Brownian Motion under Nonlinear Expectation and related BSDE

Shige Peng, Shanndong University, China

Perspectives in Analysis and Probability
Conference in honor of Freddy Delbaen, July 21, 2012, ETH, Zurich

Axiomatic Framework of Coherent Risk Measures

$$
\hat{\mathbb{E}}[X]:=\rho(-X) .
$$

Axiomatic Framework of Coherent Risk Measures

- Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk, Math. finance.

$$
\hat{\mathbb{E}}[X]:=\rho(-X) .
$$

Axiomatic Framework of Coherent Risk Measures

- Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk, Math. finance.
- Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

$$
\hat{\mathbb{E}}[X]:=\rho(-X) .
$$

Axiomatic Framework of Coherent Risk Measures

- Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk, Math. finance.
- Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

$$
\hat{\mathbb{E}}[X]:=\rho(-X) .
$$

(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$

Axiomatic Framework of Coherent Risk Measures

- Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk, Math. finance.
- Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

$$
\hat{\mathbb{E}}[X]:=\rho(-X)
$$

(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y], \quad$ if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,

Axiomatic Framework of Coherent Risk Measures

- Artzner-Delbean-Eden-Heath (1999), Coherent measures of risk, Math. finance.
- Delbaen, F, (2002), Coherent Risk Measures, Scuola Normale di Pisa.

$$
\hat{\mathbb{E}}[X]:=\rho(-X) .
$$

(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer \& Schied $(2002,2004)$, Fritelli \& Rosazza-Gianin (2002)

Robust representation of a coherent risk measure

- Huber Robust Statistics (1981), for finite state case.
- Artzner-Delbean, Eber-Heath (1999), Delbean2002,
- Föllmer \& Schied $(2002,2004)$, Fritelli \& Rosazza-Gianin (2002)

Theorem (Robust Representation of coherent risk measure)

$\hat{\mathbb{E}}[\cdot]$ is a sublinear expectation iff there exists a family $\left\{E_{\theta}\right\}_{\theta \in \Theta}$ of linear expectations s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X], \quad \forall X \in \mathcal{H}
$$

Motivated from g-Expectation [P.1994-1997] on Wiener probability space (Ω, \mathcal{F}, P)

- Given r.v. $X(\omega)$, solve the BSDE

$$
d y(t)=-g(y(t), z(t)) d t+z(t) d B(t), \quad y(T)=X(\omega)
$$

Motivated from g-Expectation [P.1994-1997] on Wiener probability space (Ω, \mathcal{F}, P)

- Given r.v. $X(\omega)$, solve the BSDE

$$
d y(t)=-g(y(t), z(t)) d t+z(t) d B(t), \quad y(T)=X(\omega)
$$

- Then define:

$$
\mathbb{E}^{g}[X]:=y(0), \quad \mathbb{E}^{g}\left[X \mid(B(s))_{s \in[0, t]}\right]:=y(t)
$$

- [Artzner-Delbean-Eden-Heath1999] Coherent measures of risk, Math. finance.
- [Coquet-Hu-P.-Memin2002], [P. 2005]: A dominated and $\mathcal{F}_{t^{\text {-dynamic }}}$ expectation a g-expectation;
- [Artzner-Delbean-Eden-Heath1999] Coherent measures of risk, Math. finance.
- [Coquet-Hu-P.-Memin2002], [P. 2005]: A dominated and \mathcal{F}_{t}-dynamic expectation a g-expectation;
- [Delbaen-P.-Rosazza, 2008]: If a convex dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E}=\mathcal{E}_{g}$.
- [Artzner-Delbean-Eden-Heath1999] Coherent measures of risk, Math. finance.
- [Coquet-Hu-P.-Memin2002], [P. 2005]: A dominated and \mathcal{F}_{t}-dynamic expectation a g-expectation;
- [Delbaen-P.-Rosazza, 2008]: If a convex dynamic expectation \mathcal{E} is absolutely continuous w.r.t. P then there exists a unique g such that $\mathcal{E}=\mathcal{E}_{g}$.
- Serious problem: under volatility uncertainty, it is impossible to find a reference probability measure.

World of economic: Frank Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."

World of economic: Frank Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

World of economic: Frank Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk

Probability (and prob. distribution) are known.

World of economic: Frank Knight (1921) "Risk, Uncertainty and Profit"

Knight, 1921

- " Mathematical, or a priori, type of probability is practically never met with in business ..."
- "Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated."

Knightian's Risk

Probability (and prob. distribution) are known.

Knightian uncertainty

The prob. and distr. are unknown- "uncertainty of probability measures".

- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa \& Schmeidler (1989) Maximin expected utility; Hansen \& Sargent (2000) Multiplier preference.
- F. Knight (1921): Two types of uncertainty "risk": given a probability space (Ω, \mathcal{F}, P); "Knightian uncertainty" (ambiguity): Probability measure P itself is uncertain;
- John Maynard Keynes (1921) A Treatise on Probability. Macmillan, London, 1921.
- Allais paradox (1953) to vNM expected utility theory (1944);
- Ellsberg paradox (1961) to Savage's expected utility (1954), Ambiguity aversion (1961);
- Kahneman \& Tversky (1979-1992): prospective theory by distorted probability;
- Gilboa \& Schmeidler (1989) Maximin expected utility; Hansen \& Sargent (2000) Multiplier preference.
- Hansen \& Sargent: Robust control method.

Nonlinear expectation framework

- Ω : A set;
- Ω : A set;
- \mathcal{H} a linear space of random variables containing constants

$$
X(\omega) \in \mathcal{H} \Longrightarrow|X(\omega)| \in \mathcal{H}
$$

- Ω : A set;
- \mathcal{H} a linear space of random variables containing constants

$$
X(\omega) \in \mathcal{H} \Longrightarrow|X(\omega)| \in \mathcal{H}
$$

- We often "equivalently" assume:

$$
X_{1}, \cdots, X_{n} \in \mathcal{H} \Longrightarrow \varphi\left(X_{1}, \cdots, X_{n}\right) \in \mathcal{H}, \quad \forall \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right)
$$

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbf{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbf{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbf{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y]=\hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y]=\hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbf{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y]=\hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y]=\hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Daniell-Stone Theorem)

- There exists a probability measure P on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=E[X]=\int_{\Omega} X(\omega) P(\omega), \quad \text { for each } X \in \mathcal{H}
$$

Daniell's Expectation (1918) $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y]=\hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y]$
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Daniell-Stone Theorem)

- There exists a probability measure P on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=E[X]=\int_{\Omega} X(\omega) P(\omega), \quad \text { for each } X \in \mathcal{H} .
$$

- For each given $X \in \mathcal{H}$,

$$
\hat{\mathbb{E}}[\varphi(X)]=\int_{\mathbb{R}} \varphi(x) d F(x), \quad F(x)=P(X \leq x) .
$$

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Robust Daniell-Stone Theorem)

- There exists a family of $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X]=\sup _{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \text { for each } X \in \mathcal{H} .
$$

Sublinear Expectation on $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

$X \in \mathcal{H} \Longrightarrow|X| \in \mathcal{H}$
(a) $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$, if $\quad X \geq Y$
(b) $\hat{\mathbb{E}}[X+c]=\hat{\mathbb{E}}[X]+c$,
(c) $\hat{\mathbb{E}}[X+Y] \leq \hat{\mathbb{E}}[X]+\hat{\mathbb{E}}[Y] \quad " \leq " \Longrightarrow$ sublinear
(d) $\hat{\mathbb{E}}[\lambda X]=\lambda \hat{\mathbb{E}}[X], \quad \lambda \geq 0$.
$\hat{\mathbb{E}}\left[X_{i}\right] \downarrow 0$, if $X_{i}(\omega) \downarrow 0, \forall \omega$

Theorem (Robust Daniell-Stone Theorem)

- There exists a family of $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ of prob. measures on $(\Omega, \sigma(\mathcal{H}))$ s.t.

$$
\hat{\mathbb{E}}[X]=\sup _{\theta \in \Theta} E_{\theta}[X]=\sup _{\theta \in \Theta} \int_{\Omega} X(\omega) P_{\theta}(\omega), \quad \text { for each } X \in \mathcal{H} .
$$

- For each given $X \in \mathcal{H}$,

$$
\hat{\mathbb{E}}[\varphi(X)]=\sup _{\theta \in \Theta} \int_{\mathbb{R}} \varphi(x) d F_{\theta}(x), \quad F_{\theta}(x)=P_{\theta}(X \leq x) .
$$

- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.
- [Peng2004] Filtration consistent nonlinear expectations..., Applicatae Sinica, 20(2), 1-24.
- [Peng2005] Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. (paper for BSDE Weihai Conf. 2002)
- [Peng2006] G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito's type, Abel Symposium 2005 (Springer2007).
- Denis, L. and Martini, C. (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, The Ann. of Appl. Probability
- [Peng2008-SPA] Multi-Dim G-Brownian Motion and Related Stochastic Calculus.
- [Denis-Hu-Peng2008] Capacity related to Sublinear Expectations: appl. to G-Brownian Motion Paths.

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

- Y Indenp. of X if each realization " $X=x$ " does not change the distribution of Y :

Uncertainty version of distributions in $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$

Definition

- $X \sim Y$ if they have the same distribution uncertainty

$$
X \sim Y \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X)]=\hat{\mathbb{E}}[\varphi(Y)], \quad \forall \varphi \in C_{b}\left(\mathbb{R}^{n}\right)
$$

- Y Indenp. of X if each realization " $X=x$ " does not change the distribution of Y :
Y indenp. of $X \Longleftrightarrow \hat{\mathbb{E}}[\varphi(X, Y)]=\hat{\mathbb{E}}\left[\hat{\mathbb{E}}[\varphi(x, Y)]_{x=x}\right]$.

Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be i.i.d.: $X_{i} \sim X_{1}$ and X_{i+1} Indep. $\left(X_{1}, \cdots, X_{i}\right)$. Assume:

$$
\hat{\mathbb{E}}\left[\left|X_{1}\right|^{2+\alpha}\right]<\infty \quad, \hat{\mathbb{E}}\left[X_{1}\right]=\hat{\mathbb{E}}\left[-X_{1}\right]=0
$$

Then:

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)\right]=\hat{\mathbb{E}}[\varphi(X)], \forall \varphi \in C_{b}(\mathbb{R})
$$

with $X \sim N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, where

$$
\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[X_{1}^{2}\right], \quad \underline{\sigma}^{2}=-\hat{\mathbb{E}}\left[-X_{1}^{2}\right] .
$$

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

Normal distributions under Knightian uncertainty

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

- $\hat{\mathbb{E}}[X]=\hat{\mathbb{E}}[-X]=0$.

Definition

A loss position X in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is normally in uncertainty distribution if

$$
a X+b \bar{X} \sim \sqrt{a^{2}+b^{2}} X, \quad \forall a, b \geq 0
$$

where \bar{X} is an independent copy of X.

- $\hat{\mathbb{E}}[X]=\hat{\mathbb{E}}[-X]=0$.
- $X \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$, where

$$
\bar{\sigma}^{2}:=\hat{\mathbb{E}}\left[X^{2}\right], \quad \underline{\sigma}^{2}:=-\hat{\mathbb{E}}\left[-X^{2}\right] .
$$

G-normal distribution: under sublinear expectation $\mathbb{E}[\cdot]$

- (1) For each convex φ, we have

$$
\hat{\mathbb{E}}[\varphi(X)]=\frac{1}{\sqrt{2 \pi \bar{\sigma}^{2}}} \int_{-\infty}^{\infty} \varphi(y) \exp \left(-\frac{y^{2}}{2 \bar{\sigma}^{2}}\right) d y
$$

G-normal distribution: under sublinear expectation $\mathbb{E}[\cdot]$

- (1) For each convex φ, we have

$$
\hat{\mathbb{E}}[\varphi(X)]=\frac{1}{\sqrt{2 \pi \bar{\sigma}^{2}}} \int_{-\infty}^{\infty} \varphi(y) \exp \left(-\frac{y^{2}}{2 \bar{\sigma}^{2}}\right) d y
$$

- (2) For each concave φ, we have,

$$
\hat{\mathbb{E}}[\varphi(X)]=\frac{1}{\sqrt{2 \pi \underline{\sigma}^{2}}} \int_{-\infty}^{\infty} \varphi(y) \exp \left(-\frac{y^{2}}{2 \underline{\sigma}^{2}}\right) d y
$$

Remark.
If $\underline{\sigma}^{2}=\bar{\sigma}^{2}$, then $N\left(0 ;\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)=N\left(0, \bar{\sigma}^{2}\right)$.

Remark.

The larger to $\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]$ the stronger the uncertainty.

Remark.

But $X \stackrel{d}{=} N\left(0 ;\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$ does not simply implies

$$
\hat{\mathbb{E}}[\varphi(X)]=\sup _{\sigma \in\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]} \frac{1}{\sqrt{2 \pi \sigma}} \int_{-\infty}^{\infty} \varphi(x) \exp \left\{\frac{-x^{2}}{2 \sigma}\right\} d x
$$

G-normal distribution characterized by nonlinear infinitesimal generator

CLT converges in uncertainty distribution to $\mathcal{N}\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$:

Theorem

$X \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$ in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$, then for each C_{b} function φ,

$$
\mathcal{S}_{t}(\varphi)(x):=\hat{\mathbb{E}}[\varphi(x+\sqrt{t} X)], \quad x \in \mathbb{R}, \quad t \geq 0
$$

defines a nonlinear semigroup, since: $\mathcal{S}_{0}[\varphi](x)=\hat{\mathbb{E}}[\varphi(x)]=\varphi(x)$, and

$$
\begin{aligned}
\mathcal{S}_{t+s}[\varphi](x) & =\hat{\mathbb{E}}[\varphi(x+\sqrt{t+s} X)] \\
& =\hat{\mathbb{E}}[\varphi(\overbrace{x+\sqrt{t} X}+\sqrt{s} \bar{X})] \\
& =\hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(\overbrace{x+\sqrt{t} y}+\sqrt{s} \bar{X})]_{y=x}] \\
& =\hat{\mathbb{E}}\left[\left(\mathcal{S}_{s}[\varphi]\right)(x+\sqrt{t} X)\right]=\mathcal{S}_{t}\left[\mathcal{S}_{s}[\varphi]\right](x) .
\end{aligned}
$$

$$
\mathcal{A} \varphi(x):=\lim _{t \rightarrow 0} \frac{\mathcal{S}_{t}(\varphi)(x)-\varphi(x)}{t}=G\left(u_{x x}\right)
$$

where

$$
G(a)=\hat{\mathbb{E}}\left[\frac{a}{2} X^{2}\right]=\frac{1}{2}\left(\bar{\sigma}^{2} a^{+}-\underline{\sigma}^{2} a^{-}\right)
$$

Thus we can solve the PDE

$$
\begin{aligned}
u_{t} & =G\left(\partial_{x x}^{2} u\right), \quad t>0, \quad x \in \mathbb{R} \\
\left.u\right|_{t=0} & =\varphi
\end{aligned}
$$

Law of Large Numbers (LLN), Central Limit Theorem (CLT)

Striking consequence of LLN \& CLT

Accumulated independent and identically distributed random variables tends to a normal distributed random variable, whatever the original distribution.

Maximal distribution $M([\mu, \bar{\mu}])$ under Knightian uncertainty

Definition

A random variable Y in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is maximally distributed, denoted by $Y \stackrel{d}{=} M([\underline{\mu}, \bar{\mu}])$, if

$$
a Y+b \bar{Y} \stackrel{d}{=}(a+b) Y, \quad a, b \geq 0
$$

where \bar{Y} is an independent copy of Y,

$$
\bar{\mu}:=\hat{\mathbb{E}}[Y], \quad \underline{\mu}:=-\hat{\mathbb{E}}[-Y] .
$$

Maximal distribution $M([\underline{\mu}, \bar{\mu}])$ under Knightian

 uncertainty
Definition

A random variable Y in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is maximally distributed, denoted by $Y \stackrel{d}{=} M([\underline{\mu}, \bar{\mu}])$, if

$$
a Y+b \bar{Y} \stackrel{d}{=}(a+b) Y, \quad a, b \geq 0
$$

where \bar{Y} is an independent copy of Y,

$$
\bar{\mu}:=\hat{\mathbb{E}}[Y], \quad \underline{\mu}:=-\hat{\mathbb{E}}[-Y] .
$$

- We can prove that

$$
\hat{\mathbb{E}}[\varphi(Y)]=\sup _{y \in[\underline{\mu}, \bar{x}]} \varphi(y)
$$

Case with mean-uncertainty $\mathbb{E}[\cdot]$

Definition

A pair of random variables (X, Y) in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is
$\mathcal{N}\left([\underline{\mu}, \bar{\mu}],\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$-distributed $\left((X, Y) \stackrel{d}{=} \mathcal{N}\left([\underline{\mu}, \bar{\mu}],\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)\right)$ if

$$
\left(a X+b \bar{X}, a^{2} Y+b^{2} \bar{Y}\right) \stackrel{d}{=}\left(\sqrt{a^{2}+b^{2}} X,\left(a^{2}+b^{2}\right) Y\right), \quad \forall a, b \geq 0
$$

where (\bar{X}, \bar{Y}) is an independent copy of (X, Y),

$$
\begin{aligned}
\bar{\mu} & :=\hat{\mathbb{E}}[Y], \underline{\mu}:=-\hat{\mathbb{E}}[-Y] \\
\bar{\sigma}^{2} & :=\hat{\mathbb{E}}\left[X^{2}\right], \underline{\sigma}^{2}:=-\hat{\mathbb{E}}[-X], \quad(\hat{\mathbb{E}}[X]=\hat{\mathbb{E}}[-X]=0) .
\end{aligned}
$$

Theorem

$(X, Y) \stackrel{d}{=} \mathcal{N}\left([\mu, \bar{\mu}],\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$ in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ iff for each $\varphi \in C_{b}(\mathbb{R})$ the function

$$
u(t, x, y):=\hat{\mathbb{E}}[\varphi(x+\sqrt{t} X, y+t Y)], \quad x \in \mathbb{R}, \quad t \geq 0
$$

is the solution of the PDE

$$
\begin{aligned}
u_{t} & =G\left(u_{y}, u_{x x}\right), \quad t>0, \quad x \in \mathbb{R} \\
\left.u\right|_{t=0} & =\varphi,
\end{aligned}
$$

where

$$
G(p, a):=\hat{\mathbb{E}}\left[\frac{a}{2} X^{2}+p Y\right] .
$$

Theorem

Let $\left\{X_{i}+Y_{i}\right\}_{i=1}^{\infty}$ be i.i.d. sequence. We assume furthermore that

$$
\hat{\mathbb{E}}\left[\left|X_{1}\right|^{2+\alpha}\right]+\hat{\mathbb{E}}\left[\left|Y_{1}\right|^{1+\alpha}\right]<\infty, \quad \hat{\mathbb{E}}\left[X_{1}\right]=\hat{\mathbb{E}}\left[-X_{1}\right]=0 .
$$

Then, for each $\varphi \in C_{b}(\mathbb{R})$,

$$
\lim _{n \rightarrow \infty} \hat{\mathbb{E}}\left[\varphi\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}+\frac{Y_{1}+\cdots+Y_{n}}{n}\right)\right]=\hat{\mathbb{E}}[\varphi(X+Y)] .
$$

where (X, Y) is $\mathcal{N}\left([\underline{\mu}, \bar{\mu}],\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right)$-distributed.

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of $\left(B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.
- $B_{t} \stackrel{d}{=} B_{s+t}-B_{s}$, for all $s, t \geq 0$

Brownian Motion $\left(B_{t}(\omega)\right)_{t \geq 0}$ in $\left.(\Omega, \mathcal{F}, \hat{\mathbb{E}})\right)$

Definition

B is called $a G$-Brownian motion if:

- For each $t_{1} \leq \cdots \leq t_{n}, B_{t_{n}}-B_{t_{n-1}}$ is indep. of ($\left.B_{t_{1}}, \cdots, B_{t_{n-1}}\right)$.
- $B_{t} \stackrel{d}{=} B_{s+t}-B_{s}$, for all $s, t \geq 0$
- $\hat{\mathbb{E}}\left[\left|B_{t}\right|^{3}\right]=o(t)$.

Theorem.

If $\left(B_{t}(\omega)\right)_{t \geq 0}$ is a G-Brownian motion and $\hat{\mathbb{E}}\left[B_{t}\right]=\hat{\mathbb{E}}\left[-B_{t}\right] \equiv 0$ then:
$B_{t+s}-B_{s} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2} t, \bar{\sigma}^{2} t\right]\right), \forall s, t \geq 0$

Sketch of Proof.

Theorem.

If $\left(B_{t}(\omega)\right)_{t \geq 0}$ is a G-Brownian motion and $\hat{\mathbb{E}}\left[B_{t}\right]=\hat{\mathbb{E}}\left[-B_{t}\right] \equiv 0$ then:
$B_{t+s}-B_{s} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2} t, \bar{\sigma}^{2} t\right]\right), \forall s, t \geq 0$

Sketch of Proof.

- $\mathcal{S}_{t}[\varphi](x):=\hat{\mathbb{E}}\left[\varphi\left(x+B_{t}\right)\right]$ defines a nonlinear semigroup $\left(\mathcal{S}_{t}\right)_{t \geq 0}$

Theorem.

If $\left(B_{t}(\omega)\right)_{t \geq 0}$ is a G-Brownian motion and $\hat{\mathbb{E}}\left[B_{t}\right]=\hat{\mathbb{E}}\left[-B_{t}\right] \equiv 0$ then:
$B_{t+s}-B_{s} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2} t, \bar{\sigma}^{2} t\right]\right), \forall s, t \geq 0$

Sketch of Proof.

- $\mathcal{S}_{t}[\varphi](x):=\hat{\mathbb{E}}\left[\varphi\left(x+B_{t}\right)\right]$ defines a nonlinear semigroup $\left(\mathcal{S}_{t}\right)_{t \geq 0}$

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\varphi\left(x+B_{t}\right)\right]-\varphi(x) & =\hat{\mathbb{E}}\left[\varphi_{x}(x) B_{t}+\frac{1}{2} \varphi_{x x}(x) B_{t}^{2}\right]+o(t) \\
& =\underbrace{\hat{\mathbb{E}}\left[\frac{1}{2} \varphi_{x x}(x) B_{t}^{2}\right]}_{=G\left(\varphi_{x x}\right) t,}+o(t), \quad G(a):=\hat{\mathbb{E}}\left[\frac{B_{1}^{2}}{2} a\right] .
\end{aligned}
$$

Theorem.

If $\left(B_{t}(\omega)\right)_{t \geq 0}$ is a G-Brownian motion and $\hat{\mathbb{E}}\left[B_{t}\right]=\hat{\mathbb{E}}\left[-B_{t}\right] \equiv 0$ then:
$B_{t+s}-B_{s} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2} t, \bar{\sigma}^{2} t\right]\right), \forall s, t \geq 0$

Sketch of Proof.

- $\mathcal{S}_{t}[\varphi](x):=\hat{\mathbb{E}}\left[\varphi\left(x+B_{t}\right)\right]$ defines a nonlinear semigroup $\left(\mathcal{S}_{t}\right)_{t \geq 0}$

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\varphi\left(x+B_{t}\right)\right]-\varphi(x) & =\hat{\mathbb{E}}\left[\varphi_{x}(x) B_{t}+\frac{1}{2} \varphi_{x x}(x) B_{t}^{2}\right]+o(t) \\
& =\underbrace{\hat{\mathbb{E}}\left[\frac{1}{2} \varphi_{x x}(x) B_{t}^{2}\right]}_{=G\left(\varphi_{x x}\right) t,}+o(t), \quad G(a):=\hat{\mathbb{E}}\left[\frac{B_{1}^{2}}{2} a\right] .
\end{aligned}
$$

- Thus $\left.\partial_{t} \mathcal{S}_{t}[\varphi](x)\right|_{t=0}=G\left(\varphi_{x x}(x)\right)$: the infinitesimal generator of $\left(\mathcal{S}_{t}\right)_{t \geq 0}$.

Construct $G-\mathrm{BM}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$

Construct $G-B M$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$

Construct G-BM on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$
- For each $X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right)$, with $t_{i}<t_{i+1}$, we set

$$
\hat{\mathbb{E}}[X]:=\tilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}} \xi_{1}, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]
$$

where
$\xi_{i} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right), \xi_{i+1}$ is indep. of $\left(\xi_{1}, \cdots, \xi_{i}\right)$ under $\tilde{\mathbb{E}}$.

Construct $G-\mathrm{BM}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$

- $\Omega:=C(0, \infty ; \mathbb{R}), B_{t}(\omega)=\omega_{t}$
- $\mathcal{H}:=\left\{X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right), t_{i} \in[0, \infty), \varphi \in C_{L i p}\left(\mathbb{R}^{n}\right), n \in\right.$ $\mathbb{Z}\}$
- For each $X(\omega)=\varphi\left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right)$, with $t_{i}<t_{i+1}$, we set

$$
\hat{\mathbb{E}}[X]:=\tilde{\mathbb{E}}\left[\varphi\left(\sqrt{t_{1}} \xi_{1}, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]
$$

where

$$
\xi_{i} \stackrel{d}{=} N\left(0,\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right), \xi_{i+1} \text { is indep. of }\left(\xi_{1}, \cdots, \xi_{i}\right) \text { under } \tilde{\mathbb{E}} .
$$

- Conditional expectation:

$$
\hat{\mathbb{E}}_{t_{1}}[X]=\tilde{\mathbb{E}}\left[\varphi\left(x, \sqrt{t_{2}-t_{1}} \xi_{2}, \cdots, \sqrt{t_{n}-t_{n-1}} \xi_{n}\right)\right]_{x=B_{t_{1}}}
$$

- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Itô's integral, Itô's calculus have been established
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Itô's integral, Itô's calculus have been established
- G-martingales, supermartingales, \cdots have been established.
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Itô's integral, Itô's calculus have been established
- G-martingales, supermartingales, \cdots have been established.
- If \tilde{G} is dominated by $G: \tilde{G}(a)-\tilde{G}(b) \leq G(a-b)$, then we can establish a nonlinear expectation $\mathbb{E}_{\tilde{G}}$ on the same space $L_{G}^{p}(\Omega)$, under which B is a \tilde{G}-Brownian motion.
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Itô's integral, Itô's calculus have been established
- G-martingales, supermartingales, \cdots have been established.
- If \tilde{G} is dominated by $G: \tilde{G}(a)-\tilde{G}(b) \leq G(a-b)$, then we can establish a nonlinear expectation $\mathbb{E}_{\tilde{G}}$ on the same space $L_{G}^{p}(\Omega)$, under which B is a \tilde{G}-Brownian motion.
- We don't need to change stochastic calculus for these type of $\mathbb{E}_{\tilde{G}}$. Many Wiener measures and martingale measures dominated by $\hat{\mathbb{E}}$ work well in this fixed G-framework. (they maybe singular from each others).
- Completion of \mathcal{H} to $L_{G}^{p}(\Omega)$ under $\|X\|_{L_{G}^{p}}:=\hat{\mathbb{E}}\left[|X|^{p}\right]^{1 / p}, p \geq 1$
- $\hat{\mathbb{E}}[\cdot]$ and $\hat{\mathbb{E}}_{t}$ are extended to $L_{G}^{p}(\Omega)$ and keeping time consistency;
- Itô's integral, Itô's calculus have been established
- G-martingales, supermartingales, \cdots have been established.
- If \tilde{G} is dominated by $G: \tilde{G}(a)-\tilde{G}(b) \leq G(a-b)$, then we can establish a nonlinear expectation $\mathbb{E}_{\tilde{G}}$ on the same space $L_{G}^{p}(\Omega)$, under which B is a \tilde{G}-Brownian motion.
- We don't need to change stochastic calculus for these type of $\mathbb{E}_{\tilde{G}}$. Many Wiener measures and martingale measures dominated by $\hat{\mathbb{E}}$ work well in this fixed G-framework. (they maybe singular from each others).
- Note that if $G_{1} \leq G_{2}$ then $L_{G_{1}}^{p}(\Omega) \supset L_{G_{2}}^{p}(\Omega)$.

Probability v.s. Nonlinear Expectation

Probability Space	Nonlinear Expectation Space
(Ω, \mathcal{F}, P)	$(\Omega, \mathcal{H}, \mathbb{E}):$ (sublinear is basic)
Distributions: $X \stackrel{d}{=} Y$	$X \stackrel{d}{=} Y$,
Independence: Y indep. of X	Y indep. of X, (non-symm.)
LLN and CLT	LLN + CTL
Normal distributions	G-Normal distributions
Brownian motion $B_{t}(\omega)=\omega_{t}$	G-B.M. $B_{t}(\omega)=\omega_{t}$,
Qudratic variat. $\langle B\rangle_{t}=t$	$\langle B\rangle_{t}:$ still a G-Brownian motion
Lévy process	G-Lévy process

Probability v.s. Nonlinear Expectation

Probability Space	Nonlinear Expectation Space
Itô's calculus for BM	Itô's calculus for G-BM
SDE $d x_{t}=b\left(x_{t}\right) d t+\sigma\left(x_{t}\right) d B_{t}$	$d x_{t}=\cdots+\beta\left(x_{t}\right) d\langle B\rangle_{t}$
Diffusion: $\partial_{t} u-\mathcal{L} u=0$	$\partial_{t} u-G\left(D u, D^{2} u\right)=0$
Markovian pro. and semi-grou	Nonlinear Markovian
Martingales	G-Martingales
$E\left[X \mid \mathcal{F}_{t}\right]=E[X]+\int_{0}^{T} z_{s} d B_{s}$	$\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]=\mathbb{E}[X]+\int_{0}^{t} z_{s} d B_{s}+K_{t}$
	$K_{t} \stackrel{?}{=} \int_{0}^{t} \eta_{s} d\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s$

Probability Space	Nonlinear Expectation Space
P-almost surely analysis	\hat{c}-quasi surely analysis
	$\hat{c}(A)=\sup _{\theta} E_{P_{\theta}}\left[\mathbf{1}_{A}\right]$
$X(\omega): P$-quasi continuous	$X(\omega): \hat{c}$-quasi surely
$\Longleftrightarrow X$ is $\mathcal{B}(\Omega)$-meas.	continuous $\Longrightarrow X$ is $\mathcal{B}(\Omega)$-meas.

Lévy Processes under Sublinear Expectations

Based on: [Hu, Mingshang \& P.]: G-Lévy Processes under Sublinear Expectations, (in arXiv)

Definition

A d-dimensional process $\left(X_{t}\right)_{t \geq 0}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$ is called a Lévy process:
(1) $X_{0}=0$.
(2) $X_{t+s}-X_{t}$ is indep. of $\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)$, $\forall t, s>0, \quad t_{1}, t_{2}, \cdots, t_{n} \in[0, t]$.
(3) Stationary increments: $X_{t+s}-X_{t} \stackrel{d}{=} X_{s}$.

Pure jump Lévy process on $(\Omega, \mathcal{H}, \widehat{\mathbb{E}})$.

Consider a pure jump case: $X_{t}=X_{t}^{d}$ Assumption:

$$
\limsup _{t \downarrow 0} \hat{\mathbb{E}}\left[\left|X_{t}\right|\right] t^{-1}<\infty
$$

Proposition.

$$
u(t, x)=\mathcal{S}_{t} \varphi(x):=\hat{\mathbb{E}}\left[\varphi\left(x+X_{t}\right)\right] \text { is a semigroup on } \varphi \in C_{b, L i p}\left(\mathbb{R}^{d}\right):
$$

$$
\mathcal{S}_{t+s} \varphi(x)=\mathcal{S}_{t} \mathcal{S}_{s} \varphi(x), \quad \mathcal{S}_{0} \varphi(x)=\varphi(x)
$$

Proposition.

$$
\begin{aligned}
& u(t, x)=\mathcal{S}_{t} \varphi(x):=\hat{\mathbb{E}}\left[\varphi\left(x+X_{t}\right)\right] \text { is a semigroup on } \varphi \in C_{b, L i p}\left(\mathbb{R}^{d}\right): \\
& \qquad \mathcal{S}_{t+s} \varphi(x)=\mathcal{S}_{t} \mathcal{S}_{s} \varphi(x), \quad \mathcal{S}_{0} \varphi(x)=\varphi(x)
\end{aligned}
$$

$$
\left[\partial_{t} \mathcal{S}_{t} \varphi\right]_{t=0}(x)=G_{X}[\varphi(x+\cdot)-\varphi(x)]
$$

Proposition.

$u(t, x)=\mathcal{S}_{t} \varphi(x):=\hat{\mathbb{E}}\left[\varphi\left(x+X_{t}\right)\right]$ is a semigroup on $\varphi \in C_{b, L i p}\left(\mathbb{R}^{d}\right):$

$$
\mathcal{S}_{t+s} \varphi(x)=\mathcal{S}_{t} \mathcal{S}_{s} \varphi(x), \quad \mathcal{S}_{0} \varphi(x)=\varphi(x)
$$

$$
\left[\partial_{t} \mathcal{S}_{t} \varphi\right]_{t=0}(x)=G_{x}[\varphi(x+\cdot)-\varphi(x)],
$$

- G_{X} is well-defined on

$$
\mathcal{L}_{0}:=\left\{f \in C_{b, L i p}\left(\mathbb{R}^{d}\right): f(0)=0 \text { and } f(x)=o(|x|)\right\}
$$

BSDE driven by G-BM (2BSDE)

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d\langle B\rangle_{s} \\
& -\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
\end{aligned}
$$

Under a Lipschitz condition of f and g in Y and Z. The existence and uniqueness of the solution (Y, Z, K) is proved, where K is a decreasing G-martingale.

G-Martingale representation

G-martingale M is of the form

$$
\begin{aligned}
M_{t} & =M_{0}+\bar{M}_{t}+K_{t} \\
\bar{M}_{t} & :=\int_{0}^{t} z_{s} B_{s} \\
K_{t} & :=\int_{0}^{t} \eta_{s}\langle B\rangle_{s}-\int_{0}^{t} 2 G\left(\eta_{s}\right) d s .
\end{aligned}
$$

$$
\begin{aligned}
Y_{t} & =\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d\langle B\rangle_{s} \\
& -\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
\end{aligned}
$$

Existing results on fully nonlinear BSDEs (2BSDE)

- f independent of $z($ and $g=0)$:

$$
Y_{t}^{i}=\hat{\mathbb{E}}_{t}^{G_{i}}\left[\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}\right) d s\right]
$$

Peng [2005,07,10].
BSDE corresponding to (path-depedent) system of PDE:

$$
\begin{aligned}
\partial_{t} u^{i}+G^{i}\left(u^{i}, D u^{i}, D^{2} u^{i}\right)+f^{i}\left(t, x, u^{1}, \cdots, u^{k}\right) & =0, \\
u^{i}(x, T) & =\varphi^{i}(x), \\
i & =1, \cdots, k .
\end{aligned}
$$

G^{i} satisfy the dominate condition:

$$
G^{i}(x, y, p, A)-G^{i}(x, \bar{y}, \bar{p}, \bar{A}) \leq c(|y-\bar{y}|+|p-p|)+\hat{G}(A-\bar{A})
$$

Existing results on fully nonlinear BSDEs

- [Soner, Touzi and Zhang, 2BSDE]
- $\left(Y, Z, K^{\mathbb{P}}\right)_{\mathbb{P} \in \mathcal{P}_{H}^{\kappa}}, \mathbb{P} \in \mathcal{P}_{H}^{\kappa}$, the following BSDE

$$
Y_{t}=\xi+\int_{t}^{T} F_{s}\left(Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}+\left(K_{T}^{\mathbb{P}}-K_{t}^{\mathbb{P}}\right), \quad \mathbb{P} \text {-a.s. }
$$

with

$$
K_{t}^{\mathbb{P}}=\operatorname{ess} \inf _{\mathbb{P}^{\prime} \in \mathcal{P}_{H}^{\kappa}(t+, \mathbb{P})} \mathbb{E}_{t}^{\mathbb{P}^{\prime}}\left[K_{T}^{\mathbb{P}}\right], \quad \mathbb{P} \text {-a.s., } \quad \forall \mathbb{P} \in \mathcal{P}_{H}^{\kappa}, t \in[0, T] .
$$

A priori estimates

- $\left(\Omega_{T}, L_{G}^{1}\left(\Omega_{T}\right), \hat{\mathbb{E}}\right)$
- $\Omega_{T}=C_{0}([0, T], \mathbb{R})$,
- $\bar{\sigma}^{2}=\hat{\mathbb{E}}\left[B_{1}^{2}\right] \geq-\hat{\mathbb{E}}\left[-B_{1}^{2}\right]=\underline{\sigma}^{2}>0$.

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right), \quad(\mathrm{GBSDE})
$$

where

$$
f(t, \omega, y, z):[0, T] \times \Omega_{T} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

Assumption: some $\beta>1$ such that
(H1) for any $y, z, f(\cdot, \cdot, y, z) \in M_{G}^{\beta}(0, T)$,
(H2) $\left|f(t, \omega, y, z)-f\left(t, \omega, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)$.
For (Y, Z, K) such that $Y \in S_{G}^{\alpha}(0, T), Z \in H_{G}^{\alpha}(0, T), K$: a decreasing G-martingale with $K_{0}=0$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

An important observation

Lemma 3.4.

Let $X \in S_{G}^{\alpha}(0, T)$ for some $\alpha>1$ and $\alpha^{*}=\frac{\alpha}{\alpha-1}$. Assume that K^{j}, $j=1,2$, are two decreasing G-martingales with $K_{0}^{j}=0$ and $K_{T}^{j} \in L_{G}^{\alpha^{*}}\left(\Omega_{T}\right)$. Then the process defined by

$$
\int_{0}^{t} X_{s}^{+} d K_{s}^{1}+\int_{0}^{t} X_{s}^{-} d K_{s}^{2}
$$

is also a decreasing G-martingale.

A typical application of Lemma 3.4

- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{s}\right|^{2} d\langle B\rangle_{s}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{s}\right|^{2} d\langle B\rangle_{s}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{s}\right|^{2} d\langle B\rangle_{s}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{s}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{s}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{s}^{1}+\right.$
$\left.\left(\hat{Y}_{s}\right)^{+} d K_{s}^{2}\right]$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{s}\right|^{2} d\langle B\rangle_{s}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{s}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{s}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{s}^{1}+\right.$
$\left.\left(\hat{Y}_{s}\right)^{+} d K_{s}^{2}\right]$
- $\geq\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]$
- $-d Y_{t}^{i}=f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-Z_{s}^{i} d B_{s}-d K_{t}^{i}, \quad i=1,2$
- $\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{s}\right|^{2} d\langle B\rangle_{s}+\int_{t}^{T} 2 \hat{Y}_{s} \hat{Z}_{s} d B_{s}$
- $=\left|\hat{Y}_{t}\right|^{2}+\int_{t}^{T} 2 \hat{Y}_{s} d\left(K_{t}^{1}-K_{t}^{2}\right)$
- $=\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{s}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{s}^{2}\right]-2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{-} d K_{s}^{1}+\right.$
$\left.\left(\hat{Y}_{s}\right)+d K_{s}^{2}\right]$
- $\geq\left|\hat{Y}_{t}\right|^{2}+2 \int_{t}^{T}\left[\left(\hat{Y}_{s}\right)^{+} d K_{t}^{1}+\left(\hat{Y}_{s}\right)^{-} d K_{t}^{2}\right]$
- Thus

$$
\left|\hat{Y}_{t}\right|^{2} \leq \hat{\mathbb{E}}_{t}\left[\left|\hat{Y}_{T}\right|^{2}-\int_{t}^{T} 2 \hat{Y}_{s} \hat{f}_{s} d s-\int_{t}^{T}\left|\hat{Z}_{t}\right|^{2} d\langle B\rangle_{t}\right]
$$

Proposition 3.5.

Assume (H1)-(H2) and $\left(Y, Z, K_{T}\right) \in \mathrm{S}^{\alpha}(0, T) \times \mathbb{H}^{\alpha}(0, T) \times \mathrm{S}^{\alpha}\left(\Omega_{T}\right)$ solves

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
$$

where K is a decreasing process with $K_{0}=0$. Then

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{\frac{\alpha}{2}}\right] \leq & C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]\right. \\
& \left.+\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]\right)^{\frac{1}{2}}\left(\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|f_{s}^{0}\right| d s\right)^{\alpha}\right]\right)^{\frac{1}{2}}\right\}, \\
\hat{\mathbb{E}}\left[\left|K_{T}\right|^{\alpha}\right] \leq & C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right]+\hat{\mathbb{E}}\left[\left(\int_{0}^{T} \mid f_{s}^{0} d s\right)^{\alpha}\right]\right\}, \\
f_{s}^{0}:= & |f(s, 0,0)|+L^{w} \varepsilon
\end{aligned}
$$

Proposition 3.7.

We assume (H1) and (H2). Assume that $(Y, Z, K) \in \mathfrak{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ is a solution (GBSDE). Then

- There exists a constant $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L^{w}\right)>0$ such that

$$
\begin{aligned}
\left|Y_{t}\right|^{\alpha} & \leq C_{\alpha} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}+\int_{t}^{T}\left|f_{s}^{0}\right|^{\alpha} d s\right], \\
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right] & \leq C_{\alpha} \hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}+\int_{0}^{T}\left|f_{s}^{0}\right|^{\alpha} d s\right]\right],
\end{aligned}
$$

where $f_{s}^{0}=|f(s, 0,0)|+L^{w} \varepsilon$.

- For any given α^{\prime} with $\alpha<\alpha^{\prime}<\beta$, there exists a constant $C_{\alpha, \alpha^{\prime}}$ depending on $\alpha, \alpha^{\prime}, T, \underline{\sigma}, L^{w}$ such that

$$
\begin{aligned}
& \hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{\alpha}\right] \leq C_{\alpha, \alpha^{\prime}}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\xi|^{\alpha}\right]\right]\right. \\
& +\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} f_{s}^{0} d s\right)^{\alpha^{\prime}}\right]\right]\right)^{\frac{\alpha}{\alpha^{\prime}}}
\end{aligned}
$$

Proposition 3.8.

Let $f_{i}, i=1,2$, satisfy (H1) and (H2). Assume

$$
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f_{i}\left(s, Y_{s}^{i}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d B_{s}-\left(K_{T}^{i}-K_{t}^{i}\right),
$$

where $Y^{i} \in \mathbb{S}^{\alpha}(0, T), Z^{i} \in \mathbb{H}^{\alpha}(0, T), K^{i}$ is a decreasing process with $K_{0}^{i}=0$ and $K_{T}^{i} \in \mathbb{L}^{\alpha}\left(\Omega_{T}\right)$ for some $\alpha>1$. Set $\hat{Y}_{t}=Y_{t}^{1}-Y_{t}^{2}, \hat{Z}_{t}=Z_{t}^{1}-Z_{t}^{2}$ and $\hat{K}_{t}=K_{t}^{1}-K_{t}^{2}$. Then there exists a constant $C_{\alpha}:=C\left(\alpha, T, \underline{\sigma}, L^{w}\right)>0$ such that
$\hat{\mathbb{E}}\left[\left(\int_{0}^{T}\left|\hat{Z}_{S}\right|^{2} d s\right)^{\frac{\alpha}{2}}\right] \leq C_{\alpha}\left\{\|\hat{Y}\|_{S^{\alpha}}^{\alpha}+\|\hat{Y}\|_{S^{\alpha}}^{\frac{\alpha}{2}} \sum_{i=1}^{2}\left[\left\|Y^{i}\right\|_{S^{\alpha}}^{\frac{\alpha}{2}}+\left\|\int_{0}^{T} f_{s}^{i, 0} d s\right\|_{\alpha, G}^{\frac{\alpha}{2}}\right]\right\}$,
where $f_{s}^{i, 0}=\left|f_{i}(s, 0,0)\right|+L^{w} \varepsilon, i=1,2$.

Proposition 3.9.

Let $\xi^{i} \in L_{G}^{\beta}\left(\Omega_{T}\right)$ with $\beta>1, i=1,2$, and f_{i} satisfy $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Assume that $\left(Y^{i}, Z^{i}, K^{i}\right) \in \mathfrak{S}_{G}^{\alpha}(0, T)$ for some $1<\alpha<\beta$ are the solutions of equation (GBSDE) to ξ^{i} and f_{i}. Then
(i) $\left|\hat{Y}_{t}\right|^{\alpha} \leq C_{\alpha} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}+\int_{t}^{T}\left|\hat{f}_{s}\right|^{\alpha} d s\right]$, where $\hat{f}_{s}=\left|f_{1}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)-f_{2}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)\right|+L_{1}^{\omega} \varepsilon$.
(ii) For any given α^{\prime} with $\alpha<\alpha^{\prime}<\beta$, there exists a constant $C_{\alpha, \alpha^{\prime}}$ depending on $\alpha, \alpha^{\prime}, T, \underline{\sigma}, L^{w}$ such that

$$
\begin{aligned}
\hat{\mathbb{E}}\left[\sup _{t \in[0, T]}\left|\hat{Y}_{t}\right|^{\alpha}\right] & \leq C_{\alpha, \alpha^{\prime}}\left\{\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[|\hat{\xi}|^{\alpha}\right]\right]\right. \\
& +\left(\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right)^{\frac{\alpha}{\alpha^{\prime}}} \\
& \left.+\hat{\mathbb{E}}\left[\sup _{t \in[0, T]} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s} d s\right)^{\alpha^{\prime}}\right]\right]\right\}
\end{aligned}
$$

Existence and uniqueness of G-BSDEs

$$
\partial_{t} u+G\left(\partial_{x x}^{2} u\right)+h\left(u, \partial_{x} u\right)=0, \quad u(T, x)=\varphi(x)
$$

We approximate the solution f by those of equations (GBSDE) with much simpler $\left\{f_{n}\right\}$. More precisely, assume that $\left\|f_{n}-f\right\|_{M_{G}^{\beta}} \rightarrow 0$ and
$\left(Y^{n}, Z^{n}, K^{n}\right)$ is the solution of the following G-BSDE

$$
Y_{t}^{n}=\xi+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}-\left(K_{T}^{n}-K_{t}^{n}\right)
$$

We try to prove that $\left(Y^{n}, Z^{n}, K^{n}\right)$ converges to (Y, Z, K) and (Y, Z, K) is the solution of the following G-BSDE

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
$$

Theorem

Assume that $\xi \in L_{G}^{\beta}\left(\Omega_{T}\right), \beta>1$ and f satisfies $(H 1)$ and $(H 2)$. Then equation ($G-B S D E$) has a unique solution (Y, Z, K). Moreover, for any $1<\alpha<\beta$ we have $Y \in S_{G}^{\alpha}(0, T), Z \in H_{G}^{\alpha}(0, T)$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$.

Sketch of Proof of Theorem.

Step 1. $f(t, \omega, y, z)=h(y, z), h \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.
Part 1) $\xi=\varphi\left(B_{T}-B_{t_{1}}\right): \exists \alpha \in(0,1)$ s.t.,

$$
\|u\|_{C^{1+\alpha / 2,2+\alpha}([0, T-\kappa] \times \mathbb{R})}<\infty, \quad \kappa>0 .
$$

Itô's formula to $u\left(t, B_{t}-B_{t_{1}}\right)$ on $\left[t_{1}, T-\kappa\right.$], we get

$$
\begin{aligned}
u\left(t, B_{t}-B_{t_{1}}\right)= & u\left(T-\kappa, B_{T-\kappa}-B_{t_{1}}\right)+\int_{t}^{T-\kappa} h\left(u, \partial_{\chi} u\right)\left(s, B_{s}-B_{t_{1}}\right) d s \\
& -\int_{t}^{T-\kappa} \partial_{\chi} u\left(s, B_{s}-B_{t_{1}}\right) d B_{s}-\left(K_{T-\kappa}-K_{t}\right)
\end{aligned}
$$

Sketch of Proof of Theorem.

where

$$
\begin{aligned}
& K_{t}=\frac{1}{2} \int_{t_{1}}^{t} \partial_{x x}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{x x}^{2} u(\cdot)\right) d s \\
& |u(t, x)-u(s, y)| \leq L_{1}(\sqrt{|t-s|}+|x-y|) .
\end{aligned}
$$

\tilde{u} is the solution of PDE:

$$
\begin{aligned}
\partial_{t} \tilde{u}+G\left(\partial_{x x}^{2} \tilde{u}\right)+h\left(\tilde{u}, \partial_{x} \tilde{u}\right) & =0, \\
\tilde{u}(T, x) & =\varphi\left(x+x_{0}\right) .
\end{aligned}
$$

Sketch of Proof of Theorem.

$$
u\left(t, x+x_{0}\right) \leq u(t, x)+L_{\varphi}\left|x_{0}\right| \exp \left(L_{h}(T-t)\right)
$$

Since x_{0} is arbitrary, we get $|u(t, x)-u(t, y)| \leq \hat{L}|x-y|$, where $\hat{L}=L_{\varphi} \exp \left(L_{h} T\right)$. From this we can get $\left|\partial_{x} u(t, x)\right| \leq \hat{L}$ for each $t \in[0, T], x \in \mathbb{R}$. On the other hand, for each fixed $\bar{t}<\hat{t}<T$ and $x \in \mathbb{R}$, applying Itô's formula to $u\left(s, x+B_{s}-B_{\bar{t}}\right)$ on $[\bar{t}, \hat{t}]$, we get

$$
u(\bar{t}, x)=\hat{\mathbb{E}}\left[u\left(\hat{t}, x+B_{\hat{t}}-B_{\bar{t}}\right)+\int_{\bar{t}}^{\hat{t}} h\left(u, \partial_{x} u\right)\left(s, x+B_{s}-B_{\bar{t}}\right) d s\right] .
$$

Sketch of Proof of Theorem.

From this we deduce that

$$
|u(\bar{t}, x)-u(\hat{t}, x)| \leq \hat{\mathbb{E}}\left[\hat{L}\left|B_{\hat{t}}-B_{\bar{t}}\right|+\tilde{L}|\hat{t}-\bar{t}|\right] \leq(\hat{L} \bar{\sigma}+\tilde{L} \sqrt{T}) \sqrt{|\hat{t}-\bar{t}|}
$$

where $\tilde{L}=\sup _{(x, y) \in \mathbb{R}^{2}}|h(x, y)|$. Thus we get (??) by taking $L_{1}=\max \{\hat{L}, \hat{L} \bar{\sigma}+\tilde{L} \sqrt{T}\}$. Letting $\kappa \downarrow 0$ in Itô's equation, it is easy to verify that

$$
\hat{\mathbb{E}}\left[\left|Y_{T-\kappa}-\xi\right|^{2}+\int_{T-\kappa}^{T}\left|Z_{t}\right|^{2} d t+\left(K_{T-\kappa}-K_{T}\right)^{2}\right] \rightarrow 0
$$

where $Y_{t}=u\left(t, B_{t}-B_{t_{1}}\right)$ and $Z_{t}=\partial_{x} u\left(t, B_{t}-B_{t_{1}}\right)$. Thus $\left(Y_{t}, Z_{t}, K_{t}\right)_{t \in\left[t_{1}, T\right]}$ is a solution of equation (GBSDE) with terminal value $\xi=\varphi\left(B_{T}-B_{t_{1}}\right)$. Furthermore, it is easy to check that $Y \in S_{G}^{\alpha}\left(t_{1}, T\right)$, $Z \in H_{G}^{\alpha}\left(t_{1}, T\right)$ and $K_{T} \in L_{G}^{\alpha}\left(\Omega_{T}\right)$ for any $\alpha>1$.

Sketch of Proof of Theorem.

Part 2) $\xi=\psi\left(B_{t_{1}}, B_{T}-B_{t_{1}}\right):$

$$
\begin{aligned}
& u\left(t, x, B_{t}-B_{t_{1}}\right)= u\left(T, x, B_{T}-B_{t_{1}}\right)+\int_{t}^{T} h\left(u, \partial_{y} u\right)\left(s, x, B_{s}-B_{t_{1}}\right) d s \\
&-\int_{t}^{T} \partial_{y} u(\cdot) d B_{s}-\left(K_{T}^{x}-K_{t}^{x}\right) \\
& K_{t}^{x}= \frac{1}{2} \int_{t_{1}}^{t} \partial_{y y}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{y y}^{2} u(\cdot)\right) d s \\
& Y_{t}=Y_{T}+\int_{t}^{T} h\left(Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}-K_{t}\right)
\end{aligned}
$$

Sketch of Proof of Theorem.

where

$$
\begin{aligned}
Y_{t} & :=u\left(t, B_{t_{1}}, B_{t}-B_{t_{1}}\right), \quad Z_{t}:=\partial_{y} u(\cdot) \\
K_{t} & :=\frac{1}{2} \int_{t_{1}}^{t} \partial_{y y}^{2} u(\cdot) d\langle B\rangle_{s}-\int_{t_{1}}^{t} G\left(\partial_{y y}^{2} u(\cdot)\right) d s
\end{aligned}
$$

Need to prove $(Y, Z, K) \in \mathfrak{S}_{G}^{\alpha}(0, T)$. By partition of unity theorem, \exists $h_{i}^{n} \in C_{0}^{\infty}(\mathbb{R})$ s.t.

$$
\begin{aligned}
\lambda\left(\operatorname{supp}\left(h_{i}^{n}\right)\right) & <1 / n, \quad 0 \leq h_{i}^{n} \leq 1, \\
I_{[-n, n]}(x) & \leq \sum_{i=1}^{k_{n}} h_{i}^{n} \leq 1 .
\end{aligned}
$$

Sketch of Proof of Theorem.

We have

$$
Y_{t}^{n}=Y_{T}^{n}+\int_{t}^{T} \sum_{i=1}^{n} h\left(y_{s}^{n, i}, z_{s}^{n, i}\right) h_{i}^{n}\left(B_{t_{1}}\right) d s-\int_{t}^{T} Z_{s}^{n} d B_{s}-\left(K_{T}^{n}-K_{t}^{n}\right)
$$

where

$$
\begin{aligned}
y_{t}^{n, i} & =u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right), \quad z_{t}^{n, i}=\partial_{y} u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right) \\
Y_{t}^{n} & =\sum_{i=1}^{n} y_{t}^{n, i} h_{i}^{n}\left(B_{t_{1}}\right), \quad Z_{t}^{n}=\sum_{i=1}^{n} z_{t}^{n, i} h_{i}^{n}\left(B_{t_{1}}\right) \\
K_{t}^{n} & =\sum_{i=1}^{n} K_{t}^{x_{i}^{n}} h_{i}^{n}\left(B_{t_{1}}\right) .
\end{aligned}
$$

Sketch of Proof of Theorem.

Thus

$$
\begin{aligned}
\left|Y_{t}-Y_{t}^{n}\right| & \leq \sum_{i=1}^{k_{n}} h_{i}^{n}\left(B_{t_{1}}\right)\left|u\left(t, x_{i}^{n}, B_{t}-B_{t_{1}}\right)-u\left(t, B_{t_{1}}, B_{t}-B_{t_{1}}\right)\right| \\
& +\left.\left|Y_{t}\right|\right|_{\left[\left|B_{t_{1}}\right|>n\right]} \leq \frac{L_{2}}{n}+\frac{\|u\|_{\infty}}{n}\left|B_{t_{1}}\right| .
\end{aligned}
$$

Thus

$$
\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right] \leq \hat{\mathbb{E}}\left[\left(\frac{L_{2}}{n}+\frac{\|u\|_{\infty}}{n}\left|B_{t_{1}}\right|\right)^{\alpha}\right] \rightarrow 0 .
$$

By the estimates

$$
\begin{aligned}
& \hat{\mathbb{E}}\left[\left(\int_{t_{1}}^{T}\left|Z_{s}-Z_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right] \leq C_{\alpha}\left\{\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right]\right. \\
&\left.+\left(\hat{\mathbb{E}}\left[\sup _{t \in\left[t_{1}, T\right]}\left|Y_{t}-Y_{t}^{n}\right|^{\alpha}\right]\right)^{1 / 2}\right\} \rightarrow 0 .
\end{aligned}
$$

Thus $Z \in M_{G}^{\alpha}(0, T), K_{t} \in L_{G}^{\alpha}\left(\Omega_{t}\right)$.

Sketch of Proof of Theorem.

[Sketch of Proof of Theorem] prove K is G-martingale. Following [Li-P.], we take

$$
\begin{gathered}
h_{i}^{n}(x)=I_{\left[-n+\frac{i}{n},-n+\frac{i+1}{n}\right)}(x), \quad i=0, \ldots, \quad 2 n^{2}-1, \\
h_{2 n^{2}}^{n}=1-\sum_{i=0}^{2 n^{2}-1} h_{i}^{n} \\
\tilde{Y}_{t}^{n}=\sum_{i=0}^{2 n^{2}} u\left(t,-n+\frac{i}{n}, B_{t}-B_{t_{1}}\right) h_{i}^{n}\left(B_{t_{1}}\right), \tilde{Z}_{t}^{n}=\sum_{i=0}^{2 n^{2}} \partial_{y} u(\cdot) h_{i}^{n}\left(B_{t_{1}}\right)
\end{gathered}
$$

solves

$$
\tilde{Y}_{t}^{n}=\tilde{Y}_{T}^{n}+\int_{t}^{T} h\left(\tilde{Y}_{s}^{n}, \tilde{Z}_{s}^{n}\right) d s-\int_{t}^{T} \tilde{Z}_{s}^{n} d B_{s}-\left(\tilde{K}_{T}^{n}-\tilde{K}_{t}^{n}\right)
$$

Sketch of Proof of Theorem.

We have $\hat{\mathbb{E}}\left[\left(\int_{t_{1}}^{T}\left|Z_{s}-\tilde{Z}_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right] \rightarrow 0$. Thus $\hat{\mathbb{E}}\left[\left|K_{t}-\tilde{K}_{t}^{n}\right|^{\alpha}\right] \rightarrow 0$ and $\hat{\mathbb{E}}_{t}\left[K_{s}\right]=K_{t}$. For $Y_{t_{1}}=u\left(t_{1}, B_{t_{1}}, 0\right)$, we can use the same method as Part 1 on $\left[0, t_{1}\right]$.
Step 2) $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{0}(0, T)$ and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.

Sketch of Proof of Theorem.

Step 3) $f(t, \omega, y, z)=\sum_{i=1}^{N} f^{i} h^{i}(y, z)$ with $f^{i} \in M_{G}^{\beta}(0, T)$ bounded and $h^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right), h^{i} \geq 0$ and $\sum_{i=1}^{N} h^{i} \leq 1$:

Choose

$$
f_{n}^{i} \in M_{G}^{0}(0, T) \text { s.t. }\left|f_{n}^{i}\right| \leq\left\|f^{i}\right\|_{\infty}, \quad \sum_{i=1}^{N}\left\|f_{n}^{i}-f^{i}\right\|_{M_{G}^{\beta}}<1 / n .
$$

Set $f_{n}:=\sum_{i=1}^{N} f_{n}^{i} h^{i}(y, z)$.
Let $\left(Y^{n}, Z^{n}, K^{n}\right)$ be the solution of (GBSDE) with generator f_{n}.

$$
\begin{aligned}
\hat{f}_{s}^{m, n} & :=\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \\
& \leq \sum_{i=1}^{N}\left|f_{n}^{i}-f^{i}\right|+\sum_{i=1}^{N}\left|f_{m}^{i}-f^{i}\right|=: \hat{f}_{n}+\hat{f}_{m},
\end{aligned}
$$

Sketch of Proof of Theorem.

We have, for any $1<\alpha<\beta$,

$$
\hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right)^{\alpha}\right] \leq \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left(\left|\hat{f}_{n}(s)\right|+\left|\hat{f}_{m}(s)\right|\right) d s\right)^{\alpha}\right] .
$$

By Theorem 2.10, $\forall \alpha \in(1, \beta)$

$$
\left.\hat{\mathbb{E}}\left[\sup _{t} \hat{\mathbb{E}}_{t}\left[\left|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right|^{\alpha}\right]\right]\right] \rightarrow 0, m, n \rightarrow \infty
$$

By Proposition $3.9\left\{Y^{n}\right\}$ is Cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. By Proposition 3.7, 3.8, $\left\{Z^{n}\right\}$ is a also Cauchy under $\|\cdot\|_{H_{G}^{\alpha}}$ thus $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ under $\|\cdot\|_{L_{G}^{\alpha}}$ thus $\left\{K_{T}^{n}\right\}$ is also Cauchy under $\|\cdot\|_{L_{G}^{\alpha}}$.

Sketch of Proof of Theorem.

Step 4). f is bounded, Lipschitz. $|f(t, \omega, y, z)| \leq C I_{B(R)}(y, z)$ for some $C, R>0$. Here $B(R)=\left\{(y, z) \mid y^{2}+z^{2} \leq R^{2}\right\}$.
For any n, by the partition of unity theorem, there exists $\left\{h_{n}^{i}\right\}_{i=1}^{N_{n}}$ such that $h_{n}^{i} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, the diameter of support $\lambda\left(\operatorname{supp}\left(h_{n}^{i}\right)\right)<1 / n, 0 \leq h_{n}^{i} \leq 1$, $I_{B(R)} \leq \sum_{i=1}^{N} h_{n}^{i} \leq 1$. Then $f(t, \omega, y, z)=\sum_{i=1}^{N} f(t, \omega, y, z) h_{n}^{i}$. Choose y_{n}^{i}, z_{n}^{i} such that $h_{n}^{i}\left(y_{n}^{i}, z_{n}^{i}\right)>0$. Set

$$
f_{n}(t, \omega, y, z)=\sum_{i=1}^{N} f\left(t, \omega, y_{n}^{i}, z_{n}^{i}\right) h_{n}^{i}(y, z)
$$

Sketch of Proof of Theorem.

Then

$\left|f(t, \omega, y, z)-f_{n}(t, \omega, y, z)\right| \leq \sum_{i=1}^{N}\left|f(t, \omega, y, z)-f\left(t, \omega, y_{n}^{i}, z_{n}^{i}\right)\right| h_{n}^{i} \leq L / n$
and

$$
\left|f_{n}(t, \omega, y, z)-f_{n}\left(t, \omega, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|+2 / n\right)
$$

Noting that $\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \leq(L / n+L / m)$,

Sketch of Proof of Theorem.

we have

$$
\hat{\mathbb{E}}_{t}\left[\left|\int_{0}^{T}\left(\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|+\frac{2 L}{m}\right) d s\right|^{\alpha}\right] \leq T^{\alpha}\left(\frac{L}{n}+\frac{3 L}{m}\right)^{\alpha} .
$$

So by the estimates $\left\{Y^{n}\right\}$ cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. $\left\{Z^{n}\right\}$ is cauchy under $\|\cdot\|_{H_{G}^{\alpha}}$. is also cauchy $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ under $\|\cdot\|_{L_{G}^{\alpha}}$.

Sketch of Proof of Theorem.

Step 5). f is bounded, Lipschitz.
For any $n \in \mathbb{N}$, choose $h^{n} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $I_{B(n)} \leq h^{n} \leq I_{B(n+1)}$ and $\left\{h^{n}\right\}$ are uniformly Lipschitz w.r.t. n. Set $f_{n}=f h^{n}$, which are uniformly Lipschitz. Noting that for $m>n$

$$
\begin{aligned}
& \left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| \\
& \leq\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| I_{\left[\left|Y_{s}^{n}\right|^{2}+\left|Z_{s}^{n}\right|^{2}>n^{2}\right]} \\
& \leq\|f\|_{\infty} \frac{\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right|}{n}
\end{aligned}
$$

Sketch of Proof of Theorem.

we have

$$
\begin{aligned}
& \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f_{m}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| d s\right)^{\alpha}\right] \\
& \leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right| d s\right)^{\alpha}\right] \\
& \leq \frac{\|f\|_{\infty}^{\alpha}}{n^{\alpha}} C(\alpha, T) \hat{\mathbb{E}}_{t}\left[\int_{0}^{T}\left|Y_{s}^{n}\right|^{\alpha} d s+\left(\int_{0}^{T}\left|Z_{s}^{n}\right|^{2} d s\right)^{\alpha / 2}\right]
\end{aligned}
$$

where $\left.C(\alpha, T):=2^{\alpha-1}\left(T^{\alpha-1}+T^{\alpha / 2}\right]\right)$.

Sketch of Proof of Theorem.

So by Theorem 2.10 and Proposition 3.4 we get $\left\|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right\|_{\alpha, \mathcal{E}} \rightarrow 0$ as $m, n \rightarrow \infty$ for any $\alpha \in(1, \beta)$. By Proposition 3.5, we conclude that $\left\{Y^{n}\right\}$ is cauchy under $\|\cdot\|_{S_{G}^{\alpha}}$. $\left\{Z^{n}\right\}$ cauchy sequence under $\|\cdot\|_{H_{G}^{\alpha}}$. $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ is cauchy under $\|\cdot\|_{L_{G}^{\alpha}}$:

$$
\begin{aligned}
& \left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right| \\
& \leq\left|f_{m}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right|+\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \\
& \leq L\left(\left|\hat{Y}_{s}\right|+\left|\hat{Z}_{s}\right|\right)+\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right| 1_{\left[\left|Y_{s}^{n}\right|+\left|Z_{s}^{n}\right|>n\right]},
\end{aligned}
$$

which implies the desired result.

Sketch of Proof of Theorem.

Step 6). For the general f.
Set $f_{n}=[f \vee(-n)] \wedge n$, which are uniformly Lipschitz. Choose $0<\delta<\frac{\beta-\alpha}{\alpha} \wedge 1$. Then $\alpha<\alpha^{\prime}=(1+\delta) \alpha<\beta$. Since for $m>n$
$\left.\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \leq\left.\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|\right|_{\left[\left|f\left(s, Y_{s}^{n}, Y_{s}^{n}\right)\right|>n\right]} \leq \frac{1}{n^{\delta}} \right\rvert\, f\left(s, Y_{s}^{n}\right.$
we have

$$
\begin{aligned}
& \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| d s\right)^{\alpha}\right] \\
& \leq \frac{1}{n^{\alpha \delta}} \hat{\mathbb{E}}_{t}\left[\left(\int_{0}^{T}\left|f\left(s, Y_{s}^{n}, Z_{s}^{n}\right)\right|^{1+\delta} d s\right)^{\alpha}\right] \\
& \leq \frac{C(\alpha, T, L, \delta)}{n^{\alpha \delta}} \hat{\mathbb{E}}_{t}\left[\int_{0}^{T}|f(s, 0,0)|^{\alpha^{\prime}} d s+\left.\int_{0}^{T}\left|Y_{s}^{n}\right|\right|^{\alpha^{\prime}} d s+\left(\int_{0}^{T}\left|Z_{s}^{n}\right|^{2} d s\right)^{\frac{\alpha^{\prime}}{2}}\right],
\end{aligned}
$$

where $C(\alpha, T, L, \delta):=3^{\alpha^{\prime}-1}\left(T^{\alpha-1}+L^{\alpha^{\prime}} T^{\frac{\alpha(1-\delta)}{2}}+T^{\alpha-1} L^{\alpha^{\prime}}\right)$.

Sketch of Proof of Theorem.

So by Song's estimate and a priori estimate, we get $\left\|\int_{0}^{T} \hat{f}_{s}^{m, n} d s\right\|_{\alpha, \mathcal{E}} \rightarrow 0$ as $m, n \rightarrow \infty$ for any $\alpha \in(1, \beta)$. We know that $\left\{Y^{n}\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{S_{G}^{\alpha}}$. And consequently $\left\{Z^{n}\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{H_{G}^{\alpha}}$. Now we prove $\left\{\int_{0}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s\right\}$ is a cauchy sequence under the norm $\|\cdot\|_{L_{G}^{\alpha}}$. In fact,

$$
\begin{aligned}
& \left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right| \\
& \leq\left|f_{m}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{m}, Z^{m}\right)\right|+\left|f_{n}\left(s, Y^{n}, Z^{n}\right)-f_{m}\left(s, Y^{n}, Z^{n}\right)\right| \\
& \leq L\left(\left|\hat{Y}_{s}\right|+\left|\hat{Z}_{s}\right|\right)+\frac{3^{\delta}}{n^{\delta}}\left(\left|f_{s}^{0}\right|^{1+\delta}+\left|Y_{s}^{n}\right|^{1+\delta}+\left|Z_{s}^{n}\right|^{1+\delta}\right)
\end{aligned}
$$

which implies the desired result.

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT

References

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.

References

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target Problems
- [Gao2010] Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion.

References

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target Problems
- [Gao2010] Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion.
- [Matoussi-Possamai-Zhao] 2BSDE
- [Bai-Lin2010] On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with

References

- [Peng2009] Survey on G-normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, Volume 52, Number 7, 1391-1411.
- [Peng2007-2010] G-Brownian motion...
- Peng, 2010, Tightness, weak compactness of nonlinear expectations and application to CLT
- Cheridito, P., Soner, H.M. and Touzi, N., Victoir, N. (2007) Second order BSDE's and fully nonlinear PDE's, Communications in Pure and Applied Mathematics, 60, 1081-1110.
- [Soner-Touzi-Zhang2011] Dual Formulation of Second Order Target Problems
- [Gao2010] Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion.
- [Matoussi-Possamai-Zhao] 2BSDE
- [Bai-Lin2010] On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Song2007] Uniqueness of the representation for G-martingales.
- [Song2011SPA] Properties of hitting times for G-martingales
- [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Song2007] Uniqueness of the representation for G-martingales.
- [Song2011SPA] Properties of hitting times for G-martingales
- [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
- Natz (2010) Random G-expectations,
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Song2007] Uniqueness of the representation for G-martingales.
- [Song2011SPA] Properties of hitting times for G-martingales
- [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
- Natz (2010) Random G-expectations,
- [Cohen2011] Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- [Li-P.2011SPA] Stopping times and related It 's calculus with G-Brownian motion.
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Song2007] Uniqueness of the representation for G-martingales.
- [Song2011SPA] Properties of hitting times for G-martingales
- [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
- Natz (2010) Random G-expectations,
- [Cohen2011] Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- [Li-P.2011SPA] Stopping times and related It 's calculus with G-Brownian motion.
- [P.-Song-Zhang2012] A Complete Representation Theorem for G-martingales;
- [Xu-Zhang2009] Martingale characterization of G-Brownian motion. Stochastic Processes and their Applications.
- [Soner-Touzi-Zhang2011SPA] Martingale representation theorem for the G-expectation.
- [Soner-Touzi-Zhang2011] Quasi-sure stochastic analysis through aggregation. Electron. J. Probab.,
- [Soner-Touzi-Zhang2010] Well posedness of 2nd order BSDEs to appear in PTRF
- [Song2007] Uniqueness of the representation for G-martingales.
- [Song2011SPA] Properties of hitting times for G-martingales
- [Dolinsky-Nutz-Soner] Weak Approximation of G-Expectations
- Natz (2010) Random G-expectations,
- [Cohen2011] Quasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces.
- [Li-P.2011SPA] Stopping times and related It 's calculus with G-Brownian motion.
- [P.-Song-Zhang2012] A Complete Representation Theorem for G-martingales;
- [Dolinsky-Nutz-Soner2012SPA] Weak Approximation of
- [Chen-Xiong2010] Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- [Gao] A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- [Chen-Xiong2010] Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- [Gao] A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by G-Brownian motion. SPA, 119(2009)
- [Chen-Xiong2010] Large deviation principle for diffusion processes under a sublinear expectation. Preprint 2010.
- [Gao] A variational representation and large deviations for functionals of G-Brownian motion, 2012, preprint.
- F. Gao, Pathwise properties and homeomorphic for stochastic differential equatios driven by G-Brownian motion. SPA, 119(2009)
- [Gao-Jiang2010SPA] Large Deviations for Stochastic Differential Equations Driven by G-Brownian Motion.

HAPPY BIRTHDAY, FREDDY!

