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We consider limit theorems in probability theory which have
arithmetic incarnations and applications.
One basic idea is to finds information which lie beyond such
universal statements as the Central Limit Theorem.
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Example 1

[The Erdös-Kac theorem]

Consider random variables Nn which are uniformly distributed
among integers 1 ≤ k ≤ n. For an integer k ≥ 1, let ω(k) be the
number of prime divisors of k. Then

ω(Nn)− log log n√
log log n

law⇒ N(0, 1).



Example 2

[Selberg’s Normal Limit Theorem]

Consider random variables UT uniformly distributed on [0,T ]. Let

ζ(s) =
∑
n≥1

n−s =
s

s − 1
+ s

∫ +∞

1
{x}x−s−1dx

be the Riemann zeta function, meromorphic on C. Then as
T → +∞, we have

log |ζ(1/2 + iUT )|√
1
2 log logT

law⇒ N(0, 1).



Discussion

These two results have the following drawbacks (for certain
purposes):

I The limit distributions are the same, although the quantities
log |ζ(1/2 + it)| and ω(k) are very different;

I In particular, ω(k) takes discrete values, whereas
log |ζ(1/2 + it)| is a continuous quantity, and this distinction
is lost;

I As a consequence, these two theorems do not give much
information on the distribution of non-typical values of ω
(e.g., of prime powers, such that ω(k) = 1) or of ζ(1/2 + it)
(e.g., of zeros of ζ on the critical line).



Refining convergence in law

We attempt to refine convergence in law of normalized sequences

Xn =
Yn −mn√

σn

by looking more carefully at the limiting behavior of the
characteristic functions ϕn(t) = E(e itYn) without normalizing.
We find that this behavior often contains significant information in
addition to a possible Normal Limit Theorem for Xn.



Example

Let $n be a random variable counting the number of distinct
cycles in a uniformly chosen permutation σ of {1, . . . , n} (e.g., a
transposition σ has $n(σ) = n − 1). One also knows that
Xn = ($n − log n)/

√
log n converges to N(0, 1).

But the characteristic function is given exactly by

E(e it$n) =
n∏

j=1

(1− j−1 + j−1e it)

from which we can extract information.



Example

The product diverges as n→ +∞ for t /∈ 2πZ. But we can write

E(e it$n) =
n∏

j=1

(1 + (e it − 1)/j)(1 + 1/j)1−e it × exp((e it − 1)Hn)

where Hn = 1 + 1/2 + · · ·+ 1/n. The second term is the
characteristic function of a Poisson random variable PHn with
parameter λ = Hn (recall that in general

P(Pλ = k) = e−λ
λk

k!

for k ≥ 0.)



Example

The first term converges as n→ +∞ and in fact∏
j≥1

(
1 +

z

j

)(
1 +

1

j

)−z
=

1

Γ(1 + z)

for any z ∈ C (Euler) so that for any t ∈ R, we get

E(e it$n) ∼ exp((e it − 1)Hn)
1

Γ(e it)
= E(e itPHn )

1

Γ(e it)

as n→ +∞.



Remarks on this example
I The factorization suggests that there could be a

decomposition $n = Xn + Yn where Xn
law
= PHn and where Yn

is independent of Xn and converges in law to a random
variable with characteristic function 1/Γ(e it).

I But 1/Γ(e it) is not a characteristic function!
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I We called this type of behavior mod-Poisson convergence with
parameters Hn and limiting function 1/Γ(e it).

I This is a type of Poisson approximation that seems
widespread but not much studied. (An exception is an early
paper of Hwang with different terminology.)



The Rényi-Turán formula

Taking again the example of ω(Nn), Rényi-Turán proved

1

n

∑
k≤n

e itω(k) = E(e itPlog log n)Φ(t)(1 + o(1))

where

Φ(t) =
1

Γ(e it)
×
∏
p

(
1− 1

p

)e it(
1 +

e it

p − 1

)
.

Moreover, the infinite product over p is also the limiting function
for

Xn =
∑
p≤n

Bp

where the Bp are independent Bernoulli with P(Bp = 1) = p−1,
which is the “heuristic” probability that a “random” integer be
divisible by n.



The Gaussian case

Maybe the first example that was recognized is in the Gaussian
case, where one says that Xn converges in the mod-Gaussian sense
with variance σn (usually σn → +∞) and limiting function Φ(t) if

E(e itXn) = e−σnt
2/2Φ(t)(1 + o(1))

(uniformly for t in compact sets).
The “trivial” case is when

Xn
law
= Nσn + Yn

where Nσ is centered normal of variance σ and Yn is independent
of Nσn , converging in law to Y with E(e itY ) = Φ(t).



Random matrices

Keating and Snaith proved that if Xn is a random matrix taking
values in the unitary group U(n), distributed according to the
natural Haar measure, and Pn(T ) = det(1− TXn), we have

E(e it|Pn(1)|) = e−(log n)t2/2G (1 + it/2)2

G (1 + it)
(1 + o(1))

locally uniformly for t ∈ R. Here G (z) is the Barnes function,
holomorphic of order 2 such that G (1) = 1 and

G (z + 1) = Γ(z)G (z).



It is known that Φ(t) = G (1 + it/2)2/G (1 + it) ≈ exp(t2 log t) for
t large, so this function is far from being a characteristic function!
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Searching for meaning

We now ask: what is the meaning of such behavior? What are its
consequences? One possible answer is: local limit theorems. In
fact, one can prove local limit theorems for

P(Xn ∈ B), B ⊂ Rd open or Jordan measurable,

for very general sequences of random vectors (Xn) with values in
Rd , d ≥ 1, satisfying some form of “mod”-convergence. These
cases go well beyond the Poisson and Gaussian cases, and the
conditions are much less stringent.



Mod-φ convergence

Fix d ≥ 1 and a probability measure on Rd with probability law µ
and characteristic function ϕ. Let (Xn) be random Rd -valued
vectors with characteristic functions ϕn.
We say there is mod-ϕ convergence if there exist An ∈ GLd(R),
such that

H1 The characteristic function ϕ is integrable on Rd ;

H2 Denoting Σn = A−1
n , we have Σn → 0 and the vectors

Yn = Σn(Xn) converge in law with limit µ;

H3 For all k ≥ 0, we have

sup
n≥1

∫
|t|≥a
|Σ∗

n t|≤k
|ϕn(Σ∗nt)|dt → 0 as a→ +∞.



Clarification

H1 This implies that dµ = α(t)dt for some density α;

H2 Note that E(e it·Yn) = ϕn(Σ∗nt).

H3 This is a uniform-integrability condition. It holds, for instance,
if there exist fixed integrable functions hk such that

|ϕn(Σ∗nt)| ≤ hk(t)

for all n and all t such that |Σ∗nt| ≤ k , since then∫
|t|≥a
|Σ∗

n t|≤k
|ϕn(Σ∗nt)|dt ≤

∫
a≤|t|
|hk(t)|dt → 0.



H2, H3 If H1 holds, and

ϕn(t) = Φ(t)ϕ(A∗nt)(1 + o(1)) as n→ +∞

for some continuous Φ, and the convergence holds uniformly
on sets of the form |t| ≤ A∗nk for k > 0, then we have mod-φ
convergence.



Local limit theorem for mod-φ convergence

Theorem (Delbaen-K-Nikeghbali)

Assume mod-φ convergence for Xn.Then for f continous and
compactly supported we have

E(f (Xn)) = α(0)| det(An)|−1
(∫

Rd

f (x)dx
)

(1 + o(1))

as n→ +∞.

Remark
This applies also to the case α(0) = 0, but in that case it is more
interesting to apply it, e.g., to Xn + Anc , where c 6= 0 is a
constant vector.



Proof

We take d = 1, so An(x) = anx with an 6= 0, and Σ∗nt = a−1
n t.

By an approximation argument, it is enough to prove the result
when the Fourier transform f̂ has compact support. Let µn be the
law of Xn. We have

E(f (Xn)) =

∫
R
f (x)dµn(x)

=
1

2π

∫
R

∫
R
f̂ (t)e itxdtdµn(x)

=
1

2π

∫
R
f̂ (t)ϕn(t)dt

=
1

2πan

∫
R
f̂ (a−1

n s)ϕn(a−1
n s)ds.



Proof (II)

Let k ≥ 1 be such that Supp(f̂ ) ⊂ [−k, k], so that

E(f (Xn)) =
1

2πan

∫
|s|≤ank

f̂ (a−1
n s)ϕn(a−1

n s)ds.

By H2 and the Lévy criterion, the integrand converges pointwise
to ϕ(s)f̂ (0). Uniform integrability then implies convergence in L1:
for any ε > 0, and a > 0 large enough we have∫
a<|s|≤kan

|ϕn(a−1
n s)f̂ (a−1

n s)|ds ≤ ‖f̂ ‖∞
∫
a<|s|≤kan

|ϕn(a−1
n s)|ds < ε

for all n by H3.



Proof (III)

For |s| ≤ a, we have dominated convergence

|f̂ (a−1
n s)ϕn(a−1

n s)| ≤ 1|s|≤a‖f̂ ‖∞

so
1

2π

∫
|s|≤a

f̂ (a−1
n s)ϕn(a−1

n s)ds −→ f̂ (0)

∫
|s|≤a

ϕ(s)ds.

For a large enough, this differs from f̂ (0)
∫
ϕ(s)ds by at most ε,

and then

1

2π

∫
|s|≤ank

f̂ (a−1
n s)ϕn(a−1

n s)ds −→ 1

2π
f̂ (0)

∫
R
ϕ(s)ds

= α(0)

∫
R
f (s)ds.



Examples

Example 1 (sums of i.i.d variables) Let (Sn) be a sequence of
i.i.d variables, symmetric, not supported on a lattice, and let

Xn =
S1 + · · ·+ Sn

bn

for suitable bn so that Xn converges in law to some µ. Classical
results (Shepp, Borovkov–Mogulskii, Stone,
Bretagnolle–Dacunha-Castelle) imply local limit theorems for

bnP(S1 + · · ·+ Sn ∈ B)

which the general theorem recovers. Usually we do not have the
strong convergence

E(e it·(S1+···Sn)) = ϕ(bnt)Φ(t)(1 + o(1)).



Example 2 (Winding number). Let Wu, u ≥ 0, be a complex
Brownian motion starting at 1. Let θu denote the argument of Wu,
starting with θ0 = 0 and defined by continuity.

Spitzer proved that

2θu
log u

law⇒ 1

π

dx

1 + x2

as u → +∞ (Cauchy
law).



Theorem
If un → +∞, we have mod-φ convergence for θun with
ϕ(t) = exp(−|t|), an = 1

2 (log un). In particular

log u

2
P(Wu ∈ [a, b])→ 1

π
(b − a) as u → +∞

for any real a < b.

This follows easily from the fact that Spitzer computed exactly the
characteristic function of θu in terms of Bessel functions. One even
gets the stronger “mod-Cauchy convergence” with limiting
function

Φ(t) = 8−|t|/2 Γ(1/2)

Γ((|t|+ 1)/2)
.



Example 3 (Random matrices).
Let again Xn be a random matrix taking values in the unitary
group U(n), distributed according to the natural Haar measure.
(One can deal similarly with unitary symplectic groups and
orthogonal groups.) Now put Pn = log det(1− Xn) ∈ C = R2. The
characteristic function is known (Keating–Snaith) to be

E(e it·Pn) =
∏

1≤j≤n

Γ(j)Γ(j + it1)

Γ(j + 1
2 (it1 + t2))Γ(j + 1

2 (it1 − t2))

for t = (t1, t2) ∈ R2.



One can deduce that

E(e it·Pn) = Φ(t)e−(log n)|t|2/4(1 + o(1))

with

Φ(t1, t2) =
G (1 + (it1 − t2)/2)G (1 + (it1 + t2)/2)

G (1 + it1)

uniformly for |t| ≤ Cn1/6. This is (more than) mod-φ convergence
for the Gaussian distibution and An(t1, t2) = 1

2 (log n)(t1, t2).
Hence

P(Pn ∈ B) ∼ 1

2π

√
2√

log n

∫
B
dx

as n→ +∞ for any Jordan-measurable subset B of R2.



Example 4 (the Riemann zeta function).
Selberg’s Theorem can be generalized to

log ζ(1/2 + iUT )√
1
2 log logT

law⇒ standard complex Gaussian

where UT is uniform on [0,T ]. Thus we have H1 and H2 for
XT = log ζ(1/2 + iUT ) with AT (t1, t2) = ( 1

2 log logT )(t1, t2). We
conjecture that H3 holds. In particular:

Conjecture

For any Jordan measurable set B ⊂ C, we have

1

T
λ({t ∈ [0,T ] | log ζ(1/2 + it) ∈ B}) ∼ 1√

1
2 log logT

λ(B).



This would imply the following (answering a question of
Ramachandra):

Corollary (Conditional)

The set of values ζ(1/2 + it), for t ∈ R, is dense in C.
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The analogue of this has been known for a long time when 1/2 is
replaced with any fixed σ ∈]1/2, 1[. In that case, Bohr and Jessen
showed that log ζ(σ + iUT ) converges in law to some measure µσ
as T → +∞, and that Supp(µσ) = C.
In fact, one has

E(e it·µσ) =
∏
p

E(e it·Zp)

where Zp is distributed like

log
( 1

1− p−σΘp

)
with Θp uniform on the unit circle. This is the characteristic
function of the series ∑

p

log
( 1

1− p−σΘp

)
.



This should be compared with the formula

ζ(σ + iτ) =
∏
p

1

1− p−σp−iτ

(which holds for σ > 1). This shows that statistically, the zeta
function on a fixed vertical line with real part in ]1/2, 1[ behaves as
if the factors in the Euler product were completely independent.



The strong Keating–Snaith conjecture

Keating–Snaith conjecture that log ζ(1/2 + iUT ) exhibits
mod-gaussian convergence

E(e it·log ζ(1/2+iUT )) = Φ1(t)Φ2(t)e−t
2(log log T )/4(1 + o(1))

where

Φ1(t) =
G (1 + (it1 − t2)/2)G (1 + (it1 + t2)/2)

G (1 + it1)

and

Φ2(t) =
∏
p

(
1− 1

p

)−|t|2/4
E(e it·Zp)

where Zp is distributed like

log
1

1− p−1/2Θp
.



This conjecture suggests the possibility of a probabilistic model of
the values of the Riemann zeta function on the critical line which
combines, with some subtle dependency structure, two ingredients:

I Random unitary matrices (of size ∼ logT if t ∈ [T/2,T ]);

I A product over small primes with independent random
variables.

This is also very similar to the lessons of the Rényi-Turán formula:
for the number of prime divisors of k , it involves

I Random permutations (of size log k if n ∈ [k/2, k]);

I A sum of independent Bernoulli variables.

It is a challence to construct or understand such models. For the
number of irreducible factors of polynomials over finite fields, we
have however a very convincing explanation (K-N), which is
encouraging.



Going beyond the local limit theorem

The local limit theorem does not indicate a rate of convergence. In

P(Xn ∈ B) ∼ 1

(2π)d
1

| det(An)|

∫
B
dx ,

the location of B does not appear, only its size. If we ask

How large must n be before P(Xn ∈ B) is of the right size?

the answer must also depend on the location of B.
At least in the Gaussian case, one can prove a quantitative local
limit theorem if one assumes sufficiently uniform version of
mod-gaussian convergence.



For random variables (Xn), assume that σn → +∞ are such that

I We have c > 0 and a > 0 (small) such that

E(e itXn) = Φ(t)e−σnt
2/2
(

1 + O
( 1

exp(σcn)

))
uniformly for |t| ≤ σan;

I The function Φ is C 1 for |t| ≤ 2;

I The function Φ satisfies Φ(t) = O(e |t|
A

) for some A > 0
(large).



Let Yn be a centered Gaussian variable with variance σn.

Theorem (K-N)

Under these conditions, there exists δ > 0 such that for any open
interval I =]x0 − ε, x0 + ε[⊂ R, we have

P(Xn ∈ I ) = P(Yn ∈ I ) + O
( 1

σ
1/2+δ
n

+
1

εσn

)
uniformly in terms of x0 and ε.

The location enters from the main term:

P(|Yn − x0| < ε)� ε
√
σn

e−
1
2 x

2
0/σn

so we need roughly σn >
√
x0 to have a chance that the second

term is smaller than the first.



Applications

This result applies to

I Values of characteristic polynomials of unitary (symplectic,
orthogonal) matrices;

I The “model” sums∑
p≤X

log
( 1

1− p−1/2Θp

)
;

I And we conjecture it does for log ζ(1/2 + it) (for d = 2).
This would give a quantitative answer to Ramachandra’s
question: how large should T be before we can be sure to find
t ≤ T with ζ(1/2 + it) in a given open ball in C.


