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Axiomatic Framework of Coherent Risk Measures

o Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk,
Math. finance.

@ Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

E[X]:= p(-X)
(a) E[X] > E[Y], if X>VY
(b) E[X +c] = E[X] +c,
(c) BIX + Y]<E[X]+E[Y]
(d) E[AX] = AE[X], A >0
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Robust representation of a coherent risk measure

@ Huber Robust Statistics (1981), for finite state case.
o Artzner-Delbean, Eber-Heath (1999), Delbean2002,
@ Follmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)
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Robust representation of a coherent risk measure

@ Huber Robust Statistics (1981), for finite state case.
o Artzner-Delbean, Eber-Heath (1999), Delbean2002,
@ Follmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

IE[] is a sublinear expectation iff there exists a family {Ey}gce of linear
expectations s.t.

E[X] = sup B[X], VX € H.
0cO
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Motivated from g-Expectation [P.1994-1997] on Wiener

probability space (Q, F, P)

@ Given r.v. X(w), solve the BSDE

dy(t) = —g(y(t), 2(t))dt + 2(t)dB(t), y(T) = X(w).




Motivated from g-Expectation [P.1994-1997] on Wiener

probability space (Q, F, P)

@ Given r.v. X(w), solve the BSDE

dy(t) = —g(y(t), z(t))dt + z(t)dB(t), y(T)=X(w).
@ Then define:

E¢[X] :=y(0), EE[X|(B(s))sefo,q] := y(2).
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o [Artzner-Delbean-Eden-Heath1999] Coherent measures of risk, Math.
finance.

e [Coquet-Hu-P.-Memin2002], [P. 2005]: A dominated and F-dynamic
expectation a g-expectation;

o [Delbaen-P.-Rosazza, 2008]: If a convex dynamic expectation & is
absolutely continuous w.r.t. P then there exists a unique g such that
E=E;.

@ Serious problem: under volatility uncertainty, it is impossible to find a
reference probability measure.
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World of economic: Frank Knight (1921) "Risk,
Uncertainty and Profit”

Knight, 1921
@ " Mathematical, or a priori, type of probability is practically never met
with in business ..."
@ "Uncertainty must be taken in a sense radically distinct from the
familiar notion of Risk, from which it has never been properly
separated.”

Knightian's Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

The prob. and distr. are unknown— " uncertainty of probability measures”.
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F. Knight (1921): Two types of uncertainty “risk”: given a
probability space (Q, F, P); “Knightian uncertainty” (ambiguity):
Probability measure P itself is uncertain;

John Maynard Keynes (1921) A Treatise on Probability. Macmillan,
London, 1921.

Allais paradox (1953) to vVNM expected utility theory (1944);
Ellsberg paradox (1961) to Savage's expected utility (1954),
Ambiguity aversion (1961);

Kahneman & Tversky (1979-1992): prospective theory by distorted
probability;

Gilboa & Schmeidler (1989) Maximin expected utility; Hansen &
Sargent (2000) Multiplier preference.

Hansen & Sargent: Robust control method.
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Nonlinear expectation framework

o (): A set;

@ H a linear space of random variables containing constants

X(w)eH = | X(w)| €eH

@ We often "equivalently” assume:

Xi, - Xn €H = @(X1,---, Xa) €H, Vo€ Cip(R")
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Daniell's Expectation (1918) (Q, H, E)

XeH = |X|eH

(a) E[X] > E[Y], if X>VY

(b) E[X +c] = E[X] +c,

(c) B[X + Y]=E[X] +E[Y]

(d) E[AX] = AE[X], A>0.
E[

Theorem (Daniell-Stone Theorem)

o There exists a probability measure P on (Q),0(H)) s.t.

B[X] = E[X] = /QX(w)P(w), for each X € H.

Brownian Motion under Nonlinear Expectati



Daniell's Expectation (1918) (Q, H, E)

XeH = |X|eH

(a) E[X] > E[Y], if X>VY
(X +c] = E[X] +c,

(X 4+ Y]=E[X] +E[Y]
[AX] = AE[X], A>0.
[Xi] 10, if Xi(w) |0, Vw

Theorem (Daniell-Stone Theorem)

o There exists a probability measure P on (Q),0(H)) s.t.

B[X] = E[X] = /QX(w)P(w), for each X € H.




ZaS

Sublinear Expectation on (Q, H, E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY

Brownian Motion under Nonlinear Expectati



ZaS

Sublinear Expectation on (Q, H, E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY
(b) E[X 4 c] = E[X] +c,

Brownian Motion under Nonlinear Expectati



ZaS

Sublinear Expectation on (Q, H, E)

XeH = |X|eH

(a) E[X] > E[Y], if X>VY

(b) B[X +c] = E[X] +

(c) EIX + Y]|< ]E[X]—HE[Y] " <" = sublinear
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Sublinear Expectation on (Q, H, E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY

(b) B[X+c] =1
(c) EX+ Y|<E[X]+E[Y] " <" = sublinear
(d) B[ ME
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Sublinear Expectation on (Q, H, E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY

(b) E[X +c] =E[X]+c¢
(c) B[X + Y]<E[X] + E[Y] <" = sublinear
(d) E[AX] = AE[X], A >0

E[X;] 10, if Xi(w) |0, Yw
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Sublinear Expectation on ({2, H,]E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY

(b) E[X +¢] = E[X] +c,
(c) BIX + Y]<E[X]+E[Y] " <" = sublinear
(d) E[AX] = AE[X], A >0.

E[X] 10, if Xi(w) |0, Yw

Theorem (Robust Daniell-Stone Theorem)

o There exists a family of { Py }gc@ of prob. measures on (Q),0(H)) s.t.

E[X] = sup E[X] = sup QX(w)Pg(w), for each X € 'H.
E €
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Sublinear Expectation on ({2, H,]E)

XeH = |X|eH
(a) E[X] > E[Y], if X>VY

(b) E[X +¢] = E[X] +c,
(c) BIX + Y]<E[X]+E[Y] " <" = sublinear
(d) E[AX] = AE[X], A >0.

E[X] 10, if Xi(w) |0, Yw

Theorem (Robust Daniell-Stone Theorem)

o There exists a family of { Py }gc@ of prob. measures on (Q),0(H)) s.t.
E[X] = sup E[X] = sup | X(w)Py(w), foreach X € H.
0€® 60 /O

@ For each given X € H,

E[p(X)] = sup ]R(P(X)d’:e(x)v Fo(x) = Po(X < x).
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G-Expectation and G-Brownian Motion

@ [Peng2004] Filtration consistent nonlinear expectations..., Applicatae
Sinica, 20(2), 1-24.

@ [Peng2005] Nonlinear expectations and nonlinear Markov chains,
Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
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pricing of contingent claims in the presence of model uncertainty, The
Ann. of Appl. Probability
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Stochastic Calculus.

@ [Denis-Hu-Peng2008] Capacity related to Sublinear Expectations:
appl. to G-Brownian Motion Paths.
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Uncertainty version of distributions in (Q, H, IE)

Definition
@ X ~ Y if they have the same distribution uncertainty

X~ Y = Elp(X)] =E[p(Y)]. Vo€ Co(R").
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Uncertainty version of distributions in (Q, H, IE)

Definition
@ X ~ Y if they have the same distribution uncertainty
X~Y <= Elp(X)] =E[p(Y)], Vo€ G(R").

e Y Indenp. of X if each realization "X = x" does not change the
distribution of Y:
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Uncertainty version of distributions in (Q, H, IE)

Definition
@ X ~ Y if they have the same distribution uncertainty
X~Y <= Elp(X)] =E[p(Y)], Vo€ G(R").

e Y Indenp. of X if each realization "X = x" does not change the
distribution of Y:

Y indenp. of X <= E[p(X,Y)] = E[E[p(x, Y)]x=x].
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Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let {X;}°, in (Q,H, ) beiid: X;~ Xy and
X;+1 Indep. (Xl, 000 ,X,'). Assume:

B[X ] < o | BX)] = B[-X\] = 0.
Then:

tim Blp(EE50)] = Blp(0)], Y € Cu(R),

with X ~ N(0, [c?,7?]), where

7 =E[Xf], o =-E[-X{].
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Normal distributions under Knightian uncertainty

Definition

A loss position X in (Q, H, E) is normally in uncertainty distribution if

aX + bX ~ a2+ b2X, Va b>0.

where X is an independent copy of X.
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Definition

A loss position X in (Q, H, E) is normally in uncertainty distribution if

aX + bX ~ a2+ b2X, Va b>0.

where X is an independent copy of X.
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G-normal distribution: under sublinear expectation IE|[-]

@ (1) For each convex ¢, we have
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G-normal distribution: under sublinear expectation IE|[-]

@ (1) For each convex ¢, we have

Bl (X)) = = [ o) en(-L5)dy
(2) For each concave ¢, we have

N 1 0 y?

Blp00] = s [ o) ewl—5)ds
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If 02 = &2, then N(0; [¢?,7%]) = N(0,7?).

The larger to [02, 72| the stronger the uncertainty.
g g Y

But X < N(0; [0, 7?]) does not simply implies

E[(X))] =U€?;2p2 \/% x) exp{—_~ } x
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G-normal distribution characterized by nonlinear

infinitesimal generator

CLT converges in uncertainty distribution to N(0, [02, 72]):

Theorem

2 = /V(O (02, 72]) in (Q, H,TE), then for each Cy, function ¢,
Se(@)(x) == Elp(x +VtX)], x€R, t>0

Elp(x)] = ¢(x), and

defines a nonlinear semigroup, since:Sp[@](x)

[p(x + V't +5sX)]

A /dh\ —_—

Elg(x + VX +/5X)]

A ,—/‘\ —_—
Elp(x + vty +ﬁX>]y—x]

_ [( o ])(x+\fX)} Sel:[¢1](x).

|
=

Strs[9](x)

=




.Aq)(x) — t"_% St(¢)(xz — QD(X) — G(Uxx)-

where

G(a) = B[3X?) = %(52;,# — %)

Thus we can solve the PDE

ur= G2 .u), t>0 x€R

U|t:0 = 4)
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Law of Large Numbers (LLN), Central Limit Theorem
(CLT)

Striking consequence of LLN & CLT
Accumulated independent and identically distributed random variables
tends to a normal distributed random variable, whatever the original

distribution.
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Maximal distribution M([p, 7z]) under Knightian

uncertainty

Definition
A random variable Y in (Q, H,IE) is maximally distributed, denoted by

Y < M([p. 7). if
aY +bY £ (a+ b)Y, a,b>0.

where Y is an independent copy of Y,

f:=E[Y], p:=-E[-V] /
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Maximal distribution M([p, 7z]) under Knightian

uncertainty

Definition
A random variable Y in (Q, H,IE) is maximally distributed, denoted by

Y < M([p. 7). if
aY +bY £ (a+ b)Y, a,b>0.

where Y is an independent copy of Y,

f:=E[Y], p:=-E[-V] /

@ We can prove that
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Case with mean-uncertainty [E[-]

Definition
A pair of random variables (X, Y) in (Q, H,E) is
N ([u. 7], [¢® 7%))-distributed ((X,Y) 4 N ([ 7, [e2,7%)) if

(aX + bX, 22Y + b2V) £ (Va2 + b2X, (2> + b2)Y), Va b> 0.

where (X, \7) is an independent copy of (X, Y),
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Theorem

(X,Y) g N([u. 7). [¢?,7%]) in (O, H,E) iff for each ¢ € Cp(R) the
function -

u(t,x,y) = Elp(x+VtX,y +tY)], x€R, t>0
is the solution of the PDE

ur=G(uy, u), t>0, x€R

U|t=0 = o,

where 5
G(p, a):= ]E[EXQ + pY].
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LLN + CLT under Knightian Uncertainty

Let {X; + Yi}=, be iid. sequence. We assume furthermore that
E[| X + E[|Y1]* Y] < 00, E[Xi] = E[-X;] = 0.
Then, for each ¢ € Cp(R),

A

e Xy 4o+ X Yidt. ...V

n—oo \/ﬁ + n
where (X, Y) is N'([p, 7i], [0?, 7] )-distributed.

)] = Elp(X +Y)].
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Brownian Motion (B:(w))>0 in (Q, F,IE))

Definition

B is called aG-Brownian motion if:
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Brownian Motion (B:(w))>0 in (Q, F,IE))

Definition
B is called aG-Brownian motion if:
@ Foreach ty < --- <'t,, By, — B, , isindep. of (By, -+, B, ;).
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Brownian Motion (B:(w))>0 in (Q, F,IE))

Definition
B is called aG-Brownian motion if:
@ Foreach ty < --- <'t,, By, — B, , isindep. of (By, -+, B, ;).

o B, LB, — B foralls,t >0
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Brownian Motion (B:(w))>0 in (Q, F,IE))

Definition

B is called aG-Brownian motion if:
@ Foreach ty < --- <'t,, By, — B, , isindep. of (By, -+, B, ;).
o B, LB, — B foralls,t >0
o E[|B:|%] = o(t). .
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If (B¢(w))¢>0 is a G—Brownian motion and E[B;] = E[—B;] = 0 then:
Beis — Bs £ N(0, [02t,5%t]), Vs, t > 0 O

v

Sketch of Proof.
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If (B¢(w))¢>0 is a G—Brownian motion and E[B;] = E[—B;] = 0 then:
Beis — Bs £ N(0, [02t,5%t]), Vs, t > 0 O

Sketch of Proof.
o Si[@](x) := E[p(x + B;)] defines a nonlinear semigroup (S;):>0

| \
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If (B¢(w))¢>0 is a G—Brownian motion and E[B;] = E[—B;] = 0 then:
Beis — Bs £ N(0, [02t,5%t]), Vs, t > 0 O

v

Sketch of Proof.

o Si[@](x) := E[p(x + B;)] defines a nonlinear semigroup (S;):>0

Blp(x-+ Bo)] — p(x) = Elpu(x)Be + 5@u(x)B2] + o(2)

1 B2
= El59m (x)B] +0(0). G(a) := B[ 3]
—_—
=G(px)t,
L]
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If (B¢(w))¢>0 is a G—Brownian motion and E[B;] = E[—B;] = 0 then:
Beis — Bs £ N(0, [02t,5%t]), Vs, t > 0 O

Sketch of Proof.
o Si[@](x) := E[p(x + B;)] defines a nonlinear semigroup (S;):>0

| \

Blp(x-+ Bo)] — p(x) = Elpu(x)Be + 5@u(x)B2] + o(2)

1 B2
= El59m (x)B] +0(0). G(a) := B[ 3]
—_—
=G(pod)t,
o Thus atSt[(P] <X>‘t:0 = G((PXX(X)): the infinitesimal generator of
(St)e>o0-
]
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Construct G-BM on a sublinear expectation space

(Q,H,E)

e O:=((0,00;R), Bi(w) = wt
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Construct G-BM on a sublinear expectation space

e O:=((0,00;R), Bi(w) = wt
o H:={X(w)=¢(By, Bt,- -+ ,Bt,), ti €[0,0), ¢ € C1jp(R"),n €
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Construct G-BM on a sublinear expectation space

e O:=((0,00;R), Bi(w) = wt
o H:={X(w)=¢(By, Bt,- -+ ,Bt,), ti €[0,0), ¢ € C1jp(R"),n €

Z}
e For each X(w) = ¢(By,Bt, — B, -+ , By, — Bt, ), with t; < tjy1,
we set
IE[ ] = IE[ (\/Hgl Vi — tl€2 vV th — tn—lgn)]
where

&i 4 N(0, [¢?,?]), &1 isindep. of (¢1,---, &) under E.
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Construct G-BM on a sublinear expectation space

e O:=((0,00;R), Bi(w) = wt
o H:={X(w)=¢(By, Bt,- -+ ,Bt,), ti €[0,0), ¢ € C1jp(R"),n €

Z}
e For each X(w) = ¢(By,Bt, — B, -+ , By, — Bt, ), with t; < tjy1,
we set
IE[ ] = IE[ (\/Hgl Vi — tl€2 vV th — tn—lgn)]
where

&i 4 N(0, [¢?,?]), &1 isindep. of (¢1,---, &) under E.
o Conditional expectation:

IEtl [X] = IE[(P(Xr Vi — th2v /it — tn—lén)]x:Btl
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o Completion of { to Lg(Q)) under [|X||,p = E[|X|P]YP, p>1
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o Completion of { to Lg(Q)) under [|X||,p = E[|X|P)YP, p>1

o E[] and [E; are extended to L?.(Q) and keeping time consistency;

@ It0's integral, It6's calculus have been established
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o Completion of { to Lg(Q)) under [|X||,p = E[|X|P)YP, p>1

o E[] and [E; are extended to L?.(Q) and keeping time consistency;
@ It0's integral, It6's calculus have been established

@ G-martingales, supermartingales, - - - have been established.
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Completion of H to L%(Q)) under HXHL’(’; = E[|X|P]VP, p>1
IE[-] and IE; are extended to L% (Q)) and keeping time consistency;
[t6's integral, 1t6’s calculus have been established

G-martingales, supermartingales, - - - have been established.

If G is dominated by G: G(a) — G(b) < G(a— b), then we can
establish a nonlinear expectation [E# on the same space LZ(Q),
under which B is a G-Brownian motion.

Brownian Motion under Nonlinear Expectati



Completion of H to L%(Q)) under HXHL’(’; = E[|X|P]VP, p>1
IE[-] and IE; are extended to L% (Q)) and keeping time consistency;
[t6's integral, 1t6’s calculus have been established

G-martingales, supermartingales, - - - have been established.

If G is dominated by G: G(a) — G(b) < G(a— b), then we can

establish a nonlinear expectation [E# on the same space LZ(Q),
under which B is a G-Brownian motion.

We don't need to change stochastic calculus for these type of [E.
Many Wiener measures and martingale measures dominated by IE
work well in this fixed G-framework. (they maybe singular from each
others).
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Completion of H to L%(Q)) under HXHL’(’; = E[|X|P]VP, p>1
IE[-] and IE; are extended to L% (Q)) and keeping time consistency;
[t6's integral, 1t6’s calculus have been established

G-martingales, supermartingales, - - - have been established.

If G is dominated by G: G(a) — G(b) < G(a— b), then we can

establish a nonlinear expectation [E# on the same space LZ(Q),
under which B is a G-Brownian motion.

We don't need to change stochastic calculus for these type of [E.
Many Wiener measures and martingale measures dominated by IE
work well in this fixed G-framework. (they maybe singular from each
others).

Note that if Gi < Gy then LE (Q) D L (Q).
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Probability v.s. Nonlinear Expectation

Probability Space Nonlinear Expectation Space
(Q, F,P) (Q,'H,E): (sublinear is basic)
Distributions: X < Y x2y,

Independence: Y indep. of X | Y indep. of X, (non-symm.)
LLN and CLT LLN + CTL

Normal distributions G-Normal distributions
Brownian motion B(w) = w; | G-B.M. Bi(w) = wy,

Qudratic variat. (B), =t (B),: still a G-Brownian motion
Lévy process G-Lévy process
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Probability v.s. Nonlinear Expectation

Probability Space

Nonlinear Expectation Space

[td's calculus for BM

I1td's calculus for G-BM

SDE dXt == b(Xt)dt+ U'(Xt)dBt

dx; = -+ B(x)d (B),

Diffusion: d;u — Lu =10

d:u— G(Du, D’u) =0

Markovian pro. and semi-grou

Nonlinear Markovian

Martingales

G-Martingales

EIX|F] = E[X] + [, zdB;

E[X|F:] = E[X] + [, 2:dB;s + K:

Ke = [L1sd (B), — Jo 2G(1js)ds
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Probability Space Nonlinear Expectation Space
P-almost surely analysis ¢-quasi surely analysis

¢(A) = supy Ep, [14]

X(w): P-quasi continuous | X(w): &-quasi surely

<= X is B(Q))-meas. continuous = X is B(Q2)-meas.
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Lévy Processes under Sublinear Expectations

Based on: [Hu, Mingshang & P.]: G-Lévy Processes under Sublinear
Expectations, (in arXiv)

Definition

A d-dimensional process (X;):>0 on a sublinear expectation space
(Q,H,E) is called a Lévy process:

Q@ Xy, =0.
e Xt+5 _Xt is indep. Of (th’XtZV 000 ,th),
Vt,s >0, ti,ta,- -, t, €[0,t].

. . d
© Stationary increments: Xii s — Xp = Xs.
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Pure jump Lévy process on ((, H,IE).

Consider a pure jump case: X; = X,_fj
Assumption:

limsupB[| X ||t < 0.
£10
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u(t, x) = Sep(x) := E[p(x + X;)] is a semigroup on ¢ € Cp,1;p(RY):

St+s9(x) = StSs9(x), Sop(x) = ¢(x)
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u(t, x) = Sep(x) := E[p(x + X;)] is a semigroup on ¢ € Cp,1;p(RY):

St+s9(x) = StSs9(x), Sop(x) = ¢(x)

[0:Se@le=0(x) = Gx[p(x + ) — p(x)],
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u(t, x) = Sep(x) := E[p(x + X;)] is a semigroup on ¢ € Cp,1;p(RY):

St+s9(x) = StSs9(x), Sop(x) = ¢(x)

[0:Se@le=0(x) = Gx[p(x + ) — p(x)],

@ Gx is well-defined on

Lo:={f € Cb,L,-p(]Rd) :f(0) =0and f(x) = o(|x])}
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BSDE driven by G-BM (2BSDE)

T T
vt:g+/ (s, Ys,Zs)ds~|—/ g(s, Yo Z:)d(B)s
t t
-
—/t Z.dB, — (K7 — Ky).
Under a Lipschitz condition of f and g in Y and Z. The existence and

uniqueness of the solution (Y, Z, K) is proved, where K is a decreasing
G-martingale.
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G-Martingale representation

G-martingale M is of the form

Mt:M0+Mt+Kt,

t

A_/It ::/ zsBs,
0
t

t
Ke = ; 175(8)5—/0 2G(ns)ds.
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GBSDE

Y, :§~|—/tTf(s, Ys,Zs)ds—l—/tTg(s, Y., Z.)d(B),

.
—/t Z.dB, — (K7 — Ky).
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Existing results on fully nonlinear BSDEs (2BSDE)

e f independent of z (and g = 0):

, T
=E7 [0 +/t
Peng [2005,07,10].

BSDE corresponding to (path-depedent) system of PDE:

o' + G'(u', DU, D?u’) 4 F(t, x, u*, -

1l
S @
A
\_/

u)
( 7

||
_|—\
x-

G' satisfy the dominate condition:

G'(x.y.p.A)— G'(x,7,p.A) < c(ly = 7|+ lp—p|) + G(A— A),
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Existing results on fully nonlinear BSDEs

@ [Soner, Touzi and Zhang, 2BSDE]
o (Y,Z KP)pepy, IP € Pf, the following BSDE

Y, = g+/ (Y, Zs) ds—/ Z,dBs + (KY — KFP), P-as.,

with

KP = ess inf EY'[KE], P-as., VP € PE, te (o, T].
t IP’GPI’,S?(H,IP) ¢ [K7] H [0, T]
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A priori estimates
° (Qr, Lg(Qr). E)
o 07 = G([0, T], R),
o 7? = E[B?] > ~E[-B? =2 > 0.

T T
f(s, Ys, Zs)ds — / ZsdBs — (KT — K:), (GBSDE)
t

<
I
Nt
+
—

f(t,w,y, z): 0, T] xOr xR?> >R
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Assumption: some > 1 such that
(H1) forany y,z, f(-,-,y,z) € Mg(O, T),
(H2) |f(t,w,y,2) = f(t,w.y', 2)| < L(ly =y'[ + |z = Z]).

For (Y, Z,K) such that Y € S&(0, T), Z € HE(0, T), K: a decreasing
G-martingale with Ko = 0 and K1 € LE(Q7).
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An important observation

Let X € 52‘;(0, T) for some & > 1 and a* = 7. Assume that Ki,

Jj =1,2, are two decreasing G-martingales with Ké =0 and
K € L% (Q1). Then the process defined by

t t
/ XK + / X: dK?
0 0

is also a decreasing G-martingale. O
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A typical application of Lemma 3.4

o —dYi =f(s,Yi Z\ds — ZidBs — dKi, i=1,2
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A typical application of Lemma 3.4

o —dYi = f(s, Y, Zi)ds — ZidB, —dK,_f, =12
o V12— [ 2Vhds — [ |Z2d (B), + [.] 2V, Z,dB;
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A typical application of Lemma 3.4

o —dY] = f(s, Y/, Zi)ds — ZIdB, —dK,_f, i=1,2
o V12— [ 2Vhds — [ |Z2d (B), + [.] 2V, Z,dB;
o = |Vi2+ [ 2Vid(KE — K?)
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A typical application of Lemma 3.4

o —dY] =f(s, Yi Zi)ds — ZidB, —dK,_f, i=1,2

o V12— [ 2Vhds — [ |Z2d (B), + [.] 2V, Z,dB;

° = |§/t|2+ff2§/d Kl — K2)

° = |Yt|2+2ft Vo) tdKE + (Vs)~dK2) —2 [T[(Vs)dK2 +
(Vs)"dKZ)
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A typical application of Lemma 3.4

o —dY{ =f(s,Yi ZI)ds — ZidB; —dK,_f, i=12

o V12— [ 2Vhds — [ |Z2d (B), + [.] 2V, Z,dB;

° = |§/t|2+ff2§/d Kl — K2)

° = |Yt|2+2ft Vo) tdKE + (Vs)~dK2) —2 [T[(Vs)dK2 +
(Vs)"dKZ)

o > |Vi2+2 [T[(Vo)tdK} + (Vs) dK?]
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A typical application of Lemma 3.4

o —dY] =f(s, Yi Zi)ds — ZidB, —dK,_f, i=1,2

o V12— [ 2Vhds — [ |Z2d (B), + [.] 2V, Z,dB;

° = |§/t|2+ff2§/d Kl — K2)

° = |Yt|2+2ft Vo) tdKE + (Vs)~dK2) —2 [T[(Vs)dK2 +

(Vs)"dKZ)
o > |Vi2+2 [T[(Vo)tdK} + (Vs) dK?]
@ Thus

T T
%2 <BellVrP - [ 2%kds— [ |22 (B),
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Proposition 3.5
Assume (H1)-(H2) and (Y, Z, Kt) € $*(0, T) x H*(0, T) x S*(Q71)

solves
T T
Vo=t [ fls. Yo Z)ds— [ ZodBo— (Kr = Ko),
t t

where K is a decreasing process with Ky = 0. Then

B( [ |2205)%) < GuABL sup_| ¥l
te[0,T]

+ (B sup_ [Vl DABIC[ 10105 D)E),

te[0,T]

A A A T
BIIKr|] < GBL sup Vel + ([ 1£d5)"]},
te[0,T] 0

f0 .= |f(s,0,0)| + L"e

S
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Proposition 3.7

We assume (H1) and (H2). Assume that (Y, Z, K) € 6%(0, T) for some
1 <a < Bis a solution (GBSDE). Then

@ There exists a constant C, := C(a, T,, L") > 0 such that

.
Vel < GRillel" + [ 1£71ds],

Euw|mﬂsqmswm|w+/|mws
te[0,T] te[0,T]

where f0 = |f(s,0,0)| + L"e.

o For any given &’ with & < &’ < B, there exists a constant C,
depending on «, &', T, ¢, LY such that

E[ sup |Y:]*] < Guo{E[ sup TE[¢]"]]
t€[0,T] te[0, T]
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Proposition 3.8

Let f;, i = 1,2, satisfy (H1) and (H2). Assume

. T . . .
Yi = §+/ (s, i, s’)ds—/ ZidB, — (K& — Ki),
t

where Y' € 5%(0, T), Z' € H*(0, T), K’ is a decreasing process with
Kg =0 and Ki € L*(Qr) for some a > 1. Set
Yi=Y - Y2 72, =27 — 72 and K; = K} —

K2. Then there exists a
constant G, := C(a, T, 0, LW) > 0 such that

T o A A& 2 P4 T e o
lE[(/O 12,[2d5)3] < G{ | VIl + 1 V11& S0 Y 1IE + ] /0 £9ds||2 ],

i=1
where /0 = |£(s,0,0)| + L%e, i =1,2.
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Proposition 3.9.

Let & € LE(Qr) with B> 1, i = 1,2, and f; satisfy (H1) and (H2).
Assume that (Y', Z', K') € 6%(0, T) for some 1 < a < 8 are the
solutions of equation (GBSDE) to &' and f;. Then

() |Yel* < GIE[|E]* + ftT |, |“ds], where
fo=1(s, Y2, 22) — f(s, Y2, Z2)| + LY.

(ii) For any given &’ with & < &’ < B, there exists a constant
Cyw depending on a, &/, T, ¢, L% such that

E[ sup |Vi|"] < Guo{E[ sup E.[|¢]"]]
te[0,T] te[0, T]
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Existence and uniqueness of G-BSDEs

Oru+ G(92,u) + h(u,0xu) =0, u(T,x) = @(x). (GPDE)
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We approximate the solution f by those of equations (GBSDE) with much
simpler {f,}. More precisely, assume that ||f, — f||, s — 0 and
G

(Y™, Z" K") is the solution of the following G-BSDE
—§+/ (s, Y7 Z") ds—/ Z7dB, — (K& — KD).

We try to prove that (Y", Z", K™) converges to (Y, Z,K) and (Y, Z, K)
is the solution of the following G-BSDE

T T
Ve=t+ [ (s Ve Zo)ds— [ ZodBs— (Kr = Ko).
t t
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Main results:

Assume that ¢ € Lﬁé (Q71), B> 1 and f satisfies (H1) and (H2). Then
equation (G-BSDE) has a unique solution (Y, Z, K). Moreover, for any
l<a<PwehaveY € SE(0,T), Z € HE(0, T) and Kt € LE(Q7).
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Sketch of Proof of Theorem.

Step 1. f(t,w,y,z) = h(y, z), h € CF(R?).
Part 1) ¢ = ¢(Br — By): 3a € (0,1) sit.,

||U||C1+v¢/2,2+a([0vT_K]><]R) < oo, k>0.

It6's formula to u(t, By — By,) on [t1, T — k], we get

T—x
u(t, By — By) =u(T — &, Br—x — By, +/ h(u, 0xu)(s, Bs — By )ds
t

T—x
— /t dxu(s, Bs — By )dBs — (Kr—x — K¢,
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Sketch of Proof of Theorem

where
1

Ke=3 tfaixu<->d<s>s— /tltc:(aixu(-))ds

|ut,x) = uls,y)| < Li(y/ |t = s[ + |x = y).

U is the solution of PDE:

0.0+ G (32, )+h( dx a):
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Sketch of Proof of Theorem.
u(t,x +xp) < u(t,x) + Ly|xo| exp(La(T — t)),

Since xo is arbitrary, we get |u(t,x) — u(t,y)| < Z]x — y|, where
[ = Lyexp(LyT). From this we can get [d,u(t,x)| < L for each
t € [0, T], x € R. On the other hand, for each fixed T <t < T and
x € R, applying 1td’s formula to u(s, x + Bs — Bz) on [, t], we get

u(t,x) = E[u(?, x + B; — B;) + /; h(u,dxu)(s, x + Bs — Bz)ds].
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Sketch of Proof of Theorem
From this we deduce that

lu(E,x) — u(t, x)| <E[L|B; — Be| + LIt —F|] < (Lo + LV T)y/ |t -,

where L = sup(, ,)er2 [A(x, y)|. Thus we get (??) by taking

L; = max{L, L5+ Lv/T}. Letting x | 0 in Itd’s equation, it is easy to
verify that

. T
Bl Yrx =2+ [ |ZPdt+(Kr—c— kr) =0,
—K

where Y; = u(t, By — By,) and Z; = dxu(t, By — By,). Thus

(Ye, Zt, Kt)e[sy, 7] is @ solution of equation (GBSDE) with terminal value
¢ = @(Bt — By,). Furthermore, it is easy to check that Y € S%(t, T),

Z € HE(t1, T) and K1 € LE(Q7) for any a« > 1. O
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Sketch of Proof of Theorem.
Part 2) & = ¢(By,, BT — By,):

-
u(t,x, Bt — By,) =u(T,x, Br — By,) +/ h(u,0yu)(s, x, Bs — By, )ds
t
-
— [ dyu()dB. — (K5 — k),

X 1 t 2 t 2
K= ayyu(-)d(B>s—/t1 G(92,u(-))ds.

T T
Ye=Yr+ [ h(Y. Z)ds — / Z,dBs — (Kt — K¢),
t

t
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Sketch of Proof of Theorem
where

Yt = U t Btlv Bt BT.']_) Zt = ayu('),

/ 22 /t:G(a)z,yu(-))ds.

Need to prove (Y, Z, K) € &%(0, T). By partition of unity theorem, 3
h" € C°(R) s.t.

A(supp(h?)) < 1/n 0<h? <1,

nn) (% Zh"<1
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Sketch of Proof of Theorem.
We have

T n . . T
Y= Yi+ [ Y hO2 i (By)ds — [ Z7dB. — (Kf — KD),
i=1

where
y:’i = U(t,Xin, Bt — Btl)r Z:’i = ayu(t,xi", Bt — Btl)l

n n
Y[ =) y0'h(By), Z{ =) z"hi(By),
i=1 i=1

Ke' h?(By).

n
=1

]
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Sketch of Proof of Theorem
Thus

Kn
|Ye = Y7 < Y W7 (By)|u(t, x, Be — By,) — u(t, By, B: — By)|
=1

Ly  |lulle
+ | Yelligy |5 < — -

Thus
Lo IIUIIoo

E[ sup |Ye—Y/|"] < lfi[(

te[t1, T)

By [)*] — 0.

By the estimates

BI([ 12~ Z21205)*/%) < GBI sup_[¥i— VeI

te(ty, T]

+(1E[ sup Yy — Y{|* ])1/2} — 0.

te(ty, T]
Thus Z € M&(0, T). Ki € L%(Q). O
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Sketch of Proof of Theorem.

[Sketch of Proof of Theorem] prove K is G-martingale. Following [Li-P.],
we take

i iy (), =0, 2n® —1,

2n?—1

hgnQ =1-— Z hln
i=0

[N}

2n :
- u(t,—n+%,Bt—Bt1)h (By), Za u(Yh"(By,)
0

solves

YT+/ ds—/ ZndB, — (K — K?),

Brownian Motion under Nonlinear Expectati



Sketch of Proof of Theorem.

We have E[(f, |Z, — Z7[?ds)*/?] — 0. Thus E[|K; — K|*] — 0 and
E:[Ks] = Ki. For Yy, = u(t1, By, 0), we can use the same method as Part
1on [0, t1].

Step 2) f(t,w,y,z) = YN, f'h (y, z) with f € M2(0, T) and

h' e C(R?). O
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Sketch of Proof of Theorem

Step 3) f(t,w,y,z) = YN, f'hf(y z) with £ € M2 (0, T) bounded and
h' e C°(IR?), A >0andz YL R <L
Choose

N
fo e MO, T) st |fi]| < Il Y, Iy — f’||Mg <1/n.
i=1
Set f,:= YN, fihi(y, z).
Let (Y", Z", K") be the solution of (GBSDE) with generator f,.

A

= (s, Y2, Z”)—f(s Y!, ZD)|

N
<Y |fi f’|+2|f' Fil =: Fy + P,

i=1
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Sketch of Proof of Theorem
We have, for any 1 < a < B,

T, . T .
Bol( [ #mds)] S Bel( | (1F(9)] + [m(s)])5)")
By Theorem 2.10, Va € (1, B)
A A T A
E [sup]EtH/ fsm’"d5|“]]} — 0, m,n— o
t 0
By Proposition 3.9 {Y"} is Cauchy under || - ||5a. By Proposition 3.7, 3.8,

{Z"} is a also Cauchy under || - ||z thus {fo (s, YI, Z)ds} under
| - [le thus {K7} is also Cauchy under [Rniyre O
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Sketch of Proof of Theorem.

Step 4). f is bounded, Lipschitz. |f(t, w,y, z)| < Clg(g)(y, z) for some
C,R > 0. Here B(R) = {(y, z)|y? + z* < R?}.

For any n, by the partition of unity theorem, there exists {h},} ", such that
hi, € C§°(IR?), the diameter of support A(supp(hi))< 1/n, 0 < hi <1,
Ig(ry < Tity hiy < 1. Then f(t,w,y,z) = L f(t,w,y, z)h,. Choose
yi, zl such that hi(y!, zI) > 0. Set

N

fo(t,w,y,z) = Y f(t,w,y, z))h(y, 2)
i=1
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Sketch of Proof of Theorem.
Then

N . . .
f(tw,y,2) = fot,w,y,2)] < ) |F(t,w,y,2) = F(t, W,y 23)|hy < L/n
i=1

and

Ifa(t.w,y, z) = fo(t,w, ¥y, 2)| < L(ly —y'| + |z = 2| +2/n).

Noting that |f,(s, Y, ZI) — fa(s, Y2, Z0)| < (L/n+ L/m), O
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Sketch of Proof of Theorem

we have
n n n n L o o 3L
Bell [ (Uinls, ¥2.20) ~ (s, V2. 2D + Soyasfe) < To(5 4 Sy
So by the estimates { Y} cauchy under [| - [|s¢. {Z"} is cauchy under
|+ [l is also cauchy {fo (s, Y, 20)ds} under || - || . O

v
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Sketch of Proof of Theorem.
Step 5). f is bounded, Lipschitz.
For any n € IN, choose h" € C§°(IR?) such that Igny < h" < Ig(n41) and
{h"} are uniformly Lipschitz w.r.t. n. Set f, = fh", which are uniformly
Lipschitz. Noting that for m > n

[fin(s, Y5 Z5) — fu(s, YT, Z7)]
<|f(s. Y5 Z)vops zopsm

el +122)
< [l 2
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Sketch of Proof of Theorem
we have

A

.

Bel( [ Ifm(s, Y2 20) = fols, Y2, 20) | d5)"

< Il
an

< M08 o, Ty [ vpieas + ([ 1z2Pa0)7),

n(X

Bel( [ 171+ 12715

where C(a, T) := 24" 1(T*" 1 4 T%/2]). N
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Sketch of Proof of Theorem.

So by Theorem 2.10 and Proposition 3.4 we get || fOT fmnds||,e — 0 as

S

m, n — oo for any a € (1, B). By Proposition 3.5, we conclude that {Y"}
is cauchy under || - ||ss. {Z"} cauchy sequence under || - || .

{fOT fa(s, YJ, Z2)ds} is cauchy under || - || 1o.:

[fals, Y7, Z7) = (s, Y™, Z)]
< [fn(s, Y7, Z7) = fn(s, Y™, Z™)| 4 [fuls, Y™, Z%) = finls, Y™, Z7)|
< L(\¥al 4 12:0) + 1£(5, Y2 ZD)Lyvpprizgton

which implies the desired result. O
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Sketch of Proof of Theorem

Step 6). For the general f.

Set f, = [f V (—n)] A n, which are uniformly Lipschitz. Choose
0<o< ﬁa;“/\l. Then o < &’ = (14 J)a < B. Since for m > n

1
no

(s, Y7 Z7) = fin(s, Y, Z0)| < [F (s, VS ZO) e (s, v vyl >n) < 51 (50 YE

we have

A

]Et[(/oT (s, Y™, Z7) — fin(s, Y7, Z7)|ds)?]

L[ 16t v, 2D as)1),

T,L ~ ’ T ’ o
< W]E [/ |f(s.0,0)|* ds+/ Y| d5+(/ |27|2ds) %],
0 0

where C(a, T, L, 8) := 3¢~ 1(Te—1 4 [ T 4 a1y, O
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Sketch of Proof of Theorem.

So by Song's estimate and a priori estimate, we get || fOT Fmnds||ye — 0
as m,n — oo for any « € (1, ). We know that {Y"} is a cauchy

sequence under the norm || - [[sz. And consequently {Z"} is a cauchy
sequence under the norm || - |[x. Now we prove {fOT fo(s, YD, ZM)ds} is
a cauchy sequence under the norm || - || «. In fact,

|fa(s, Y™, Z") — fm(s, Y™, Z™)|
< |Nfm(s, Y™, Z™) = fm(s, YT, Z™)| + | fal(s, Y, Z") — fin(s, Y™, Z7)|
3(5

ﬁ(|f50|1+‘5 4 |st|1+§ + |an|1+5),

< L(|Ys] +12)) +

which implies the desired result. []

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

@ Peng, 2010, Tightness, weak compactness of nonlinear expectations
and application to CLT

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

@ Peng, 2010, Tightness, weak compactness of nonlinear expectations
and application to CLT

o Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second
order BSDE's and fully nonlinear PDE's, Communications in Pure and
Applied Mathematics, 60, 1081- 1110.

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

@ Peng, 2010, Tightness, weak compactness of nonlinear expectations
and application to CLT

o Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second
order BSDE's and fully nonlinear PDE's, Communications in Pure and
Applied Mathematics, 60, 1081- 1110.

@ [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target
Problems

@ [Gao2010] Pathwise properties and homeomorphic flows for stochastic
differential equations driven by G-Brownian motion.

Brownian Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

@ Peng, 2010, Tightness, weak compactness of nonlinear expectations
and application to CLT

o Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second
order BSDE's and fully nonlinear PDE's, Communications in Pure and
Applied Mathematics, 60, 1081- 1110.

@ [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target
Problems

@ [Gao2010] Pathwise properties and homeomorphic flows for stochastic
differential equations driven by G-Brownian motion.

o [Matoussi-Possamai-Zhao] 2BSDE

@ [Bai-Lin2010] On the existence and uniqueness of solutions to
stochastlc dlfferentlal equations driven by G-Brownian motion with

Browman Motion under Nonlinear Expectati



References

@ [Peng2009] Survey on G-normal distributions, central limit theorem,
Brownian motion and the related stochastic calculus under sublinear
expectations, Science in China Series A: Mathematics, Volume 52,
Number 7, 1391-1411.

o [Peng2007-2010] G-Brownian motion- - -

@ Peng, 2010, Tightness, weak compactness of nonlinear expectations
and application to CLT

o Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second
order BSDE's and fully nonlinear PDE's, Communications in Pure and
Applied Mathematics, 60, 1081- 1110.

@ [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target
Problems

@ [Gao2010] Pathwise properties and homeomorphic flows for stochastic
differential equations driven by G-Brownian motion.

o [Matoussi-Possamai-Zhao] 2BSDE

@ [Bai-Lin2010] On the existence and uniqueness of solutions to
stochastlc dlfferentlal equations driven by G-Brownian motion with

Browman Motion under Nonlinear Expectati



@ [Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.

@ [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

Brownian Motion under Nonlinear Expectati



@ [Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.

@ [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

@ [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

@ [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to
appear in PTRF

Brownian Motion under Nonlinear Expectati



@ [Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.

@ [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

@ [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

@ [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to
appear in PTRF

@ [Song2007] Uniqueness of the representation for G-martingales.

@ [Song2011SPA| Properties of hitting times for G-martingales

@ [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations

Brownian Motion under Nonlinear Expectati



@ [Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.

@ [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

@ [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

@ [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to
appear in PTRF

@ [Song2007] Uniqueness of the representation for G-martingales.

@ [Song2011SPA| Properties of hitting times for G-martingales

@ [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations

e Natz (2010) Random G-expectations,

Brownian Motion under Nonlinear Expectati



® 6 6 6 o

[Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.
[Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

[Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

[Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to
appear in PTRF

[Song2007] Uniqueness of the representation for G-martingales.
[Song2011SPA] Properties of hitting times for G-martingales
[Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
Natz (2010) Random G-expectations,

[Cohen2011] Quasi-sure analysis, aggregation and dual
representations of sublinear expectations in general spaces.
[Li-P.2011SPA] Stopping times and related It 's calculus with
G-Brownian motion.

Brownian Motion under Nonlinear Expectati



® 6 6 6 o

[Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.
[Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

[Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

[Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to
appear in PTRF

[Song2007] Uniqueness of the representation for G-martingales.
[Song2011SPA] Properties of hitting times for G-martingales
[Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
Natz (2010) Random G-expectations,

[Cohen2011] Quasi-sure analysis, aggregation and dual
representations of sublinear expectations in general spaces.
[Li-P.2011SPA] Stopping times and related It 's calculus with
G-Brownian motion.

[P.-Song-Zhang2012] A Complete Representation Theorem for
G-martingales;

Brownian Motion under Nonlinear Expectati



@ [Xu-Zhang2009] Martingale characterization of G-Brownian motion.
Stochastic Processes and their Applications.

@ [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for
the G-expectation.

@ [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through
aggregation. Electron. J. Probab.,

@ [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to

appear in PTRF

[Song2007] Uniqueness of the representation for G-martingales.

[Song2011SPA] Properties of hitting times for G-martingales

[Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations

Natz (2010) Random G-expectations,

[Cohen2011] Quasi-sure analysis, aggregation and dual

representations of sublinear expectations in general spaces.

o [Li-P.2011SPA] Stopping times and related It 's calculus with
G-Brownian motion.

o [P.-Song-Zhang2012] A Complete Representation Theorem for
G-martingales;

o [Dolinsky-Nutz-Soner2012SPA] Weak Approximation of

() Brownian Motion under Nonlinear Expectati

® 6 6 6 o




@ [Chen-Xiong2010] Large deviation principle for diffusion processes
under a sublinear expectation. Preprint 2010.

@ [Gao] A variational representation and large deviations for functionals
of G-Brownian motion, 2012, preprint.

Brownian Motion under Nonlinear Expectati



@ [Chen-Xiong2010] Large deviation principle for diffusion processes
under a sublinear expectation. Preprint 2010.

@ [Gao] A variational representation and large deviations for functionals
of G-Brownian motion, 2012, preprint.

o F. Gao, Pathwise properties and homeomorphic for stochastic
differential equatios driven by G-Brownian motion. SPA, 119(2009)

Brownian Motion under Nonlinear Expectati



@ [Chen-Xiong2010] Large deviation principle for diffusion processes
under a sublinear expectation. Preprint 2010.

@ [Gao] A variational representation and large deviations for functionals
of G-Brownian motion, 2012, preprint.

o F. Gao, Pathwise properties and homeomorphic for stochastic
differential equatios driven by G-Brownian motion. SPA, 119(2009)

o [Gao-Jiang2010SPA] Large Deviations for Stochastic Differential
Equations Driven by G-Brownian Motion.

Brownian Motion under Nonlinear Expectati



HAPPY BIRTHDAY, FREDDY!




