that a risk measure � : X � L0 ! R is law invariant, i.e.:

X �D Y ) �(X ) = �(Y ):

Then we may consider the new map � : P(R)! R

�(PX ) = �(X )

de�ned on the set P(R) of the distributions on R.

Notations

PX (B) := P(X�1(B)) is the distribution of X , B 2 BR
P =: P(R) is the set of the distributions on R:
FX (x) := PX (�1; x ] is the distribution function of X .

REMARK: If X � Y then FX � FY .
This suggest to adopt the opposite (" instead of #) monotonicity
property.
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Risk Measures on distributions

We consider on P the following order structure:

P 4 Q , FP (x) � FQ (x) for all x 2 R:

which is simply the opposite of First Stochastic Dominance.

De�nition
A Risk Measure on P is a map � : P ! R [ f+1g:

(Mon") monotone: P 4 Q implies �(P) � �(Q);
(Qconv) quasi-convex: �(�P + (1� �)Q) � �(P) _�(Q), � 2 [0; 1]:
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Translation Invariant Property of RMs on distributions

Let Tm : P ! P the translation operator s.t.

TmPX = PX+m 8m 2 R

hence it maps the distribution FX (x) into FX (x �m).

De�nition
If � : P ! R [ f+1g is a risk measure on P, we say that

(TrI) � is translation invariant if �(TmPX ) = �(PX )�m.

Notice that (TrI) of � corresponds to cash additivity of risk measures
de�ned on random variables.

But (Qconv) + (TrI) of �; convexity (e.g V@R).
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Additional topological conditions

We endow P(R) with the �(P(R);Cb(R)) topology, where Cb is the
space of bounded continuous function f : R! R
The dual pairing h�; �i : Cb � P ! R is given by

hf ;Pi =
Z
fdP

Lemma

Let � : P ! R be (Mon). Then the following are equivalent:
� is �(P;Cb)-lower semicontinuous
� is continuous from below: Pn " P implies �(Pn) " �(P).

We say that Pn " P whenever fPng is increasing and FPn (x) " FP (x) for
every x 2 C(FP ), the set of points in which FP is continuous.
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On a class of risk measures on distributions

We build the maps � from a family fAmgm2R of acceptance sets of
distribution functions.

De�nition
Given a family fFmgm2R of functions Fm : R! [0; 1], we consider the
associated sets of probability measures

Am := fQ 2 P j FQ � Fmg

and the associated map � : P ! R de�ned by

�(P) := � sup fm 2 R j P 2 Amg :
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Feasible families

A family fFmgm2R of functions Fm : R! [0; 1] is feasible if

For any P 2 P there exists m such that P =2 Am ;
Fm(�) is right continuous (w.r.t. x) 8m 2 R,
F�(x) is decreasing and left continuous (w.r.t. m) 8x 2 R.

Theorem
If fFmgm2R is a feasible family, then

fAmgm2R is monotone decreasing and left continuous;
Am is convex and �(P;Cb)�closed, for any m.
The associated map � : P ! R [ f+1g is well de�ned, (Mon),
(Qconv) and �(P;Cb)-l.s.c.
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Example: the Worst Case Risk Measure
As a risk measure on distributions

Fm(x) : = 1[m;+1)(x)
Am : = fQ 2 P j FQ � Fmg = fQ 2 P j Q 4 �mg

�w (P) : = � sup fm j P 2 Amg
= � sup fm j P 4 �mg = � supfx 2 R j FP (x) = 0g

If X is a random variable and PX is its distribution

�w (PX ) = �ess inf(X ) := �w (X )

coincide with the worst case risk measure �w .
As the family fFmg is feasible, �w is (Mon), (Qconv) and
�(P;Cb)�l.s.c. In addition, it also satis�es (TrI).
Even though �w : L

0 ! R [ f�1g is convex the associated map
�w : P ! R [ f�1g is not convex, but it is quasi-convex and
concave.
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Example: The V@R, as a risk measure on distributions

Fm(x) : = �1(�1;m)(x) + 1[m;+1)(x)
Am : = fQ 2 P j FQ � Fmg

�V@R�(P) : = � sup fm j P 2 Amg

If X is a random variable, PX its distribution and q
+
X (�) its right quantile

�V@R�(PX ) : = � sup fm j PX 2 Amg
= � sup fm j P(X � m) � �g
= �q+X (�) := V@R�(X )

coincide with the V@R of level � 2 (0; 1).

As the family fFmg is feasible, �V@R� : P ! R [ f+1g is (Mon),
(Qconv), �(P;Cb)-l.s.c.
V@R� : L0 ! R [ f�1g is not (Qconv), as a map on random
variables.
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Value At Risk
Graphical interpretation

In the example V@R0:05(X ) = 140.
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Value At Risk
Family of acceptance sets

In addition, �V@R� also satis�es (TrI).
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The V@R with Probability/Loss function
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The Value at Risk with Prob/Loss function

We replace the constant � with the function: � : R! [0; 1):

De�ne Fm : R! [0; 1] by:

Fm(x) := �(x)1(�1;m)(x) + 1[m;+1)(x):

where � is an increasing and right continuous function.

De�nition

The map �V@R : P(R)! R is de�ned by

�V@R(P) := � sup fm j P 2 Amg :

where Am = fQ 2 P j FQ � Fmg :

As the family fFmgm2R is feasible then the �V@R : P ! R is
well de�ned, (Mon), (Qconv) and �(P;Cb)-l.s.c.
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The Value at Risk with Prob/Loss function

Thus, in case of a random variable X

�V@R(PX ) = � sup fm 2 R j FX (x) � �(x); 8x � mg :

Idea: The risk prudent agent requires smaller probabilities for greater
losses. The function � describes the balance between the amount of the
loss and its probability.
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The Value at Risk with Prob/Loss function
Family of acceptance sets

The acceptance sets Am will not be anymore the translation of the
acceptance set A0 (Am 6= A0 +m).
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The Value at Risk with Prob/Loss function
A similar property to cash additivity

We drop in this way cash additivity (TrI), but we obtain another similar
property, which is the counterpart of (TrI) for the �V@R:

�V@R(PX+�) = ��V@R(PX )� �, � 2 R

where ��(x) := �(x + �).

Interpretation: If we add a sure positive amount � to a risky position X
then the risk decreases of the value �, constrained to lower level of risk
aversion described by �� � � .
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Dual representation of RMs on distributions
Failure of the convex duality for TrI maps

For any map � : P ! R[f1g ; let Dom(�) := fQ 2 P j �(Q) <1g
and �� be the convex conjugate

��(f ) := sup
Q2P

�Z
fdQ � �(Q)

�
, f 2 Cb :

Fenchel-Moreau Theorem: Suppose that � : P ! R[f1g is
�(P;Cb)-l.s.c. and convex. If Dom(�) 6= ? then Dom(��) 6= ? and

�(Q) = sup
f 2Cb

�Z
fdQ � ��(f )

�
:

Proposition

The only �(P;Cb)-l.s.c., convex and (TrI) map � : P ! R[f1g is
� = +1:
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Dual representation of RMs on distributions
Quasi-convex duality

C�b : = ff 2 Cb j f is decreasingg

=

�
f 2 Cb j Q;P 2 P and Q � P )

Z
fdQ �

Z
fdP

�
Theorem
Any �(P;Cb)�lsc risk measure � : P ! R [ f1g can be represented as

�(P) = sup
f 2C�b

R
�Z

fdP; f
�

where R : R� Cb ! R is de�ned by

R(t; f ) := inf
Q2P

�
�(Q) j

Z
fdQ � t

�
:
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Dual representation of RMs de�ned by a feasible family

Proposition Suppose in addition that for every m; Fm(x) is increasing in
x and limx!1 Fm(x) = 1: Then the associated map
� : P(R)! R [ f1g is a �(P(R);Cb)-lsc Risk Measure
that can be represented as

�(P) = sup
f 2C�b

R�
�Z

fdP; f
�
;

with:
R�(t; f ) = inf fm 2 R j (m; f ) � tg ;

where  : R� Cb(R)! R is given by:

(m; f ) :=
Z
fdF�m + F�m(�1)f (�1), m 2 R:
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Computation of (m; f ) for the �V@R

It includes the cases of the

V@R, when � = � 2 R
Worst case risk measure, when � = 0

In this two cases the formula coincides with what already obtained by
Drapeau and Kupper (2010).

As Fm = �(x)1(�1;m)(x) + 1[m;+1)(x); we compute explicitly

(m; f ) =
Z �m

�1
fd� + (1� �(�m))f (�m) + �(�1)f (�1)

and associated R�:
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