
Modeling Insider Trading

Philip Protter, Columbia University
The Freddy Fest, ETH, Zurich

Based on joint work with
Younes Kchia of ANZ Bank

September, 2012



A Mathematical Model of Insider Trading

• To model insider trading, one first needs to model “normal”
trading

• We take the minimalist approach of No Arbitrage, pioneered
by Harrison, Pliska and Kreps

• Perfected by Delbaen and Schachermayer (Many others
in-between: Stricker, Kabanov, etc.)

• In these models, there is a standard underlying space
(Ω,F ,F,P) where F = (Ft)t≥0 represents the collection of
observable events that the market can see

• The idea of insider trading presupposes some participants
have material information not shared with the rest of the
market, and act on it

• Recent examples that are known to us include the Galleon
Group, Martha Stewart, LIBOR
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Initial Expansions

• To model the inclusion of extra information, we use the theory
of the expansion of filtrations

• This was originally proposed by K. Itô in 1976:∫ t

0
B1HsdBs = B1

∫ t

0
HsdBs

• Itô added σ(B1) to the σ algebras of the filtration to get G,
where Gt = Ft ∨ σ(B1) for t ≥ 0

• Under G the Brownian motion B is no longer a Brownian
motion, but it remains a semimartingale

• This became known as an initial expansion, where one adds
the inside information at time 0

• An item of interest is: When does such an expansion preserve
the semimartingale property: If X is an F semimartingale,
does it remain a semimartingale in G? If it does, what is its G
decomposition?



Progressive Expansions

• A second kind of expansion, introduced by Martin Barlow in
his PhD thesis, is a progressive expansion

• A progressive expansion takes a positive random variable, and
adds it dynamically to the filtration in order to make it into a
stopping time

• For example let L ≥ 0 be a random variable, and G = (Gt)t≥0

with Gt = Ft ∨ σ(L ∧ t)

• An honest time is a random variable that is the right end of
an optional set (in R+ × Ω)

• If L is honest, then F semimartingales remain G
semimartingales, although the decompositions change



Filtration Expansions as Models of Insider Trading:
Prior Work

• Much prior work exploring this idea: S. Ankirchner, K. Back,
F. Baudoin, F. Biagini, D. Coculescu, R.J. Elliott, D. Kreher,
H. Föllmer, A. Grorud, P. Imkeller, M. Jeanblanc, Y. Kchia,
A. Kyle, M. Larsson, A. Nikeghbali, B. Øksendal, M. Pontier,
F. Weisz, M. Yor, and J. Zwierz

• How does insider knowledge affect things? Two basic
outcomes:

(a) The new G decomposition can lead to a different risk neutral
measure

(b) The new G decomposition can lead to the non existence of a
risk neutral measure, and hence the existence of arbitrage

• Most of the prior research revolves around (b), but actually
(a) is arguably more interesting



Scalable Arbitrage through Insider Trading

• Scalable arbitrage might not be scalable: A scalable
arbitrage allows unbounded profits. Because acting on insider
knowledge is illegal, it cannot be obvious it is going on,
leading to constraints on otherwise scalable arbitrage
opportunities

• The approach of Kyle and Back (1980’s and 1990s) takes this
into account, by having a feedback loop, with equilibrium
considerations, so that the distribution of the stock price is
not overly perturbed, and therefore not noticed by regulators.

• This approach may seem quaint today, when wire tapping is
allowed, and trading history is (in theory at least) discoverable

• It is possible to hide insider trading via complicated means:
for example, buying a sector index, and shorting all the stocks
in the index except the one where insider information indicates
a near future rise



Scalable Arbitrage through Insider Trading

• It is easy to construct insider trading examples leading to
scalable arbitrage

• P. Imkeller has worked out in detail the example where L is
the last time a price process, following a recurrent diffusion,
crosses 0 before a fixed time T

• If one knows the time L, and a > 0, one can buy at L and sell
at time T ; if a < 0, one sells short naked at time L, and
covers at time T

• Imkeller shows mathematically that no risk neutral measure
can exist under G; J. Zwierz extends his result to a more
general situation



Background

• We begin with (Ω,F ,P) and F = (Ft)t≥0

• Let S ≥ 0 be the price process of a risky asset, and let r = 0
(r is the spot interest rate)

• Under mild assumptions, there exists an equivalent probability
measure Q under which S is a local martingale

• Such a Q is called a risk neutral measure; if it is unique, the
market is complete

• The measure Q can be used to price financial derivatives
(contingent claims)



The Four Questions

1. Does the risk neutral measure change under an expansion of
filtrations?

2. If the risk neutral measure does indeed change, exactly how
does it change?

3. When does the risk neutral measure not exist under a filtration
expansion, thereby introducing arbitrage opportunities?

4. If the risk neutral measure does not exist as in (3), how might
we exploit these arbitrage opportunities?



Expansion of Filtrations Dynamically via Stochastic
Processes: A New Approach

Preliminaries

• Review of the Jeulin-Yor theory

• τ is an honest time if it is the end of an optional set, such as
a last exit time, or the second to last exit time

• Let G ⊂ H be two filtrations and let τ be an H stopping time.
G and H coincide after τ if for every H optional process X
the process 1[τ,∞) is G adapted

• Define:

Zt = P(τ > t|Ft), the optional projection of 1t≥τ onto F
µ is the martingale part of the Doob-Meyer decomposition of Z

J is the dual predictable projection of ∆Mτ1t≥τ onto F



Preliminaries, Continued

• Related to results of Yan Zeng, and Xin Guo

• Theorem (Y. Kchia, M. Larsson and Protter, 2011): Let M
be an F local martingale. Let H coincide with G after τ .
Suppose there exists an H predictable finite variation process
A such that M − A is an H local martingale. Then M is a G
semimartingale and

Mt∧τ −
∫ t∧τ

0

d〈M, µ〉s + dJs

Zs−
−
∫ t

t∧τ
dAs (1)

is the local martingale part of its G decomposition up to t ∧ τ



A Recent Result of Y. Kchia and M. Larsson, 2011

• Kchia and Larsson treated a progressive expansion of a
filtration with positive random variables (τi )i∈I , where I is a
subset of {1, 2, . . . , n}, with the τi not necessarily ordered

• This decomposition is expressed as a sum of decompositions
of the form (1), where each separate decomposition takes
place on a stochastic interval of the form [σI , ρI ), where
σI = maxi∈I τi and ρI = minj 6∈I τj

• Their results extend results of Jeanblanc and Le Cam
(2009), and also El Karoui, Jeanblanc, and Jiao (2009 and
2010). Kchia and Larsson include jump sizes



A New Procedure for Dynamic Enlargement

• Due to the previous results of Kchia and Larsson, we know
how to expand a filtration with a marked point process with
unordered arrivals

• We start with a base filtration F and we want to expand it to
a larger filtration H, tracking what happens to F
semimartingales in the larger H filtration

• We also want to use a càdlàg process X as our vehicle for
expanding F to H

• Step 1 is to approximate X with a sequence (X n)n≥1 of
càdlàg processes that are marked point processes with possibly
unordered jumps, and then expand with X n to get a larger
filtration Gn



• Step 2: We choose the approximations X n in such a way that
we know that if M is an F semimartingale, then it is also an
Gn semimartingale, and we can calculate Nn and An of its Gn

Doob-Meyer decomposition:

Mn
t = Nn

t + An
t (2)

• We need some sort of a control on Nn and An in (2) as n
increases to ∞, to get a convergence of of the components of
Mn, which is the F semimartingale M after the expansion

• We take an old lemma of Martin Barlow and myself, and
feed it steroids

• We combine this with the (somewhat obscure) theory of the
convergence of filtrations, developed by F. Antonelli, A.
Kohatsu-Higa, F. Coquet, and others



• Step 3: We say that a semimartingale Y is an L nicely
integrable semimartingale if Y = N + A is its canonical
decomposition in L and there exists a constant K such that

E

(∫ T

0
|dAs |

)
≤ K , and E

(
sup

o≤s≤T
|Ns |

)
≤ K . (3)

• For a given semimartingale X we are using for our expansion,
we approximate X with X n, where

X n
t =

n+1∑
i=0

(Xt i
n
− Xt i−1

n
)1{t≥t i

n} (4)



• In his famous paper of 1987, “Grossissement initial, hypothèse
(H ′) et théorème de Girsanov,” Jacod gave conditions for an
initial expansion by a random variable, involving the existence
of conditional densities, that assure Hypothesis (H ′) holds
(i.e., semimartingales stay semimartingales in the expanded
filtration)

• Using Equation (4) we expand the filtration initially at each
time t i−1

n , with (Xt i
n
− Xt i−1

n
), for each n. To do this we will

assume there exists a sequence (πn)n≥1 = ({t i
n})n≥1 of

subdivisions of [0,T ] whose mesh tends to zero and is such
that (Xtn

0
,Xtn

1
− Xtn

0
, . . . ,XT − Xtn

n
) satisfies Jacod’s criterion

for each n. We call this a dynamic Jacod criterion.



• Let (Nn)n≥1 be a sequence of càdlàg processes converging in
probability under the Skorohod topology to a càdlàg process
N and let Nn and N be their natural filtrations. Define the
filtrations G0,n = F ∨ Nn and Gn by Gn

t =
⋂

u>t G
0,n
u . Let also

G0 (resp. G) be the smallest (resp. the smallest
right-continuous) filtration containing F and to which N is
adapted.



• A consequence of a theorem of Mémin:

Theorem: Let (Gn)n≥1 be a sequence of right-continuous

filtrations and let G be a filtration such that Gn
t

w→ Gt for all
t. Let X be a stochastic process such that for each n, X is a
Gn semimartingale with canonical decomposition

X = Mn + An such that there exists K > 0, E (
∫ T
0 |dAn

s |) ≤ K
and E (sup0≤s≤T |Mn

s |) ≤ K for all n. Then

(i) If X is G adapted, then X is a G special semimartingale.
(ii) Assume moreover that G is right-continuous and let

X = M + A be the canonical decomposition of X . Then M is a

G martingale and sup0≤s≤T |Ms | and
∫ T

0
|dAs | are integrable.

(iii) Furthermore, assume that X is G quasi-left continuous and

Gn w→ G. Then (Mn,An) converges in probability under the
Skorohod J1 topology to (M,A).



• Theorem: Let X be an F semimartingale such that for each
n, X is a Gn semimartingale with canonical decomposition

X = Mn + An. Assume E (
∫ T
0 |dAn

s |) ≤ K and
E (sup0≤s≤T |Mn

s |) ≤ K for some K and all n. Assume either
N is quasi-left continuous, or that Nn is a discretization of N
along some refining subdivision (πn)n≥1 such that each fixed
time of discontinuity of N belongs to ∪nπn. Then

(i) X is a G0 special semimartingale.
(ii) Moreover, if F is the natural filtration of some càdlàg process

then X is a G special semimartingale with canonical
decomposition X = M + A such that M is a G martingale and

sup0≤s≤T |Ms | and
∫ T

0
|dAs | are integrable.

(iii) Furthermore, assume that X is G quasi-left continuous and

Gn w→ G. Then (Mn,An) converges in probability under the
Skorohod J1 topology to (M,A).



A Generalized Jacod’s Criterion

• Generalized Jacod’s criterion: There exists a sequence
(πn)n≥1 = ({tn

i })n≥1 of subdivisions of [0,T ] whose mesh
tends to zero and such that for each n,
(Xtn

0
,Xtn

1
− Xtn

0
, . . . ,XT − Xtn

n
) satisfies Jacod’s criterion,

i.e. there exists a σ-finite measure ηn on B(Rn+2) such that
P
(
(Xtn

0
,Xtn

1
− Xtn

0
, . . . ,XT − Xtn

n
) ∈ · | Ft

)
(ω)� ηn(·) a.s



A Key Result

• We let G0 (resp. G) be the smallest (resp. the smallest
right-continuous) filtration containing F and relative to which
X is adapted.

• Theorem: Assume X and F satisfy the Generalized Jacod’s
Criterion, and that either X is quasi-left continuous, or the
sequence of subdivisions (πn)n≥1 is refining and all fixed times
of discontinuity of X belong to ∪nπn.

Let M be a continuous F martingale such that

E (sups≤T |Ms |) ≤ K and E (
∫ T
0 |dA

(n)
s |) ≤ K for some K and

all n. Then

(i) M is a G0 special semimartingale, and
(ii) Moreover, if F is the natural filtration of some càdlàg process

Z , then M is a G special semimartingale with canonical
decomposition M = N + A such that N is a G martingale and

sup0≤s≤T |Ns | and
∫ T

0
|dAs | are integrable.



A First Application

• Start with a Brownian filtration F = (Ft)0≤t≤T ,
Ft = σ(Bs , s ≤ t) and consider the stochastic differential
equation

dXt = σ(Xt)dBt + b(Xt)dt

Assume the existence of a unique strong solution (Xt)0≤t≤T

• Indeed, assume the transition density π(t, x , y) exists and is
twice continuously differentiable in x and continuous in t and
y .

• This is guaranteed for example if b and σ are infinitely
differentiable with bounded derivatives and if the H örmander
condition holds for any x , and we assume that this holds. In
this case, π is even infinitely differentiable



• Define the time reversed process Zt = XT−t , for all
0 ≤ t ≤ T . Let G = (Gt)0≤t<T

2
be the smallest

right-continuous filtration containing (Ft)0≤t<T
2

and to which

(Zt)0≤t<T
2

is adapted

• We would like to prove that B remains a special
semimartingale in G and give its canonical decomposition

• Such questions have been considered before by Jeulin,
Pardoux, Jacod & Protter

• Take T = 1. The reversed Brownian motion is
B̃t = B1−t −B1 and the filtration G̃ = (G̃t)0≤t< 1

2
is defined by

G̃t =
⋂

t<u< 1
2

σ(Bs , B̃s , 0 ≤ s < u).

• A Standard Theorem: Both B and B̃ are G semimartingales



• Theorem: Assume there exists a nonnegative function φ such
that

∫ 1
0 φ(s)ds <∞ and for each 0 ≤ s < t,

E
(∣∣∣ 1
π

∂π

∂x
(t − s,Xs ,Xt)

∣∣∣) ≤ φ(t − s)

Then the process (Bt)0≤t< 1
2

is a G semimartingale and if b

and σ are bounded, and σ is bounded away from zero,

Bt −
∫ t

0

1

π

∂π

∂x
(1− 2s,Xs ,X1−s)ds

is a G Brownian motion



• We cannot prove something like Hypothesis (H ′) in our
context, but we can give in concrete examples sufficient
conditions for an F semimartingale to remain an G
semimartingale, specify the decomposition, and check to see if
it provides scalable arbitrage opportunities, or not.

• An example is the following (obtained with Jean Jacod): We
expand the filtration F dynamically, with the process

Xt = W1 + εV1−t (5)

where W is a standard Brownian motion, and V is also a BM,
independent of W and of F. We define

Ht = Ft ∨ σ(W1 + εV1−s ; s ≤ t) = Ft ∨ σ(Xs : s ≤ t).



• Theorem: Let H be predictable with
∫ 1
0 H2

s ds <∞ a.s.

Define Mt =
∫ t
0 HsdWs , an F local martingale. If H is a.s. of

the order Hs = 1
1−s

1/2+α
with α < 1

2 then M remains a
semimartingale in H, and the finite variation term of its
decomposition is

AH
t = −

∫ t

0
Hs

Xs −Ws

(1 + ε2)(1− s)
ds. (6)

• Final Remark: We see this as a beginning, and the number
of questions related to the expansion of filtrations and
concomitant insider trading application is large.


