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Axiomatic Framework of Coherent Risk Measures

Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk,
Math. finance.

Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

Ê[X ] := ρ(−X ).

(a) Ê[X ] ≥ Ê[Y ], if X ≥ Y

(b) Ê[X + c ] = Ê[X ] + c ,

(c) Ê[X + Y ]≤Ê[X ] + Ê[Y ]
(d) Ê[λX ] = λÊ[X ], λ ≥ 0.
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Ê[X ] := ρ(−X ).
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(d) Ê[λX ] = λÊ[X ], λ ≥ 0.

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 2
/ 73



Axiomatic Framework of Coherent Risk Measures

Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk,
Math. finance.

Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.
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Robust representation of a coherent risk measure

Huber Robust Statistics (1981), for finite state case.

Artzner-Delbean, Eber-Heath (1999), Delbean2002,

Föllmer & Schied (2002, 2004), Fritelli & Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

Ê[·] is a sublinear expectation iff there exists a family {Eθ}θ∈Θ of linear
expectations s.t.

Ê[X ] = sup
θ∈Θ

Eθ [X ], ∀X ∈ H.
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Motivated from g -Expectation [P.1994-1997] on Wiener
probability space (Ω,F , P)

Given r.v. X (ω), solve the BSDE

dy(t) = −g(y(t), z(t))dt + z(t)dB(t), y(T ) = X (ω).

Then define:

Eg [X ] := y(0), Eg [X |(B(s))s∈[0,t]] := y(t).
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[Artzner-Delbean-Eden-Heath1999] Coherent measures of risk, Math.
finance.

[Coquet-Hu-P.-Memin2002], [P. 2005]: A dominated and Ft-dynamic
expectation a g -expectation;

[Delbaen-P.-Rosazza, 2008]: If a convex dynamic expectation E is
absolutely continuous w.r.t. P then there exists a unique g such that
E = Eg .

Serious problem: under volatility uncertainty, it is impossible to find a
reference probability measure.
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World of economic: Frank Knight (1921) “Risk,
Uncertainty and Profit”

Knight, 1921

” Mathematical, or a priori, type of probability is practically never met
with in business ...”

”Uncertainty must be taken in a sense radically distinct from the
familiar notion of Risk, from which it has never been properly
separated.”

Knightian’s Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

The prob. and distr. are unknown— ”uncertainty of probability measures”.
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F. Knight (1921): Two types of uncertainty “risk”: given a
probability space (Ω,F ,P); “Knightian uncertainty” (ambiguity):
Probability measure P itself is uncertain;

John Maynard Keynes (1921) A Treatise on Probability. Macmillan,
London, 1921.

Allais paradox (1953) to vNM expected utility theory (1944);

Ellsberg paradox (1961) to Savage’s expected utility (1954),
Ambiguity aversion (1961);

Kahneman & Tversky (1979-1992): prospective theory by distorted
probability;

Gilboa & Schmeidler (1989) Maximin expected utility; Hansen &
Sargent (2000) Multiplier preference.

Hansen & Sargent: Robust control method.
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Nonlinear expectation framework

Ω: A set;

H a linear space of random variables containing constants

X (ω) ∈ H =⇒ |X (ω)| ∈ H

We often ”equivalently” assume:

X1, · · · ,Xn ∈ H =⇒ ϕ(X1, · · · ,Xn) ∈ H, ∀ϕ ∈ CLip(Rn)
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Daniell’s Expectation (1918) (Ω,H, Ê)

X ∈ H =⇒ |X | ∈ H
(a) Ê[X ] ≥ Ê[Y ], if X ≥ Y

(b) Ê[X + c ] = Ê[X ] + c ,

(c) Ê[X + Y ]=Ê[X ] + Ê[Y ]
(d) Ê[λX ] = λÊ[X ], λ ≥ 0.

Ê[Xi ] ↓ 0, if Xi (ω) ↓ 0, ∀ω

Theorem (Daniell-Stone Theorem)

There exists a probability measure P on (Ω, σ(H)) s.t.

Ê[X ] = E [X ] =
∫

Ω
X (ω)P(ω), for each X ∈ H.

For each given X ∈ H,

Ê[ϕ(X )] =
∫

R
ϕ(x)dF (x), F (x) = P(X ≤ x).
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Ê[ϕ(X )] =
∫

R
ϕ(x)dF (x), F (x) = P(X ≤ x).

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 9
/ 73



Daniell’s Expectation (1918) (Ω,H, Ê)

X ∈ H =⇒ |X | ∈ H
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(a) Ê[X ] ≥ Ê[Y ], if X ≥ Y
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Sublinear Expectation on (Ω,H, Ê)

X ∈ H =⇒ |X | ∈ H
(a) Ê[X ] ≥ Ê[Y ], if X ≥ Y

(b) Ê[X + c ] = Ê[X ] + c ,

(c) Ê[X + Y ]≤Ê[X ] + Ê[Y ] ” ≤ ” =⇒ sublinear

(d) Ê[λX ] = λÊ[X ], λ ≥ 0.

Ê[Xi ] ↓ 0, if Xi (ω) ↓ 0, ∀ω

Theorem (Robust Daniell-Stone Theorem)

There exists a family of {Pθ}θ∈Θ of prob. measures on (Ω, σ(H)) s.t.

Ê[X ] = sup
θ∈Θ

Eθ [X ] = sup
θ∈Θ

∫
Ω

X (ω)Pθ(ω), for each X ∈ H.

For each given X ∈ H,

Ê[ϕ(X )] = sup
θ∈Θ

∫
R

ϕ(x)dFθ(x), Fθ(x) = Pθ(X ≤ x).
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(d) Ê[λX ] = λÊ[X ], λ ≥ 0.
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Uncertainty version of distributions in (Ω,H, Ê)

Definition

X ∼ Y if they have the same distribution uncertainty

X ∼ Y ⇐⇒ Ê[ϕ(X )] = Ê[ϕ(Y )], ∀ϕ ∈ Cb(Rn).

Y Indenp. of X if each realization ”X = x” does not change the
distribution of Y :

Y indenp. of X ⇐⇒ Ê[ϕ(X ,Y )] = Ê[Ê[ϕ(x ,Y )]x=X ].
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Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let {Xi}∞
i=1 in (Ω,H, Ê) be i.i.d.: Xi ∼ X1 and

Xi+1 Indep. (X1, · · · ,Xi ). Assume:

Ê[|X1|2+α] < ∞ , Ê[X1] = Ê[−X1] = 0.

Then:

lim
n→∞

Ê[ϕ(
X1 + · · ·+ Xn√

n
)] = Ê[ϕ(X )], ∀ϕ ∈ Cb(R),

with X ∼ N(0, [σ2, σ2]), where

σ2 = Ê[X 2
1 ], σ2 = −Ê[−X 2

1 ].
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Normal distributions under Knightian uncertainty

Definition

A loss position X in (Ω,H, Ê) is normally in uncertainty distribution if

aX + bX̄ ∼
√

a2 + b2X , ∀a, b ≥ 0.

where X̄ is an independent copy of X .

Ê[X ] = Ê[−X ] = 0.

X
d= N(0, [σ2, σ2]), where

σ2 := Ê[X 2], σ2 := −Ê[−X 2].
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Ê[X ] = Ê[−X ] = 0.

X
d= N(0, [σ2, σ2]), where
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G-normal distribution: under sublinear expectation E[·]

(1) For each convex ϕ, we have

Ê[ϕ(X )] =
1√

2πσ2

∫ ∞

−∞
ϕ(y) exp(− y2

2σ2
)dy

(2) For each concave ϕ, we have,

Ê[ϕ(X )] =
1√

2πσ2

∫ ∞

−∞
ϕ(y) exp(− y2

2σ2
)dy
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Remark.

If σ2 = σ2, then N(0; [σ2, σ2]) = N(0, σ2).

Remark.

The larger to [σ2, σ2] the stronger the uncertainty.

Remark.

But X
d= N(0; [σ2, σ2]) does not simply implies

Ê[ϕ(X )] = sup
σ∈[σ2,σ2]

1√
2πσ

∫ ∞

−∞
ϕ(x) exp{−x2

2σ
}dx
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G -normal distribution characterized by nonlinear
infinitesimal generator

CLT converges in uncertainty distribution to N (0, [σ2, σ2]):

Theorem

X
d= N(0, [σ2, σ2]) in (Ω,H, Ê), then for each Cb function ϕ,

St(ϕ)(x) := Ê[ϕ(x +
√

tX )], x ∈ R, t ≥ 0

defines a nonlinear semigroup, since:S0[ϕ](x) = Ê[ϕ(x)] = ϕ(x), and

St+s [ϕ](x) = Ê[ϕ(x +
√

t + sX )]

= Ê[ϕ(
︷ ︸︸ ︷
x +

√
tX +

√
sX̄ )]

= Ê

[
Ê[ϕ(

︷ ︸︸ ︷
x +

√
ty +

√
sX̄ )]y=X

]
= Ê

[
(Ss [ϕ])(x +

√
tX )

]
= St [Ss [ϕ]](x).
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Aϕ(x) := lim
t→0

St(ϕ)(x)− ϕ(x)
t

= G (uxx ).

where

G (a) = Ê[
a

2
X 2] =

1

2
(σ2a+ − σ2a−)

Thus we can solve the PDE

ut = G (∂2
xxu), t > 0, x ∈ R

u|t=0 = ϕ.
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Law of Large Numbers (LLN), Central Limit Theorem
(CLT)

Striking consequence of LLN & CLT

Accumulated independent and identically distributed random variables
tends to a normal distributed random variable, whatever the original
distribution.

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 19
/ 73



Maximal distribution M([µ, µ]) under Knightian

uncertainty

Definition

A random variable Y in (Ω,H, Ê) is maximally distributed, denoted by

Y
d= M([µ, µ]), if

aY + bȲ
d= (a + b)Y , a, b ≥ 0.

where Ȳ is an independent copy of Y ,

µ := Ê[Y ], µ := −Ê[−Y ].

We can prove that

Ê[ϕ(Y )] = sup
y∈[µ,µ]

ϕ(y).
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Case with mean-uncertainty E[·]

Definition

A pair of random variables (X ,Y ) in (Ω,H, Ê) is

N ([µ, µ], [σ2, σ2])-distributed ((X ,Y ) d= N ([µ, µ], [σ2, σ2])) if

(aX + bX̄ , a2Y + b2Ȳ ) d= (
√

a2 + b2X , (a2 + b2)Y ), ∀a, b ≥ 0.

where (X̄ , Ȳ ) is an independent copy of (X ,Y ),

µ := Ê[Y ], µ := −Ê[−Y ]

σ2 := Ê[X 2], σ2 := −Ê[−X ], (Ê[X ] = Ê[− X ] = 0).
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Theorem

(X ,Y ) d= N ([µ, µ], [σ2, σ2]) in (Ω,H, Ê) iff for each ϕ ∈ Cb(R) the
function

u(t, x , y) := Ê[ϕ(x +
√

tX , y + tY )], x ∈ R, t ≥ 0

is the solution of the PDE

ut = G (uy , uxx ), t > 0, x ∈ R

u|t=0 = ϕ,

where
G (p, a) := Ê[

a

2
X 2 + pY ].
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LLN + CLT under Knightian Uncertainty

Theorem

Let {Xi + Yi}∞
i=1 be i.i.d. sequence. We assume furthermore that

Ê[|X1|2+α] + Ê[|Y1|1+α] < ∞, Ê[X1] = Ê[−X1] = 0.

Then, for each ϕ ∈ Cb(R),

lim
n→∞

Ê[ϕ(
X1 + · · ·+ Xn√

n
+

Y1 + · · ·+ Yn

n
)] = Ê[ϕ(X + Y )].

where (X ,Y ) is N ([µ, µ], [σ2, σ2])-distributed.
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Brownian Motion (Bt(ω))t≥0 in (Ω,F , Ê))

Definition

B is called aG -Brownian motion if:

For each t1 ≤ · · · ≤ tn, Btn − Btn−1 is indep. of (Bt1 , · · · ,Btn−1).

Bt
d= Bs+t − Bs , for all s, t ≥ 0

Ê[|Bt |3] = o(t). .
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Ê[|Bt |3] = o(t). .
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Ê[|Bt |3] = o(t). .

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 24
/ 73



Theorem.

If (Bt(ω))t≥0 is a G–Brownian motion and Ê[Bt ] = Ê[−Bt ] ≡ 0 then:

Bt+s − Bs
d= N(0, [σ2t, σ2t]), ∀ s, t ≥ 0

Sketch of Proof.

St [ϕ](x) := Ê[ϕ(x + Bt)] defines a nonlinear semigroup (St)t≥0

Ê[ϕ(x + Bt)]− ϕ(x) = Ê[ϕx (x)Bt +
1

2
ϕxx (x)B2

t ] + o(t)

= Ê[
1

2
ϕxx (x)B2

t ]︸ ︷︷ ︸
=G (ϕxx )t,

+ o(t), G (a) := Ê[
B2

1

2
a].

Thus ∂tSt [ϕ](x)|t=0 = G (ϕxx (x)): the infinitesimal generator of
(St)t≥0.
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Construct G -BM on a sublinear expectation space
(Ω,H, Ê)

Ω := C (0, ∞; R), Bt(ω) = ωt

H := {X (ω) = ϕ(Bt1 ,Bt2 , · · · ,Btn), ti ∈ [0, ∞), ϕ ∈ CLip(Rn), n ∈
Z}
For each X (ω) = ϕ(Bt1 ,Bt2 − Bt1 , · · · ,Btn − Btn−1), with ti < ti+1,
we set

Ê[X ] := Ẽ[ϕ(
√

t1ξ1,
√

t2 − t1ξ2, · · · ,
√

tn − tn−1ξn)]

where

ξi
d= N(0, [σ2, σ2]), ξi+1 is indep. of (ξ1, · · · , ξi ) under Ẽ.

Conditional expectation:

Êt1 [X ] = Ẽ[ϕ(x ,
√

t2 − t1ξ2, · · · ,
√

tn − tn−1ξn)]x=Bt1
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Completion of H to Lp
G (Ω) under ‖X‖Lp

G
:= Ê[|X |p ]1/p, p ≥ 1

Ê[·] and Êt are extended to Lp
G (Ω) and keeping time consistency;

Itô’s integral, Itô’s calculus have been established

G-martingales, supermartingales, · · · have been established.

If G̃ is dominated by G : G̃ (a)− G̃ (b) ≤ G (a− b), then we can
establish a nonlinear expectation EG̃ on the same space Lp

G (Ω),
under which B is a G̃ -Brownian motion.

We don’t need to change stochastic calculus for these type of EG̃ .
Many Wiener measures and martingale measures dominated by Ê

work well in this fixed G -framework. (they maybe singular from each
others).

Note that if G1 ≤ G2 then Lp
G1

(Ω) ⊃ Lp
G2

(Ω).
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work well in this fixed G -framework. (they maybe singular from each
others).

Note that if G1 ≤ G2 then Lp
G1

(Ω) ⊃ Lp
G2

(Ω).

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 27
/ 73



Completion of H to Lp
G (Ω) under ‖X‖Lp

G
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Probability v.s. Nonlinear Expectation

Probability Space Nonlinear Expectation Space

(Ω,F ,P) (Ω,H, E): (sublinear is basic)

Distributions: X
d= Y X

d= Y ,

Independence: Y indep. of X Y indep. of X , (non-symm.)

LLN and CLT LLN + CTL

Normal distributions G-Normal distributions

Brownian motion Bt(ω) = ωt G -B.M. Bt(ω) = ωt ,

Qudratic variat. 〈B〉t = t 〈B〉t : still a G -Brownian motion

Lévy process G -Lévy process
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Probability v.s. Nonlinear Expectation

Probability Space Nonlinear Expectation Space
Itô’s calculus for BM Itô’s calculus for G -BM

SDE dxt = b(xt)dt + σ(xt)dBt dxt = · · ·+ β(xt)d 〈B〉t
Diffusion: ∂tu −Lu = 0 ∂tu − G (Du,D2u) = 0

Markovian pro. and semi-grou Nonlinear Markovian

Martingales G -Martingales

E [X |Ft ] = E [X ] +
∫ T
0 zsdBs E[X |Ft ] = E[X ] +

∫ t
0 zsdBs + Kt

Kt
?=

∫ t
0 ηsd 〈B〉s −

∫ t
0 2G (ηs)ds
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Probability Space Nonlinear Expectation Space
P-almost surely analysis ĉ-quasi surely analysis

ĉ(A) = supθ EPθ
[1A]

X (ω): P-quasi continuous X (ω): ĉ-quasi surely

⇐⇒ X is B(Ω)-meas. continuous =⇒ X is B(Ω)-meas.
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Lévy Processes under Sublinear Expectations

Based on: [Hu, Mingshang & P.]: G-Lévy Processes under Sublinear
Expectations, (in arXiv)

Definition

A d-dimensional process (Xt)t≥0 on a sublinear expectation space
(Ω,H, Ê) is called a Lévy process:

1 X0 = 0.

2 Xt+s − Xt is indep. of (Xt1 ,Xt2 , . . . ,Xtn),
∀t, s > 0, t1, t2, · · · , tn ∈ [0, t].

3 Stationary increments: Xt+s − Xt
d= Xs .
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Pure jump Lévy process on (Ω,H, Ê).

Consider a pure jump case: Xt = X d
t

Assumption:
lim sup

t↓0
Ê[|Xt |]t−1 < ∞.
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Proposition.

u(t, x) = St ϕ(x) := Ê[ϕ(x + Xt)] is a semigroup on ϕ ∈ Cb,Lip(Rd ):

St+s ϕ(x) = StSs ϕ(x), S0ϕ(x) = ϕ(x)

[∂tSt ϕ]t=0(x) = GX [ϕ(x + ·)− ϕ(x)],

GX is well-defined on

L0 := {f ∈ Cb,Lip(Rd ) : f (0) = 0 and f (x) = o(|x |)}
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BSDE driven by G-BM (2BSDE)

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds +

∫ T

t
g(s,Ys ,Zs)d〈B〉s

−
∫ T

t
ZsdBs − (KT −Kt).

Under a Lipschitz condition of f and g in Y and Z . The existence and
uniqueness of the solution (Y ,Z ,K ) is proved, where K is a decreasing
G -martingale.
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G -Martingale representation

G -martingale M is of the form

Mt = M0 + M̄t + Kt ,

M̄t :=
∫ t

0
zsBs ,

Kt :=
∫ t

0
ηs 〈B〉s −

∫ t

0
2G (ηs)ds.
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GBSDE

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds +

∫ T

t
g(s,Ys ,Zs)d〈B〉s

−
∫ T

t
ZsdBs − (KT −Kt).
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Existing results on fully nonlinear BSDEs (2BSDE)

f independent of z (and g = 0):

Y i
t = Ê

Gi
t [ξ i +

∫ T

t
f i (s,Ys)ds ].

Peng [2005,07,10].
BSDE corresponding to (path-depedent) system of PDE:

∂tu
i + G i (ui ,Dui ,D2ui ) + f i (t, x , u1, · · · , uk) = 0,

ui (x ,T ) = ϕi (x),
i = 1, · · · , k.

G i satisfy the dominate condition:

G i (x , y , p,A)− G i (x , ȳ , p̄, Ā) ≤ c(|y − ȳ |+ |p − p|) + Ĝ (A− Ā),
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Existing results on fully nonlinear BSDEs

[Soner, Touzi and Zhang, 2BSDE]

(Y ,Z ,KP)P∈Pκ
H
, P ∈ Pκ

H , the following BSDE

Yt = ξ +
∫ T

t
Fs(Ys ,Zs)ds −

∫ T

t
ZsdBs + (KP

T −KP
t ), P-a.s.,

with

KP
t = ess inf

P′∈Pκ
H (t+,P)

EP′
t [KP

T ], P-a.s., ∀P ∈ Pκ
H , t ∈ [0,T ].
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A priori estimates

(ΩT , L1
G (ΩT ), Ê)

ΩT = C0([0,T ], R),
σ2 = Ê[B2

1 ] ≥ −Ê[−B2
1 ] = σ2 > 0.

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt), (GBSDE)

where
f (t, ω, y , z) : [0,T ]×ΩT ×R2 → R
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Assumption: some β > 1 such that

(H1) for any y , z , f (·, ·, y , z) ∈ M
β
G (0,T ),

(H2) |f (t, ω, y , z)− f (t, ω, y ′, z ′)| ≤ L(|y − y ′|+ |z − z ′|).

For (Y ,Z ,K ) such that Y ∈ Sα
G (0,T ), Z ∈ Hα

G (0,T ), K : a decreasing
G -martingale with K0 = 0 and KT ∈ Lα

G (ΩT ).
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An important observation

Lemma 3.4.

Let X ∈ Sα
G (0,T ) for some α > 1 and α∗ = α

α−1 . Assume that K j ,

j = 1, 2, are two decreasing G -martingales with K j
0 = 0 and

K j
T ∈ Lα∗

G (ΩT ). Then the process defined by∫ t

0
X+

s dK 1
s +

∫ t

0
X−

s dK 2
s

is also a decreasing G -martingale.
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A typical application of Lemma 3.4

−dY i
t = f (s,Y i

s ,Z
i
s )ds − Z i

sdBs − dK i
t , i = 1, 2

|ŶT |2 −
∫ T
t 2Ŷs f̂sds −

∫ T
t |Ẑs |2d 〈B〉s +

∫ T
t 2Ŷs ẐsdBs

= |Ŷt |2 +
∫ T
t 2Ŷsd(K 1

t −K 2
t )

= |Ŷt |2 + 2
∫ T
t [(Ŷs)+dK 1

s + (Ŷs)−dK 2
s ]− 2

∫ T
t [(Ŷs)−dK 1

s +
(Ŷs)+dK 2

s ]

≥ |Ŷt |2 + 2
∫ T
t [(Ŷs)+dK 1

t + (Ŷs)−dK 2
t ]

Thus

|Ŷt |2 ≤ Êt [|ŶT |2 −
∫ T

t
2Ŷs f̂sds −

∫ T

t
|Ẑt |2d 〈B〉t ]
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A typical application of Lemma 3.4
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A typical application of Lemma 3.4
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≥ |Ŷt |2 + 2
∫ T
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A typical application of Lemma 3.4
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≥ |Ŷt |2 + 2
∫ T
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t [(Ŷs)+dK 1
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A typical application of Lemma 3.4
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t [(Ŷs)+dK 1
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Proposition 3.5.

Assume (H1)-(H2) and (Y ,Z ,KT ) ∈ Sα(0,T )×Hα(0,T )× Sα(ΩT )
solves

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt),

where K is a decreasing process with K0 = 0. Then

Ê[(
∫ T

0
|Zs |2ds)

α
2 ] ≤ Cα{Ê[ sup

t∈[0,T ]
|Yt |α]

+ (Ê[ sup
t∈[0,T ]

|Yt |α])
1
2 (Ê[(

∫ T

0
|f 0

s |ds)α])
1
2 },

Ê[|KT |α] ≤ Cα{Ê[ sup
t∈[0,T ]

|Yt |α] + Ê[(
∫ T

0
|f 0

s ds)α]},

f 0
s := |f (s, 0, 0)|+ Lw ε

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 43
/ 73



Proposition 3.7.

We assume (H1) and (H2). Assume that (Y ,Z ,K ) ∈ Sα
G (0,T ) for some

1 < α < β is a solution (GBSDE). Then

There exists a constant Cα := C (α,T , σ, Lw ) > 0 such that

|Yt |α ≤ CαÊt [|ξ|α +
∫ T

t
|f 0

s |αds ],

Ê[ sup
t∈[0,T ]

|Yt |α] ≤ CαÊ[ sup
t∈[0,T ]

Êt [|ξ|α +
∫ T

0
|f 0

s |αds ]],

where f 0
s = |f (s, 0, 0)|+ Lw ε.

For any given α′ with α < α′ < β, there exists a constant Cα,α′

depending on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Yt |α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt [|ξ|α]]

+ (Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f 0
s ds)α′ ]])

α
α′

+ Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f 0
s ds)α′ ]]}.
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Proposition 3.8.

Let fi , i = 1, 2, satisfy (H1) and (H2). Assume

Y i
t = ξ i +

∫ T

t
fi (s,Y i

s ,Z
i
s )ds −

∫ T

t
Z i

sdBs − (K i
T −K i

t ),

where Y i ∈ Sα(0,T ), Z i ∈ Hα(0,T ), K i is a decreasing process with
K i

0 = 0 and K i
T ∈ Lα(ΩT ) for some α > 1. Set

Ŷt = Y 1
t − Y 2

t , Ẑt = Z 1
t − Z 2

t and K̂t = K 1
t −K 2

t . Then there exists a
constant Cα := C (α,T , σ, Lw ) > 0 such that

Ê[(
∫ T

0
|Ẑs |2ds)

α
2 ] ≤ Cα{‖Ŷ ‖α

Sα + ‖Ŷ ‖
α
2
Sα

2

∑
i=1

[||Y i ||
α
2
Sα + ||

∫ T

0
f i ,0
s ds ||

α
2
α,G ]},

where f i ,0
s = |fi (s, 0, 0)|+ Lw ε, i = 1, 2.
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Proposition 3.9.

Let ξ i ∈ L
β
G (ΩT ) with β > 1, i = 1, 2, and fi satisfy (H1) and (H2).

Assume that (Y i ,Z i ,K i ) ∈ Sα
G (0,T ) for some 1 < α < β are the

solutions of equation (GBSDE) to ξ i and fi . Then

(i) |Ŷt |α ≤ CαÊt [|ξ̂|α +
∫ T
t |f̂s |αds ], where

f̂s = |f1(s,Y 2
s ,Z 2

s )− f2(s,Y 2
s ,Z 2

s )|+ Lw
1 ε.

(ii) For any given α′ with α < α′ < β, there exists a constant
Cα,α′ depending on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Ŷt |α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt [|ξ̂|α]]

+ (Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f̂sds)α′ ]])

α
α′

+ Ê[ sup
t∈[0,T ]

Êt [(
∫ T

0
f̂sds)α′ ]]}.
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Existence and uniqueness of G -BSDEs

∂tu + G (∂2
xxu) + h(u, ∂xu) = 0, u(T , x) = ϕ(x). (GPDE)
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We approximate the solution f by those of equations (GBSDE) with much
simpler {fn}. More precisely, assume that ‖fn − f ‖

M
β
G

→ 0 and

(Y n,Zn,Kn) is the solution of the following G -BSDE

Y n
t = ξ +

∫ T

t
fn(s,Y n

s ,Zn
s )ds −

∫ T

t
Zn

s dBs − (Kn
T −Kn

t ).

We try to prove that (Y n,Zn,Kn) converges to (Y ,Z ,K ) and (Y ,Z ,K )
is the solution of the following G -BSDE

Yt = ξ +
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt).
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Main results:

Theorem

Assume that ξ ∈ L
β
G (ΩT ), β > 1 and f satisfies (H1) and (H2). Then

equation (G-BSDE) has a unique solution (Y ,Z ,K ). Moreover, for any
1 < α < β we have Y ∈ Sα

G (0,T ), Z ∈ Hα
G (0,T ) and KT ∈ Lα

G (ΩT ).
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Sketch of Proof of Theorem.

Step 1. f (t, ω, y , z) = h(y , z), h ∈ C∞
0 (R2).

Part 1) ξ = ϕ(BT − Bt1): ∃ α ∈ (0, 1) s.t.,

||u||C1+α/2,2+α([0,T−κ]×R) < ∞, κ > 0.

Itô’s formula to u(t,Bt − Bt1) on [t1,T − κ], we get

u(t,Bt − Bt1) =u(T − κ,BT−κ − Bt1) +
∫ T−κ

t
h(u, ∂xu)(s,Bs − Bt1)ds

−
∫ T−κ

t
∂xu(s,Bs − Bt1)dBs − (KT−κ −Kt),

Shige Peng, Shanndong University, China
() Brownian Motion under Nonlinear Expectation and related BSDE

Perspectives in Analysis and Probability Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich 50
/ 73



Sketch of Proof of Theorem.

where

Kt =
1

2

∫ t

t1
∂2
xxu(·)d〈B〉s −

∫ t

t1
G (∂2

xxu(·))ds

|u(t, x)− u(s, y)| ≤ L1(
√
|t − s |+ |x − y |).

ũ is the solution of PDE:

∂t ũ + G (∂2
xx ũ) + h(ũ, ∂x ũ) = 0,

ũ(T , x) = ϕ(x + x0).
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Sketch of Proof of Theorem.

u(t, x + x0) ≤ u(t, x) + Lϕ|x0| exp(Lh(T − t)),

Since x0 is arbitrary, we get |u(t, x)− u(t, y)| ≤ L̂|x − y |, where
L̂ = Lϕ exp(LhT ). From this we can get |∂xu(t, x)| ≤ L̂ for each
t ∈ [0,T ], x ∈ R. On the other hand, for each fixed t̄ < t̂ < T and
x ∈ R, applying Itô’s formula to u(s, x + Bs − Bt̄) on [t̄, t̂], we get

u(t̄, x) = Ê[u(t̂, x + Bt̂ − Bt̄) +
∫ t̂

t̄
h(u, ∂xu)(s, x + Bs − Bt̄)ds ].
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Sketch of Proof of Theorem.

From this we deduce that

|u(t̄, x)− u(t̂, x)| ≤ Ê[L̂|Bt̂ − Bt̄ |+ L̃|t̂ − t̄|] ≤ (L̂σ̄ + L̃
√

T )
√
|t̂ − t̄|,

where L̃ = sup(x ,y)∈R2 |h(x , y)|. Thus we get (??) by taking

L1 = max{L̂, L̂σ̄ + L̃
√

T}. Letting κ ↓ 0 in Itô’s equation, it is easy to
verify that

Ê[|YT−κ − ξ|2 +
∫ T

T−κ
|Zt |2dt + (KT−κ −KT )2] → 0,

where Yt = u(t,Bt − Bt1) and Zt = ∂xu(t,Bt − Bt1). Thus
(Yt ,Zt ,Kt)t∈[t1,T ] is a solution of equation (GBSDE) with terminal value
ξ = ϕ(BT − Bt1). Furthermore, it is easy to check that Y ∈ Sα

G (t1,T ),
Z ∈ Hα

G (t1,T ) and KT ∈ Lα
G (ΩT ) for any α > 1.
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Sketch of Proof of Theorem.

Part 2) ξ = ψ(Bt1 ,BT − Bt1):

u(t, x ,Bt − Bt1) =u(T , x ,BT − Bt1) +
∫ T

t
h(u, ∂yu)(s, x ,Bs − Bt1)ds

−
∫ T

t
∂yu(·)dBs − (K x

T −K x
t ),

K x
t =

1

2

∫ t

t1
∂2
yyu(·)d〈B〉s −

∫ t

t1
G (∂2

yyu(·))ds.

Yt = YT +
∫ T

t
h(Ys ,Zs)ds −

∫ T

t
ZsdBs − (KT −Kt),
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Sketch of Proof of Theorem.

where

Yt := u(t,Bt1 ,Bt − Bt1), Zt := ∂yu(·),

Kt :=
1

2

∫ t

t1
∂2
yyu(·)d〈B〉s −

∫ t

t1
G (∂2

yyu(·))ds.

Need to prove (Y ,Z ,K ) ∈ Sα
G (0,T ). By partition of unity theorem, ∃

hn
i ∈ C∞

0 (R) s.t.

λ(supp(hn
i )) < 1/n, 0 ≤ hn

i ≤ 1,

I[−n,n](x) ≤
kn

∑
i=1

hn
i ≤ 1.
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Sketch of Proof of Theorem.

We have

Y n
t = Y n

T +
∫ T

t

n

∑
i=1

h(yn,i
s , zn,i

s )hn
i (Bt1)ds −

∫ T

t
Zn

s dBs − (Kn
T −Kn

t ),

where

yn,i
t = u(t, xn

i ,Bt − Bt1), zn,i
t = ∂yu(t, xn

i ,Bt − Bt1),

Y n
t =

n

∑
i=1

yn,i
t hn

i (Bt1), Zn
t =

n

∑
i=1

zn,i
t hn

i (Bt1),

Kn
t =

n

∑
i=1

K
xn
i

t hn
i (Bt1).
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Sketch of Proof of Theorem.

Thus

|Yt − Y n
t | ≤

kn

∑
i=1

hn
i (Bt1)|u(t, xn

i ,Bt − Bt1)− u(t,Bt1 ,Bt − Bt1)|

+ |Yt |I[|Bt1
|>n] ≤

L2

n
+
||u||∞

n
|Bt1 |.

Thus

Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α] ≤ Ê[(

L2

n
+
||u||∞

n
|Bt1 |)α] → 0.

By the estimates

Ê[(
∫ T

t1
|Zs − Zn

s |2ds)α/2] ≤ Cα{Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α]

+(Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α])1/2} → 0.

Thus Z ∈ Mα
G (0,T ), Kt ∈ Lα

G (Ωt).Shige Peng, Shanndong University, China
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Sketch of Proof of Theorem.

[Sketch of Proof of Theorem] prove K is G -martingale. Following [Li-P.],
we take

hn
i (x) = I[−n+ i

n ,−n+ i+1
n )(x), i = 0, . . . , 2n2 − 1,

hn
2n2 = 1−

2n2−1

∑
i=0

hn
i

Ỹ n
t =

2n2

∑
i=0

u(t,−n +
i

n
,Bt − Bt1)h

n
i (Bt1), Z̃n

t =
2n2

∑
i=0

∂yu(·)hn
i (Bt1)

solves

Ỹ n
t = Ỹ n

T +
∫ T

t
h(Ỹ n

s , Z̃n
s )ds −

∫ T

t
Z̃n

s dBs − (K̃n
T − K̃n

t ),
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Sketch of Proof of Theorem.

We have Ê[(
∫ T
t1
|Zs − Z̃n

s |2ds)α/2] → 0. Thus Ê[|Kt − K̃n
t |α] → 0 and

Êt [Ks ] = Kt . For Yt1 = u(t1,Bt1 , 0), we can use the same method as Part
1 on [0, t1].
Step 2) f (t, ω, y , z) = ∑N

i=1 f ihi (y , z) with f i ∈ M0
G (0,T ) and

hi ∈ C∞
0 (R2).
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Sketch of Proof of Theorem.

Step 3) f (t, ω, y , z) = ∑N
i=1 f ihi (y , z) with f i ∈ M

β
G (0,T ) bounded and

hi ∈ C∞
0 (R2), hi ≥ 0 and ∑N

i=1 hi ≤ 1:
Choose

f i
n ∈ M0

G (0,T ) s.t. |f i
n | ≤ ‖f i‖∞,

N

∑
i=1

‖f i
n − f i‖

M
β
G

< 1/n.

Set fn := ∑N
i=1 f i

nhi (y , z).
Let (Y n,Zn,Kn) be the solution of (GBSDE) with generator fn.

f̂ m,n
s := |fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|

≤
N

∑
i=1

|f i
n − f i |+

N

∑
i=1

|f i
m − f i | =: f̂n + f̂m,
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Sketch of Proof of Theorem.

We have, for any 1 < α < β,

Êt [(
∫ T

0
f̂ m,n
s ds)α] ≤ Êt [(

∫ T

0
(|f̂n(s)|+ |f̂m(s)|)ds)α].

By Theorem 2.10, ∀α ∈ (1, β)

Ê

[
sup

t
Êt [|

∫ T

0
f̂ m,n
s ds |α]]

]
→ 0, m, n → ∞

By Proposition 3.9 {Y n} is Cauchy under ‖ · ‖Sα
G
. By Proposition 3.7, 3.8,

{Zn} is a also Cauchy under ‖ · ‖Hα
G

thus {
∫ T
0 fn(s,Y n

s ,Zn
s )ds} under

‖ · ‖Lα
G

thus {Kn
T} is also Cauchy under ‖ · ‖Lα

G
.
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Sketch of Proof of Theorem.

Step 4). f is bounded, Lipschitz. |f (t, ω, y , z)| ≤ CIB(R)(y , z) for some

C ,R > 0. Here B(R) = {(y , z)|y2 + z2 ≤ R2}.
For any n, by the partition of unity theorem, there exists {hi

n}Nn
i=1 such that

hi
n ∈ C∞

0 (R2), the diameter of support λ(supp(hi
n))< 1/n, 0 ≤ hi

n ≤ 1,
IB(R) ≤ ∑N

i=1 hi
n ≤ 1. Then f (t, ω, y , z) = ∑N

i=1 f (t, ω, y , z)hi
n. Choose

y i
n, z

i
n such that hi

n(y i
n, z

i
n) > 0. Set

fn(t, ω, y , z) =
N

∑
i=1

f (t, ω, y i
n, z

i
n)h

i
n(y , z)
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Sketch of Proof of Theorem.

Then

|f (t, ω, y , z)− fn(t, ω, y , z)| ≤
N

∑
i=1

|f (t, ω, y , z)− f (t, ω, y i
n, z

i
n)|hi

n ≤ L/n

and

|fn(t, ω, y , z)− fn(t, ω, y ′, z ′)| ≤ L(|y − y ′|+ |z − z ′|+ 2/n).

Noting that |fm(s,Y n
s ,Zn

s )− fn(s,Y n
s ,Zn

s )| ≤ (L/n + L/m),
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Sketch of Proof of Theorem.

we have

Êt [|
∫ T

0
(|fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|+ 2L

m
)ds |α] ≤ T α(

L

n
+

3L

m
)α.

So by the estimates {Y n} cauchy under ‖ · ‖Sα
G
. {Zn} is cauchy under

‖ · ‖Hα
G
. is also cauchy {

∫ T
0 fn(s,Y n

s ,Zn
s )ds} under ‖ · ‖Lα

G
.
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Sketch of Proof of Theorem.

Step 5). f is bounded, Lipschitz.
For any n ∈ N, choose hn ∈ C∞

0 (R2) such that IB(n) ≤ hn ≤ IB(n+1) and
{hn} are uniformly Lipschitz w.r.t. n. Set fn = fhn, which are uniformly
Lipschitz. Noting that for m > n

|fm(s,Y n
s ,Zn

s )− fn(s,Y n
s ,Zn

s )|
≤ |f (s,Y n

s ,Zn
s )|I[|Y n

s |2+|Zn
s |2>n2]

≤ ‖f ‖∞
|Y n

s |+ |Zn
s |

n
,
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Sketch of Proof of Theorem.

we have

Êt [(
∫ T

0
|fm(s,Y n

s ,Zn
s )− fn(s,Y n

s ,Zn
s )|ds)α]

≤ ‖f ‖α
∞

nα
Êt [(

∫ T

0
|Y n

s |+ |Zn
s |ds)α]

≤ ‖f ‖α
∞

nα
C (α,T )Êt [

∫ T

0
|Y n

s |αds + (
∫ T

0
|Zn

s |2ds)α/2],

where C (α,T ) := 2α−1(T α−1 + T α/2]).
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Sketch of Proof of Theorem.

So by Theorem 2.10 and Proposition 3.4 we get ||
∫ T
0 f̂ m,n

s ds ||α,E → 0 as
m, n → ∞ for any α ∈ (1, β). By Proposition 3.5, we conclude that {Y n}
is cauchy under ‖ · ‖Sα

G
. {Zn} cauchy sequence under ‖ · ‖Hα

G
.

{
∫ T
0 fn(s,Y n

s ,Zn
s )ds} is cauchy under ‖ · ‖Lα

G
:

|fn(s,Y n,Zn)− fm(s,Y m,Zm)|
≤ |fm(s,Y n,Zn)− fm(s,Y m,Zm)|+ |fn(s,Y n,Zn)− fm(s,Y n,Zn)|
≤ L(|Ŷs |+ |Ẑs |) + |f (s,Y n

s ,Zn
s )|1[|Y n

s |+|Zn
s |>n],

which implies the desired result.
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Sketch of Proof of Theorem.

Step 6). For the general f .
Set fn = [f ∨ (−n)] ∧ n, which are uniformly Lipschitz. Choose

0 < δ < β−α
α ∧ 1. Then α < α′ = (1 + δ)α < β. Since for m > n

|fn(s,Y n,Zn)− fm(s,Y n,Zn)| ≤ |f (s,Y n
s ,Zn

s )|I[|f (s,Y n
s ,Y n

s )|>n] ≤
1

nδ
|f (s,Y n

s ,Zn
s )|1+δ,

we have

Êt [(
∫ T

0
|fn(s,Y n,Zn)− fm(s,Y n,Zn)|ds)α]

≤ 1

nαδ
Êt [(

∫ T

0
|f (s,Y n

s ,Zn
s )|1+δds)α],

≤ C (α,T , L, δ)
nαδ

Êt [
∫ T

0
|f (s, 0, 0)|α′ds +

∫ T

0
|Y n

s |α
′
ds + (

∫ T

0
|Zn

s |2ds)
α′
2 ],

where C (α,T , L, δ) := 3α′−1(T α−1 + Lα′T
α(1−δ)

2 + T α−1Lα′).
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Sketch of Proof of Theorem.

So by Song’s estimate and a priori estimate, we get ||
∫ T
0 f̂ m,n

s ds ||α,E → 0
as m, n → ∞ for any α ∈ (1, β). We know that {Y n} is a cauchy
sequence under the norm ‖ · ‖Sα

G
. And consequently {Zn} is a cauchy

sequence under the norm ‖ · ‖Hα
G
. Now we prove {

∫ T
0 fn(s,Y n

s ,Zn
s )ds} is

a cauchy sequence under the norm ‖ · ‖Lα
G
. In fact,

|fn(s,Y n,Zn)− fm(s,Y m,Zm)|
≤ |fm(s,Y n,Zn)− fm(s,Y m,Zm)|+ |fn(s,Y n,Zn)− fm(s,Y n,Zn)|

≤ L(|Ŷs |+ |Ẑs |) +
3δ

nδ
(|f 0

s |1+δ + |Y n
s |1+δ + |Zn

s |1+δ),

which implies the desired result.
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HAPPY BIRTHDAY, FREDDY!
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