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Happy Birthday Freddy

� It is �tting that your birthday corresponds with an-
other.

� This is the 21st birthday of Mathematical Finance,
at least the Journal and possibly the discipline.



Freddy Personal Remarks

� I do not remember the date or year I met Freddy but
will not forget the occasion.

� I had just taken a big step of moving to the Finance
department of the Maryland Business School from a
carreer in Statistics and Economics and was new to
Finance.

� I was at the time well aware of Freddy�s status as an
intellectual giant in Mathematical Finance.

� The place I met Freddy was a conference in Mon-
treal. Freddy probably does not remember, but I
gave a talk after which Freddy came up to me and
said, in almost a whisper, (Freddy is never loud), you
know your stu¤.



� Needless to say I was pleased and reassured.

� I can only presume that Freddy has been a supporter
of my e¤orts. Recently he organized a Financial
Mathematics meeting in Mumbai, where I grew up,
and asked if I would participate.

� Of course I answered yes in seconds, and took the
opportunity to show Freddy and Rita the precise lo-
cation where I grew up.



The Intellectual Debt I

� For years my screen saver read out my debt to Freddy�s
leadership.

� It stated, in a business school , that

� Asset Prices are Semimartingales, Investment is
a Stochastic Integral and Brownian Motion must
be Time Changed.

� The �rst two are clear, for the third I asked myself
that since all semimartingales are a time changed
Brownian motion, what was the nature of the time
change.

� Presuming the time change to be an increasing process
with a martingale component, I was led to conclude
that it must be discontinuous.



� This is because there are no continuous increasing
processes with a martingale component.

� I have generally, since, modeled stock prices as purely
discontinuous.

� The compensated jump martingale being, in any case,
a richer, more �exible and far more interesting object
than Brownian motion for a modeller.

� I recognize that for a theorist the opposite may be
the case as one may have more theorems.



The Intellectual Debt II

� The second debt to Freddy�s work was the de�ni-
tion of risk measures, but for me more exactly, the
de�nition of Acceptable Risks.

� I maintain that classical economics in its pursuit of
its defense of free market capitalism neglected the
main purpose of capital.

� They built models with no �nancial primitives, just
preferences, endowment and technology and then
went on to conclude that �nance, and by implica-
tion capital, are irrelevant to modern economies and
to capitalism itself.

� It is strange that Finance departments begin their
education from this perspective of �nancial irrel-
evance.



� I shall argue today that Acceptable Risks as de�ned
by Freddy are the missing �nancial primitive in mod-
eling a modern �nancial economy.



A Synthesis

� As a synthesis I will explain how local law invariance
as discussed by Hans, bid ask spreads as discussed
by Walter and Yuri, nonlinear expectations as dis-
cussed by Shige, all come together in a truly �nan-
cial economy where the Walrasian auctioneer trades
to �Freddy�acceptability.

� Many questions remain and I list a few

� Are bid and ask prices semimartingales.

� What are the precise conditional acceptability sets
induced by a nonlinear PIDE in a presumed Markov-
ian context.

� Is Freddy�s capital requirement in need of revi-
sion, just to save capitalism.



� For me, if we ask for X; capital c such that
c�X 2 A then

c = sup
Q2M

EQ[X]

> EQRN [X]

� and capital exceeding price, may just be too
much.

� I say give credit for the bid and set

c = sup
Q2M

EQ[X]� inf
Q2M

EQ[X]:

� Should we campaign against the absurdity of DVA
that requires one to take pro�t from an enhanced
perceived inability to meet one�s obligations.



Motivation

� In classical economic theory the law of one price pre-
vails and market participants trade freely in both di-
rections at the same price.

� Furthermore, these prices are determined by market
clearing equating aggregate demand to supply or ex-
cess demand to zero.

� Recently, M. (Annals of Finance 2012) presented an
equilibrium model in which both the law of one price
and market clearing simultaneously fail.

� The law of one price is replaced by a two price econ-
omy and market participants continue to trade freely
with the market but the terms of trade now depend
on the trade direction.

� The starting of this paper is the equilibrium pricing
rule that prevails in such a two price economy.



Rationale for the two prices

� The failure of market clearing occurs on account of
a gap between the events that can occur and the
events that can be contracted.

� The latter is a much smaller set of events.

� As a result unexpected events can cause endowments
to disappear, making the clearing of precommitted
demands impossible.

� In such situations markets must be supported by a
�nancial system that approves trades by participants
and covers any subsequent losses.



The Market Structure

� All market participants are modeled as selling their
endowments to the �nancial system for a conserva-
tive valuation.

� They then spend the proceeds of this sale to meet
their demands by purchasing from the �nancial sys-
tem at an in�ated valuation.

� The �nancial system in turn sets the spread between
its conservative purchase price and its in�ated sale
price with a view to making trades acceptable.



The market as a passive
auctioneer

� The �nancial system is not an optimizing agent but
passively sets the terms at which market participants
may trade.

� The �nancial system may be viewed as the Wal-
rasian auctioneer operating in a world in which mar-
ket clearing is not attainable.

� Therefore, instead of determining the market clearing
price, the auctioneer, now subject to potential losses,
determines the two prices of a two price economy
with a view to making such loss exposures accept-
able.



Avoiding Game Theoretic
Considerations

� The purpose here is to develop the continuous time
theory for such two price economies.

� The two prices may be termed bid and ask prices for
some precision and brevity but they should not be
confused with the literature relating bid-ask spreads
to transactions costs, the modeling of illiquidity, the
e¤ects of asymmetric information or other frictions
involved in modeling the �nancial industry (see Freixas
and Rochet (2008)).

� There is a large literature both empirical and theo-
retical studying bid ask spreads by focusing on the
costs, incentives, objectives and constraints of liq-
uidity providers seen as rational agents operating as
market makers in exchange traded securities.



� Modeling the optimal behavior of rational agents in-
troduces interesting game theoretic considerations
into the analysis.

� In contrast the approach taken here is to model pas-
sively the Walrasian auctioneer with a limited inter-
est in attempting to clear markets



Risk Acceptability and
Nonlinear Pricing

� The two prices of a two price economy are deter-
mined in a non market-clearing equilibrium with a
view to making loss exposures acceptable.

� Acceptability is itself de�ned as a positive expecta-
tion under a family of test measures or scenarios.

� As a result the bid price is the in�mum of test val-
uations and the ask price is the supremum of such
valuations.

� On the space of random variables, the bid price func-
tional is then a concave functional while the ask price
functional is convex.



� Economically packaged risks are more attractive as
they embody potential diversi�cation bene�ts while
the linearity of arbitrage pricing disappears given the
absence of the law of one price.



Dynamic Nonlinear Pricing

� Given that the bid and ask price functionals are re-
spectively concave and convex their dynamic coun-
terparts are of necessity examples of nonlinear ex-
pectation operators.

� Nonlinear expectation operators are a fast develop-
ing �eld of mathematical analysis (see Peng (2004),
Rosazza Gianin (2006)).

� These connections were noted in M., Pistorius and
Schoutens (2011), and M. and Schoutens (2012b)
by relating to Cohen and Elliott (2010).

� Cohen and Elliott (2010) develop nonlinear expecta-
tions as solutions to backward stochastic di¤erence
equations in the context of a �nite state discrete time
Markov chain.



� Nonlinear expectation operators provide us with dy-
namically consistent nonlinear pricing rules as dis-
cussed in Jobert and Rogers (2008) and Bion-Nadal
(2009).



Nonlinear Pricing in
Continuous Time

� Encouraged by the work of Peng (2006) in develop-
ing nonlinear G-expectations (see section 3 of Peng
(2006)) we propose here a continuous time nonlin-
ear G-expectation operator for the continuous time
modeling of two price economies.

� We simultaneously model both a linear expectation
operator and two nonlinear operators for the bid and
the ask.

� The linear expectation operator serves the purpose
of a traditional risk neutral valuation operator except
that all trades occur at the nonlinear prices.

� However, we maintain some of the advantages of a
linear operator by preserving linearity on comonotone
risks.



Two Price and Risk
Management

� From a �nancial and risk management perspective
the contribution here is to provide operational algo-
rithms for the computation of risk sensitive bid and
ask prices as functionals on the space of random vari-
ables.

� The Basel system has sought such procedures for
years building ad-hoc approaches in the interim.

� Further as argued in M. (2012) for two price economies
marking to market must be interpreted as marking
to two price markets with assets marked to bid and
liabilities marked to ask.

� It is then insu¢ cient to just have available linear risk
neutral valuation operators, one needs the nonlinear
two price operators to mark the books.



� Additionally capital reserves re�ect the asset shaves
and liability add ons built into the bid and ask func-
tionals relative to the expectation functional.

� In this regard all three operators, the nonlinear bid
and ask and the linear expectation are employed.

� We deliver all three operators with the property that
under the linear expectation the bid price is a sub-
martingale while the ask price is a super martingale.



Outline of the Presentation

� First we review the two price economy and its bid and
ask price functionals in a static one period context.

� The discrete time dynamic construction with its links
to nonlinear expectations for �nite state Markov chains
is summarized next.

� We then introduce the continuous time bid and ask
price functionals as nonlinear G-expectations in the
context of a Hunt (1966) process.

� Illustrative valuations are then conducted and pre-
sented.

� The methods developed are applied to the valuation
of a derivatives book.



The Static Two Price
Economy

� Much has been written on modeling the mathemat-
ical representation of consumers, producers, �rms, �-
nancial institutions, �nancial intermediaries and other
market participants.

� They are all generally seen as optimizing agents with
various approaches taken to represent their objec-
tives and constraints.

� But what about the Walrasian auctioneer or the mar-
ket itself?

� Technically in the Arrow Debreu theory the market
is modeled as a non-optimizing agent that merely
seeks to set prices with a view to ensuring market
clearing.



� The two price economy focuses attention on the
Walrasian auctioneer or the market itself as another
agent with whom all must trade.

� This implicit agent, however, by virtue of being the
counterparty for all trades, is too powerful and does
not optimize.

� This auctioneer or more generally the market merely
de�nes passively the terms of trade for all partici-
pants, remaining interested in market clearing.



� The di¤erence between classical economic theory and
the theory of a two price economy is that market
clearing though an objective for the market seen as
a passive agent is in fact unattainable.

� Were clearing possible with positive excess supplies
for all items in all states, the law of one price would
return.

� Recognizing that markets cannot always clear, the
interest shifts to making excess supplies acceptable,
though not necessarily nonnegative.

� The market tries to get excess supplies to belong to
some small prespeci�ed cone containing the nonneg-
ative random variables.

� This is done with a view to minimizing loss expo-
sures.



� The size of this cone serves as a �nancial primitive
in de�ning the two price economy.

� The larger the size of this cone the greater is the set
of approved trading opportunities and the larger is
the size of the real economy.

� On the contrary when this cone contracts, the real
economy shrinks, the market approves of fewer trans-
actions and economic activity is reduced.



The Cone of Market
Acceptable Risks

� Consider now an economy trading state contingent
claims on a classical probability space (
;F ; P ) :

� In addition to endowments, preferences, technology
and �rm objectives we now have to de�ne the set of
acceptable aggregate excess supplies.

� This set is by construction a convex cone of ran-
dom variables A containing the nonnegative random
variables.

� Artzner, Delbaen, Eber and Heath (1999) show that
all such sets are de�ned by a convex set of probability
measuresM with the de�ning condition being

X 2 A () EQ[X] � 0 ; (Q 2M):



The set of probability measuresM has been called
the set of test measures or scenarios that test for and
approve the acceptability of a random variable.

� In fact the Federal Reserve Board now requires major
banks with more than 50 billion in assets to conduct
such stress tests annually (FRB Press Release, No-
vember 22 2011) with a view to ascertaining capital
adequacy.



The Cone of Acceptable
Counterparty Risks

� In a two price economy the market targets the ac-
ceptability of excess supplies (X 2 A) de�ned in this
way for some set of test or scenario measuresM:

� The market�s interest lies in keeping A small and
thereforeM is large.

� However in trading with economic agents, all of whom
must trade with the market, the market is more le-
nient and is willing to de�ne a larger set of accept-
ability, B; with a related much smaller set of test
measures N :

� Indeed it is possible that even with this generous
de�nition of acceptability o¤ered to individual mar-
ket participants the aggregate excess supply may
nonetheless enter the required smaller set A.



� By way of contrast with classical economic theory
as opposed to the two price economy one notes that
classically B is a very generous half space withN = fQg
for the risk neutral measure Q

� and A is the cone of nonnegative random variables
withM being the set of all probability measures.



The Two Static Pricing
Functionals

� When the market o¤ers individual market partici-
pants the cone B of acceptability it is shown in M.
(2012) and easily observed that the price system of-
fered by the market is now a two price system with
bid price b(X) and ask price a(X) de�ned by

b(X) = inf
Q2N

EQ[X]

a(X) = sup
Q2N

EQ[X]:

These Equations and de�ne the price system o¤ered
in equilibrium to all market participants by the mar-
ket as the counterparty for all trades.



� We note at this point that by construction the bid
pricing functional will be a concave functional on
the space of random variables while the ask price
functional will be a convex functional.

� They are then both nonlinear pricing operators and it
is these properties that will later take us to nonlinear
expectation operators.

� Furthermore, one only needs to learn how to con-
struct the bid pricing functional as the ask price is
always the negative of the bid price of �X.



Law Invariant Cones

� The next step in the operational development of two
price economies comes in the construction of the set
of approving probability measures.

� The realization here is not to give up completely
on classical theory and its selection of a risk neutral
equilibrium pricing operator, but to ensure that the
cone of a two price economy is strictly contained in
the classical half space.

� We therefore begin by selecting a classical risk neu-
tral equilibrium pricing measure Q� as an element of
N .

� Next we consider the possibility of de�ning accept-
ability of a random variable X completely in terms
of the probability law of X under Q�:



� Acceptability must then be de�ned with just the dis-
tribution function FX(x) ofX under Q� as an input
or the de�nition of acceptability is law invariant in
the sense of Kusuoka (2001).



� Such a de�nition based only on the probability law
may be objectionable from the perspective of human
agents who may wish to consider how the random
variable enters the portfolio of risks being held.

� However, we are modeling here the market or Wal-
rasian auctioneer with the single minded interest of
eventual clearing suitably modi�ed for two price economies.

� There is no portfolio to refer to or preferences to
formulate.

� With these qualifying remarks we proceed to de�ne
acceptability just in terms of the risk neutral distri-
bution function.



Comonotone Risks

� The next item to be addressed is the preservation of
some linearity in the pricing functionals.

� They are nonlinear by construction but we may ask
for linearity for some set of risks.

� In this regard we note that two random variables
X;Y are said to be comonotone if

(X(!1)�X(!2)) (Y (!1)� Y (!2)) � 0 almost surely.
Comonotone variables always move together in the
same direction, or one is in fact an increasing func-
tion of the other.

� Preserving linearity for comonotone variables is a
useful reduction in the complexity of the pricing op-
erator and we can ask that

b(X + Y ) = b(X) + b(Y )

for X;Y comonotone.



Concave Distortions

� Assuming both law invariance and linearity for comonotone
risks yields by Kusuoka (2001) a representation for
all such functionals as a distorted expectation.

� More speci�cally there must then exist a concave
distribution function 	(u) for 0 � u � 1; with
	(0) = 0; 	(1) = 1 such that for all X we have

b(X) =
Z 1
�1

xd	(FX(x)):

� Such distorted expectations were proposed as models
for bid prices in Cherny and M. (2010).

� A distorted expectation is an expectation under a
change of measure via

b(X) =
Z 1
�1

x	0(FX(x))dFX(x)



with the measure change 	0(FX(x)) depending on
X and hence the nonlinearity.

� With a view to reweighting losses and discounting
gains whereby 	0 tends to in�nity and zero as u
tends to zero or unity, Cherny and M. (2009) pro-
posed the distortion termed minmaxvar and de�ned
by

	(u) = 1� (1� u
1
1+
 )1+
:

The computations conducted in this paper employ
this distortion.

� It is critical to note that when there is no distor-
tion being applied and 	0(u) = 1 we recover the
expectation and the bid equals the ask.

� With a distortion the reweighting upwards of losses
and downwards of gains forces the bid price to fall
below the expectation.



� Similar considerations force the ask price to be above
the expectation.



Distortions and Choquet
Capacities

� One may relate to any such distortion 	 a Choquet
capacity c(A) (Choquet (1954)) de�ned via

c(A) = 	(Q�(A))

for every A 2 F :

� It is shown in the appendix that c de�ned this way
is a Choquet capacity.

� One may also de�ne a Choquet capacity � on R by

�(A) = 	 (Q� (X 2 A)) :

� The distorted expectation for the bid price is the
Choquet type integral

�
Z 0
�1

� (X � y) dy +
Z 1
0
[1� � (X � y)]dy:



Given the wide use of Choquet capacities in numer-
ous contexts, it is noteworthy to observe that the bid
pricing functional proposed under law invariance and
linearity under comonotonicity is a Choquet integral.



The Test Measures for
Distortions

� Cherny and M. (2010) show that the set of measures
supporting acceptability consists of all distribution
functions on the unit interval dominated pointwise
above by the distortion.

� The connection with Choquet capacities provides an
alternative demonstration of the set of supporting
measures N .



Some Static Applications

� M. (2009) employs the static bid price to de�ne cap-
ital requirements and monitor leverage.

� M. (2010) determines option hedges for complicated
claims written on many underliers with a view to
minimizing the ask price of the unhedged risk.

� Eberlein and M. (2012) use these methods to deter-
mine capital requirements for the major US banks at
the end of 2008 along with determining the value of
the limited liability option to put losses back into the
economy.

� Carr, M. and Vicente Alvarez (2011) advocate cap-
ital requirements as the di¤erence of ask and bid
prices.



� Eberlein, M. and Schoutens (2012) relate this capital
requirement to risk weighted assets as de�ned in the
Basel accords.

� Cherny and M. (2010) also estimate stress levels of
distortions from market bid and ask price quotes of
put and call options.

� M. and Schoutens (2011a) study clientele e¤ects on
optimal debt in the absence of tax advantages to
debt via an application of two price economy ac-
counting.

� M. and Schoutens (2011b) apply the static two price
theory to the valuation of contingent capital notes.

� M. (2011) models risk weighted assets with these
methods for pricing contingent capital notes.



� M. and Schoutens (2012a) study the equlibrium of
two price economies trading structured notes.

� Eberlein, Gehrig and M. (2012) show how valuing
liabilities at ask prices mitigates the level of pro�ts
associated with debt valuation adjustments (DVA).



The Two Price Economy
in Discrete Time

� Consider now a discrete time economy with the un-
certainty evolution described by a �nite state Markov
chain.

� For computational purposes and model calibrations
one may employ Markov chain approximations to
more general processes as described in Mijatovíc and
Pistorius (2009).

� Following Cohen and Elliott (2010) we may view the
Markov chain (Xt; t = 1; � � � ; T ) as taking values
in the unit vectors of N-dimensional space RN ; i.e.

Xt 2 fe1; e2; � � � ; eNg ;

with ei = (0; 0; ::; 0; 1; 0; :::; 0)0 2 RN :



� The price of a stock St for example could then be
modeled as ,

St = (e
x1; ex2; : : : ; exN )Xt;

where the x0i s are the N possible values for the
logarithm of the stock price at each time step.

� The chain is described by T transition probability
matrices that could be time dependent.



� Let
�

;F ; fFtg0�t�T ; Q�

�
be the �ltered proba-

bility space generated by some risk neutral process
X:

� Let C be a terminal cash �ow known at time T:

� The set of all terminal cash �ows to be valued may
be taken to be a subset C; C � L2 (FT ) :

� Anticipating the nonlinearity of bid and ask pricing
operators we follow Cohen and Elliott (2010) in �rst
de�ning a system of dynamically consistent nonlinear
expectation operators.



Nonlinear Conditional
Expectation Operators

� A nonlinear, dynamically consistent system of condi-
tional expectations is a set of operators

E(:jFt) : L2 (FT )! L2 (Ft)

satisfying the following four properties.

� For anyC;C0 2 CE (CjFt) � E
�
C0jFt

�
Q��

a:s:

� whenever C � C0 Q� � a:s: with equality i¤
C = C0 Q� � a:s:

� E (CjFt) = C Q��a:s: for any Ft-measurable
C:

� E (E (CjFt) jFs) = E (CjFs) Q� � a:s: for
any s � t:



� For any A 2 Ft; 1AE (CjFt) = E (1ACjFt)
Q� � a:s:

� The dynamically consistent system of bid and ask
prices will be respectively concave and convex sys-
tems of nonlinear expectation operators. Further-
more they are dynamically translation invariant in
the sense that for any C 2 C and any q 2 Ft

E (C + qjFt) = E (CjFt) + q:



NLE and BSDE

� The construction of such dynamically translation in-
variant nonlinear expectations on a �nite state Markov
chain is linked to the solution of backward stochastic
di¤erence equations by Theorem 5:1 of Cohen and
Elliott (2010).

� We denote a nonlinear expectation by E while a clas-
sical linear expectation is denoted by E:

� To describe these equations and their solution for a
�nite state Markov chain we introduce the martin-
gale di¤erence process

Mt = Xt � E [XtjFt�1] 2 RN :

� A backward stochastic di¤erence equation (BSDE)
for our purposes is de�ned by a real-valued driver



F (!; u; Yu; Zu) where Y is a real-valued stochastic
process adapted to the Markov chain, Z is an RN -
valued stochastic process, and F is a progressively
measurable map

F : 
� f0; : : : ; Tg � R� RN ! R

which is essentially bounded.

� A BSDE based on M with driver F and terminal
value C is an equation of the form

Yt�
X

t�u<T
F (!; u; Yu; Zu)+

X
t�u<T

Z
0
uMu+1 = C;

where C is an essentially bounded FT -measurable
random variable, with Y and Z the unknowns.

� In di¤erence form we may write

Yt � F (!; t; Yt; Zt) + Z
0
tMt+1 = Yt+1



and taking Ft-conditional linear expectations we see
that

Yt = E [Yt+1jFt] + F (!; t; Yt; Zt);

and so we solve for Yt backwards by evaluating the
conditional expectation of Yt+1 and adding the penalty
given by the driver.

� By Theorem 5:1 of Cohen and Elliott (2010) for the
construction of a nonlinear dynamically consistent
and translation invariant conditional expectation the
driver is independent of Yt and is itself the nonlinear
expectation of the zero mean one step ahead risk or

F (!; t; Yt; Zt) = E
�
Z
0
tMt+1jFt

�
:



Distortion Based Drivers

� We de�ne Z 0t by

Z
0
tMt+1 = Yt+1 � E [Yt+1jFt] :

� For computing bid prices, denoted Y bt ; the driver is

Fb(!; t; Y
b
t ; Zt) = b(Z

0
tMt+1)

= b
�
Y bt+1 � E

h
Y bt+1jFt

i�
;

� while for ask prices Y at ; the driver is

Fa(!; t; Y
a
t ; Zt) = a

�
Z
0
tMt+1

�
= a

�
Y at+1 � E

h
Y at+1jFt

i�
:

The functions b; a are one step ahead distorted ex-
pectations.



Bid and Ask as Sub and
Super Martingales

� We may observe from this construction, recalling
that bid prices lie below expectations while ask prices
are above them, that the bid price process satis�es

Y bt = E
h
Y bt+1jFt

i
+ b

�
Y bt+1 � E

h
Y bt+1jFt

i�
� E

h
Y bt+1jFt

i
whereas for the ask price process we have

Y at = E
h
Y at+1jFt

i
+ a

�
Y at+1 � E

h
Y at+1jFt

i�
� E

h
Y at+1jFt

i
:

� Hence dynamically consistent bid prices are submartin-
gales while ask prices are supermartingales. This
property is preserved in the continuous time formu-
lation.



Discrete Time Applications

� M., Pistorius and Schoutens (2011) price a variety
of structured products in a context where transition
probabilities are estimated to meet marginal densities
extracted from option prices.

� M. and Schoutens (2012b) investigate the e¤ect of
the discrete tenor on such pricing sequences.

� M. (2010) implements dynamic hedging modi�ed to
minimize capital requirements de�ned as the di¤er-
ence between dynamically consistent ask and bid
price sequences as advocated in Carr, M. and Vi-
cente Alvarez (2011).

� M., Wang and Heckman (2011) apply these methods
to the pricing of insurance loss liabilities, the deter-
mination of capital minimizing reinsurance attach-
ment points and the �nancial hedging of securitized
insurance loss exposures.



Continuous time modeling
of bid and ask price

functionals

� The static and discrete time models for two price
economies, as useful as they are in a variety of con-
texts, fall short of providing valuations for claims
delivered at arbitrary time points in the future.

� It is like an option pricing theory constrained to ma-
turities being an integer multiple of some tenor.

� The objective now is to extend the theory of two
price economies to continuous time.

� This leads us naturally to dynamically consistent non-
linear pricing in continuous time.



� Fortunately much progress has already been made
here in the construction of G-expectations by Peng
(2006). Our task reduces to describing the G in our
application of G-expectation.



The Continuous Time Plan

� We proceed in stages.

� First we introduce the context in which we work by
reviewing the construction of expectations that are
to be lifted to G-expectations.

� Next we present the general approach of G-expectations
that we will follow.

� A presentation of two particular nonlinear G-operators
follows.

� The operators are related to the distortions employed
in the static and discrete time cases.

� Finally we study the Doob-Meyer decomposition of
the bid price under the linear expectation operator
and shows that bid prices are submartingales.



The underlying uncertainty
and expectation operator

� The underlying uncertainty is given by a pure jump
Lévy process (Xt; 0 � t � T ):

� More generally one could take an underlying Hunt
(1966) process.

� The applications made use of such a process by al-
lowing the parameters of the jump compensator to
depend mildly on the current level of the process.

� However, for the theoretical discussion such a depen-
dence is not necessary.

� The pure jump Lévy process is speci�ed by the drift
term � and the Lévy measure k(y)dy de�ned for
y 6= 0:



� An example that we shall work with is the variance
gamma process (M. and Seneta (1990), M. Carr and
Chang (1998)) for which the Lévy density is given in
CGMY format (Carr, Geman, M. and Yor (2002)) by

k(y) =
C

jyj
�
exp (�Gjyj) 1y<0 + exp (�M jyj) 1y>0

�
:

� In general the Lévy measure is not a �nite measure
but satis�esZ 1

�1

�
y2 ^ 1

�
k(y)dy <1:

� We shall work with processes satisfying the stronger
condition Z 1

�1
y2k(y)dy <1:

� In such cases the in�nitesimal generator L of the



process is given by

L(u)
= �ux(x; t)

+
Z 1
�1

(u(x+ y; t)� u(x; t)� ux(x; t)y) k(y)dy:



Claim Valuation Functional

� Now let u(x; t) be the time zero �nancial value when
X(0) = x; of a claim paying �(Xt) at time t:

� The function u(x; t) for a constant interest rate of
r; is the solution of the partial integro-di¤erential
equation

ut = L(u)� ru

subject to the boundary condition u(x; 0) = �(x):

� More formally

u(x; t) = E
h
e�rt�(Xt)jX0 = x

i
;

with Xt the driving Lévy process.

� This linear expectation equation is what we shall gen-
eralize to a nonlinear partial integro-di¤erential equa-
tion that will yield the bid and ask pricing functionals
of our two price economy in continuous time.



The G-expectation
approach

� The in�nitesimal generator L is a linear operator on
u:

� Peng (2006) created G-expectations de�ned as non-
linear expectations that are unique viscosity solutions
to nonlinear equations of the form

ut = G(u) (1)

for the boundary condition u(x; 0) = �(x):

� The result is

u(x; t) = E (�(Xt)jX0 = x) ;

where E is a dynamically consistent nonlinear expec-
tation operator.



� The operator G is now a nonlinear operator. For the
de�nition of G-Brownian motion the speci�c opera-
tor G is given by

G(a) = 1

2

�
a+ � �20a�

�
; 0 � �0 � 1;

where a+ = max(a; 0) and a� = max(�a; 0) and
one solves the equation

ut = G (uxx) :



Nonlinear Bid Ask
Operators

� The way to get nonlinear bid and ask price function-
als described in the following section is to replace the
linear operator L by a suitable nonlinear operator G
and then to solve

ut = G(u)� ru

for u(x; 0) = �(x): The solution of this equation is
a �nancial bid price

u(x; t) = b (� (Xt) jX0 = x) :



Distortions for
G-expectations

� Concave distortions are applied to distribution func-
tions of random variables exaggerating their low states
and discounting their high states.

� The role of the Lévy measure in the expression for
L(u) is not unlike that of a probability as it is the
limit of probabilities.

� However, the Lévy measure does not integrate to
unity whereas distortions operate on the unit inter-
val.

� Our �rst suggestion is to rewrite the integral expres-
sion in L(u) with the objective of forcing a proba-
bility measure into view.



� We may equivalently write for the integral in L the
expressionZ 1

�1
(u(x+ y; t)� u(x; t)� ux(x; t)y)�R1

�1 y
2k(y)dy

y2
� g(y)dy

where we now write

g(y) =
y2k(y)R1

�1 y2k(y)dy
:

� The function g(y) is positive, integrates to unity and
thus is a probability density.

� In the altered expression g(y) is employed to com-
pute the expectation of the variable which is random
in y for a given x; t and de�ned by

Yx;t(y)

= (u(x+ y; t)� u(x; t)� ux(x; t)y)�R1
�1 y

2k(y)dy

y2
:



� We may equivalently de�ne the distribution function

FYx;t(v) =
Z
A(x;t;v)

g(y)dy

A(x; t; v) =
n
yjYx;t(y) � v

o
and then write the integral asZ 1

�1
vdFYx;t(v):



� Now we consider the distorted expectationZ 1
�1

vd	(FYx;t(v))

which agrees with the integral

�
Z 0
�1

	
�
P g(Yx;t � v)

�
dv

+
Z 1
0

h
1�	

�
P g(Yx;t � v)

�i
dv;

where P g indicates that we evaluate probability un-
der the quadratic variation scaled density g(y):

� We de�ne

GQV (u) = �ux �
Z 0
�1

	
�
P g(Yx;t � v)

�
dv

+
Z 1
0

h
1�	

�
P g(Yx;t � v)

�i
dv

and solve then for the nonlinear bid price.

� The ask price is the negative of the bid for the neg-
ative cash �ow.



� We note that scaling by quadratic variation is a way
of ignoring or truncating the small moves.

� Another way to ignore these jumps given that the
function being evaluated is of order O(y2) is to con-
sider the integralZ

jyj�"
(u(x+ y; t)� u(x; t)� ux(x; t)y)�

k(y)dy;

where we e¤ectively truncate a small neighbourhood
of zero.

� We may now rewrite and force the probability h(y)
as Z

jyj�"
(u(x+ y; t)� u(x; t)� ux(x; t)y)� Z

jyj�"
k(y)dy

!
h(y)dy;



where we now de�ne the density

h(y) =
k(y)�R

jyj�" k(y)dy
�1jyj�":

� The random variable in y for �xed x; t is now

eYx;t = (u(x+ y; t)� u(x; t)� ux(x; t)y)� Z
jyj�"

k(y)dy

!
and the relevant nonlinear operator denoted GNL for
normalized Lévy is

GNL(u) = �ux �
Z 0
�1

	
�
Ph( eYx;t � v)� dv

+
Z 1
0

h
1�	

�
Ph( eYx;t � v)�i dv



� We have thus de�ned two nonlinear partial integro-
di¤erential operators the solutions of which yield non-
linear bid prices for claims written on the terminal
value of the Lévy process.

� These are the QV and NL approaches which ignore
small jumps and induce a probability to distort.

� In our applications the nonlinear partial integro-di¤erential
equations are solved numerically for the value of con-
tracts.



Bid prices as
submartingales under the
original linear expectation

� Consider, in the case of zero rates and quadratic
variation scaling, the bid price at time t for the claim
paying �(XT ) at time T when the original Lévy
process is at Xt:

� This bid price is given by

bt = u(Xt; T � t)
where the function u(x; t) solves

ut = GQV (u)
for the boundary condition u(x; 0) = �(x):

� We observe in the appendix that for all functions
u(:; t) we have as a consequence of distortions the
inequality

GQV (u(:; t)) � L(u(:; t)):



� We then develop the Doob-Meyer decomposition of
bt under the original expectation operator as

bt

= b0 +Mt

+
Z t
0
ds (L(u(:; T � s)) (Xs)

�GQV (u(:; t))(Xs)):

The domination then establishes the submartingale
property for the bid price under the original linear
expectation.

� The proof follows on showing that

u (Xt; T � t) = u(X0; T ) +Mt

+
Z t
0
ds

"
L(u(:; T � s)(Xs)
� @
@tu(Xs; T � s)

#
:

� Here Mt denotes a martingale. We note some simi-
larity of this equation with Proposition 2.1 in Kunita
(1997).



� From these demonstrations one observes that the
risk charge on a risk with distribution function Fx;t(v)
is given byZ 1

�1
(	(Fx;t(v))� Fx;t(v))dv;

and is strongly in�uenced by the concavity of the
distortion.



Some illustrative
valuations

� For numerical computations the underlying uncer-
tainy may easily be taken to be more general than
that of a Lévy process and one may entertain Hunt
processes (Hunt (1966)).

� In the applications presented in the following, the
underlying uncertainty is given by a pure jump Hunt
process with space dependent jump compensators for
the logarithm of the stock price at x:

� Let the arrival rate for a jump of size y 2 Rnf0g;
when the log stock price is x; be k(x; y).

� The function k(x; y) is taken from the class of vari-
ance gamma (V G) Lévy measures and we then have

k(x; y) =
Cx

jyj

 
exp (�Gxjyj) 1y<0
+exp (�Mxjyj) 1y>0

!
:



� For a speci�cation of the dependence of the V G pa-
rameters on the space variable the V Gmodel is repa-
rameterized with parameters a; v; q where a is the
ratio of positive to negative variation, v is the level
of �nite variation in the symmetric process with ex-
ponential decay at (G+M)=2 and q is the quadratic
variation of the symmetric process.

� Such a reparameterization allows us to model via a;
mean reversion or momentum depending on how the
rate of positive variation moves with the level of the
stock.

� The behavior of v speci�es peakedness of densities.
Peakedness is greater at lower levels of v:

� The parameter q captures the behavior of volatility
or quadratic variation.



A Speci�c
Parameterization

� For the stock price ratio S=S0 below :75 or above
1:25 the parameters are assumed to be constant.

� For the ratios of 0:75; 1:0 and 1:25 we specify the
value of the three parameters and interpolate linearly
in the interval [0:75; 1:25]:

� The computations presented are for the parameteri-
zation

S=S0 :75 1 1:25
a :4 :25 :5
v :1 :16 :1
q :02 :0126 :02



� For this parameterization of a Hunt process we present
in Figures and the bid, ask and expectation for a
0:9; 1:1 half year and one year strangle for a stock
priced at unity for both the QV and NL pricing
models where for NL, " = :001:

� The distortion employed is minmaxvar at the stress
level 0:1:

� We further report in the Figure the bid and ask prices
and the common expectation for a Lévy model with
a; v; q speci�cation 0:3; 0:2; 0:02:

The two ways of truncating small jumps are observed to
be comparable and the next section considers the valua-
tion of a derivatives book for just the QV speci�cation.
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Figure 1: QVCDF Strangle at 6 months and one year
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Figure 2: NLG strangle at 6 months and one year.
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Completely monotone
Basis Functions

� We also present in Figure the QV bid, ask and ex-
pected values for the basis functions exp(�ajxj); of
the comonotone class considered earlier, for a = 1

and 2:
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Figure 4: Nonlinear valuations of extreme points of the
class of even, completely monotone functions.



Valuing a derivatives book

� Consider a book of derivatives on a single underlier
with cash �ows �

�
xi; tj

�
at future dates tj for j =

1; � � � ; N that may be interpolated to build payout
functions �(x; tj) and extrapolated as constant at
the value at the nearest neighbour, out of the range
of speci�ed points.

� The nonlinear value of a derivatives book cannot be
determined as the sum of the nonlinear values of
each item as nonlinear values are not additive.

� In implementation we shall use an interpolated grid
speci�cation but in general we consider the nonlinear
valuation u(x; t) forX

tj>t

�(x; tj):



� To determine this valuation we de�ne

v(x; t) = u(x; tN � t)

and set

vN(x; 0) = �(x; tN):

� We then solve in the interval 0 < s � tN � tN�1

vNs = G
�
vN
�

and de�ne the solution vN(x; tN � tN�1):

� We then de�ne

vN�1(x; 0) = vN(x; tN � tN�1) + �(x; tN�1)

and solve in the interval 0 < s � tN�1� tN�2 the
function

vN�1s = G(vN�1);

to de�ne vN�1(x; tN�1 � tN�2):



� We then de�ne

vN�2(x; 0) = vN�1(x; tN�1�tN�2)+�(x; tN�2)

until we have computed v1(x; t1) that is the value
of the book.

� We then de�ne

u(x; t) = vj(x; t� tj�1);
tj�1 � t � tj; j = 1; � � � ; N:



� By way of an example we take four cash �ows at
the four maturities, one, three, six and 12 months
to meet target greek positions. The targeted greeks
are

1 3 6 12
gamma .3597 .9248 -.1336 -.3902
vega -.8316 -.0402 -.8600 -.3296
vanna -.3612 -.1837 -.0621 .3270
volga .0889 -.3950 .0720 .2055
skew -.9292 -.3172 -.4930 .1531

� The cash �ows accessed to meet these target greeks
are displayed in Figure for the four maturities.

� The cash �ows are from positions in 21 strikes for
out of the money options at each maturity.

� The strikes range from 80 to 120 in steps of 2 dollars.

� The positions are determined to match the target
greeks.
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Figure 5: Cash �ows accessed at four maturities
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Figure 6: Bid, ask, expectation and the sum of four sep-
arate bid and ask prices for each of four maturities.

� For these cash �ows we compute the expectation, as
well as the bid and ask prices for the four maturities
taken together and the sum of the bid and ask prices
for the four maturities taken separately. The result
is displayed in Figure.



� We see clearly the e¤ect of nonlinear pricing on the
bid and the ask with the gap between the ask and
bid of the sum and the sum of the bid and ask prices.



Illustrative Calibration

� For monotone payo¤s like put and call options one
may price under an altered Lévy measure

� One may then approximate a Hunt process by a �nite
state Markov chain on non-uniform grid and tilt the
transition rates where for a local V G evolution we
have explicitly that

G(y) =
�
1

G2
+

1

M2

��1
�264 (1+Gy)e�Gy

G2
1y>0

+
�
1
G2
+
1�(1+My)e�My

M2

�
1y<0

375
and

eG(y) =
�
1

G2
+

1

M2

��1
�2664

�
(1+My)e�My

M2

�
1y>0

+
�
1
M2 +

1�(1+Gy)e�Gy
G2

�
1y<0

3775



� For data on SPX options for April 20 2009, the para-
meter estimates for a; v; q in the Hunt speci�cation
were

S 75 100 125
a 0:2462 0:4965 0:0023
v 0:3717 3:0583 0:0518
q 2:9893 0:1369 0:0122

The stress parameter was 20 basis points. Figures
and present the graphs for the �t to Bid and Ask
prices.
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Figure 7: Graph of the Hunt process �t with VG a, v, q
parameterization to SPX Bid prices for April 20 2009.
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Figure 8: Graph of the Hunt process �t with VG a, v, q
parameterization to SPX Ask prices for April 20 2009.


