Performance of greedy algorithm for Kolmogorov widths

P. Wojtaszczyk

University of Warsaw

Perspectives in Analysis and Probability Conference in Honor of Freddy Delbaen Zurich, September 24, 2012

Motivation

- 2 Greedy selection
- Oirect estimates
 - 4 Technical setup
- 6 Rates of decay
- 6 Banach space
 - 7 Greedy selection is unrealistic

< E

$$D_{\mu}f = g \quad \mu \in E$$
 (1)

be a family of uniformly elliptic PDE's.

For a given $\mu \in F$ solving (1) is time consuming. We want to prepare ourselves to do it fast – on line. Idea of reduced basis method: (end of XX-century)

We solve (1) for μ_1, \ldots, μ_n to get $f_{\mu_1}, \ldots, f_{\mu_n}$ and for given μ we approximate the solution

$$f_\mu \sim \sum_{j=1}^n a_j f_{\mu_j}.$$

$$D_{\mu}f = g \quad \mu \in E$$
 (1)

be a family of uniformly elliptic PDE's.

For a given $\mu \in F$ solving (1) is time consuming. We want to prepare ourselves to do it fast – on line. Idea of reduced basis method: (end of XX-century)

We solve (1) for μ_1, \ldots, μ_n to get $f_{\mu_1}, \ldots, f_{\mu_n}$ and for given μ we approximate the solution

$$f_\mu \sim \sum_{j=1}^{''} a_j f_{\mu_j}.$$

$$D_{\mu}f = g \quad \mu \in E$$
 (1)

be a family of uniformly elliptic PDE's.

For a given $\mu \in F$ solving (1) is time consuming. We want to prepare ourselves to do it fast – on line. Idea of reduced basis method: (end of XX-century)

We solve (1) for μ_1, \ldots, μ_n to get $f_{\mu_1}, \ldots, f_{\mu_n}$ and for given μ we approximate the solution

$$f_{\mu} \sim \sum_{j=1}^n a_j f_{\mu_j}.$$

$$D_{\mu}f = g \quad \mu \in E$$
 (1)

be a family of uniformly elliptic PDE's.

For a given $\mu \in F$ solving (1) is time consuming. We want to prepare ourselves to do it fast – on line. Idea of reduced basis method: (end of XX-century)

We solve (1) for μ_1, \ldots, μ_n to get $f_{\mu_1}, \ldots, f_{\mu_n}$ and for given μ we approximate the solution

$$f_\mu \sim \sum_{j=1}^n a_j f_{\mu_j}.$$

This is a very theoretical version of the scheme.

Let $\mathcal{K} =: \{f_{\mu} : \mu \in F\}$ be a compact subset of certain Banach space \mathcal{X} or a Hilbert space \mathcal{H} .

We define $\mu_1,\ldots\mu_n$ as follows $(f_j=f_{\mu_j})$

$$I_1 = \operatorname{argmax}\{\|f\| : f \in \mathcal{K}\}$$

2 Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put $f_{n+1} = \operatorname{argmax} \{ \text{dist} (f, E_n) : f \in \mathcal{K} \}$

We want to estimate the performance of this procedure.

We define $\sigma_n(\mathcal{K}) = \sup_{f \in \mathcal{K}} \operatorname{dist}(f, E_n)$. Recall the Kolmogorov width

$$d_n(\mathcal{K}) = \inf_{F} \sup_{f \in \mathcal{K}} \operatorname{dist}(f, F)$$

where F is a subspace of dimension $\leq n$.

Clearly always $d_n(\mathcal{K}) \leq \sigma_n(\mathcal{K})$ and $\sigma_n(\mathcal{K}) = \sigma_n(\mathcal{K})$

This is a very theoretical version of the scheme.

Let $\mathcal{K} =: \{f_{\mu} : \mu \in F\}$ be a compact subset of certain Banach space \mathcal{X} or a Hilbert space \mathcal{H} .

We define $\mu_1,\ldots\mu_n$ as follows ($f_j=f_{\mu_j}$)

2 Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put $f_{n+1} = \operatorname{argmax} \{ \text{dist} (f, E_n) : f \in \mathcal{K} \}$

We want to estimate the performance of this procedure.

We define $\sigma_n(\mathcal{K}) = \sup_{f \in \mathcal{K}} \operatorname{dist}(f, E_n)$. Recall the Kolmogorov width

$$d_n(\mathcal{K}) = \inf_{F} \sup_{f \in \mathcal{K}} \operatorname{dist}(f, F)$$

where F is a subspace of dimension $\leq n$.

Clearly always $d_n(\mathcal{K}) \leq \sigma_n(\mathcal{K})$ as in the second s

P. Wojtaszczyk (ICM, Warsaw)

24.IX.2012 4 / 21

This is a very theoretical version of the scheme.

Let $\mathcal{K} =: \{f_{\mu} : \mu \in F\}$ be a compact subset of certain Banach space \mathcal{X} or a Hilbert space \mathcal{H} .

We define $\mu_1,\ldots\mu_n$ as follows $(f_j=f_{\mu_j})$

2 Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put $f_{n+1} = \operatorname{argmax} \{ \text{dist} (f, E_n) : f \in \mathcal{K} \}$

We want to estimate the performance of this procedure.

We define $\sigma_n(\mathcal{K}) = \sup_{f \in \mathcal{K}} \operatorname{dist}(f, E_n)$. Recall the Kolmogorov width

$$d_n(\mathcal{K}) = \inf_{F} \sup_{f \in \mathcal{K}} \operatorname{dist}(f, F)$$

where F is a subspace of dimension $\leq n$.

Clearly always $d_n(\mathcal{K}) \leq \sigma_n(\mathcal{K})$ as in the second s

P. Wojtaszczyk (ICM, Warsaw)

24.IX.2012 4 / 21

This is a very theoretical version of the scheme.

Let $\mathcal{K} =: \{f_{\mu} : \mu \in F\}$ be a compact subset of certain Banach space \mathcal{X} or a Hilbert space \mathcal{H} .

We define $\mu_1, \ldots \mu_n$ as follows $(f_j = f_{\mu_j})$

$$I_1 = \operatorname{argmax}\{\|f\| : f \in \mathcal{K}\}$$

2 Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put $f_{n+1} = \operatorname{argmax} \{ \text{dist} (f, E_n) : f \in \mathcal{K} \}$

We want to estimate the performance of this procedure.

We define $\sigma_n(\mathcal{K}) = \sup_{f \in \mathcal{K}} \operatorname{dist}(f, E_n)$. Recall the Kolmogorov width

$$d_n(\mathcal{K}) = \inf_{F} \sup_{f \in \mathcal{K}} \operatorname{dist}(f, F)$$

where F is a subspace of dimension $\leq n$.

Clearly always $d_n(\mathcal{K}) \leq \sigma_n(\mathcal{K})$.

P. Wojtaszczyk (ICM, Warsaw)

Results from two papers

BCDDPW Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, P.W., *Convergence Rates for Greedy Algorithms in Reduced Basis Methods* SIAM J. Math. Anal. vol.43 N.3 pp. 1457-1472 (2011)

DPW Ronald DeVore, Guergana Petrova, P.W., *Greedy Algorithms* for Reduced Basis in Banach Spaces submitted

Let us digress

Note that $f_n \in \mathcal{K}$. We define

$$ar{d}_n(\mathcal{K}) = \inf_{\substack{F \ f \in \mathcal{K}}} \operatorname{sup} \operatorname{dist}(f,F)$$

where F is a subspace of dimension $\leq n$ spanned by elements from \mathcal{K} .

Theorem (BCDDPW)

The following holds:

- (i) For any compact set $\mathcal{F} \subset \mathcal{H}$ and any $n \ge 0$, we have $\overline{d}_n(\mathcal{F}) \le (n+1)d_n(\mathcal{F})$.
- (ii) Given any n > 0 and $\epsilon > 0$, there is a set $\mathcal{F} \subset \mathcal{H}$ such that $\overline{d}_n(\mathcal{F}) \ge (n 1 \epsilon) d_n(\mathcal{F}).$

イロト 不得下 イヨト イヨト

Let us digress

Note that $f_n \in \mathcal{K}$. We define

$$ar{d}_n(\mathcal{K}) = \inf_{\substack{F \ f \in \mathcal{K}}} \operatorname{sup} \operatorname{dist}(f,F)$$

where F is a subspace of dimension $\leq n$ spanned by elements from \mathcal{K} .

Theorem (BCDDPW)

The following holds:

- (i) For any compact set $\mathcal{F} \subset \mathcal{H}$ and any $n \ge 0$, we have $\overline{d}_n(\mathcal{F}) \le (n+1)d_n(\mathcal{F})$.
- (ii) Given any n > 0 and $\epsilon > 0$, there is a set $\mathcal{F} \subset \mathcal{H}$ such that $\overline{d}_n(\mathcal{F}) \ge (n 1 \epsilon)d_n(\mathcal{F}).$

< □ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Direct comparison

A.Buffa, Y.Maday, A.T.Patera, C.Prud'homme, G.Turinici, 2012, have shown that for $\mathcal{K}\subset\mathcal{H}$

 $\sigma_n(\mathcal{K}) \leq Cn2^n d_n(\mathcal{K}).$

We have

Theorem (BCDDPW)

Let \mathcal{F} be an arbitrary compact set in a Hilbert space \mathcal{H} . For each $n = 1, 2, \ldots$ we have

$$\sigma_n(\mathcal{K}) \le \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{K}). \tag{2}$$

For any n > 0, $\epsilon > 0$ there exists a set $\mathcal{K} = \mathcal{K}_{n,\epsilon}$ such that

$$\sigma_n(\mathcal{K}) \geq (1-\varepsilon)2^n d_n(\mathcal{K})$$

This looks rather bad.

P. Wojtaszczyk (ICM, Warsaw)

Direct comparison

A.Buffa, Y.Maday, A.T.Patera, C.Prud'homme, G.Turinici, 2012, have shown that for $\mathcal{K}\subset\mathcal{H}$

 $\sigma_n(\mathcal{K}) \leq Cn2^n d_n(\mathcal{K}).$

We have

Theorem (BCDDPW)

Let \mathcal{F} be an arbitrary compact set in a Hilbert space \mathcal{H} . For each n = 1, 2, ... we have

$$\sigma_n(\mathcal{K}) \le \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{K}).$$
⁽²⁾

For any n > 0, $\epsilon > 0$ there exists a set $\mathcal{K} = \mathcal{K}_{n,\epsilon}$ such that

$$\sigma_n(\mathcal{K}) \geq (1-\varepsilon)2^n d_n(\mathcal{K})$$

This looks rather bad.

P. Wojtaszczyk (ICM, Warsaw)

Matrix representation in ${\cal H}$

Algorithm produces f_1, f_2, \ldots . Let $f_n^*, n = 1, 2, \ldots$, be its Gram-Schmidt orthogonalization, so $P_n f = \sum_{i=1}^n \langle f, f_i^* \rangle f_i^*$, and in particular

$$f_i = P_i f_i = \sum_{j=1}^i a_{i,j} f_j^*, \quad a_{i,j} = \langle f_i, f_j^* \rangle, \ j \le i.$$
(3)

The lower triangular matrix $A := A(\mathcal{F}) := (a_{i,j})_{i,j=1}^{\infty}$, $a_{i,j} = 0, j > i$. contains all the information about the output of algorithm on \mathcal{F} . It satisfies **P1**: The diagonal elements of A satisfy $|a_{n,n}| = \sigma_n := \sigma_n(\mathcal{F})$.

P2: For every $m \ge n$ one has $\sum_{j=n}^{m} a_{m,j}^2 \le \sigma_n^2$. Each matrix with P1 and P2 is an output of a greedy algorithm on some \mathcal{F} e.g. $\{(f_n)_n\}$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Matrix representation in ${\cal H}$

Algorithm produces f_1, f_2, \ldots . Let $f_n^*, n = 1, 2, \ldots$, be its Gram-Schmidt orthogonalization, so $P_n f = \sum_{i=1}^n \langle f, f_i^* \rangle f_i^*$, and in particular

$$f_i = P_i f_i = \sum_{j=1}^i a_{i,j} f_j^*, \quad a_{i,j} = \langle f_i, f_j^* \rangle, \ j \le i.$$
(3)

The lower triangular matrix $A := A(\mathcal{F}) := (a_{i,j})_{i,j=1}^{\infty}$, $a_{i,j} = 0, j > i$. contains all the information about the output of algorithm on \mathcal{F} . It satisfies **P1**: The diagonal elements of A satisfy $|a_{n,n}| = \sigma_n := \sigma_n(\mathcal{F})$.

P2: For every $m \ge n$ one has $\sum_{j=n}^{m} a_{m,j}^2 \le \sigma_n^2$. Each matrix with **P1** and **P2** is an output of a greedy algorithm on some \mathcal{F} e.g. $\{(f_n)_n\}$.

Main Estimate

Let $d = d_m(\mathcal{F})$ and let N > m. Let $A_N = [a_{i,j}]_{i,j=1}^N$. We have $\det A_N = \prod_{j=1}^N \sigma_j$. Assume that there exists *m* dimensional space *X* such that each row of the matrix A_N is closer then $d = d_m$ to *X* in ℓ_2 norm.

$$\prod_{i=1}^{N} \sigma_i^2 \le \left\{\frac{N}{m}\right\}^m \left\{\frac{N}{N-m}d^2\right\}^{N-m}.$$
(4)

Proof of (4): Fix an orthonormal basis for \mathbb{R}^N which first spans X. Let C denotes the matrix G written in this basis. We denote by \mathbf{c}_j , the *j*-th column of C. We have

$$\prod_{i=1}^{N} \sigma_{i}^{2} = (\det A_{N})^{2} = (\det C)^{2} \leq \prod_{j=1}^{m} \|\mathbf{c}_{j}\|_{\ell_{2}}^{2} \cdot \prod_{j=m+1}^{N} \|\mathbf{c}_{j}\|_{\ell_{2}}^{2}$$
$$\leq \left(\frac{1}{m} \sum_{j=1}^{m} \|\mathbf{c}_{j}\|_{\ell_{2}}^{2}\right)^{m} \cdot \left(\frac{1}{N-m} \sum_{j=m+1}^{N} \|\mathbf{c}_{j}\|_{\ell_{2}}^{2}\right)^{N-m}$$

P. Wojtaszczyk (ICM, Warsaw)

Theorem (DPW)

For the greedy algorithm in a Hilbert space \mathcal{H} and for any compact set \mathcal{F} , we have the following inequalities between $\sigma_n := \sigma_n(\mathcal{F})_{\mathcal{H}}$ and $d_n := d_n(\mathcal{F})_{\mathcal{H}}$, for any $N \ge 0$, $K \ge 1$, and $1 \le m < K$,

$$\prod_{i=1}^{K} \sigma_{N+i}^2 \le \left\{\frac{\kappa}{m}\right\}^m \left\{\frac{\kappa}{\kappa-m}\right\}^{\kappa-m} \sigma_{N+1}^{2m} d_m^{2\kappa-2m}.$$
(5)

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

(DPW)

For the greedy algorithm in a Hilbert space $\mathcal H$ and for any compact set $\mathcal F$ and $n \geq 1$, we have

$$\sigma_n(\mathcal{F}) \le \sqrt{2} \min_{1 \le m < n} d_m^{\frac{n-m}{n}}(\mathcal{F}).$$
(6)

In particular $\sigma_{2n}(\mathcal{F}) \leq \sqrt{2}\sqrt{d_n(\mathcal{F})}$, $n = 1, 2 \dots$

This is a delayed comparison, very general but sometimes not very efficient.

イロト イポト イヨト イヨト 二日

(DPW)

For the greedy algorithm in a Hilbert space $\mathcal H$ and for any compact set $\mathcal F$ and $n \geq 1$, we have

$$\sigma_n(\mathcal{F}) \le \sqrt{2} \min_{1 \le m < n} d_m^{\frac{n-m}{n}}(\mathcal{F}).$$
(6)

In particular $\sigma_{2n}(\mathcal{F}) \leq \sqrt{2}\sqrt{d_n(\mathcal{F})}$, $n = 1, 2 \dots$

This is a delayed comparison, very general but sometimes not very efficient.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

(BCDDPW, DPW)

If $d_n(\mathcal{F}) \leq C_0 n^{-\alpha}$, $n = 1, 2, \ldots$, then $\sigma_n(\mathcal{F}) \leq C_1 n^{-\alpha}$, $n = 1, 2 \ldots$, with $C_1 := 2^{5\alpha+1} C_0$.

(DPW)

If $d_n(\mathcal{F}) \leq C_0 e^{-c_0 n^{\alpha}}$, n = 1, 2, ..., then $\sigma_n(\mathcal{F}) \leq \sqrt{2C_0} e^{-c_1 n^{\alpha}}$, n = 1, 2..., where $c_1 = 2^{-1-2\alpha} c_0$,

Note that for $\alpha > 1$ the estimate (2) i.e. $\sigma_n(\mathcal{K}) \leq \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{K})$ is better-asymptotically it gives $c_1 = c_0$. For $\alpha < 1$ this is better (it preserves α). For $\alpha = 1$ the choice depends on the constants.

(BCDDPW, DPW)

If $d_n(\mathcal{F}) \leq C_0 n^{-\alpha}$, $n = 1, 2, \ldots$, then $\sigma_n(\mathcal{F}) \leq C_1 n^{-\alpha}$, $n = 1, 2 \ldots$, with $C_1 := 2^{5\alpha+1} C_0$.

(DPW)

If
$$d_n(\mathcal{F}) \leq C_0 e^{-c_0 n^{\alpha}}$$
, $n = 1, 2, ...$, then $\sigma_n(\mathcal{F}) \leq \sqrt{2C_0} e^{-c_1 n^{\alpha}}$, $n = 1, 2...$, where $c_1 = 2^{-1-2\alpha} c_0$,

Note that for $\alpha > 1$ the estimate (2) i.e. $\sigma_n(\mathcal{K}) \leq \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{K})$ is better–asymptotically it gives $c_1 = c_0$. For $\alpha < 1$ this is better (it preserves α). For $\alpha = 1$ the choice depends on the constants.

イロト イポト イヨト イヨト 二日

(BCDDPW, DPW)

If $d_n(\mathcal{F}) \leq C_0 n^{-\alpha}$, $n = 1, 2, \ldots$, then $\sigma_n(\mathcal{F}) \leq C_1 n^{-\alpha}$, $n = 1, 2 \ldots$, with $C_1 := 2^{5\alpha+1} C_0$.

(DPW)

If
$$d_n(\mathcal{F}) \leq C_0 e^{-c_0 n^{lpha}}$$
, $n = 1, 2, ...$, then $\sigma_n(\mathcal{F}) \leq \sqrt{2C_0} e^{-c_1 n^{lpha}}$, $n = 1, 2...$, where $c_1 = 2^{-1-2\alpha} c_0$,

Note that for $\alpha > 1$ the estimate (2) i.e. $\sigma_n(\mathcal{K}) \leq \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{K})$ is better-asymptotically it gives $c_1 = c_0$. For $\alpha < 1$ this is better (it preserves α). For $\alpha = 1$ the choice depends on the constants.

Banach spaces-Technical setup

In \mathcal{X} we get vectors $f_j \in \mathcal{X}$. For each j = 0, 1, ..., we let $\lambda_j \in \mathcal{X}^*$ be the linear functional of norm one that satisfies

$$\lambda_j(E_j) = 0, \quad \lambda_j(f_j) = \operatorname{dist}(f_j, E_j)_X = \sigma_{j+1}.$$

We associate with the greedy procedure a lower triangular matrix $A = (a_{i,j})_{i,j=0}^{\infty}$ with

$$a_{i,j} = \lambda_j(f_i).$$

So diagonal elements $a_{j,j} = \sigma_j = \text{dist}(f_j, E_j)_X$. Each entry $a_{i,j}$ satisfies

 $|a_{i,j}| = |\lambda_j(f_i)| = |\lambda_j(f_i - g)| \le \|\lambda_j\|_{X^*} \|f_i - g\| = \|f_i - g\|, \quad j < i,$

for every $g \in E_j$, since $\lambda_j(E_j) = 0$. Therefore we have

 $|a_{i,j}| \leq \operatorname{dist}(f_i, E_j) \leq \sigma_j, \quad j < i.$

Banach space costs: we have an estimate for individual $A_{i,j}$'s not for their sums.

Banach spaces-Technical setup

In \mathcal{X} we get vectors $f_j \in \mathcal{X}$. For each j = 0, 1, ..., we let $\lambda_j \in \mathcal{X}^*$ be the linear functional of norm one that satisfies

$$\lambda_j(E_j) = 0, \quad \lambda_j(f_j) = \operatorname{dist}(f_j, E_j)_X = \sigma_{j+1}.$$

We associate with the greedy procedure a lower triangular matrix $A = (a_{i,j})_{i,j=0}^{\infty}$ with

$$a_{i,j} = \lambda_j(f_i).$$

So diagonal elements $a_{j,j} = \sigma_j = \text{dist}(f_j, E_j)_X$. Each entry $a_{i,j}$ satisfies

$$|a_{i,j}| = |\lambda_j(f_i)| = |\lambda_j(f_i - g)| \le \|\lambda_j\|_{X^*} \|f_i - g\| = \|f_i - g\|, \quad j < i,$$

for every $g \in E_j$, since $\lambda_j(E_j) = 0$. Therefore we have

$$|a_{i,j}| \leq \operatorname{dist}(f_i, E_j) \leq \sigma_j, \quad j < i.$$

Banach space costs: we have an estimate for individual A_{i,j}'s not for their sums.

P. Wojtaszczyk (ICM, Warsaw)

Banach spaces-Technical setup

In \mathcal{X} we get vectors $f_j \in \mathcal{X}$. For each j = 0, 1, ..., we let $\lambda_j \in \mathcal{X}^*$ be the linear functional of norm one that satisfies

$$\lambda_j(E_j) = 0, \quad \lambda_j(f_j) = \operatorname{dist}(f_j, E_j)_X = \sigma_{j+1}.$$

We associate with the greedy procedure a lower triangular matrix $A = (a_{i,j})_{i,j=0}^{\infty}$ with

$$a_{i,j} = \lambda_j(f_i).$$

So diagonal elements $a_{j,j} = \sigma_j = \text{dist}(f_j, E_j)_X$. Each entry $a_{i,j}$ satisfies

$$|a_{i,j}| = |\lambda_j(f_i)| = |\lambda_j(f_i - g)| \le \|\lambda_j\|_{X^*} \|f_i - g\| = \|f_i - g\|, \quad j < i,$$

for every $g \in E_j$, since $\lambda_j(E_j) = 0$. Therefore we have

$$|a_{i,j}| \leq \operatorname{dist}(f_i, E_j) \leq \sigma_j, \quad j < i.$$

Banach space costs: we have an estimate for individual $A_{i,j}$'s not for their sums. P. Woltaszczyk (ICM, Warsaw) Greedy 24.|X.2012 13 / 21 Suppose that X is a Banach space. For greedy algorithm applied to a compact set \mathcal{F} contained in the unit ball of \mathcal{X} , the following holds for $\sigma_n := \sigma_n(\mathcal{F})_X$ and $d_n := d_n(\mathcal{F})_X$, $n = 1, 2, \ldots$,

(DPW)

For any such compact set $\mathcal F$ and $n \ge 1$, we have

$$\sigma_n \leq \sqrt{2} \min_{1 \leq m < n} n^{\frac{n-m}{2n}} \left\{ \sum_{i=1}^n \sigma_i^2 \right\}^{\frac{m}{2n}} d_m^{\frac{n-m}{n}}.$$

In particular $\sigma_{2\ell} \leq 2\sqrt{\ell d_\ell}$, $\ell = 1, 2 \dots$

イロト イポト イヨト イヨト 二日

24. X.2012

14 / 21

(DPW)

If for $\alpha > 0$, we have $d_n \leq C_0 n^{-\alpha}$, $n = 1, 2, \ldots$, then for any $0 < \beta < \min\{\alpha, 1/2\}$, we have $\sigma_n \leq C_1 n^{-\alpha+1/2+\beta}$, $n = 1, 2 \ldots$, with $C_1 = C_1(\alpha, \beta, C_0)$

(DPW)

(iii) If for $\alpha > 0$, we have $d_n \leq C_0 e^{-c_0 n^{\alpha}}$, n = 1, 2, ..., then $\sigma_n < \sqrt{2C_0}\sqrt{n}e^{-c_1 n^{\alpha}}$, n = 1, 2..., where $c_1 = 2^{-1-2\alpha}c_0$. The factor \sqrt{n} can be deleted by reducing the constant c_1 .

So the Banach space costs us a factor \sqrt{n} . This is not entirely our stupidity.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

(DPW)

If for $\alpha > 0$, we have $d_n \leq C_0 n^{-\alpha}$, $n = 1, 2, \ldots$, then for any $0 < \beta < \min\{\alpha, 1/2\}$, we have $\sigma_n \leq C_1 n^{-\alpha+1/2+\beta}$, $n = 1, 2 \ldots$, with $C_1 = C_1(\alpha, \beta, C_0)$

(DPW)

(iii) If for $\alpha > 0$, we have $d_n \leq C_0 e^{-c_0 n^{\alpha}}$, n = 1, 2, ..., then $\sigma_n < \sqrt{2C_0}\sqrt{n}e^{-c_1 n^{\alpha}}$, n = 1, 2..., where $c_1 = 2^{-1-2\alpha}c_0$. The factor \sqrt{n} can be deleted by reducing the constant c_1 .

So the Banach space costs us a factor \sqrt{n} . This is not entirely our stupidity.

It is classical (Kashin-Gluskin) that for $\mathcal{F} = \{\pm e_j\}_{j=1}^n$ we have $d_s(\mathcal{F})_{\ell_n^{\infty}} \leq C\sqrt{\ln \frac{n}{s}}s^{-1/2}$ for $1 \leq s \leq n/2$. Obviously $\sigma_s(\mathcal{F}) = 1$ for $1 \leq s < n$. We use this to show

(DPW)

For any $\alpha > \frac{1}{2}$ there exists a compact set $\mathcal{F}_{\alpha} \subset c_0$ such that $\sigma_n(\mathcal{F}) \sim n^{-\alpha}$ and $d_n(\mathcal{F}_{\alpha}) \leq Cn^{-\alpha-1/2}$.

Let $\mathcal{K}=:\{\mathit{f}_{\mu}\ :\ \mu\in \mathit{E}\}$ comes from our PDE.

• We cannot compute $\max\{\|f\| \; : \; f \in \mathcal{K}\}$ because

- **1** It requires solving $D_{\mu} = f$ for all μ (or at least infinitely many).
- On the solution is a function in infinite dimensional space so we cannot compute its norm.
- Next steps even more problems.
- We cannot compute f_{μ} exactly.

For fixed $\gamma \in (0,1]$ we define weak greedy algorithm as

- $\textbf{O} \text{ We choose } f_1 \text{ so that } \|f_1\| \geq \gamma \max\{\|f\| \ : \ f \in \mathcal{F}\}$
- **2** Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put f_{n+1} so that $||f_{n+1}|| \ge \gamma \max\{\text{dist}(f, E_n) : f \in \mathcal{F}\}$

In the context of (1) this can be achieved cheaply.

All above results hold for weak greedy algorithm but γ must be incorporated into the constant

イロト イポト イヨト イヨト 二日

For fixed $\gamma \in (0,1]$ we define weak greedy algorithm as

- $\textbf{O} We choose f_1 so that <math>||f_1|| \ge \gamma \max\{||f|| : f \in \mathcal{F}\}$
- **2** Given f_1, \ldots, f_n we define $E_n = \text{span} \{f_1, \ldots, f_n\}$ and put f_{n+1} so that $\|f_{n+1}\| \ge \gamma \max\{\text{dist}(f, E_n) : f \in \mathcal{F}\}$

In the context of (1) this can be achieved cheaply. All above results hold for weak greedy algorithm but γ must be incorporated into the constant

イロト イポト イヨト イヨト 二日

Realistic scheme

We have one more problem: when we compute f_j we obtain some errors. We have $\gamma \in (0,1]$ and accuracy $\epsilon > 0$

• At the first step we determine $f_1 \in \mathcal{F}$ such that $||f_1|| \ge \gamma \sup_{f \in \mathcal{F}} ||f||$. However, from computation we receive the noisy version \hat{f}_1 which is not even necessarily in \mathcal{F} . All we know about \hat{f}_1 is that

$$\|f_1 - \hat{f}_1\| \leq \varepsilon.$$

3 Given $\hat{f}_1, \ldots, \hat{f}_n$ we define $\hat{E}_n = \operatorname{span}\{\hat{f}_1, \ldots, \hat{f}_n\}$ and determine $f_{n+1} \in \mathcal{F}$ such that $\operatorname{dist}(f_{n+1}, \hat{E}_n) \ge \gamma \sup_{f \in \mathcal{F}} \operatorname{dist}(f, \hat{E}_n)$. Rather than f_{n+1} we receive the noisy version \hat{f}_{n+1} for which we only know $\|f_{n+1} - \hat{f}_{n+1}\| \le \varepsilon$.

Let us define

$$\hat{\sigma}_n(\mathcal{F}) := \sup_{f \in \mathcal{F}} \operatorname{dist}(f, \hat{E}_n),$$

which is the performance of this realistic scheme on \mathcal{F} .

Theorem (BCDDPW)

Suppose we are given $\gamma \in (0,1]$ and $\epsilon > 0$. Suppose that

$$d_n(\mathcal{F}) \leq M n^{-\alpha}, \ n \geq 0,$$
 (7)

Image: Image:

.

for some M and $\alpha > 0$. Then,

$$\hat{\sigma}_n(\mathcal{F}) \leq C \max\{Mn^{-lpha}, \varepsilon\}, \quad n \geq 0,$$

with some $C = C(\alpha, \gamma, \epsilon)$.

(8)

Happy Birthday Freddy

